Interpolation and Beth Definability over the Minimal Logic

Larisa Maksimova¹

Sobolev Institute of Mathematics Siberian Branch of Russian Academy of Sciences Novosibirsk 630090, Russia

Abstract

Extensions of the Johansson minimal logic J are investigated. It is proved that the weak interpolation property WIP is decidable over J. Well-composed logics with the Graig interpolation property CIP, restricted interpolation property IPR and projective Beth property PBP are fully described. It is proved that there are only finitely many well-composed logics with CIP, IPR or PBP; for any well-composed logic PBP is equivalent to IPR, and all the properties CIP, IPR and PBP are decidable on the class of well-composed logics.

Keywords: Interpolation, Beth property, minimal logic.

1 Superintuitionistic logics and J-logics

In this paper we consider extensions of the Johansson minimal logic J; this family extends the class of superintuitionistic (s.i.) logics. The main variants of the interpolation property are studied. In [4] we have proved that the weak interpolation property is decidable over J. There are only finitely many superintuitionistic logics with CIP, IPR or PBP, all of them are fully described [1,3], and CIP, IPR and PBP are decidable on the class of s.i. logics. Here we extend these results to the class of well-composed J-logics.

The language of J contains $\&, \lor, \rightarrow, \bot$ as primitive; negation is defined by $\neg A = A \rightarrow \bot$. The logic J can be given by the calculus, which has the same axiom schemes as the positive intuitionistic calculus Int⁺, and the only rule of inference is modus ponens. By a J-logic we mean an arbitrary set of formulas containing all the axioms of J and closed under modus ponens and substitution rules. We denote

Int = J + ($\perp \rightarrow A$), Neg = J + \perp , Gl = J + ($A \lor \neg A$), Cl = Int + ($A \lor \neg A$), JX = J + ($\perp \rightarrow A$) \lor ($A \rightarrow \perp$).

¹ Email: LMAKSI@math.nsc.ru

Supported by Russian Foundation for Basic Research, grant 12-01-00168a.

A J-logic is superintuitionistic if it contains the intuitionistic logic Int, and negative if contains Neg. A J-logic is well-composed if it contains JX. For a J-logic L, the family of J-logics containing L is denoted by E(L).

If **p** is a list of variables, let $A(\mathbf{p})$ denote a formula whose all variables are in **p**, and $\mathcal{F}(\mathbf{p})$ the set of all such formulas.

Let L be a logic. The Craig interpolation property CIP, the restricted interpolation property IPR and the weak interpolation property WIP are defined as follows (where the lists $\mathbf{p}, \mathbf{q}, \mathbf{r}$ are disjoint):

CIP. If $\vdash_L A(\mathbf{p}, \mathbf{q}) \to B(\mathbf{p}, \mathbf{r})$, then there is a formula $C(\mathbf{p})$ such that $\vdash_L A(\mathbf{p}, \mathbf{q}) \to C(\mathbf{p})$ and $\vdash_L C\mathbf{p}) \to B(\mathbf{p}, \mathbf{r})$.

IPR. If $A(\mathbf{p}, \mathbf{q}), B(\mathbf{p}, \mathbf{r}) \vdash_L C(\mathbf{p})$, then there exists a formula $A'(\mathbf{p})$ such that $A(\mathbf{p}, \mathbf{q}) \vdash_L A'(\mathbf{p})$ and $A'(\mathbf{p}), B(\mathbf{p}, \mathbf{r}) \vdash_L C(\mathbf{p})$.

WIP. If $A(\mathbf{p}, \mathbf{q}), B(\mathbf{p}, \mathbf{r}) \vdash_L \bot$, then there exists a formula $A'(\mathbf{p})$ such that $A(\mathbf{p}, \mathbf{q}) \vdash_L A'(\mathbf{p})$ and $A'(\mathbf{p}), B(\mathbf{p}, \mathbf{r}) \vdash_L \bot$.

Suppose that \mathbf{p} , \mathbf{q} , \mathbf{q}' are disjoint lists of variables that do not contain x and y, \mathbf{q} and \mathbf{q}' are of the same length, and $A(\mathbf{p}, \mathbf{q}, x)$ is a formula. We define the projective Beth property:

PBP. If $A(\mathbf{p}, \mathbf{q}, x), A(\mathbf{p}, \mathbf{q}', y) \vdash_L x \leftrightarrow y$, then $A(\mathbf{p}, \mathbf{q}, x) \vdash_L x \leftrightarrow B(\mathbf{p})$ for some $B(\mathbf{p})$.

The weaker *Beth property BP* arises from PBP by omitting \mathbf{q} and \mathbf{q}' .

All J-logics satisfy BP, and for these logics the following hold:

• $\text{CIP} \Rightarrow \text{PBP} \Rightarrow \text{IPR} \Rightarrow \text{WIP}, \text{ PBP} \Rightarrow \text{CIP}, \text{ WIP} \Rightarrow \text{IPR}.$

It is proved in [4] that WIP is decidable over J, i.e. there is an algorithm which, given a finite set Ax of axiom schemes, decides if the logic J+Ax has WIP. The families of J-logics with WIP and of J-logics without WIP have the continuum cardinality.

The logics J, Int, Neg, Gl, Cl and JX possess CIP and hence all other above-mentioned properties. It is known [3] that

• IPR \Leftrightarrow PBP over Int and Neg.

It is known that there are only finitely many s.i. and negative logics with CIP, IPR and PBP [1,3]. Here we extend this result to all well-composed logics. Also we prove that IPR is equivalent to PBP in any well-composed logic, and CIP, IPR and PBP are decidable over JX.

2 Interpolation and amalgamation

The considered properties have natural algebraic equivalents. There is a duality between J-logics and varieties of J-algebras [6].

Algebraic semantics for J-logics is built via J-algebras, i.e. algebras $\mathbf{A} = \langle A; \&, \lor, \rightarrow, \bot, \top \rangle$ such that A is a lattice w.r.t. $\&, \lor$ with the greatest element \top, \bot is an arbitrary element of A, and

 $z \le x \to y \iff z \& x \le y.$

A J-algebra \mathbf{A} is a *Heyting algebra* if \perp is the least element of A, and *a negative algebra* if \perp is the greatest element of A; the algebra is *well-composed* if every

Maksimova

its element is comparable with \bot . For any well-composed J-algebra **A**, the set $\mathbf{A}^{l} = \{x \mid x \leq \bot\}$ forms a negative algebra, and the set $\mathbf{A}^{l} = \{x \mid x \geq \bot\}$ forms a Heyting algebra. If **B** is a negative algebra and **C** is a Heyting algebra, we denote by $\mathbf{B} \uparrow \mathbf{C}$ a well-composed algebra **A** such that \mathbf{A}^{l} is isomorphic to **B** and \mathbf{A}^{u} to **C**. For a negative algebra **B**, we denote by \mathbf{B}^{Λ} a J-algebra arisen from **B** by adding a new greatest element \top .

A J-algebra **A** is *finitely indecomposable* if for all $x, y \in \mathbf{A}$:

 $x \lor y = \top \Leftrightarrow (x = \top \text{ or } y = \top).$

If A is a formula, **A** a J-algebra, then A is valid in **A** (in symbols, $\mathbf{A} \models A$) if the identity $A = \top$ is valid in **A**. We write $\mathbf{A} \models L$ instead of $(\forall A \in L)(\mathbf{A} \models A)$. Let $V(L) = {\mathbf{A} \mid \mathbf{A} \models L}$. Each J-logic L is characterized by the variety V(L).

We recall the definitions. A class V has A malgamation P roperty if it satisfies

AP: For each $\mathbf{A}, \mathbf{B}, \mathbf{C} \in V$ such that \mathbf{A} is a common subalgebra of \mathbf{B} and \mathbf{C} , there exist an algebra \mathbf{D} in V and monomorphisms $\delta : \mathbf{B} \to \mathbf{D}$ and $\epsilon : \mathbf{C} \to \mathbf{D}$ such that $\delta(x) = \epsilon(x)$ for all $x \in \mathbf{A}$.

Super-Amalgamation Property (SAP) is AP with extra conditions:

$$\delta(x) \le \epsilon(y) \Leftrightarrow (\exists z \in \mathbf{A}) (x \le z \text{ and } z \le y),$$

$$\delta(x) \ge \epsilon(y) \Leftrightarrow (\exists z \in \mathbf{A}) (x \ge z \text{ and } z \ge y).$$

Restricted Amalgamation Property (RAP) and Weak Amalgamation Property (WAPJ) are defined as follows:

RAP: for any $\mathbf{A}, \mathbf{B}, \mathbf{C} \in V$ such that \mathbf{A} is a common subalgebra of \mathbf{B} and \mathbf{C} , there exist an algebra \mathbf{D} in V and homomorphisms $g : \mathbf{B} \to \mathbf{D}$ and $h : \mathbf{C} \to \mathbf{D}$ such that g(x) = h(x) for all $x \in \mathbf{A}$ and the restriction of g onto \mathbf{A} is a monomorphism.

WAPJ: For each $\mathbf{A}, \mathbf{B}, \mathbf{C} \in V$ such that \mathbf{A} is a common subalgebra of \mathbf{B} and \mathbf{C} , there exist an algebra \mathbf{D} in V and homomorphisms $\delta : \mathbf{B} \to \mathbf{D}$ and $\epsilon : \mathbf{C} \to \mathbf{D}$ such that $\delta(x) = \epsilon(x)$ for all $x \in \mathbf{A}$, and $\perp \neq \top$ in \mathbf{D} whenever $\perp \neq \top$ in \mathbf{A} .

A class V has Strong Epimorphisms Surjectivity if it satisfies

SES: For each **A**, **B** in V, for every monomorphism $\alpha : \mathbf{A} \to \mathbf{B}$ and for every $x \in \mathbf{B} - \alpha(\mathbf{A})$ there exist $\mathbf{C} \in V$ and homomorphisms $\beta : \mathbf{B} \to \mathbf{C}, \gamma : \mathbf{B} \to \mathbf{C}$ such that $\beta \alpha = \gamma \alpha$ and $\beta(x) \neq \gamma(x)$.

Theorem 2.1 ([2]) For any J-logic L:

(1) L has CIP iff V(L) has SAP iff V(L) has AP,

- (2) L has IPR iff V(L) has RAP, (3) L has WIP iff V(L) has WAPJ,
- (4) L has PBP iff V(L) has SES.

In varieties of J-algebras: SAP \iff AP \Rightarrow SES \Rightarrow RAP \Rightarrow WAPJ.

3 Weak interpolation and negative equivalence

For $L_1 \in E(\text{Neg})$, $L_2 \in E(\text{Int})$ we denote by $L_1 \uparrow L_2$ a logic characterized by all algebras of the form $\mathbf{A} \uparrow \mathbf{B}$, where $\mathbf{A} \models L_1$, $\mathbf{B} \models L_2$; a logic characterized by all algebras $\mathbf{A} \uparrow \mathbf{B}$, where \mathbf{A} is a finitely decomposable algebra in $V(L_1)$ and $\mathbf{B} \in V(L_2)$, is denoted by $L_1 \Uparrow L_2$. Say that a J-logic is *primary* if it is of the form $L_1 \uparrow L_2$ or $L_1 \Uparrow L_2$.

In [2] an axiomatization was found for logics $L_1 \uparrow L_2$ and $L_1 \uparrow L_2$, where L_1 is a negative and L_2 an s.i. logic.

All s.i. and negative logics have WIP. On the contrary, there are only finitely many s.i. and negative logics with CIP, IPR and PBP [1,2,3]. We give the list of all negative logics with CIP:

Neg, NC = Neg + $(p \rightarrow q) \lor (q \rightarrow p)$, NE = Neg + $p \lor (p \rightarrow q)$, For = Neg + p.

It is proved in [4] that WIP is decidable over J, i.e. there is an algorithm which, given a finite set Ax of axiom schemes, decides if the logic J+Ax has WIP. A crucial role in the description of J-logics with WIP [4] belongs to the following list SL of eight *etalon logics*:

{For, Cl, $(NE \uparrow Cl)$, $(NC \uparrow Cl)$, $(Neg \uparrow Cl)$, $(NE \uparrow Cl)$, $(NC \uparrow Cl)$, $(Neg \uparrow Cl)$ }.

We say that a J-algebra is *central* if $\perp \neq \top$ and $x \leq \perp$ for any $x \neq \top$. For a J-logic *L* define the *center* $\Lambda(L)$ as the class of all central algebras validating *L*. Let a *central companion* L_{cn} of *L* be a logic generated by $\Lambda(L)$.

All etalon logics are generated by their centers, finitely axiomatizable, and finitely approximable [4]. A center of an etalon logic is said to be an *etalon* center.

Proposition 3.1 For each etalon logic L_0 there is an algorithm which, given a finite set Ax of axiom schemes, decides if the logic J + Ax is equal to L_0 .

Theorem 3.2 ([4]) For any J-logic L the following are equivalent:

- (i) L has WIP,
- (ii) $\Lambda(L)$ has the amalgamation property.
- (iii) L has an etalon center.

Two J-logics L and L' are negatively equivalent [6] if for any formula A

$$L \vdash \neg A \iff L' \vdash \neg A.$$

Theorem 3.3 Two J-logics are negatively equivalent iff they have the same center.

Theorem 3.4 A J-logic has WIP iff it is negatively equivalent to one of the etalon logics.

Theorem 3.5 ([4]) WIP is decidable over J.

4 Interpolation in well-composed J-logics

For any J-logic L define the *negative* and *intutionistic companions*:

$$L_{neg} = L + \bot, \ L_{int} = L + (\bot \to A).$$

The following theorem describes all well-composed logics with CIP.

Maksimova

Theorem 4.1 ([5]) Let L be a well-composed logic. Then L has CIP if and only if L_{neg} and L_{int} have CIP, and L is representable as $L = L_{neg} \cap L_1$, where L_1 is a primary logic with an etalon center.

The following theorem gives a full description of well-composed logics with IPR and PBP.

Theorem 4.2 ([5]) For any well-composed logic L the following are equivalent:

- (i) L has IPR,
- (ii) L has PBP,
- (iii) the companions L_{neg} and L_{int} have IPR, the central companion L_{cn} is an etalon logic, and L is representable as

$$L = L_{neg} \cap L_{cn} \cap L_1,$$

where L_1 is a primary logic with an etalon center.

Corollary 4.3 There are only finitely many well-composed logics with IPR; all of them are finitely axiomatizable and finitely approximable.

Theorem 4.4 ([5]) CIP, IPR and PBP are decidable on the class of wellcomposed logics.

The following problems are still open.

- **Problem 1**. How many J-logics have CIP, IPR or PBP?
- Problem 2. Are IPR and PBP equivalent over J?
- Problem 3. Are CIP, IPR and/or PBP decidable over J?

References

- Gabbay, D.M. and L. Maksimova. Interpolation and Definability: Modal and Intuitionistic Logics, Oxford University Press, Oxford, 2005.
- [2] Maksimova, L.L.. Interpolation and definability in extensions of the minimal logic, Algebra and Logic, 44 (2005), pp. 726-750.

[3] Maksimova, L. Problem of restricted interpolation in superintuitionistic and some modal logics, Logic Journal of IGPL, 18 (2010), pp. 367-380.

[4] L.L.Maksimova, L.L. Decidability of the weak interpolation property over the minimal logic, Algebra and Logic, 50, no. 2 (2011), pp. 152-188.

[5] Maksimova, L.L. The projective Beth property in well-composed logics, Algebra and Logic, to appear.

[6] Odintsov, S P. Constructive negation and paraconsistency, Dordrecht, Springer-Verlag. 2008.