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Abstract

In the present paper, we introduce bounded morphisms on bi-approximation seman-
tics, show the so-called p-morphism lemma on bi-approximation semantics, and in-
vestigate the dual representation of the morphisms. In addition, we study three
properties, namely B-embedding, B-separating and B-reflecting, to preserve validity
of sequents on frames. These bounded morphisms do not look like embedding, surjec-
tive and isomorphic p-morphisms on Kripke semantics in modal logic. Nevertheless,
with help of auxiliary relations or properties held via the dual representation, we
notice that the notion of our bounded morphisms on bi-approximation semantics is a
natural generalisation of the one on Kripke semantics in modal logic.

Keywords: Bi-approximation semantics, substructural logic, Stone-style
representation, Ghilardi and Meloni’s canonicity methodology.

1 Introduction

What is the right notion of relational semantics of non-distributive, i.e. not
necessarily distributive, lattice-based logics, such as for example substructural
logic? The main problem to deal with non-distributive lattice-based logics on
relational semantics is how to avoid validating the distributive law, i.e. φ ∧
(ψ ∨ χ) implies (φ ∧ ψ) ∨ (φ ∧ χ). That is, on a Kripke-style semantics, if we
interpret conjunction ∧ as “and” and disjunction ∨ as “or” as in the case of
modal logic, each state naturally satisfies the distributive law. In the literature,
we can find some relational-type semantics for non-distributive lattice-based
logics by introducing non-standard interpretations of disjunction ∨ to reject
the distributivity, see e.g. [10,13,12,8], also [15].

Bi-approximation semantics has been introduced in [17] to investigate an-
other potential relational-type semantics for non-distributive lattice-based log-
ics. Unlike what happens in normal relational semantics, we reason about log-
ical consequences (sequents), instead of formulae, on bi-approximation seman-
tics. Note that, recently, a relational-type semantics, named residuated frames
[6], was introduced as a complete analog of the proof system of substructural
logic, which can be useful to the decidability property. On the other hand,
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bi-approximation semantics was introduced as a canonicity-friendly framework
to characterise Ghilardi and Meloni’s canonicity methodology [9], which is ap-
plicative to other lattice-based logics. Furthermore, since bi-approximation
semantics is canonicity-friendly, we can also discuss a Sahlqvist theorem on
bi-approximation semantics [16].

In [17], we have investigated the idea of reasoning about sequents on bi-
approximation semantics, and shown the object-level Stone-style representation
theorem between p-frames and FL-algebras. However, we have not studied how
morphisms are defined on bi-approximation semantics, and if they exist, how
they are related to bounded morphisms in Kripke-style semantics. The main
purpose of the current paper is to give a possible answer for those questions.
In this paper, we shall introduce bounded morphisms to preserve truth values
of formulae, and discuss the so-called p-morphism lemma, e.g. [11,2,3]. Based
on these bounded morphisms, we shall think about invariance of validity of
sequents on p-frames via specific morphisms, which are not exactly the same
as the validity preserving p-morphisms in Kripke semantics, called embedding,
surjective and isomorphic p-morphisms. On the other hand, we shall analyse
how our bounded morphisms are related to p-morphisms on Kripke-style se-
mantics. Besides, we shall also prove the dual representation of morphisms
between the category of lattice expansions and strict homomorphisms and the
category of p-frames and bounded morphisms. In the end, we observe that our
bounded morphism is a natural generalisation of p-morphisms on Kripke-style
semantics.

We outline the structure of the current paper. We briefly recall the basic
terminology of substructural logic in Section 2. In Section 3, bi-approximation
semantics are summarised and the fundamental results of bi-approximation se-
mantics are reviewed. Bounded morphisms for bi-approximation semantics are
introduced in Section 4. Further, we shall prove the preservation of truth value
on bi-approximation models, the so-called p-morphism lemma, for the three dif-
ferent satisfaction relations. Notice that there are three satisfaction relations:
one is for assumptions (formulae), the other is for conclusions (formulae), and
the last one is for truth value of sequents. In addition, we shall introduce the
notion of the validity preserving bounded morphisms on bi-approximation se-
mantics, and show the invariance of validity of sequents. In Section 5, the dual
representation of morphisms between lattice expansions and bi-approximation
semantics will be argued. As a result, we shall notice that our notion of bounded
morphisms also satisfies the same properties as the dual representation of mor-
phisms between Boolean algebras and Kripke semantics via the Stone repre-
sentation. Finally, in Section 6, we shall give some conclusive remarks. We
also note that, because of the strict page restriction, many proofs are in the
appendix.

Acknowledgements: The author would like to thank the anonymous review-
ers for their valuable comments to improve not just this paper but also his
subsequent works.
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2 Substructural logic

In this paper, we denote propositional variables by p, q, r, p1, . . ., the set of all
propositional variables by Φ, and t and f are logical constants representing true
and false, respectively. As logical connectives, we use disjunction ∨, conjunc-
tion ∧, fusion (multiplication) ◦, implications (residuals) → and ←. Formulae
of substructural logic are denoted by φ, ψ, χ, φ1, . . ., and ψ1, . . ., and the set
of all formulae is denoted by Λ. The following BNF generates formulae of
substructural logic.

φ ::= p | t | f | φ ∨ φ | φ ∧ φ | φ ◦ φ | φ→ φ | φ← φ

Γ, ∆, Σ, Π are (possibly empty) finite lists of formulae, and θ is a list of at
most one formula. Then, we call Γ Z⇒ θ a sequent, see e.g. [14].

For sequents, we consider a sequent calculus for substructural logic, called
FL as in Fig. 1. In the sequent calculus FL, a formula φ is provable in FL if

Initial sequents.

φ Z⇒ φ Z⇒ t f Z⇒

Cut rule.
Γ Z⇒ φ Σ, φ,Π Z⇒ θ

(cut)
Σ,Γ,Π Z⇒ θ

Rules for logical constants.

Γ,∆ Z⇒ θ
(tw)

Γ, t,∆ Z⇒ θ
Γ Z⇒ (fw)

Γ Z⇒ f

Rules for logical connectives.

Γ, φ,∆ Z⇒ θ Γ, ψ,∆ Z⇒ θ
(∨ Z⇒)

Γ, φ ∨ ψ,∆ Z⇒ θ

Γ Z⇒ φ
( Z⇒ ∨1)

Γ Z⇒ φ ∨ ψ
Γ Z⇒ ψ

(Z⇒ ∨2)
Γ Z⇒ φ ∨ ψ

Γ, φ,∆ Z⇒ θ
(∧1 Z⇒)

Γ, φ ∧ ψ,∆ Z⇒ θ

Γ, ψ,∆ Z⇒ θ
(∧2 Z⇒)

Γ, φ ∧ ψ,∆ Z⇒ θ

Γ Z⇒ φ Γ Z⇒ ψ
( Z⇒ ∧)

Γ Z⇒ φ ∧ ψ
Γ, φ, ψ,∆ Z⇒ θ

(◦ Z⇒)
Γ, φ ◦ ψ,∆ Z⇒ θ

Γ Z⇒ φ Σ Z⇒ ψ
( Z⇒ ◦)

Γ,Σ Z⇒ φ ◦ ψ
Γ Z⇒ φ Σ, ψ,Π Z⇒ θ

(→Z⇒)
Σ,Γ, φ→ ψ,Π Z⇒ θ

φ,Γ Z⇒ ψ
(Z⇒→)

Γ Z⇒ φ→ ψ

Γ Z⇒ φ Σ, ψ,Π Z⇒ θ
(←Z⇒)

Σ, ψ ← φ,Γ,Π Z⇒ θ

Γ, φ Z⇒ ψ
(Z⇒←)

Γ Z⇒ ψ ← φ

Fig. 1. The sequent calculus FL
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the sequent Z⇒ φ is derivable in FL. The substructural logic FL is the set of all
provable formulae in FL.

Proposition 2.1 For all formulae φ and ψ, we have

(i) φ is provable if and only if t Z⇒ φ is derivable,

(ii) φ Z⇒ ψ is derivable if and only if φ → ψ is provable in FL if and only if
ψ ← φ is provable in FL,

(iii) φ1, . . . , φn Z⇒ θ is derivable in FL if and only if φ1◦· · ·◦φn Z⇒ θ is derivable
in FL.

By Proposition 2.1, we sometimes state that the substructural logic FL is
the set of all sequents derivable in FL. Besides, we also think about a sequent
φ1, . . . , φn Z⇒ θ as a pair of two formulae φ1 ◦ · · · ◦ φn and θ. In particular, if
the left-hand side is empty, we let the first formula t, and if the right-hand side
is empty, we let the second formula f. Hence, hereinafter, we may state that a
sequent φ Z⇒ ψ is a pair of two formulae.

The algebraic counterparts of the substructural logic FL are known as FL-
algebras [7].

Definition 2.2 (FL-algebra) An 8-tuple A = 〈A,∨,∧, ∗, \, /, 1, 0〉 is an FL-
algebra, if 〈A,∨,∧〉 forms a lattice, 〈A, ∗, 1〉 is a monoid, 0 is a constant in A,
and for all a, b, c ∈ A, we have

a ∗ b ≤ c ⇐⇒ b ≤ a\c ⇐⇒ a ≤ c/b.

On FL-algebras, each formula φ is interpreted to the corresponding term
t as usual, i.e. ◦, →, ←, t and f are interpreted to ∗, \, /, 1 and 0. The
corresponding term of a formula φ is denoted by sφ or by tφ. Furthermore,
each sequent φ1, . . . , φn Z⇒ θ is interpreted as an inequality sφ1 ∗ · · · ∗ sφn ≤ tθ.
We sometimes abuse the notation for a list of formulae, i.e. sΓ is the term
sφ1
∗ · · · ∗ sφn , when Γ is the finite list of formulae φ1, . . . , φn. Note that if the

left hand side of a sequent is empty then the corresponding term is 1, and if
the right hand side of a sequent is empty then the corresponding term is 0.

3 Bi-approximation semantics

Bi-approximation semantics is designed as a canonicity-friendly relational se-
mantics for substructural logic [17]. A novelty of this semantics is to eval-
uate not only formulae but also sequents based on polarities. A polarity
is a triple 〈X,Y,B〉 where X and Y are not-necessarily disjoint and non-
empty sets and B is a binary relation on X × Y , see e.g. [1,4,8] for polar-
ities. Note that, for each polarity 〈X,Y,B〉, the binary relation B is natu-
rally extended to a preorder order ≤ on X ∪ Y , see [8,17]. For x1, x2 ∈ X,
we let x1 ≤ x2 ⇐⇒ ∀y ∈ Y. [x2By =⇒ x1By] and for y1, y2 ∈ Y , we let
y1 ≤ y2 ⇐⇒ ∀x ∈ X. [xBy1 =⇒ xBy2]. Hence, we may call the triple
〈X,Y,≤〉 with the extended preorder order ≤ a polarity. Unlike the stan-
dard relational semantics like Kripke semantics or Routley-Meyer semantics,
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bi-approximation semantics reasons about sequents on a polarity 〈X,Y,≤〉 as
follows: we evaluate premises on X, conclusions on Y and sequents (logical
consequences) as the binary relation ≤ between premises and conclusions.

Definition 3.1 A polarity frame for substructural logic, p-frame for short, is
an 8-tuple F = 〈X,Y,≤, R,OX , OY , NX , NY 〉, where 〈X,Y,≤〉 is a polarity, R
is a ternary relation on X ×X × Y , OX is a non-empty subset of X, NX is a
subset of X, OY and NY are subsets of Y , and F satisfies

R-order: for all x, x′ ∈ X,

x′ ≤ x if and only if ∃o ∈ OX .
[
R◦(x, o, x′) or R◦(o, x, x′)

]
;

R-identity: for each x ∈ X,

∃o2 ∈ OX .
[
R◦(x, o2, x)

]
and ∃o1 ∈ OX .

[
R◦(o1, x, x)

]
;

R-transitivity: for all x1, x
′
1, x2, x

′
2 ∈ X and y, y′ ∈ Y ,

x′1 ≤ x1, x
′
2 ≤ x2, y ≤ y′ and R(x1, x2, y) =⇒ R(x′1, x

′
2, y
′);

R-associativity: for all x1, x2, x3, x ∈ X,

∃x′ ∈ X.
[
R◦(x1, x

′, x) and R◦(x2, x3, x
′)
]

⇐⇒ ∃x′′ ∈ X.
[
R◦(x1, x2, x

′′) and R◦(x′′, x3, x)
]
;

O: OX = {x ∈ X | ∀y ∈ OY . x ≤ y} and OY = {y ∈ Y | ∀x ∈ OX . x ≤ y};
N: NX = {x ∈ X | ∀y ∈ NY . x ≤ y} and NY = {y ∈ Y | ∀x ∈ NX . x ≤ y};
◦-tightness: for all x1, x2 ∈ X and y ∈ Y ,

∀x ∈ X.
[
R◦(x1, x2, x) =⇒ x ≤ y

]
=⇒ R(x1, x2, y);

→-tightness: for all x1, x2 ∈ X and y ∈ Y ,

∀y2 ∈ Y.
[
R→(x1, y2, y) =⇒ x2 ≤ y2

]
=⇒ R(x1, x2, y);

←-tightness: for all x1, x2 ∈ X and y ∈ Y ,

∀y1 ∈ Y.
[
R←(y1, x2, y) =⇒ x1 ≤ y1

]
=⇒ R(x1, x2, y);

where R◦(x1, x2, x), R→(x1, y2, y) and R←(y1, x2, y) are auxiliary relations of
R defined as follows:

R◦: R◦(x1, x2, x) ⇐⇒ ∀y ∈ Y.
[
R(x1, x2, y) =⇒ x ≤ y

]
;

R→: R→(x1, y2, y) ⇐⇒ ∀x2 ∈ X.
[
R(x1, x2, y) =⇒ x2 ≤ y2

]
;

R←: R←(y1, x2, y) ⇐⇒ ∀x1 ∈ X.
[
R(x1, x2, y) =⇒ x1 ≤ y1

]
.

Remark 3.2 In [17], the tightness conditions are given by more restricted
forms. However, we can weaken those tightness conditions as above to show all
results in [17], and they are actually even more direct. But the most important
reason to introduce the above tightness conditions is that the slight difference
affects the current author’s subsequent works.
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Remark 3.3 The conditions of p-frames are not completely independent
(e.g. the R-transitivity follows from the other conditions). However, we keep
the above definition to discuss similarities to Kripke-type semantics for dis-
tributive substructural logics.

On p-frames, we define doppelgänger valuations to give compatible truth
value to atomic sequents, namely we want to make p Z⇒ p valid for each propo-
sitional variable p ∈ Φ.

Definition 3.4 (Doppelgänger valuation) Given a p-frame F, a pair V =(
V ↓, V↑

)
of two functions V ↓ : Φ → ℘(X) and V↑ : Φ → ℘(Y ), where ℘(X)

and ℘(Y ) are the powersets of X and Y , is a doppelgänger valuation on F, if
V ↓(p) = {x ∈ X | ∀y ∈ V↑(p). x ≤ y} and V↑(p) = {y ∈ Y | ∀x ∈ V ↓(p). x ≤ y}
for each propositional variable p ∈ Φ.

Given a p-frame F and a doppelgänger valuation V on F, we call the pair
M = 〈F, V 〉 a bi-approximation model. On a bi-approximation model M, we
inductively define a satisfaction relation ||== as follows: for all x ∈ X and y ∈ Y ,
we let

X-1 M ||x== p ⇐⇒ x ∈ V ↓(p) for each propositional variable p ∈ Φ,

X-2 M ||x== t ⇐⇒ x ∈ OX ,

X-3 M ||x== f ⇐⇒ x ∈ NX ,

X-4 M ||x== φ ∨ ψ ⇐⇒ ∀y ∈ Y.
[
M ||==

y
φ ∨ ψ =⇒ x ≤ y

]
,

X-5 M ||x== φ ∧ ψ ⇐⇒ M ||x== φ and M ||x== ψ,

X-6 M ||x== φ ◦ ψ ⇐⇒ ∀y ∈ Y.
[
M ||==

y
φ ◦ ψ =⇒ x ≤ y

]
,

X-7 M ||x== φ→ ψ ⇐⇒ ∀x′ ∈ X, y ∈ Y.
[
M ||x′== φ and M ||==

y
ψ =⇒ R(x′, x, y)

]
,

X-8 M ||x== ψ ← φ ⇐⇒ ∀x′ ∈ X, y ∈ Y.
[
M ||x′== φ and M ||==

y
ψ =⇒ R(x, x′, y)

]
,

Y-1 M ||==
y
p ⇐⇒ y ∈ V↑(p) for each propositional variable p ∈ Φ,

Y-2 M ||==
y

t ⇐⇒ y ∈ OY ,

Y-3 M ||==
y

f ⇐⇒ y ∈ NY ,

Y-4 M ||==
y
φ ∨ ψ ⇐⇒ M ||==

y
φ and M ||==

y
ψ,

Y-5 M ||==
y
φ ∧ ψ ⇐⇒ ∀x ∈ X.

[
M ||x== φ ∧ ψ =⇒ x ≤ y

]
,

Y-6 M ||==
y
φ ◦ ψ ⇐⇒ ∀x1, x2 ∈ X.

[
M ||x1== φ and M ||x2== ψ =⇒ R(x1, x2, y)

]
,

Y-7 M ||==
y
φ→ ψ ⇐⇒ ∀x ∈ X.

[
M ||x== φ→ ψ =⇒ x ≤ y

]
,

Y-8 M ||==
y
ψ ← φ ⇐⇒ ∀x ∈ X.

[
M ||x== ψ ← φ =⇒ x ≤ y

]
,

S-1 M ||x==
y
φ Z⇒ ψ ⇐⇒ if M ||x== φ and M ||==

y
ψ then x ≤ y,

S-2 M ||== φ Z⇒ ψ ⇐⇒ ∀x ∈ X, y ∈ Y.
[
M ||x==

y
φ Z⇒ ψ

]
,
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S-3 F ||== φ Z⇒ ψ ⇐⇒ 〈F, V 〉 ||== φ Z⇒ ψ for every doppelgänger valuation V .

Definition 3.5 (Truth value) The satisfaction relation ||== is interpreted as
follows:

(i) M ||x== φ: a formula φ is assumed at x in M,

(ii) M ||==
y
ψ: a formula ψ is concluded at y in M,

(iii) M ||x==
y
φ Z⇒ ψ: a sequent φ Z⇒ ψ is true between x and y in M,

(iv) M ||== φ Z⇒ ψ: a sequent φ Z⇒ ψ is universally true on M,

(v) F ||== φ Z⇒ ψ: a sequent φ Z⇒ ψ is valid on F.

Preceding results on bi-approximation semantics. Thanks to the tight-
ness conditions in Definition 3.1, we obtain the following lemma for auxiliary
relations R◦, R→ and R←.

Lemma 3.6 (Redefinition of R) For each p-frame F, we have

(i) R(x1, x2, y) ⇐⇒ ∀x ∈ X.
[
R◦(x1, x2, x) =⇒ x ≤ y

]
,

(ii) R(x1, x2, y) ⇐⇒ ∀y2 ∈ Y.
[
R→(x1, y2, y) =⇒ x2 ≤ y2

]
,

(iii) R(x1, x2, y) ⇐⇒ ∀y1 ∈ Y.
[
R←(y1, x2, y) =⇒ x1 ≤ y1

]
.

The so-called Hereditary property on bi-approximation semantics is given
as follows.

Proposition 3.7 (Hereditary) Let M be a bi-approximation model. For all
x, x′ ∈ X and y, y′ ∈ Y , we have

(i) if x′ ≤ x and M ||x== φ then M ||x′== φ,

(ii) if y ≤ y′ and M ||==
y
ψ then M ||==

y′
ψ.

The following proposition states that every doppelgänger valuation is nat-
urally extended from propositional variables Φ to all formulae Λ: see also [17,
Corollary 3.11].

Proposition 3.8 Let M be a bi-approximation model. For each x ∈ X, each
y ∈ Y and all formulae φ, ψ ∈ Λ, we have

(i) M ||x== φ ⇐⇒ ∀y ∈ Y.
[
M ||==

y
φ =⇒ x ≤ y

]
,

(ii) M ||==
y
ψ ⇐⇒ ∀x ∈ X.

[
M ||x== ψ =⇒ x ≤ y

]
.

Furthermore, we can also prove the soundness and Sahlqvist completeness
theorem on bi-approximation semantics.

Theorem 3.9 (Soundness [17]) Let φ Z⇒ ψ be a sequent. If φ Z⇒ ψ is deriv-
able in the sequent system FL then it is valid on any p-frame.

Theorem 3.10 (Sahlqvist completeness [18,16]) Let Ω be a set of se-
quents which have consistent variable occurrence: see [18] for the definition
of consistent variable occurrence. The substructural logic FL⊕Ω, which is FL
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extended by Ω, is elementary and canonical, hence complete with respect to a
class of first-order definable p-frames.

4 Bounded morphisms on bi-approximation semantics

In this section, we introduce bounded morphisms by focusing on invariance of
the satisfaction relation ||==: see Lemmata 4.5 and 4.6, and Theorem 4.10.

Definition 4.1 (Bounded morphisms) Given two p-frames F = 〈X1, Y1,
≤1, R1, OX1, OY 1, NX1, NY 1〉 and G = 〈X2, Y2,≤2, R2, OX2, OY 2, NX2, NY 2〉,
a pair 〈σ|τ〉 of two functions σ : X1 → X2 and τ : Y1 → Y2 is a bounded
morphism from F to G, denoted by 〈σ|τ〉 : F→ G, if 〈σ|τ〉 satisfies

(i) for all x ∈ X1 and y ∈ Y1, σ(x) ≤2 τ(y) =⇒ x ≤1 y;

(ii) for all x ∈ X1 and y′ ∈ Y2,

∀y ∈ Y1.
[
y′ ≤2 τ(y) =⇒ x ≤1 y

]
=⇒ σ(x) ≤2 y

′;

(iii) for all x′ ∈ X2 and y ∈ Y1,

∀x ∈ X1.
[
σ(x) ≤2 x

′ =⇒ x ≤1 y
]

=⇒ x′ ≤2 τ(y);

(iv) for all x1, x2 ∈ X1 and y ∈ Y1, R2 (σ(x1), σ(x2), τ(y)) =⇒ R1(x1, x2, y);

(v) for all x′1, x
′
2 ∈ X2 and y ∈ Y1,

∀x1, x2 ∈ X1.
[
σ(x1) ≤2 x

′
1 and σ(x2) ≤2 x

′
2 =⇒ R1(x1, x2, y)

]
=⇒ R2(x′1, x

′
2, τ(y));

(vi) for all x′1 ∈ X2, x2 ∈ X1 and y′ ∈ Y2,

∀x1 ∈ X1, y ∈ Y1.
[
σ(x1) ≤2 x

′
1 and y′ ≤2 τ(y) =⇒ R1(x1, x2, y)

]
=⇒ R2(x′1, σ(x2), y′);

(vii) for all x1 ∈ X1, x′2 ∈ X2 and y′ ∈ Y2,

∀x2 ∈ X1, y ∈ Y1.
[
σ(x2) ≤2 x

′
2 and y′ ≤2 τ(y) =⇒ R1(x1, x2, y)

]
=⇒ R2(σ(x1), x′2, y

′);

(viii) for each x ∈ X1,[
x ∈ OX1 ⇐⇒ σ(x) ∈ OX2

]
and

[
x ∈ NX1 ⇐⇒ σ(x) ∈ NX2

]
;

(ix) for each y ∈ Y1,[
y ∈ OY 1 ⇐⇒ τ(y) ∈ OY 2

]
and

[
y ∈ NY 1 ⇐⇒ τ(y) ∈ NY 2

]
.

Moreover, a bounded morphisms 〈σ|τ〉 : F → G is a bounded morphism on bi-
approximation models from 〈F, U〉 to 〈G, V 〉, if 〈σ|τ〉 additionally satisfies

(x) for each x ∈ X1, x ∈ U↓(p) ⇐⇒ σ(x) ∈ V ↓(p),
(xi) for each y ∈ Y1, y ∈ U↑(p) ⇐⇒ τ(y) ∈ V↑(p),
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for each propositional variable p ∈ Φ.

Remark 4.2 Bounded morphisms for polarities are given by the first three
conditions.

Remark 4.3 In [8], morphisms on generalized Kripke frames are induced by
the complete homomorphisms on the dual algebras. On the setting, we cannot
define morphisms on two-sorted frames in our setting unless they are surjective.
On the other hand, our setting allows us to have complete homomorphisms on
the dual morphisms which cannot be represented by our bounded morphisms,
and this is not the case of modal logic.

At first, one may feel that the conditions of bounded morphisms for bi-
approximation semantics are far from those for Kripke semantics. For example,
a p-morphism ρ : 〈W,R〉 → 〈W ′, R′〉 for Kripke frames satisfies the following
condition: for all w1, w2 ∈ W1, if R(w1, w2) then R′(ρ(w1), ρ(w2)). This con-
dition looks completely opposite of (i) in Definition 4.1. However, with help of
the definition of ≤ and the auxiliary relations R◦, R→ and R← (see Definition
3.1), we can find some similarities.

Proposition 4.4 Let F and G be p-frames, and 〈σ|τ〉 : F→ G a bounded mor-
phism. Then, we have

(i) for all x1, x2 ∈ X1, x1 ≤1 x2 =⇒ σ(x1) ≤2 σ(x2), 2

(ii) for all y1, y2 ∈ Y1, y1 ≤1 y2 =⇒ τ(y1) ≤2 τ(y1),

(iii) for all x1, x2, x ∈ X1, R◦1(x1, x2, x) =⇒ R◦2(σ(x1), σ(x2), σ(x)),

(iv) for all x1 ∈ X1, y2, y ∈ Y1, R→1 (x1, y2, y) =⇒ R→2 (σ(x1), τ(y2), τ(y)),

(v) for all x2 ∈ X2, y1, y ∈ Y1, R←1 (y1, x2, y) =⇒ R←2 (τ(y1), σ(x2), τ(y)).

Now we shall show the so-called p-morphism lemma for bi-approximation
models. However, unlike the p-morphism lemma for Kripke models, in our case,
there are three satisfaction relations which we should respect, i.e. two types of
||== for formulae and one ||== for sequents.

Lemma 4.5 (for formulae) Let M1 and M2 be bi-approximation models, and
〈σ|τ〉 : M1 →M2 a bounded morphism. For all formulae φ, ψ ∈ Λ, each x ∈ X1

and each y ∈ Y1, we have

(i) M1 ||x== φ ⇐⇒ M2 ||
σ(x)
=== φ,

(ii) M1 ||==y ψ ⇐⇒ M2 ||===
τ(y)

ψ.

Next, we show the p-morphism lemma for sequents.

Lemma 4.6 (for sequents) Let M1 and M2 be bi-approximation models, and
〈σ|τ〉 : M1 →M2 a bounded morphism. For every sequent φ Z⇒ ψ, we have

M1 ||== φ Z⇒ ψ ⇐⇒ ∀x ∈ X1, y ∈ Y1.
[
M2 ||

σ(x)
===
τ(y)

φ Z⇒ ψ
]
.

2 This follows from (iii) and R-order on the current setting. However, this holds on the
setting of bounded morphisms for polarities as well.
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Proof. (⇒). For arbitrary x ∈ X1 and y ∈ Y1, suppose that M2 ||
σ(x)
=== φ and

M2 ||===
τ(y)

ψ. To show that σ(x) ≤2 τ(y), we shall use (ii) of Definition 4.1.

That is, it suffices to show that, for each y′ ∈ Y1, if τ(y) ≤2 τ(y′) then x ≤1 y
′.

By the Hereditary condition, if τ(y) ≤2 τ(y′), we have M2 ||====
τ(y′)

ψ. Thanks to

Lemma 4.5, we obtain that M1 ||x== φ and M1 ||==
y′
ψ. Since M1 ||== φ Z⇒ ψ, we

get x ≤1 y
′. Therefore, σ(x) ≤2 τ(y).

(⇐). For arbitrary x ∈ X1 and y ∈ Y1, if M1 ||x== φ and M1 ||==y ψ, by

Lemma 4.5, we have that M2 ||
σ(x)
=== φ and M2 ||===

τ(y)
ψ. By our assumption

M2 ||
σ(x)
===
τ(y)

φ Z⇒ ψ, we obtain that σ(x) ≤2 τ(y). By (i) of Definition 4.1, we

conclude x ≤1 y. 2

Remark 4.7 Unlike what happens in the setting of modal logic, our bounded
morphisms are not strong enough to show the local correspondence property,

i.e. M1 ||x==y φ Z⇒ ψ ⇐⇒ M2 ||
σ(x)
===
τ(y)

φ Z⇒ ψ, in general. To prove it, we need an

extra condition: see Lemma 4.9.

Next, our discussion is heading toward invariance of validity of sequents,
namely p-morphism lemmata for p-frames. To do so, we first introduce
the following special bounded morphisms. Let F and G be p-frames, and
〈σ|τ〉 : F→ G a bounded morphism.

B-embedding: for all x ∈ X1 and y ∈ Y1, x ≤1 y =⇒ σ(x) ≤2 τ(y);

B-separating: for all x′ ∈ X2 and y′ ∈ Y2,

∀x ∈ X1, y ∈ Y1.
[
σ(x) ≤2 x

′ and y′ ≤2 τ(y) =⇒ x ≤1 y
]

=⇒ x′ ≤2 y
′;

B-reflecting: both B-embedding and B-separating.

Intuitively, B-embedding and B-separating are sort of the order-embedding
and the surjectivity for bi-approximation semantics, respectively: see also The-
orem 4.10. Therefore, B-reflecting is sort of the isomorphism. However, on
bi-approximation semantics, since truth value of sequents is approximated, we
may have states which do not affect to evaluate sequents. In other words, the
surjectivity is not vital to argue invariance of validity of sequents. B-reflecting
is designed to capture the essence of the approximation. So, B-reflecting is not
always isomorphic, but it is perfectly describing the approximation of sequents
on F as the approximation of sequents on G, and vise versa. For B-embedding
bounded morphisms, we can obtain the following.

Proposition 4.8 Let F and G be p-frames, and 〈σ|τ〉 : F→ G a B-embedding
bounded morphism. Then we have

(i) for all x1, x2 ∈ X1, σ(x1) ≤2 σ(x2) =⇒ x1 ≤1 x2,

(ii) for all y1, y2 ∈ Y1, τ(y1) ≤2 τ(y2) =⇒ y1 ≤1 y2.

Proof. Here, we show (i) only, but (ii) can be analogously proved. For arbi-
trary x1, x2 ∈ X1, assume σ(x1) ≤2 σ(x2). For any y ∈ Y1, if x2 ≤1 y then, as
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〈σ|τ〉 is B-embedding, σ(x2) ≤2 τ(y). By transitivity, we have σ(x1) ≤ τ(y).
By (i) of Definition 4.1, we obtain x1 ≤1 y, which concludes x1 ≤1 x2. 2

Lemma 4.9 (Local p-morphism lemma for sequents) Let M1 and M2

be bi-approximation models, and 〈σ|τ〉 : M1 →M2 a B-embedding bounded mor-
phism. For each sequent φ Z⇒ ψ, each x ∈ X1 and each y ∈ Y1, we have

M1 ||x==y φ Z⇒ ψ ⇐⇒ M2 ||
σ(x)
===
τ(y)

φ Z⇒ ψ.

Proof. (⇒). Suppose that M2 ||
σ(x)
=== φ and M2 ||===

τ(y)
ψ. Thanks to Lemma 4.5,

we have that M1 ||x== φ and M1 ||==
y
ψ. By our assumption, we obtain x ≤1 y.

Here, as 〈σ|τ〉 is B-embedding, σ(x) ≤2 τ(y) holds.
(⇐). Assume that M1 ||x== φ and M1 ||==y ψ. Thanks to Lemma 4.5, we have

that M2 ||
σ(x)
=== φ and M2 ||===

τ(y)
ψ. As M2 ||

σ(x)
===
τ(y)

φ Z⇒ ψ, we get σ(x) ≤2 τ(y). By

(i) of Definition 4.1, x ≤1 y, which concludes M1 ||x==
y
φ Z⇒ ψ. 2

Now, we show the following invariance of validity of sequents on bi-
approximation semantics.

Theorem 4.10 Let F and G be p-frames, and 〈σ|τ〉 : F → G a bounded mor-
phism. For each sequent φ Z⇒ ψ, we have

(i) if 〈σ|τ〉 is B-embedding then G ||== φ Z⇒ ψ =⇒ F ||== φ Z⇒ ψ,

(ii) if 〈σ|τ〉 is B-separating then F ||== φ Z⇒ ψ =⇒ G ||== φ Z⇒ ψ,

(iii) if 〈σ|τ〉 is B-reflecting then F ||== φ Z⇒ ψ ⇐⇒ G ||== φ Z⇒ ψ.

Proof. Here, we prove only (i), by contraposition. Suppose F 6||== φ Z⇒ ψ. Then,
there exists a doppelgänger valuation U on F, x ∈ X1 and y ∈ Y1 such that
F, U 6||x==

y
φ Z⇒ ψ. Firstly, we claim that there exists a doppelgänger valuation V

on G which makes 〈σ|τ〉 a bounded morphism from 〈F, U〉 to 〈G, V 〉.
For the doppelgänger valuation U on F, we let

(i) V ↓(p) := {x′ ∈ X2 | ∀y ∈ U↑(p). x′ ≤2 τ(y)},
(ii) V↑(p) := {y′ ∈ Y2 | ∀x′ ∈ V ↓(p). x′ ≤2 y

′},
for each propositional variable p ∈ Φ. Now, we show that V is a doppelgänger
valuation on G. It suffices to show

V ↓(p) = {x′ ∈ X2 | ∀y′ ∈ V↑(p). x′ ≤2 y
′}.

(⊆). For arbitrary x′ ∈ V ↓(p) and y′ ∈ V↑(p), by the definition of V↑(p), we
have x′ ≤2 y

′. (⊇). We prove this by contraposition. Suppose x′ 6∈ V ↓(p).
Then, there exists y ∈ U↑(p) such that x′ 6≤2 τ(y). By definition, we have
τ [U↑(p)] ⊆ V↑(p). Hence, τ(y) ∈ V↑(p), which shows the statement. Therefore,
V is a doppelgänger valuation on G.

Next, we show 〈σ|τ〉 is a bounded morphism from 〈F, U〉 to 〈G, V 〉. That
is, x ∈ U↓(p) ⇐⇒ σ(x) ∈ V ↓(p) and y ∈ U↑(p) ⇐⇒ τ(y) ∈ V↑(p).
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x ∈ U↓(p) ⇐⇒ σ(x) ∈ V ↓(p). (⇒). For arbitrary x ∈ U↓(p) and y ∈
U↑(p), we have x ≤1 y. Since 〈σ|τ〉 is B-embedding, we obtain σ(x) ≤2 τ(y),
so σ(x) ∈ V ↓(p). (⇐). For arbitrary σ(x) ∈ V ↓(p) and y ∈ U↑(p), by the
definition of V ↓(p), we obtain σ(x) ≤2 τ(y). By (i) of Definition 4.1, x ≤1 y,
hence x ∈ U↓(p).

y ∈ U↑(p) ⇐⇒ τ(y) ∈ V↑(p). (⇒). For arbitrary y ∈ U↑(p) and x′ ∈ V ↓(p),
by definition, we have x′ ≤2 τ(y), hence τ(y) ∈ V↑(p). (⇐). For arbitrary
τ(y) ∈ V↑(p) and x ∈ U↓(p), because x ∈ U↓(p) ⇐⇒ σ(x) ∈ V ↓(p) (as we saw
above), we have σ(x) ≤2 τ(y). By (i) of Definition 4.1, we obtain x ≤1 y, hence
y ∈ U↑(p). Therefore, 〈σ|τ〉 is a bounded morphism from 〈F, U〉 to 〈G, V 〉.

Now, by Lemma 4.9 and our assumption, i.e. F, U 6||x==
y
φ Z⇒ ψ, we obtain

that G, V 6||σ(x)===
τ(y)

φ Z⇒ ψ, which derives G 6||== φ Z⇒ ψ. 2

Remark 4.11 To prove (i) of Theorem 4.10, we construct a doppelgänger
valuation V on G from a doppelgänger valuation U on F. There are two
natural way to do this. One is in the proof of Theorem 4.10. The other is the
following: for each proposition variable p ∈ Φ,

(i) V ↓(p) := {x′ ∈ X2 | ∀y′ ∈ V↑(p). x′ ≤2 y
′},

(ii) V↑(p) := {y′ ∈ Y2 | ∀x ∈ U↓(p). σ(x) ≤2 y
′}.

In general, these two doppelgänger valuations do not coincide. However, when
〈σ|τ〉 satisfies B-separating as well, i.e. B-reflecting, they are always identical.

5 The dual representation

Here, we state that a homomorphism h : A → B is strict, if for each element
b ∈ B there exist a, a ∈ A such that h(a) ≤B b and b ≤B h(a). Note that, on
bounded lattices (bounded lattice expansions), every homomorphism is strict,
because it preserves the constants top > and bottom ⊥.

To discuss the dual representation of bi-approximation semantics, we intro-
duce the following categories.

• FL: the category of FL-algebras and strict homomorphisms.

• BFL: the category of bounded FL-algebras and homomorphisms.

• POL: the category of p-frames and bounded morphisms.

We mention that POL is named after polarity frames.

Proposition 5.1 BFL is a full and faithful subcategory of FL.

Below we briefly recall the object-level representation of bi-approximation
semantics in [17].

Dual algebras of p-frames. For each p-frame F, we construct two isomor-
phic FL-algebras in parallel based on a Galois connection between ℘(X) and
℘(Y )∂ , where ℘(X) is the poset of the powerset of X and the set-inclusion ⊆
and ℘(Y )∂ is the poset of the powerset of Y and the set-reverse-inclusion ⊇.
Note that the superscript ∂ indicates that the order is the reverse of the stan-
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dard inclusion ⊆. We introduce the following two functions λ : ℘(X)→ ℘(Y )∂

and υ : ℘(Y )∂ → ℘(X): for each X ∈ ℘(X) and each Y ∈ ℘(Y )∂ , we let

(i) λ(X) := {y ∈ Y | ∀x ∈ X. x ≤ y},
(ii) υ(Y) := {x ∈ X | ∀y ∈ Y. x ≤ y}.
Since λ and υ form a Galois connection, the images are isomorphic as posets,
i.e. υ[℘(Y )∂ ] ∼= λ[℘(X)]. Hereafter, we denote the images υ[℘(Y )∂ ] by D and
λ[℘(X)] by U. Note that each element in D is a downward closed subset of X
and every element in U is an upward closed subset of Y . To extend D and U
as two isomorphic FL-algebras, we define the operations ∨, ∧, ∗, \ and /, on
top of D and U as follows: for all α↓, β↓ ∈ D and α↑, β↑ ∈ U (note that α↓ and
α↑, and β↓ and β↑ are corresponding elements in D and U)

(i) α↓ ∨ β↓ := υ(α↑ ∨ β↑); α↑ ∨ β↑ := α↑ ∩ β↑;
(ii) α↓ ∧ β↓ := α↓ ∩ β↓; α↑ ∧ β↑ := λ(α↓ ∧ β↓);
(iii) α↓ ∗ β↓ := υ(α↑ ∗ β↑); α↑ ∗ β↑ := {y ∈ Y | ∀x1 ∈ α↓, x2 ∈ β↓. R(x1, x2, y)};
(iv) α↓\β↓ := {x2 ∈ X | ∀x1 ∈ α↓, y ∈ β↑. R(x1, x2, y)}; α↑\β↑ := λ(α↓\β↓);
(v) β↑/α

↓ := {x1 ∈ X | ∀x2 ∈ α↓, y ∈ β↑. R(x1, x2, y)}; β↑/α↑ := λ(β↓/α↓).

Theorem 5.2 ([17]) 〈D,∨,∧, ∗, \, /, OX , NX〉 and 〈U,∨,∧, ∗, \, /, OY , NY 〉
are FL-algebras. Furthermore, they are isomorphic.

Definition 5.3 (Dual algebra) Let F be a p-frame. The dual algebra of F
is an abstract FL-algebra F+ = 〈A,∨,∧, ∗, \, /, 1, 0〉 which is isomorphic to
〈D,∨,∧, ∗, \, /, OX , NX〉 and 〈U,∨,∧, ∗, \, /, OY , NY 〉. 3

Theorem 5.4 ([17]) Let F be a p-frame. For each sequent φ Z⇒ ψ, we have

F ||== φ Z⇒ ψ ⇐⇒ F+ |= sφ ≤ tψ.

Recall that sφ and tψ are the algebraic terms for φ and ψ: see Section 2.

Dual frames of FL-algebras. Here we show the construction of the dual
frames of FL-algebras. We mention that the dual frames correspond to the
intermediate level in [9] but see also [5,18].

Let A = 〈A,∨,∧, ∗, \, /, 1, 0〉 be an FL-algebra. On A, we introduce the
following polarity 〈F , I,v〉, where F is the set of all filters of A, I is the set
of all ideals of A, and F v I ⇐⇒ F ∩ I 6= ∅ for F ∈ F and I ∈ I. Note
that we have F1 v F2 ⇐⇒ F2 ⊆ F1 and I1 v I2 ⇐⇒ I1 ⊆ I2 by definition.
Now, on top of this polarity, we put extra structures: R, OF , OI , NF and NI
as follows: for all F1, F2 ∈ F and I ∈ I, we let R(F1, F2, I) ⇐⇒ F1 ∗ F2 v I,
where F1 ∗F2 := {a ∈ A | ∃f1 ∈ F1, f2 ∈ F2. f1 ∗ f2 ≤ a}. And, we let OF , OI ,
NF and NI be the set of all filters containing 1, the set of all ideals containing
1, the set of all filters containing 0 and the set of all ideals containing 0. Then,
we call the 8-tuple A+ = 〈F , I,v, R,OF , OI , NF , NI〉 the dual frame of A.

3 Yet another concrete construction of the dual algebra is suggested by a reviewer. But, we
keep this definition at least in the current paper.
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Theorem 5.5 ([17]) For any FL-algebra A, the dual frame A+ is a p-frame.

Also, we mention that, on the dual frame A+, we have that

(i) F1 ∗ F2 := {a ∈ A | ∃f1 ∈ F1, f2 ∈ F2. f1 ∗ f2 ≤ a} is a filter,

(ii) F\I := {a ∈ A | ∃f ∈ F, i ∈ I. a ≤ f\i} is an ideal,

(iii) I/F := {a ∈ A | ∃f ∈ F, i ∈ I. a ≤ i/f} is an ideal,

(iv) R◦(F1, F2, F ) ⇐⇒ F v F1 ∗ F2,

(v) R→(F1, I2, I) ⇐⇒ F1\I v I2,

(vi) R←(I1, F2, I) ⇐⇒ I/F2 v I1.

Theorem 5.6 ([17]) Let A be an FL-algebra. For each sequent φ Z⇒ ψ,

A |= sφ ≤ tψ ⇐⇒ A+ ||== φ Z⇒ ψ,

where sφ and tψ are the algebraic terms corresponding to φ and ψ.

The dual representation of morphisms. Now, we consider the dual rep-
resentation of morphisms based on the object-level dual representation.

Let A and B be FL-algebras, FA the set of all filters of A, FB the set of all
filters of B, IA the set of all ideals of A and IB the set of all ideals of B. For
every strict homomorphism h : A→ B, we define a pair of maps h+ : FB → FA
and h− : IB → IA as follows:

(i) for each F ∈ FB , we let h+(F ) := {a ∈ A | h(a) ∈ F},
(ii) for each I ∈ IB , we let h−(I) := {a ∈ A | h(a) ∈ I}.

It is straightforward to show that h+ and h− are well-defined. But, note that
the strictness is mandatory to prove the non-emptiness of h+(F ) and h−(I).

Theorem 5.7 Let A and B be FL-algebras, and h : A→ B a strict homomor-
phism. The pair of maps h+ and h− forms a bounded morphism from B+ to
A+, i.e. 〈h+|h−〉 : B+ → A+.

Conversely, for p-frames F and G and a bounded morphism 〈σ|τ〉 : F→ G,
we introduce two maps σ+ : D2 → U1 and τ− : U2 → D1, where F+ ∼= D1

∼= U1

and G+ ∼= D2
∼= U2: for each α ∈ G+ which is α↓ ∈ D and α↑ ∈ U, we let

(i) σ+(α↓) := {y ∈ Y1 | ∀x ∈ σ−1[α↓]. x ≤1 y},
(ii) τ−(α↑) := {x ∈ X1 | ∀y ∈ τ−1[α↑]. x ≤1 y},

where σ−1 and τ−1 are the inverse images of σ and τ . For these maps, we can
prove the following important facts.

Proposition 5.8 (Coherence) Let F and G be p-frames, and 〈σ|τ〉 : F → G
a bounded morphism. For all α↓ ∈ D2 and α↑ ∈ U2, if they are corresponding
points, i.e. λ(α↓) = α↑ and υ(α↑) = α↓, we have

(i) σ+(α↓) = τ−1[α↑],

(ii) τ−(α↑) = σ−1[α↓].
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Proof. Here, we show (ii) only, but (i) can be analogously proved. (⊆). For
every x ∈ τ−(α↑), it suffices to show that σ(x) ≤2 y

′ for each y′ ∈ α↑. Let
y′ be any element in α↑. We use (ii) of Definition 4.1. For every y ∈ Y1, if
y′ ≤2 τ(y), since α↑ is upward closed, τ(y) ∈ α↑, hence y ∈ τ−1[α↑]. Now,
by the definition of τ−, we obtain x ≤1 y. Therefore, σ(x) ≤2 y

′. (⊇). Let
x ∈ σ−1[α↓], i.e. σ(x) ∈ α↓. For each y ∈ τ−1[α↑], since τ(y) ∈ α↑, we have
σ(x) ≤2 τ(y). By (i) of Definition 4.1, x ≤1 y, hence x ∈ τ−(α↑). 2

Proposition 5.9 (Interdefinability) Let F and G be p-frames, and
〈σ|τ〉 : F→ G a bounded morphism. σ+ and τ− coincide on the dual algebras.
That is, for each α ∈ G+, i.e. α↓ ∈ D2 and α↑ ∈ U2, we have σ+(α↓) := {y ∈
Y1 | ∀x ∈ τ−(α↑). x ≤1 y} and τ−(α↑) := {x ∈ X1 | ∀y ∈ σ+(α↓). x ≤1 y}.

With respect to the coherence of σ+ and τ− in Proposition 5.8 and the
interdefinability of σ+ and τ− in Proposition 5.9, hereafter, we treat the two
maps σ+ and τ− as a map, denoted by 〈σ+|τ−〉. We sum up the maps in Fig. 2.

D2

λ2





σ−1 //

σ+

��

∼=

D1

λ1





∼=G+

↓
55

↑
))

F+

↓
hh

↑
vvU2

υ2

JJ

τ−1
//

τ−

DD

U1

υ1

JJ

Fig. 2. The relationships of σ+, τ−, σ−1 and τ−1

Theorem 5.10 Let F,G be p-frames and 〈σ|τ〉 : F→ G a bounded morphism.
The map 〈σ+|τ−〉 : G+ → F+ is a strict homomorphism from G+ to F+.

Theorem 5.11 Let A and B be FL-algebras, h : A → B a strict homomor-
phism, F and G p-frames, and 〈σ|τ〉 : F→ G a bounded morphism.

(i) If h : A→ B is injective, 〈h+|h−〉 : B+ → A+ is B-separating.

(ii) If h : A→ B is surjective, 〈h+|h−〉 : B+ → A+ is B-embedding.

(iii) If 〈σ|τ〉 : F→ G is B-separating, 〈σ+|τ−〉 : G+ → F+ is injective.

(iv) If 〈σ|τ〉 : F→ G is B-embedding, 〈σ+|τ−〉 : G+ → F+ is surjective.

6 Conclusion

In the current paper, we have introduced the notion of bounded morphisms on
bi-approximation semantics by focusing on invariance of the satisfaction rela-
tion on bi-approximation models. Based on the notion of bounded morphisms,
we have investigated the so-called p-morphism lemma on bi-approximation se-
mantics. Apart from Kripke models, on bi-approximation semantics, we evalu-
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ate not only formulae (assumptions and conclusions) but also sequents (logical
consequences). Nevertheless, we have shown that the bounded morphism can
preserve all three satisfaction relations on bi-approximation models. Also, we
have shown the similarity to p-morphisms in Kripke semantics. In addition, we
have discussed invariance of validity of sequents on p-frames via B-embedding,
B-separating and B-reflecting bounded morphisms as well. As we have seen
in Section 4, the concepts of those bounded morphisms are not exactly the
same as those on Kripke semantics. However, the dual representation of mor-
phisms between lattice expansions and bi-approximation semantics satisfies the
same properties as the dual representation of morphisms between modal alge-
bras and Kripke semantics in modal logic, e.g. the dual morphisms coincide
with the inverse maps. Therefore, the bounded morphisms can be seen as a
natural generalisation of p-morphisms on Kripke semantics. Further results
on bi-approximation semantics have already discussed by means of bounded
morphisms, which will appear in the current author’s future work.

Appendix

Proof. [Proposition 4.4] (i). For arbitrary x1, x2 ∈ X1, let x1 ≤1 x2. By the
definition of σ(x1) ≤2 σ(x2), we want to show that, for each y′ ∈ Y2, if σ(x2) ≤2

y′ then σ(x1) ≤2 y
′. To show that, we use (ii) of Definition 4.1. Assume that

σ(x2) ≤2 y
′. For each y ∈ Y1, if y′ ≤2 τ(y), by transitivity, σ(x2) ≤2 τ(y). By

(i) of Definition 4.1, we have x2 ≤1 y. Again, by transitivity, we obtain that
x1 ≤1 y. So, we have σ(x1) ≤2 y

′, which concludes σ(x1) ≤2 σ(x2).
(ii). For arbitrary y1, y2 ∈ Y1, suppose that y1 ≤1 y2. Assume that x′ ≤2

τ(y1). For any x ∈ X1, if σ(x) ≤2 x
′, by transitivity, σ(x) ≤2 τ(y1). By (i) of

Definition 4.1, we have x ≤1 y1, hence x ≤1 y2 by transitivity. Therefore, we
obtain x′ ≤2 τ(y2), which means τ(y1) ≤2 τ(y2).

(iii). For arbitrary x1, x2, x ∈ X1, suppose that R◦1(x1, x2, x). We want
to use (ii) of Definition 4.1 to show R◦2(σ(x1), σ(x2), σ(x)). For any y ∈ Y1

and y′ ∈ Y2, if y′ ≤2 τ(y) and R2(σ(x1), σ(x2), y′) then, by R2-transitivity,
R2(σ(x1), σ(x2), τ(y)). By (iv) of Definition 4.1, we obtain R1(x1, x2, y). By
the definition of R◦1, we get x ≤1 y, hence σ(x) ≤2 y

′ by (ii) of Definition 4.1,
which concludes R◦2(σ(x1), σ(x2), σ(x)).

(v). For arbitrary x2 ∈ X1, y1, y ∈ Y1, assume R←1 (y1, x2, y). For any
x′1 ∈ X2 satisfying R2(x′1, σ(x2), τ(y)), and each x1 ∈ X1, if σ(x1) ≤2 x

′
1, by

R2-transitivity, R←2 (σ(x1), σ(x2), τ(y)), so R1(x1, x2, y). By the definition of
R←1 , we obtain x1 ≤1 y1. By (iii) of Definition 4.1, we get x′1 ≤2 τ(y1), which
means R←2 (τ(y1), σ(x2), τ(y)). 2

Proof. [Lemma 4.5] Parallel induction. Base cases hold by definition.
Inductive steps: for each x ∈ X1 and each y ∈ Y1,

∨: (ii). M1 ||==
y
φ ∨ ψ is, by definition, M1 ||==

y
φ and M1 ||==

y
ψ. By induction

hypothesis, they are equivalent to M2 ||===
τ(y)

φ and M2 ||===
τ(y)

ψ, which means

M2 ||===
τ(y)

φ ∨ ψ.
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(i). (⇒). Assume M1 ||x== φ ∨ ψ. For any y′ ∈ Y2, suppose M2 ||==
y′
φ ∨ ψ.

We use (ii) of Definition 4.1. For each y ∈ Y1, if y′ ≤2 τ(y), by the Hereditary,
we have M2 ||===

τ(y)
φ ∨ ψ. By (ii), we have M1 ||==y φ ∨ ψ, hence x ≤1 y by our

assumption. So, we get σ(x) ≤2 y
′, which concludes M2 ||

σ(x)
=== φ ∨ ψ. (⇐).

Assume M2 ||
σ(x)
=== φ ∨ ψ. For any y ∈ Y1, if M1 ||==y φ ∨ ψ, by (ii), we have

M2 ||===
τ(y)

φ ∨ ψ, hence σ(x) ≤2 τ(y) by our assumption. By (i) of Definition

4.1, we obtain x ≤1 y, which derives M1 ||x== φ ∨ ψ.

∧: (i). M1 ||x== φ ∧ ψ is, by definition, M1 ||x== φ and M1 ||x== ψ. By induction hy-

pothesis, they are equivalent to M2 ||
σ(x)
=== φ and M2 ||

σ(x)
=== ψ, which concludes

M2 ||
σ(x)
=== φ ∧ ψ.

(ii). (⇒). Assume M1 ||==y φ ∧ ψ. For any x′ ∈ X2, suppose M2 ||x
′

== φ ∧ ψ.

We use (iii) of Definition 4.1. For every x ∈ X1, if σ(x) ≤2 x′, by the

Hereditary, we have M2 ||
σ(x)
=== φ ∧ ψ. By our assumption, we obtain σ(x) ≤2

τ(y), hence x ≤1 y. So, x′ ≤2 τ(y), which concludes M2 ||===
τ(y)

φ ∧ ψ. (⇐).

Assume M2 ||===
τ(y)

φ ∧ ψ. For any x ∈ X1, if M1 ||x== φ ∧ ψ, by (i), we have

M2 ||
σ(x)
=== φ ∧ ψ, hence σ(x) ≤2 τ(y), by our assumption. So, we obtain

x ≤1 y, which derives M1 ||==
y
φ ∧ ψ.

◦: (ii). (⇒). Assume M1 ||==
y
φ ◦ ψ. For arbitrary x′1, x

′
2 ∈ X2, suppose that

M2 ||
x′1== φ and M2 ||

x′2== ψ. We use (v) of Definition 4.1. For all x1, x2 ∈ X1, if

σ(x1) ≤2 x
′
1 and σ(x2) ≤2 x

′
2, by the Hereditary, we have that M2 ||

σ(x1)

==== φ

and M2 ||
σ(x2)

==== ψ. By induction hypothesis, we have that M1 ||
x1== φ and

M1 ||
x2== ψ. By our assumption, we obtain R1(x1, x2, y). Therefore, we

get R2(x′1, x
′
2, τ(y)), which concludes M2 ||===

τ(y)
φ ◦ ψ. (⇐). Assume that

M2 ||===
τ(y)

φ ◦ ψ. For arbitrary x1, x2 ∈ X1, if M1 ||
x1== φ and M1 ||

x2== ψ,

by induction hypothesis, we have that M2 ||
σ(x1)

==== φ and M2 ||
σ(x2)

==== ψ, hence
R1(x1, x2, y), which derives M1 ||==y φ ◦ ψ.

(ii). This is the same as the case of M1 ||x== φ ∨ ψ ⇐⇒ M2 ||
σ(x)
=== φ ∨ ψ.

→: (i). (⇒). Assume M1 ||x== φ→ ψ. For arbitrary x′1 ∈ X2 and y′ ∈ Y2,

suppose M2 ||
x′1== φ and M2 ||==

y′
ψ. We use (vi) of Definition 4.1. For all

x1 ∈ X1 and y ∈ Y1, if σ(x1) ≤2 x
′
1 and y′ ≤2 τ(y), by the Hereditary, we

have that M2 ||
σ(x1)

==== φ and M2 ||===
τ(y)

ψ. By induction hypothesis, we obtain

that M1 ||
x1== φ and M1 ||==

y
ψ. Since M1 ||x== φ→ ψ, we get R1(x1, x, y).

Therefore, R2(x′1, σ(x), y′), which means M2 ||
σ(x)
=== φ→ ψ. (⇐). Assume

M2 ||
σ(x)
=== φ→ ψ. For arbitrary x1 ∈ X1 and y ∈ Y1, if M1 ||

x1== φ and
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M1 ||==
y
ψ, by induction hypothesis, we have that M2 ||

σ(x1)

==== φ and M2 ||===
τ(y)

ψ. Because of M2 ||
σ(x)
=== φ→ ψ, we obtain R2(σ(x1), σ(x), τ(y)). Hence,

R1(x1, x, y), which concludes M1 ||x== φ→ ψ.
(ii). This is analogous to (ii) of ←.

←: (i). This is analogous to (i) of →.

(ii). (⇒). Assume M1 ||==
y
ψ ← φ. For any x′ ∈ X2, suppose M2 ||x

′
== ψ ← φ.

We use (iii) of Definition 4.1. For each x ∈ X1, if σ(x) ≤2 x′, by the

Hereditary, we have M2 ||
σ(x)
=== ψ ← φ. By (i), we obtain M1 ||x== ψ ← ψ. By

our assumption, we get x ≤1 y. So, x′ ≤2 τ(y), which means M2 ||===
τ(y)

ψ ← φ.

(⇐). Suppose M2 ||===
τ(y)

ψ ← φ. For any x ∈ X1, if M1 ||x== ψ ← φ, by (i),

M2 ||
σ(x)
=== ψ ← φ. Since M2 ||===

τ(y)
ψ ← φ, we obtain σ(x) ≤2 τ(y), hence

x ≤1 y, which concludes M1 ||==
y
ψ ← φ.

2

Proof. [(ii) and (iii) of Theorem 4.10] (ii). We prove by contraposition. Sup-
pose G 6||== φ Z⇒ ψ. Then, there exists a doppelgänger valuation V on G such
that G, V 6||== φ Z⇒ ψ. For the doppelgänger valuation V , we induce a dop-
pelgänger valuation U on F, which makes 〈σ|τ〉 is a bounded morphism from
〈F, U〉 to 〈G, V 〉. For any propositional variable p ∈ Φ, we let

(1) U↓(p) := {x ∈ X1 | ∀y′ ∈ V↑(p). σ(x) ≤2 y
′},

(2) U↑(p) := {y ∈ Y1 | ∀x′ ∈ V ↓(p). x′ ≤2 τ(y)}.
Now, we show that 〈σ|τ〉 is a bounded morphism from 〈F, U〉 to 〈G, V 〉, i.e. x ∈
U↓(p) ⇐⇒ σ(x) ∈ V ↓(p) and y ∈ U↑(p) ⇐⇒ τ(y) ∈ V↑(p).

(x ∈ U↓(p) ⇐⇒ σ(x) ∈ V ↓(p)). (⇒). For arbitrary x ∈ U↓(p) and
y′ ∈ V↑(p), we use (ii) of Definition 4.1. For any y ∈ Y1, if y′ ≤2 τ(y), as
V↑(p) is upward closed, we have τ(y) ∈ V↑(p). By the definition of U↓(p), we
get σ(x) ≤2 τ(y). By (i) of Definition 4.1, x ≤1 y. So, σ(x) ≤2 y′, hence
σ(x) ∈ V ↓(p) (⇐). This is trivial by definition.

(y ∈ U↑(p) ⇐⇒ τ(y) ∈ V↑(p)). (⇒). For arbitrary y ∈ U↑(p) and
x′ ∈ V ↓(p), we use (iii) of Definition 4.1. For any x ∈ X1, if σ(x) ≤2 x

′, as
V ↓(p) is downward closed, we have σ(x) ∈ V ↓(p). By the definition of U↑(p),
we obtain that σ(x) ≤2 τ(y). By (i) of Definition 4.1, x ≤1 y. So, x′ ≤2 τ(y),
hence τ(y) ∈ V↑(p). (⇐). This is trivial by definition.

Next, we prove that U is a doppelgänger valuation on F. That is,

(1) U↓(p) = {x ∈ X1 | ∀y ∈ U↑(p). x ≤1 y}
(⊆). For arbitrary x ∈ U↓(p) and y ∈ U↑(p), since σ(x) ∈ V ↓(p) and

τ(y) ∈ V↑(p) (as we saw above) and V is a doppelgänger valuation on
G, we obtain σ(x) ≤2 τ(y), hence x ≤1 y by (i) of Definition 4.1. (⊇).
Contraposition. Suppose x 6∈ U↓(p). There exists y′ ∈ V↑(p) such that
σ(x) 6≤2 y

′. By (ii) of Definition 4.1, there exists y ∈ Y1 such that y′ ≤2 τ(y)
but x 6≤1 y. As V↑(p) is upward closed, τ(y) ∈ V↑(p), hence y ∈ U↑(p).
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Therefore, there exists y ∈ U↑(p) such that x 6≤1 y.

(2) U↑(p) = {y ∈ Y1 | ∀x ∈ U↓(p). x ≤1 y}
(⊆). For arbitrary y ∈ U↑(p) and x ∈ U↓(p), since τ(y) ∈ V↑(p) and

σ(x) ∈ V ↓(p) (as we saw above) and V is a doppelgänger valuation on G,
we obtain σ(x) ≤2 τ(y), hence x ≤1 y. (⊇). Contraposition. Suppose
y 6∈ U↑(p). There exists x′ ∈ V ↓(p) such that x′ 6≤2 τ(y). By (iii) of
Definition 4.1, there exists x ∈ X1 such that σ(x) ≤2 x

′ but x 6≤1 y. Since
V ↓(p) is downward closed, σ(x) ∈ V ↓(p), hence x ∈ U↓(p). So, there exists
x ∈ U↓(p) such that x 6≤1 y.

Therefore, U is a doppelgänger valuation on F.
By our assumption, i.e. G, V 6||== φ Z⇒ ψ, there exists x′ ∈ X2 and y′ ∈ Y2

such that G, V 6||x′==
y′
φ Z⇒ ψ, which means G, V ||x′== φ, G, V ||==

y′
ψ but x′ 6≤2 y

′.

Now, as 〈σ|τ〉 is B-separating, there exist x ∈ X1 and y ∈ Y1 such that σ(x) ≤2

x′, y′ ≤2 τ(y) and x ≤1 y. By the Hereditary, we obtain that G, V ||σ(x)=== φ and
G, V ||===

τ(y)
ψ. So, by Lemma 4.5, we also have that F, U ||x== φ and F, U ||==

y
ψ.

However, since x 6≤1 y, we conclude F, U 6||x==
y
φ Z⇒ ψ, hence F 6||== φ Z⇒ ψ.

(iii). This follows directly from (i) and (ii). 2

Proof. [Theorem 5.7] By definition, h+ is a function from FB to FA and h− is
a function from IB to IA. All we need to show here is to check the conditions
in Definition 4.1.

(i). For arbitrary F ∈ FB and I ∈ IB , if h+(F ) vA h−(I), there exists
a ∈ A such that a ∈ h+(F ) ∩ h−(I). By definition, h(a) ∈ F and h(a) ∈ I,
hence h(a) ∈ F ∩ I, which concludes F vB I.

(iii). Contraposition. For arbitrary G ∈ FA and I ∈ IB , suppose G 6vA
h−(I). Let F be the generated filter by the image h[G], i.e. F := ↑h[G]. By
definition, we have h[G] ⊆B F , hence h+(F ) vA G. Plus, by our assumption
G 6vA h−(I), we obtain F 6vB I (otherwise, it contradicts to G 6vA h−(I)).
Therefore, there exists F ∈ FB such that h+(F ) vB G but F 6vB I.

(iv). For all F1, F2 ∈ FB and I ∈ IB , assume RA(h+(F1), h+(F2), h−(I)),
namely h+(F1) ∗A h+(F2) vA h−(I). Then, there exist a1 ∈ h+(F1) and
a2 ∈ h+(F2) such that a1 ∗A a2 ∈ h−(I), which means h(a1 ∗A a2) ∈ I. Since
h is homomorphic, we have h(a1) ∗B h(a2) ∈ I. Moreover, as h(a1) ∈ F1 and
h(a2) ∈ F2, we conclude F1 ∗B F2 vB I, i.e. RB(F1, F2, I).

(v). Contraposition. For arbitrary G1, G2 ∈ FA and I ∈ IB , suppose that
RA(G1, G2, h−(I)) does not hold, i.e. G1∗AG2 6vA h−(I). Let F1 and F2 be the
generated filters by the images h[G1] and h[G2], that is, F1 := ↑h[G1] and F2 :=
↑h[G2]. By definition, we obtain that h[G1] ⊆B F1 and h[G2] ⊆B F2, hence
h+(F1) vA G1 and h+(F2) vA G2. In addition, for any b ∈ F1∗BF2, there exist
a1 ∈ G1 and a2 ∈ G2 such that h(a1) ∗B h(a2) ≤B b. As h is homomorphic,
we have h(a1 ∗A a2) ≤B b. Now, if F1 ∗B F2 vB I then h(a1 ∗A a2) ∈ I, which
contradicts to G1 ∗AG2 6vA h−(I). Therefore, F1 ∗BF2 6vB I, i.e. RB(F1, F2, I)
does not hold.
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(vi). Contraposition. For arbitrary G1 ∈ FA, F2 ∈ FB and J ∈ IA,
suppose that RA(G1, h+(F2), J) does not hold, i.e. G1 ∗A h+(F2) 6vA J . Let
F1 be the generated filter by the image h[G1], i.e. F1 := ↑h[G1], and I the
generated ideal by the image h[J ], i.e. I := ↓h[J ]. By definition, we have
that h[G1] ⊆B F1 and h[J ] ⊆B I, hence h+(F1) vA G1 and J vA h−(I).
Furthermore, if F1 ∗B F2 vB I, there exist aa ∈ G1 and a ∈ I such that
h(a1)\Bh(a) = h(a1\Aa) ∈ F2, which contradicts to G1 ∗A h+(F2) 6vA J .
Therefore, F1 ∗B F2 6vB I, i.e. RB(F1, F2, I) does not hold.

(viii). For any F ∈ OFB , by definition 1B ∈ F . Because h is homomorphic,
h(1A) = 1B ∈ F , which derives 11 ∈ h+(F ). So, h+(F ) ∈ OFA . Conversely,
if h+(F ) ∈ OFA then 1A ∈ h+(F ), so h(1A) = 1B ∈ F . Therefore, F ∈ OFB .
The other case is analogous. 2

Proof. [Proposition 5.9] By the definition of σ+ and τ−, and Proposition 5.8.2

Proof. [Theorem 5.10] It suffices to show that 〈σ+|τ−〉 : G+ → F+ is homo-
morphic. Note that the strictness follows from the preservability of top > and
bottom ⊥, because F+ and G+ are bounded.

(∨). To prove 〈σ+|τ−〉(α∨β) = 〈σ+|τ−〉(α)∨〈σ+|τ−〉(β), it suffices to show
that σ+(α↓ ∨ β↓) = σ+(α↓) ∨ σ+(β↓), i.e. τ−1[α↑ ∩ β↑] = τ−1[α↑] ∩ τ−1[β↑] by
Proposition 5.8. But, this is straightforward.

(∧). To prove 〈σ+|τ−〉(α∧β) = 〈σ+|τ−〉(α)∧〈σ+|τ−〉(β), it suffices to show
that τ−(α↑ ∧ β↑) = τ−(α↑) ∧ τ−(β↑), i.e. σ−1[α↓ ∩ β↓] = σ−1[α↓] ∩ σ−1[β↓] by
Proposition 5.8. But, this is straightforward.

(∗). To prove 〈σ+|τ−〉(α ∗ β) = 〈σ+|τ−〉(α) ∗ 〈σ+|τ−〉(β), it suffices to
show σ+(α↓ ∗ β↓) = σ+(α↓) ∗ σ+(β↓), i.e. τ−1[α↑ ∗ β↑] = τ−1[α↑] ∗ τ−1[β↑] by
Proposition 5.8. (⊆). For each y ∈ τ−1[α↑ ∗β↑], to prove y ∈ τ−1[α↑]∗ τ−1[β↑],
we need to show that R1(x1, x2, y) for arbitrary x1 ∈ υ1(τ−1[α↑]) and x2 ∈
υ1(τ−1[β↑]). Let y, x1 and x2 be arbitrary elements in τ−1[α↑∗β↑], υ1(τ−1[α↑])
and υ1(τ−1[β↑]). By Proposition 5.9 and Proposition 5.8, x1 ∈ σ−1[α↓] and
x2 ∈ σ−1[β↓]. By definition, we have that τ(y) ∈ α↑ ∗ β↑, σ(x1) ∈ α↓ and
σ(x2) ∈ β↓. Further, by the definition of ∗ on U2, we get R2(σ(x1), σ(x2), τ(y)).
By (iv) of Definition 4.1, we obtain R1(x1, x2, y). (⊇). For each y ∈ τ−1[α↑] ∗
τ−1[β↑], we want to show that R2(x′1, x

′
2, τ(y)) for arbitrary x′1 ∈ α↓ and x′2 ∈

β↓. Let y, x′1 and x′2 be arbitrary elements in τ−1[α↑ ∗ β↑], α↓ and β↓. We
use (v) of Definition 4.1. For all x1, x2 ∈ X1, if σ(x1) ≤2 x

′
1 and σ(x2) ≤2 x

′
2,

since α↓ and β↓ are downward closed, σ(x1) ∈ α↓ and σ(x2) ∈ β↓, hence
x1 ∈ σ−1[α↓] and x2 ∈ σ−1[β↓]. By Proposition 5.8 and Proposition 5.9, we
have that x1 ∈ υ1(τ−1[α↑]]) and x2 ∈ υ1(τ−1[β↑]). As y ∈ τ−1[α↑] ∗ τ−1[β↑],
we obtain R1(x1, x2, y), which concludes R2(x′1, x

′
2, τ(y)).

(\). To prove 〈σ+|τ−〉(α\β) = 〈σ+|τ−〉(α)\〈σ+|τ−〉(β), it suffices to show
τ−(α\β) = τ−(α)\τ−(β), that is, σ−1(α↓\β↓) = σ−1[α↓]\σ−1[β↓] by Proposi-
tion 5.8. (⊆). Let x2 ∈ σ−1[α↓\β↓]. To show x2 ∈ σ−1[α↓]\σ−1[β↓], it suffices
to show that R1(x1, x2, y) holds for arbitrary x1 ∈ σ−1[α↓] and y ∈ λ1(σ−1[β↓]).
For all x1 ∈ σ−1[α↓] and y ∈ λ1(σ−1[β↓]), by Proposition 5.8 and Proposition
5.9, we have y ∈ τ−1[β↑], hence σ(x1) ∈ α↓ and τ(y) ∈ β↑. By our assumption
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x2 ∈ σ−1[α↓\β↓], we obtain R2(σ(x1), σ(x2), τ(y)). By (iv) of Definition 4.1,
we conclude R1(x1, x2, y). (⊇). Let x2 be any element in σ−1[α↓]\σ−1[β↓]. To
show x2 ∈ σ−1[α↓\β↓], we need to prove that σ(x2) ∈ α↓\β↓. For arbitrary
x′1 ∈ α↓ and y′ ∈ β↑, we use (vi) of Definition 4.1. For all x1 ∈ X1 and y ∈ Y1, if
σ(x1) ≤2 x

′
1 and y′ ≤2 τ(y), as α↓ is downward closed and β↑ is upward closed,

σ(x) ∈ α↓ and τ(y) ∈ β↑. Since x2 ∈ σ−1[α↓]\σ−1[β↓], we obtain R1(x1, x2, y),
hence x2 ∈ σ−1[α↓\β↓].

(/). This is analogous to the case of (\).
(1). To prove 〈σ+|τ−〉(1) = 1, it suffices to show that τ−(1) = 1,

i.e. σ−1[OX2] = OX1 by Proposition 5.8. But, this is straightforward.
(0), (>) and (⊥) are analogous to the case of (1). 2

Proof. [Theorem 5.11] (i). We prove by contraposition. For arbitrary G ∈ FA
and J ∈ IA, suppose G 6vA J , i.e. G ∩ J = ∅. Let F be the generated filter by
the image h[G], i.e. F := ↑h[G], and I the generated ideal by the image h[J ],
i.e. I := ↓h[J ]. By definition, we have that h[G] ⊆B F and h[J ] ⊆B I. So, we
have that h+(F ) vA G and J vA h−(I). Now, if F vB I, i.e. F ∩ I 6= ∅, there
exist a1 ∈ G and a2 ∈ J such that h(a1) ≤B h(a2), that is h(a1) ∨B h(a2) =
h(a1 ∨A a2) = h(a2). Since h is injective, we obtain a1 ≤A a2. Hence, G vA J ,
which contradicts to G 6vA J . Therefore, F 6vB I.

(ii). For arbitrary F ∈ FB and I ∈ IB , if F vB I, there exists b ∈ F ∩I. As
h is surjective, there exists a ∈ A such that h(a) = b ∈ F ∩ I. Then, a ∈ h+(F )
and a ∈ h−(I), hence h+(F ) vA h−(I).

(iii). Since every lattice is anti-symmetric, it suffices to show that 〈σ+|τ−〉
is order-embedding. That is, we show that, for all α, β ∈ G+, if 〈σ+|τ−〉(α) ≤1

〈σ+|τ−〉(β) then α ≤2 β. We prove it by contraposition. Suppose α 6≤2 β.
Then, there exists x′ ∈ α↓ and y′ ∈ β↑ such that x′ 6≤2 y′. Since 〈σ|τ〉 is
B-separating, there exist x ∈ X1 and y ∈ Y1 such that σ(x) ≤2 x

′, y′ ≤2 τ(y)
and x 6≤1 y. By (i) of Definition 4.1, σ(x) 6≤2 τ(y), which derives σ(x) 6∈ β↓,
i.e. x 6∈ σ−1[β↓]. Moreover, as α↓ is downward closed and β↑ is upward closed,
we have that σ(x) ∈ α↓ and τ(y) ∈ β↑, hence x ∈ σ−1[α↓]. That is, there
exists x ∈ X1 such that x ∈ σ−1[α↓] but x 6∈ σ−1[β↓]. By Proposition 5.8, we
conclude τ−(α↑) 6⊆1 τ

−(β↑), i.e. 〈σ+|τ−〉(α) 6≤1 〈σ+|τ−〉(β).
(iv). For each element β ∈ F+, we let an element α ∈ G+ as follows:

(i) α↓ := {x′ ∈ X2 | ∀y ∈ β↑. x′ ≤2 τ(y)},
(ii) α↑ := {y′ ∈ Y2 | ∀x′ ∈ α↓. x′ ≤2 y

′}.
Note that there is another natural way to introduce α as we saw in Remark
4.11. Now, we check that they coincide, namely α↓ = υ2(α↑) and α↑ = λ2(α↓).
But, the latter is trivial by definition.

(α↓ = υ2(α↑)). (⊆). For arbitrary x′ ∈ α↓ and y′ ∈ α↑, by the definition of
α↑, we trivially have x′ ≤2 y

′. (⊇). Contraposition. Suppose x′ 6∈ α↓. There
exists y ∈ β↑ such that x′ 6≤2 τ(y). By definition, we have τ [β↑] ⊆ α↑, so
τ(y) ∈ α↑. But, x′ 6≤2 τ(y), which concludes x′ 6∈ υ2(α↑).

Next we show τ−(α↑) = β↓ and σ+(α↓) = β↑.
(τ−(α↑) = β↓). By Proposition 5.8, τ−(α↑) = σ−1[α↓]. (⊆). For arbitrary
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x ∈ σ−1[α↓] and y ∈ β↑, we have σ(x) ∈ α↓. By the definition of α↓, we
obtain σ(x) ≤2 τ(y). By (i) of Definition 4.1, x ≤1 y, hence x ∈ β↓. (⊇). For
arbitrary x ∈ β↓ and y ∈ β↑, we have x ≤1 y. As 〈σ|τ〉 is B-embedding, we
obtain σ(x) ≤2 τ(y), hence σ(x) ∈ α↓, which means x ∈ σ−1[α↓].

(σ+(α↓) = β↑). By Proposition 5.8, σ+(α↓) = τ−1[α↑]. (⊆). For arbitrary
y ∈ τ−1[α↑] and x ∈ β↓, we have τ(y) ∈ α↑. Further, as we saw above,
σ−1[α↓] = β↓, hence σ(x) ∈ α↓. By the definition of α↑, we obtain σ(x) ≤2

τ(y). By (i) of Definition 4.1, x ≤1 y. Therefore, y ∈ β↑. (⊇). For arbitrary
y ∈ β↑ and x′ ∈ α↓, by the definition of α↓, we have x′ ≤2 τ(y). Therefore,
τ(y) ∈ α↑, i.e. y ∈ τ−1[α↑].

As a conclusion, for each β ∈ F+, there exists α ∈ G+ such that
〈σ+|τ−〉(α) = β, hence 〈σ+|τ−〉 is surjective. 2
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