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Abstract

We notice the following slightly curious (and perhaps, slightly unexpected) logical
property of the functor semantics for superintuitionistic predicate logics, contrasting
with a well-known property of the usual Kripke semantics. Namely, for a category C
its logic (i.e., the logic of all C-sets with the given, fixed C) in general is not reducible to
cones (i.e., restrictions of C to upward closed rooted subsets of its frame representation
W =Ob(C) ). Related notions and observations are discussed as well.
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Recall that a cone (a point-generated subframe) in an intuitionistic propo-
sitional Kripke frame (i.e., a pre-ordered, or in particular, a partially ordered
set) W is Wu = {v ∈W | u≤ v} (for u∈W ), ordered by the restriction of ≤
from W to Wu. It is well known that the (propositional) validity in Kripke
frames is reducible to that in their cones, i.e.,

PL(W ) =
⋂
u∈W

PL(Wu), (0)

where PL(W ) is the propositional logic of W (i.e., the set of formulas valid in
W ). The similar reducibility to cones holds for predicate logics as well, i.e.,

KL(W ) =
⋂
u∈W

KL(Wu) for a pre-ordered set W, (1)

KL(W ) being the set of predicate formulas valid in all predicate Kripke frames
F =(W,D) (with systems of expanding non-empty domains D=(Du : u∈W ) )
based on W ; this claim holds for logics both without and with equality (in
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the latter case we will write KL=(W )). This statement is well known and
usually is considered as obvious, however it is not so straightforward. Namely,
an immediate predicate counterpart of (0) looks as follows:

L(F ) =
⋂
u∈W

L(Fu) for a predicate Kripke frame F based on W, (1)′

where the cone Fu (for u∈W ) is the restriction of F to Wu. Now, to deduce
(1), the following simple claim needs to be used:

every frame F0 over Wu can be extended
to a frame F over W such that Fu = F0.

(1)′′

This auxiliary claim for the ordinary predicate Kripke semantics is rather ob-
vious. Nevertheless, for more general Kripke-style semantics it becomes not
so trivial. Here we consider the functor semantics [2] for superintuitionistic
predicate logics and describe a natural counterpart of (1)′′ that fails for this se-
mantics; moreover, we show that the corresponding counterpart of (1) fails for
predicate logics with equality. We believe that it would fail for logics without
equality as well, although we do not have such an example. This observation
confirms that the behavior of rather general predicate Kripke-style semantics
often differs from that of the propositional Kripke semantics.

1 Preliminary notions: The functor semantics

We consider predicate formulas (without or with equality, and in any case
without function symbols) built as usual, by using the connectives &,∨,→,
the propositional constant ⊥ (‘falsity’), and the quantifiers ∀,∃. We use the
standard abbreviations: (A↔B) = (A→B)&(B→A) and ¬A = (A→⊥).

We regard superintuitionistic predicate logics (without and with equality)
in the usual way, i.e., as sets of predicate formulas containing all axioms of
intuitionistic (Heyting) predicate logic QH (or QH= for the case with equality),
and closed under modus ponens, generalization, and substitution of arbitrary
formulas for atomic ones.

To begin with, let us recall necessary notions related to the functor seman-
tics, see [2] (also cf. [1, Sect. 5.6: Def. 5.6.3 etc.] or e.g. [6, Sect.4.1]).

Let C be a category with a frame representation W . This means that
W = Ob(C) is the set of objects of C pre-ordered by the following relation:

u≤v iff C(u, v) 6=∅, i.e., iff in C there exists a morphism from u to v.
A C-set (a SET-valued functor or a presheaf over C, inhabited, i.e., with non-
emptiness assumption) is a triple F = (W,D,E) in which D = (Du : u∈W ) is
a family of disjoint non-empty domains and E = (Eµ : µ∈Mor(C)) is a family
of functions with Eµ : Du → Dv whenever µ∈C(u, v) (i.e., µ is a morphism from
u to v). As usual, it is required that Eµ◦µ′ = Eµ′◦Eµ for µ∈C(u, v), µ′∈C(v, w)
(i.e., Eµ◦µ′(a) = Eµ′(Eµ(a)) for any a ∈ Du), and E1u = 1Du

(the identity
function on Du corresponds to the identity morphism 1u ∈ C(u, u), u ∈W ).
Sometimes we can admit C-sets with non-disjoint domains; in this case we
regard them as C-sets with disjoint domains D′u = {u}×Du = {〈u, a〉 | a∈Du}.
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Let Dn =
⋃
u∈W

(Du)n for n>0 and D0 = W . We define a pre-order ≤n on

Dn (for n>0) by:

[ (a1, . . . , an) ≤n (b1, . . . , bn) ] iff ∃µ∈Mor(C) [

n∧
i=1

(Eµ(ai) = bi) ] ;

sometimes we write (Eµ(a)=b) for
n∧
i=1

(Eµ(ai)=bi), where a=(a1, . . . , an) and

b=(b1, . . . , bn). 2 We identify ≤0 with the original pre-order ≤ on D0 =W .
Finally let: [ (a1, . . . , an) <n (b1, . . . , bn) ] iff

[ (a1, . . . , an) ≤n (b1, . . . , bn) ] &¬[ (b1, . . . , bn) ≤n (a1, . . . , an) ] .
A valuation in a C-set F is a function ξ sending every n-place predicate

symbol P to an upward closed (by ≤n) subset ξ(P ) of Dn.
A valuation ξ in F gives rise to the forcing relation u �ξ A(a) between points

u∈W and formulas A(a) (with parameters replaced by elements of Du ); here
a=(a1, . . . , an)∈(Du)n. Namely, � is defined inductively: 3

u � P (a)⇔ (a ∈ ξ(P )) for a predicate symbol P ; u 6� ⊥;
u � (B&C)(a)⇔ (u � B(a)) & (u � C(a));
u � (B ∨ C)(a)⇔ (u � B(a)) ∨ (u � C(a));
u � (B → C)(a)⇔ ∀v≥u∀b∈(Dv)

n [(a ≤n b)&(v � B(b))⇒ (v � C(b))];
u � ∀xB(a, x)⇔ ∀v≥u∀b∈(Dv)

n ∀c∈Dv [(a ≤n b)⇒ (v � B(b, c))];
u � ∃xB(a, x)⇔ ∃c∈Du [u � B(a, c)], and u � (a=b)⇔ (a = b).

It is easily shown (by induction on A) that the forcing is preserved upwards:

(a ≤n b) ⇒ (u � A(a)⇒ v � A(b))

for any formula A and a∈(Du)n, b∈(Dv)
n, u≤v.

A predicate formula A with parameters x = (x1, . . . , xn) is true w.r.t. ξ if
u � A(a) for every u ∈W and a ∈ (Du)n. A formula A is valid in a C-set F
(notation: F � A) if it is true w.r.t. all valuations in F. The predicate logic
(without or with equality) of a C-set F is the set

L(=)(F) = {A | all substitution instances of A are valid in F};
again we write L(F) or L=(F) for the logics without or with equality (respec-
tively), and write L(=)(F), when we mean both of these logics. It is known (cf.
e.g. [1, Proposition 5.6.27] that L(=)(F) is indeed a superintuitionistic logic. 4

A formula is called valid in a category C (or C-valid, for short) if it is valid
in all C-sets.

2 Here (Dn,≤n) are well-defined, since domains Du are disjoint. This is perhaps the only
reason, why the disjointness of Du is convenient and useful.
3 Usually we omit subscript ξ (for readability) and write � for �ξ, �′ for �ξ′ , etc. Sometimes
we may call � a valuation in F as well.
4 By the way, there exists another, slightly more explicit description of the logic L(=)(F);
we present (and use) this description in Appendix (see Section 5).
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Respectively, for a category C its predicate logic (without or with equality)

L(=)(C) =
⋂

(L(=)(F) : F is a C-set )

is the set of formulas, all substitution instances of which are C-valid.
Note that a usual predicate Kripke frame F = (W,D) can be presented as

a C-set (based on W ) with expanding domains (i.e., Du ⊆Dv for u≤ v) and
with inclusion mappings Eµ for µ ∈ C(u, v).

2 The logics of categories: Non-reducibility to cones

Let C be a category based on a pre-ordered set W , and let F be a C-set. Their
cones Cu and Fu (for u∈W ) are defined in a natural way, as the restrictions to
the cone Wu = {v∈W | u≤v} of W ; clearly, Fu is a Cu-set. The restriction of
a valuation in a C-set F to Fu is a valuation in Fu (for atomic formulas), and
the corresponding forcing relation � in Fu (for all formulas) is obtained as the
restriction of � from F. On the other hand, any valuation in Fu can be easily
extended to a valuation in F. Hence we conclude that:

L(=)(F) =
⋂
u∈W

L(=)(Fu) for any C-set F based on W, (2)′

i.e., the natural counterpart of (1)′ for the functor semantics holds. On the
other hand, a similar property for categories fails:

Theorem There exists a category C0 over a three-element chain
W0 = {v0, v1, v2} (where v0<v1<v2) such that

L=(C) 6⊆ L=(Cu) (2)

for C = C0 and u = v1.

Namely, define the category C0 (based on W0) with the following morphisms:
C0(v, v) = {1v} for all v∈W0, C0(v0, v1) = {µ0}, C0(v1, v2) = {µ1, µ2},
C0(v0, v2) = {µ∗}, and with the composition µ0◦µi = µ∗ for i=1, 2.

Put Φ0 = (Φ1 → Φ2), where Φ1 = ∀x∀y [(x=y)∨P ∨¬P ], Φ2 = ¬P ∨¬¬P .
Define the Cv10 -set F0 = (W v1

0 , D,E), where Dv1 = {a0}, Dv2 = {a1, a2},
and Eµi

(a0) = ai for i=1, 2. Our theorem follows from the subsequent claim:

Lemma 1 (1) Φ0 6∈ L=(F0), and so Φ0 6∈ L=(Cv10 ); (2) Φ0 ∈ L=(C0).

Proof. (1) The substitution instance Φ1
0(z) = (Φ1

1(z)→ Φ1
2(z)), where

Φ1
1(z) = ∀x∀y [(x=y)∨P1(z)∨¬P1(z)], Φ1

2(z) = ¬P1(z)∨¬¬P1(z),
is not valid in F0. Indeed, consider a valuation

vj � P1(ai) ⇔ (i = j = 2)

in F0. Then v1 � Φ1
1(a0) (since v2 � P1(ai)∨¬P1(ai) for i= 1, 2, and Dv1 is

one-element) and v1 6� Φ1
2(a0) (since v2 � P1(a2) and v2 � ¬P1(a1)).
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(2) Let a substitution instance of Φ0 be given: ΦA0 (z) = (ΦA1 (z)→ ΦA2 (z)),
where ΦA1 (z) = ∀x∀y [(x=y)∨A(z)∨¬A(z)], ΦA2 (z) = ¬A(z)∨¬¬A(z),
z = (z1, . . . , zn) being the list of parameters of A (all zi are distinct from x, y).
Let F = (W0, D,E) be a C0-set. Suppose that u � ΦA1 (d) and u 6� ΦA2 (d)
for some u ∈ W0 and d ∈ (Du)n. Then v2 � A(d′) and v2 � ¬A(d′′) for
some d′,d′′ ∈ (Dv2)n such that d <n d′ and d <n d′′ (and so u< v2). Then
clearly, u 6� A(d) and u 6� ¬A(d), hence the domain Du is one-element (since
u � (a1 =a2) for any a1, a2 ∈ Du).

First, if u=v0, then d′ = Eµ∗(d) = d′′, and this leads to a contradiction.
Second, let u=v1, Du = {a1}. Then d = (a1, . . . , a1) = Eµ0

(d∗), where
d∗=(a0, . . . , a0) for an arbitrary a0∈Dv0 . Now, d′=Eµi(d) for some i∈{1, 2},
hence d′=Eµi(Eµ0(d∗))=Eµ∗(d

∗), and similarly d′′=Eµ∗(d
∗). Thus d′=d′′

again. 2

The key idea. For our category C = C0 and u=v1 we have:

there exists a Cu-set F0

that cannot be extended to a C-set F such that Fu = F0.
(2)′′

Clearly, this property (2)′′ holds for any category C (based on W ) and u∈W
satisfying (2).

We conjecture that the peculiarity (2) actually transfers to logics without
equality as well, i.e., we hope that there exists a category C (based on W ) such
that

L(C) 6⊆ L(Cu) for some u ∈W. (2)

However we could not construct a formula without equality that ‘reflects’ and
exploits the property of our category C0, which does not allow to extend the
Cv10 -set F0 to a C0-set.

On the other hand, the following claim is obvious:

Lemma 2 Let C be a category based on W . A formula A is C-valid if it is
Cu-valid for all u∈W .

Indeed, if a C-set F 6� A is given, then u 6� A for some u∈W and a valuation
� in F. Hence u 6�u A for the restriction �u of � to Fu, and so Fu 6� A. �

Hence we obtain

Corollary 3 For any category C based on W :⋂
u∈W

L(=)(Cu) ⊆ L(=)(C). (2)

Clearly, this inclusion is proper iff C satisfies (2) (for the logics without or
with equality, respectively).
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3 Reducibility to cones for ∀-positive formulas

Now we describe a class of formulas, for which C-validity is reducible to
Cu-validity (for all categories C).

Recall that an occurrence of a subformula or a quantifier etc. in a formula A
is called positive (or negative) if it occurs in an even (respectively, odd) number
of premises of implications. We call a formula A (without or with equality)
∀-positive if all occurrences of ∀ in A are positive and all occurrences of ∃ in
A are negative. Similarly, a formula A is ∃-positive if all occurrences of ∃ in A
are positive and all occurrences of ∀ in A are negative. The following simple
lemma gives an inductive description of these notions:

Lemma 4

(1) Any atomic formula is both ∀-positive and ∃-positive.

(2) Formulas A1&A2, A1∨A2 are ∀-positive (or ∃-positive) iff
both A1 and A2 are ∀-positive (respectively, ∃-positive).

(3) A formula (A1→A2) is ∀-positive iff
A1 is ∃-positive and A2 is ∀-positive.

A formula (A1→A2) is ∃-positive iff
A1 is ∀-positive and A2 is ∃-positive.

(4) A formula ∀xA is ∀-positive iff A is ∀-positive.
Also ∀xA is not ∃-positive (for any A).

(5) A formula ∃xA is ∃-positive iff A is ∃-positive.
Also ∃xA is not ∀-positive (for any A).

We present a proof of the subsequent claim in Appendix (see Section 5):

Proposition 1 Let C be a category based on W , and let A be a ∀-positive
formula (without or with equality). Then:

A ∈ L(=)(C) ⇒ A ∈ L(=)(Cu) for all u ∈W.

Therefore,

(A ∈ L(=)(C) ) iff (A ∈ L(=)(Cu) for all u ∈W ),

for any ∀-positive formula A (since the converse implication readily follows
from Corollary 3).

Let us call all negative occurrences of ∀ and all positive occurrences of ∃ in
a formula A its critical occurrences. Clearly, a formula is ∀-positive iff it has
no critical occurrences of quantifiers.

The formula Φ0 constructed in Section 2 (for our Theorem) is intuitionisti-
cally equivalent to the formula

Φ′0 = (Φ′1 → Φ2), where Φ′1 = ∃x∀y [(x=y) ∨ P ∨ ¬P ],
since QH= ` (Φ1 ↔ Φ′1). The formula Φ′0 has only one critical occurrence ∀y
(and one non-critical ∃x). Also Φ′0 is equivalent to ∀xΦ′′0 , where



Skvortsov 489

Φ′′0 = (∀y [(x=y) ∨ P ∨ ¬P ] → ¬P ∨ ¬¬P ).
This ∃-free formula has one critical occurrence ∀y (and one non-critical ∀x).
Moreover, ∀xΦ′′0 can be replaced with the non-closed ∃-free formula Φ′′0(x) with
only one occurrence of ∀ (clearly, critical). On the other hand, we do not know,
whether Proposition 1 can be transferred to ∀-free formulas (with critical, i.e.,
positive occurrences of ∃).

4 The logics of pre-ordered sets: Reducibility to cones

In Section 2 we presented a natural counterpart of the claim (1) that fails for
the functor semantics (at least, in the case with equality). Nevertheless, a more
literal, straightforward counterpart of (1) holds.

Namely, let us define the predicate logic (without or with equality) of a
pre-ordered set W in the functor semantics as follows:

FL(=)(W ) =
⋂

(L(=)(C) : C is a category based on W ).

The following claim holds (the proof is given in Appendix, see Section 5):

Proposition 2 FL(=)(W ) ⊆ FL(=)(Wu) for any pre-ordered W and u∈W .

Therefore,

FL(=)(W ) =
⋂
u∈W

FL(=)(Wu) for any pre-ordered set W ; (3)

indeed, the converse inclusion readily follows from Corollary 3.
However, for logics without equality this claim is not interesting, because a

strictly stronger statement actually holds (its proof requires extra preparation,
techniques, and accuracy, and will be given in the continuation [5] of this
paper):

Proposition 2∗ FL(W ) = QH (intuitionistic predicate logic)
for a one-element partially ordered set W, and hence for any pre-ordered W .

In other words, the logic without equality FL(W ) does not depend on W .

So to say, the functor semantics is too powerful to be considered at the
level of propositional Kripke bases (i.e., pre-ordered sets), because at this level
it becomes degenerated (at least, for logics without equality). That is why we
assume that the level of categories (i.e., the logics L(=)(C) introduced in Section
1) is more adequate. In particular, (2) seems to be a more natural counterpart
of (1) for the functor semantics than (3), and the peculiarity stated in Section
2 shows the limits of this correspondence between (1) and (2).

On the other hand, Proposition 2∗ is not transferred to logics with equality
FL=(W ). Namely, all these logics have the intuitionistic equality-free fragment,
however they are distinct for different W . For example, it is easily seen that
the formula

Ψ = [ ∀x ∀y (x = y) → P ∨ ¬P ]
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belongs to FL=(W ) for a one-element W (since any C-set over one-element
partially ordered set with one-element domain is a classical one-element model),
but does not belong, e.g., to FL=(W ) for a two-element chain. Actually,

Ψ ∈ FL=(W ) iff ( ≤ is an equivalence relation on W )
(i.e., iff the skeleton of W is an antichain).

Moreover, for a propositional formula A, let us denote

ΨA = [ ∀x∀y (x = y) → A ].

Proposition 3 For a propositional formula A and a pre-ordered set W we
have:

ΨA∈FL=(W ) iff A∈PL(W )(the superintuitionistic propositional logic of W ).

Indeed, a C-set with one-element domains is essentially a usual predicate
Kripke frame with one-element constant domain; it is sufficient to identify its
individual domains, i.e., we suppose that Du = D = {a0} for all u∈W , and
then any Eµ (for µ ∈ C(u, v), u≤ v in W ) becomes the identical mapping on
D. 5 �

This statement means that the propositional logic PL(W ) is embeddable
into the corresponding logic with equality FL=(W ). Therefore we conclude
that:

Corollary 5 There exists a continuum of different logics with equality of the
form FL=(W ) (for different W ).

Indeed, there exists a continuum of Kripke-complete superintuitionistic
propositional logics (cf. [3]). �

Open problem 1 Try to describe the logics with equality FL=(W ) for natural
and simple partially ordered (or pre-ordered) sets W ; e.g., for a one-element
W .

We do not know, whether these logics are recursively (or finitely) axioma-
tizable; clearly, this question arises only for sets W , whose propositional logics
PL(W ) are recursively axiomatizable (e.g., for finite W ). We do not know,
whether FL=(W ) for a pre-ordered set W equals the logic of its partially or-
dered skeleton. And more questions remain open.

We say that a pre-ordered set W is QH=-complete in the functor semantics
if FL=(W ) = QH=. Proposition 3 implies the following simple consequence:

Corollary 6 A pre-ordered set W is QH=-complete in the functor semantics
only if PL(W ) = H (intuitionistic propositional logic).

5 By the way, note that here we mention only propositional formulas A, because it is easily
seen that in a Kripke frame with one-element constant domain any predicate formula A is
reducible to a propositional formula α(A), cf. [4, Sect. 5 (and 6)].
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Indeed, definitely QH= 6` ΨA for an intuitionistically unprovable proposi-
tional formula A. �

Now, let us say that W is QH=-complete in the Kripke semantics if
KL=(W ) = QH=. The most familiar examples are the infinite tree ω∗ of
all finite sequences of natural numbers or the binary tree {0, 1}∗ of all finite
{0, 1}-sequences, etc.

Open problem 2 Does there exist a pre-ordered (or a partially ordered)
set W that is QH=-complete in the functor semantics but not in the Kripke
semantics?

Let us mention two possible candidates.
First, let Wfin be the disjoint union of all finite trees (or e.g., all Jaskowski’s

trees). Then PL(Wfin) = H, whereas KL=(W ) 6= QH=, because e.g. the well-
known Kuroda’s formula is Kripke-valid in Wfin:

K = ¬¬∀x(P (x) ∨ ¬P (x)).

On the other hand, K 6∈ FL=(Wfin), since it is easily shown that K 6∈ FL=(W )
for a one-element W (and then apply Proposition 2).

Second, let W = ω∗ be the tree obtained by adding maximal points above
all points of ω∗ (or above all branches in ω∗, etc.), or a similar binary tree
W = {0, 1}∗. Then KL=(W ) = (QH= +K). By the way, note that it is easily
shown that FL=(ω∗) ⊆ FL=(Wfin), because there exist p-morphisms of ω∗

onto all finite trees. So ω∗ would be definitely QH=-complete if Wfin were.

5 Appendix: The proofs of Propositions 1 and 2

To establish Proposition 1, we use the following notion.
Let C be a category based on W , and let F′, F′′ be C-sets. Say that F′ is a C-

subset of F′′ (and F′′ is a C-extension of F′) if D′u ⊆ D′′u for every u∈W and E′µ
is the restriction of E′′µ to D′u for µ∈C(u, v), u≤v; naturally, we suppose that
the functions E′µ are well-defined, i.e., E′′µ(D′u) ⊆ D′v for any µ∈C(u, v). Now,
a valuation ξ′′ in F′′ gives rise to the valuation ξ′ in F′ defined as the restriction
of ξ′′ to F′ (for atomic formulas); note that the corresponding forcing relation
�′ in F′ in general is not the restriction of �′′ from F′′ to F′ (for non-atomic
formulas).

Lemma 7 Let C be a category based on W , let F′ be a C-subset of F′′, and
let ξ′ be the restriction (to F′) of a valuation ξ′′ in F′′. Let u∈W , and let
A(a) be a formula (with parameters replaced by elements of D′u ). Then:

(1) if A is ∀-positive, then: (u �′′ A(a) in F′′)⇒ (u �′ A(a) in F′);

(2) if A is ∃-positive, then: (u �′ A(a) in F′)⇒ (u �′′ A(a) in F′′).
Proof is obtained by a straightforward induction on A (use Lemma 4 !). Let
us mention the three principal cases (other cases are obvious).

(I) A = (A1→A2).
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(1) Let A be ∀-positive, so A1 is ∃-positive and A2 is ∀-positive. Assume
that u 6�′A(a), i.e., v�′A1(E′µ(a)) and v 6�′A2(E′µ(a)) for some v≥u, µ∈C(u, v).
Then v �′′ A1(E′′µ(a)) and v 6�′′ A2(E′′µ(a)) by inductive hypothesis (note that
here E′′µ(a)=E′µ(a)), and so u 6�′′A(a). (2) is shown similarly.

(II) A = ∃xA0.
(2) Let A (and so A0) be ∃-positive. Assume that u�′A(a), i.e., u�′A0(b,a)

for some b∈D′v⊆D′′v . Then u�′′A0(b,a), and so u�′′A(a).
Also, (1) is vacuous, since A definitely is not ∀-positive.
(III) A = ∀xA0.
(1) Let A (and so A0) be ∀-positive. Now we have to assume that u 6�′A(a),

i.e., v 6�′A0(b, E′µ(a)) for some v≥u, µ∈C(u, v), b∈D′v⊆D′′v . Then we conclude
that v 6�′′A0(b, E′′µ(a)), and so u 6�′′A(a).

And (2) is vacuous again. �

Any C-set F gives rise to its simple extension F+, where D+
u = Du ∪ {eu}

(here eu 6∈Du) for all u∈W , and E+
µ |Du

= Eµ, E+
µ (eu)=ev for µ∈C(u, v).

Lemma 8 Let C be a category based on W , let u0 ∈W , and let A be a
∀-positive formula. Then the C-validity of A implies its Cu0-validity.

Proof. Let a ∀-positive A be not Cu0-valid., i.e., w 6�0 A(a) for some valuation
ξ0 in a Cu0-set F0, some w ∈Wu0 , and a∈ (Dw)n. Consider a Cu0-set F such
that Fu0 = (F0)+, Du = {eu} for u 6∈Wu0 , and E+

µ (eu) = ev for µ ∈ C(u, v)
(for all u, v∈W , u≤ v). Extend ξ0 to a valuation ξ in F; e.g. put a valuation
ξ(P ) = ξ0(P ) for all predicate symbols P (so atoms are true only at points
from Wu0). Then w 6� A(a) by Lemma 7(1), and so A is not C-valid. 2

However, this claim does not immediately imply Proposition 1, since a
substitution instance of a ∀-positive formula in general is not ∀-positive. So we
apply the following, slightly more explicit description of the logic L(=)(F) of a
C-set.

Let A be a predicate formula, and let ki-ary symbols Pi (for i= 1, . . . ,m)
be all predicate symbols occurring in A (besides equality!). Now, for n ≥ 0,
let y = (y1, . . . , yn) be a list of different variables not occurring in A, and let
Qi be different (ki+n)-ary predicate symbols. Then n-shift An of A is the
substitution instance of A obtained by simultaneously replacing of all atomic
subformulas Pi(x) in A with Qi(x,y) (i=1, . . . ,m).

It is known that A ∈ L(=)(F) iff all An (for n≥0) are valid in F
(see [1, Proposition 5.6.26(2)] or cf. e.g. [6, Sect.4.1]). So to say, to check,
whether A ∈ L(=)(F), it is sufficient to check the validity of A ‘with an arbitrary
number of additional parameters’ (and then the validity for all substitution
instances of A readily follows). Therefore, for a category C we conclude that

A ∈ L(=)(C) iff all An (for n≥0) are C-valid.

Clearly, for a ∀-positive A, all An are ∀-positive as well, and therefore now
Proposition 1 immediately follows from Lemma 8.

Next, Proposition 2 follows from (2)′ (see Section 2) and the subsequent:
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Lemma 9 Let W be a pre-ordered set and u0∈W . Then every category C
based on Wu0 and a C-set F can be extended to a category C∗ based on W
and a C∗-set F∗ such that (C∗)u0 = C and (F∗)u0 = F.

Proof. Put C∗(u, v) = C(u, v) for u, v∈Wu0 , C∗(u, v) = {1u,v} for u, v 6∈Wu0 ,
C∗(u, v) = {〈µ, u〉 | µ ∈ C(u0, v)} for u 6∈Wu0 , v∈Wu0 (here 〈µ, u〉 is a ‘copy’
of µ at u 6∈Wu0). Let us describe µ ◦ µ′ for µ∈ C∗(u, v), µ′ ∈ C∗(v, w). First,
µ ◦ µ′ is taken from C for u ∈Wu0 . Second, 1u,v ◦ 1v,w = 1u,w for w 6∈Wu0

and 1u,v ◦ 〈µ, v〉 = 〈µ, u〉 for v 6∈Wu0 , w ∈Wu0 (here µ ∈ C(u0, w)). Finally,
〈µ, u〉 ◦ µ′ = 〈µ ◦ µ′, u〉 for u 6∈Wu0 , v∈Wu0 (here µ∈C(u0, v), µ′∈C(v, w), so
µ◦µ′ ∈ C(u0, w)). The associativity for the composition in C∗ is easily checked.

Now we extend F to F∗. Namely, put D∗u = Du for u∈Wu0 and D∗u = Du0

for u 6∈Wu0 . Also define E∗µ for µ ∈ C∗(u, v) as follows: E∗µ = Eµ for u, v∈Wu0 ,
E∗1u,v

= 1Du0
(the identity function on Du0 =D∗u=D∗v) for u, v 6∈Wu0 ,

E∗〈µ,u〉 = Eµ for u 6∈Wu0 , v∈Wu0 (here µ ∈ C(u0, v) and D∗u = Du0
).

The key property E∗µ◦µ′ = E∗µ′ ◦ E∗µ for µ∈C∗(u, v), µ′∈C∗(v, w)
(cf. Section 1) obviously holds. 2
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