
General Dynamic Dynamic Logic

Patrick Girard Jeremy Seligman

Department of Philosophy
University of Auckland

Fenrong Liu

Department of Philosophy
Tsinghua University

Abstract

Dynamic epistemic logic (DEL) extends purely modal epistemic logic (S5) by adding
dynamic operators that change the model structure. Propositional dynamic logic
(PDL) extends basic modal logic with programs that allow the definition of complex
modalities. We provide a common generalisation: a logic that is ‘dynamic’ in both
senses, and one that is not limited to S5 as its modal base. It also incorporates,
and significantly generalises, all the features of existing extensions of DEL such as
BMS [3] and LCC [21]. Our dynamic operators work in two steps. First, they provide
a multiplicity of transformations of the original model, one for each ‘action’ in a
purely syntactic ‘action structure’ (in the style of BMS). Second, they specify how
to combine these multiple copies to produce a new model. In each step, we use the
generality of PDL to specify the transformations. The main technical contribution
of the paper is to provide an axiomatisation of this ‘general dynamic dynamic logic’
(GDDL). This is done by providing a computable translation of GDDL formulas to
equivalent PDL formulas, thus reducing the logic to PDL, which is decidable. The
proof involves switching between representing programs as terms and as automata.
We also show that both BMS and LCC are special cases of GDDL, and that there are
interesting applications that require the additional generality of GDDL, namely the
modelling of private belief update. More recent extensions and variations of BMS and
LCC are also discussed.

Keywords: Dynamic logic, BMS, LCC, PDL, belief change.

Recent research in epistemic logic extends the classical S5-analysis of knowledge
with dynamic operators that model the epistemically relevant changes brought
about by various acts of communication. These are represented as extensions
of the basic epistemic language with expression of the form [a]ϕ interpreted
as ‘after action a is performed, ϕ is the case’. The primary example of such
an action is the ‘public announcement’ of a proposition ψ, written !ψ, which
achieves the right effect by simply removing the ¬ϕ-states (those states of the

240 General Dynamic Dynamic Logic

model in which ψ is false), so that everyone subsequently knows that these
possibilities are no longer open. 1 A rich array of dynamic operators have
been introduced to deal with private communications of various sorts, and also
actions that affect more than just the epistemic states of agents, the so-called
‘real world changes’. 2

Meanwhile, interest has grown in applying similar techniques to other branches
of modal logic, such as doxastic logic (the logic of belief) [4,18] and preference
logic [7,11,12,20]. A significant difference from the epistemic setting is the
need to describe dynamic operators that change the relational structure of the
underlying model, not just the size of its domain (announcement) or the propo-
sitional valuations (real-world change). For example, if one models the doxastic
state of an agent by a plausibility relation between epistemically possible state,
‘upgrading’ a proposition ϕ, so that it is believed, may be modelled by an op-
erator that transforms the plausibility relation by removing links from ϕ-states
to ¬ϕ-states and adding links from ¬ϕ-states to ϕ-states. This ensures that
every possible state in which ϕ is true becomes more plausible (for the given
agent) than every possibility in which ϕ is false. Currently, however, there is
no way of adapting the technology of BMS to model the doxastic effect on a
multiplicity of agents of one or more of those agents privately upgrading their
beliefs as a response to a less-than-public communication.

We solve this problem by providing a more general framework, inspired by
Theorem 4.11 in [12], first noted in [20], which states that any dynamic operator
whose effect on a model can be described in PDL (without Kleene’s iteration
operator ∗) can be reduced to the underlying modal logic using essentially only
the standard axioms of PDL. We show how this idea can be used to extend
BMS (and LCC), so that a vast range of dynamic operators can be modelled in
a way that allows for private changes and real-world changes in epistemic logic,
doxastic logic, preference logic, and any other normal modal logic. 3 We also
extend it by adding the Kleene star, so that certain desirable frame conditions
(such as transitivity) can be imposed. 4

Section 1 introduces the concept of a ‘PDL-transformation’, which is a general

1 Notoriously, it is not guaranteed that the announced proposition is subsequently known
because its very announcement may change its truth value, e.g. announcing ‘the sun is
shining but you don’t know it’ results in your knowing that the sun is shining and so making
the announcement false.
2 See for example, the textbooks [23] and [19]. The initial paper on public announcement
was [15] and the most significant advance came with the eponymously acronymed BMS [3].
A recent extension of BMS, incorporating real-world changes, is LCC [21], the ‘Logic of
Communication and Change’.
3 In particular, we can have dynamic operators over epistemic logics weaker than S5, so
catering for those who wish to avoid the controversial properties of positive or negative
introspection.
4 There are various ways in which the Kleene star can be used in dynamics. Our sense
will become clear but, for example, it is not the sense of [13], which is known to give an
undecidable logic.

Girard, Seligman and Liu 241

way of changing models using PDL terms. These transformation are used exten-
sively in Section 2, in which GDDL is defined semantically and then axiomatised,
using a technique that exploits the possibility of representing programs both
by PDL-terms and by finite state automata. We illustrate GDDL by showing
how it can be used to model private belief change. Finally, Section 3 shows
how BMS and LCC are special cases of GDDL, and then goes on to discuss other
recent variations and extensions such as [2,9,10,22,24].

1 Preliminaries

A Kripke signature is a pair 〈P,R〉 of sets of symbols. The elements of P are
propositional variables and those of R are relation symbols. A model of this
signature, M = 〈W,V 〉 consists of a set W (of states) and a valuation function
V mapping each p ∈ P to V (p) ⊆ W and each r ∈ R to V (r) ⊆ W 2. To
describe such structures, we define T (P,R) to be the set of programs π and
L(P,R) to be the set of formulas ϕ in the usual way:

π : : = r | E | ϕ? | (π;π) | (π ∪ π) | π∗
ϕ : : = p | ¬ϕ | (ϕ ∨ ϕ) | 〈π〉ϕ

where r ∈ R and p ∈ P . Here, E, is the universal program that jumps between
arbitrary states. In each model M , semantic values [[ϕ]]M ⊆W and [[π]]M ⊆W 2

are given by:

[[p]]M = V (p)
[[¬ϕ]]M = W \ [[ϕ]]M

[[(ϕ ∧ ψ)]]M = [[ϕ]]M ∩ [[ψ]]M

[[〈π〉ϕ]]M = {u ∈W | u[[π]]Mv and v ∈ [[ϕ]]M , for some v ∈W}

[[r]]M = V (r)
[[E]]M = W 2

[[ϕ?]]M = {〈u, u〉 | u ∈ [[ϕ]]M}
[[π1;π2]]M = {〈u, v〉 | u[[π1]]Mw and w[[π2]]Mv, for some w ∈W}
[[π1 ∪ π2]]M = [[π1]]M ∪ [[π2]]M

[[π∗]]M =
{〈u, v〉|u = v or ui[[π]]Mui+1 for some n ≥ 0, u0, . . . , un ∈W
such that u0 = u and un = v}

As usual, we also write u[[π]]Mv for 〈u, v〉 ∈ [[π]]M and M,u |= ϕ for u ∈ [[ϕ]]M .

PDL-transformations We will use expressions from our language to describe
changes to models. Given a model M of signature 〈P,R〉, we will show how
to obtain a model ΛM of a possibly different signature 〈Q,S〉 in such a way
that we retain some control over which formulas are satisfied in the new model.
Specifically, we will also define a (computable) translation ϕΛ of each formula
ϕ ∈ L(Q,S) such that

M,u |= ϕΛ iff ΛM,u |= ϕ

242 General Dynamic Dynamic Logic

This is the content of Lemma 1.1, below. Specifically, we say that a PDL-
transformation Λ from signature 〈P,R〉 to signature 〈Q,S〉 consists of

(i) a formula |Λ| ∈ L(P,R),

(ii) an algorithm 5 for calculating Λ(q) ∈ L(P,R) for each q ∈ Q and

(iii) an algorithm for calculating a term Λ(s) ∈ T (P,R) for each s ∈ S.

Now, given a model M = 〈W,R〉 of signature 〈P,R〉, we define the model ΛM
of signature 〈Q,S〉 to be 〈ΛW,ΛV 〉, where

ΛW = [[|Λ|]]M
ΛV (q) = [[Λ(q)]]M ∩ ΛW for each q ∈ Q
ΛV (s) = [[Λ(s)]]M ∩ ΛW 2 for each s ∈ S

In other words, the domain of the new model is simply a restriction of the
domain of the old model (defined by |Λ|) and the interpretation of the symbols
of 〈Q,S〉 are given by evaluating the corresponding PDL-expressions provided
by Λ, and then restricting them to the new domain.

For the translation, we can inductively compute formulas ϕΛ and terms πΛ of
signature 〈P,R〉 from each formula ϕ and term π of signature 〈Q,S〉, as follows:

qΛ = Λ(q)
(¬ϕ)Λ = ¬ϕΛ

(ϕ ∧ ψ)Λ = (ϕΛ ∧ ψΛ)
(〈π〉ϕ)Λ = 〈πΛ〉ϕΛ

sΛ = Λ(s); |Λ|?
EΛ = E; |Λ|?
(ϕ?)Λ = (ϕΛ)?
(π1;π2)Λ = πΛ

1 ;πΛ
2

(π1 ∪ π2)Λ = πΛ
1 ∪ πΛ

2

(π∗)Λ = (πΛ)∗

Most of the clauses in this definition are fairly obviously what is required. Note,
however, the role of formula |Λ|, which acts as a restriction on the quantifier
〈π〉 in sΛ, as can be seen by expanding the semantic definition of 〈sΛ〉ϕ, since

M,u |= 〈sΛ〉ϕ iff ∃v : M,v |= |Λ|, u[[sΛ]]Mv&M,v |= ϕ.

As remarked above, the definition is designed precisely so that the following
result holds:

Lemma 1.1 For each state u of ΛM and v of M , and for each formula ϕ ∈
L(Q,S), M,u |= ϕΛ iff ΛM,u |= ϕ, and

u[[πΛ]]Mv iff v ∈ ΛW and u[[π]]ΛMv.

5 We refer to ‘algorithms’ here in an informal way, which could be made precise, but doing
so would require us to be boringly pedantic about the way the symbols of the signature,
for example, are presented, and to choose arbitrarily between many equally good ways of
representing these algorithms. Besides, in most cases of interest, the signature 〈Q,S〉 is
finite, and in this case, it is enough merely to list the various components of Λ.

Girard, Seligman and Liu 243

Proof: See Appendix. ,

Example Let P = {p1, p2}, R = {r1, r2}, Q = {q1, q2}, and S = {s}. Let Λ
be the transformation from 〈P,R〉 to 〈Q,S〉 given by

|Λ| = 〈r1〉p1 ∨ 〈r2〉p2

Λ(q1) = 〈r2〉¬p1 and Λ(q2) = 〈p2?; r1〉¬p2

Λ(s) = (r1; r2) ∪ (p1?; r2)

Then with model M as shown below, we get ΛM as follows:

M
p1 p2

r2

r1 r1

r2

r2

; ΛM

q1 q1, q2
s

s

a

As a simple example of Lemma 1.1 in action, let ϕ be the formula 〈s〉(q1 ∧ q2).
Then ϕΛ is 〈((r1; r2) ∪ (p1?; r2)); (〈r1〉p1 ∨ 〈r2〉p2)?〉(〈r2〉¬p1 ∧ 〈p2?; r1〉¬p2). A
bit of checking will confirm that [[ϕ]]ΛM and [[ϕΛ]]M are both equal to the set
of states depicted in the left columns of these diagrams.

In what follows we will use a concise notation for PDL transformations, which
we illustrate by rewriting Λ, from the above example, as

〈|〈r1〉p1 ∨ 〈r2〉p2|, q1 := 〈r2〉¬p1, q2 := 〈p2?; r1〉¬p2, s := (r1; r2) ∪ (p1?; r2)〉

To simplify notation further, we will omit trivial domain restriction (>) and
those parts of a PDL-transformation that do not change anything. For exam-
ple, the action of ‘public announcement of ϕ’ is just 〈|ϕ|〉. Finally, the identity
transformation is written as I. Some PDL-transformations found in the litera-
ture [12,18,20,26] are listed below:

Add ¬p→ p links =
〈r := (r ∪ (¬p?;E; p?))∗〉
(∗ used to preserve transitivity)

Delete p→ ¬p links
(‘suggestion’)

=
〈r := ((¬p?; r; ¬p?) ∪ (p?; r; p?)
∪(¬p?; r; p?)〉

Delete p→ ¬p links
Add ¬p→ p links
(‘radical upgrade’)

=
〈r := ((¬p?; r; ¬p?) ∪ (p?; r; p?)
∪(¬p?;E; p?)〉

2 General Dynamic Dynamics

Given a signature 〈P,R〉, we will define a class of dynamic operators to add to
PDL to produce our dynamic dynamic logic, GDDL. Just as with the ‘action

244 General Dynamic Dynamic Logic

structures’ of BMS, we think of these operators as syntactic objects, albeit
somewhat complex ones. A GDDL dynamic operator [A,G,H, a] consists of
four components:

(i) a finite structure A = 〈D,U〉 of some finite signature 〈Q,S〉 (distinct from
〈P,R〉), whose nodes d ∈ D are called program nodes,

(ii) a PDL-transformation Gd from 〈P,R〉 to 〈P,R〉 for each d ∈ D,

(iii) a PDL-transformation H from 〈P ∪Q,R ∪ S〉 to 〈P,R〉, and

(iv) a distinguished element a ∈ D.

We can represent the dynamic operator [A,G,H, a] in the following diagram-
matic style:

Ga Gb

q

s

H

The upper section contains a representation of the structure A, with each node
containing its associated PDL-transformation. Relations U(s) are indicated
by arrows labelled with ‘s’, a symbol of S, and U(q) is shown by labelling
nodes with ‘q’ from Q. (The above labels and arrows are merely illustrative.)
The distinguished node a is highlighted with darker edges. The lower section
contains the PDL-transformation H.

The language of GDDL is given by:

π : : = r | E | ϕ? | (π;π) | (π ∪ π) | π∗
ϕ : : = p | ¬ϕ | (ϕ ∨ ϕ) | 〈π〉ϕ | [A,G,H, a]ϕ

where, again, r ∈ R, p ∈ P , and [A,G,H, a] is a GDDL dynamic operator. Let
T+(P,R) and L+(P,R) be the set of GDDL terms and formulas so defined.
Notice, in particular, how the two senses in which the language is ‘dynamic’
are captured by 〈π〉 and [A,G,H, a]. L(P,R) is already dynamic in the first
sense but not in the second.

We think of each element d of D as representing a possible action whose effect
on M is to transform it to GdM . This could be an announcement, a belief
or preference change, or something far more complex, depending on the ap-
plication. The particular element a is the one that actually occurs. The only
restriction is that the transformation is definable by PDL expressions. 6

6 In BMS elements of action structures are associated with formulas, called ‘pre-conditions’
which act to restrict the domain but which have no effect on the relational structure of the

Girard, Seligman and Liu 245

We represent the interaction between A = 〈D,U〉 and M = 〈W,V 〉 by con-
structing the model GM = 〈GW,GV 〉 of combined signature 〈P ∪ Q,R ∪ S〉,
as follows:

GW = {〈u, d〉 | u ∈ [[|Gd|]]M}

Then, for 〈u, d〉 and 〈v, e〉 in GW :

〈u, d〉 ∈ GV (p) iff u ∈ [[p]]GdM for each p ∈ P
〈u, d〉 ∈ GV (q) iff d ∈ U(q) for each q ∈ Q
〈u, d〉GV (r) 〈v, e〉 iff d = e and u [[r]]GdM v for each r ∈ R
〈u, d〉GV (s) 〈v, e〉 iff u = v and dU(s) e for each s ∈ S

We can think of GM as resulting from the process of replacing each program
node d ∈ D by the transformed modelGdM that results from applying the PDL-
transformation Gd to M . The structure of A remains, linking these transformed
models together. 7

Finally, we use the transformation H to recover a model of signature 〈P,R〉
from GM , defining

[A,G,H]M = HGM

H encodes the way in which the structure of A coordinates the different pro-
grams represented by the elements of D. Again, there is great generality here.
All that is required is that this means of coordination is, in some sense, PDL-
definable. 8 Then, we can specify the semantics for our new dynamic operators
in a standard way: 9

M,u |= [A,G,H, a]ϕ iff [A,G,H]M, 〈u, a〉 |= ϕ

Because of the generality of the approach, it is useful to consider the special case
in which a GDDL-operator [A,G,H, a] is defined by a single PDL-transformation
Λ, defining

model. See Section 3 for details.
7 Another useful metaphor for visualising GM is that it is a two-dimensional model in which
the S links run in a horizontal direction and the R links run in a vertical direction. Whereas
the S links are merely copies of their projection on to D, the R links vary. In the dth place
in the horizontal direction the vertical R links form a copy of those in GdM .
8 In BMS, the coordination is built into the details of the model construction, not a parameter
of the dynamic operators. Also, the signature used for A can be taken to be the same as
that for M , since both are simply families of equivalence relations. Again, see Section 3 for
details.
9 Although a is not relevant to computing [A,G,H]M , we define [A,G,H, a]M =
[A,G,H]M , for uniformity of notation when we consider arbitrary operators.

246 General Dynamic Dynamic Logic

[Λ] =

Λ

I

Example 2: For a purely abstract example, illustrating various aspects of the
definition, take Λ to be the PDL-transformation

〈|〈r1〉p1 ∨ 〈r2〉p2|, p1 := 〈r2〉¬p1, p2 := 〈p2?; r1〉¬p2, r2 := (r1; r2) ∪ (p1?; r2)〉

Take the model M of example 1 (shown left) and the dynamic operator
[A,G,H, a] (shown right):

p1 p2
r2

r1 r1

r2

r2

Λ I
s

|(p1 ∨ p2)|, r1 := (s; r2)∗,
r2 := r2 ∪ (p1?;>; (p1 ∧ p2)?)

We first compute GM , then HGM :

GM
p1 p1, p2 p1 p2

r2

r1
r2

r2

r1

r2

r1

r2

s s

s

HGM

p1 p1, p2 p1 p2
r2 r2r2

r1 r1, r2
r1

r1, r2

r1

r1

2.1 Private Belief Change

As an example of what can be done with GDDL, and a concrete illustration
of the definitions in action, we will consider an application to doxastic logic.
For the basic logic of belief change, we follow van Benthem’s [18] account, in
which the effect of a belief update is to change an agent’s judgements about

Girard, Seligman and Liu 247

the relative plausibility (≤) of different epistemic possibilities. The basic idea
is that when updating with p, an agent should judge any p-state to be strictly
more plausible than any ¬p-state, while retaining her earlier judgements about
relative plausibility among p-states and among ¬p-states. Belief is defined as
truth in maximally plausible states. We extend this to a multi-agent context in
which belief changes are private. There are many options here, but we choose
to add a separate relation (∼) modelling knowledge (epistemic indistinguisha-
bility). In this example, we will assume that it is an equivalence relation, as is
standard, but it should be clear that many variations are possible within the
present framework.

Given a finite sets of agents I, consider a Kripke signature 〈P,R〉 with R =
{∼i,≤i, βi | i ∈ I}, the class D of models M = 〈W,V 〉 of this signature for
which, for each agent i, V (∼i) is a equivalence relation, V (≤i) ⊆ V (∼i) is a
preorder, and

uβiv iff u ∼i v and w ≤i v for each w ∈W such that v ≤i w.

In other words, a state v is βi-accessible from u iff it is maximally plausible
among those states that are epistemically indistinguishable from u. In this way,
the formula [βi]ϕ states that ϕ is believed by i, according to the analysis of
[18]. 10 Updating agent i’s beliefs with ϕ results in a new plausibility relation
defined by 11 (ϕ?;≤i;ϕ?) ∪ (¬ϕ?;≤i; ¬ϕ?) ∪ (¬ϕ?;∼i;ϕ?).

The PDL-transformation ⇑i ϕ (‘update i’s beliefs with ϕ’) maps ≤i to this PDL
term, keeping everything else the same. The fact that agent i believes ψ after
upgrading her beliefs with ϕ should then expressed in GDDL as [⇑i ϕ][βi]ψ.

But there is a problem. Not only is [⇑i p][βi]p valid (as expected), but so too
is [⇑i p][βj][βi]p, for any other agent j. In other words, it is logically true that
after i doxastically updates with p, not only does she believe that p but everyone
else believes that she believes p. In this way, [⇑i ϕ] is not really private at all.
This situation is familiar from BMS, and we adopt a similar solution, but one
that exploits the relation-change potential of PDL-transformations, defining the
operator (↑i ϕ) = [A,G,H, a] as follows:

⇑i ϕ
a

I

b

�j

�j

for all j 6= i

∼j := (∼j ∪ �j)∗ ≤j := (≤j ∪ �j)∗

10Note that although βi is in some sense redundant, in that it is fully determined by ∼i and
≤i, the operator [βi] is not modally definable from the operators [∼i] and [≤i]; nonetheless,
the relationship between the three operators can easily be acclimatised.
11This differs slightly from [18] because of the restriction to the ∼i-equivalence class discussed
above.

248 General Dynamic Dynamic Logic

Here, A is a two-state structure with domain D = {a, b}. It has signa-
ture 〈Q,S〉, where Q is empty and S = {�j ,�j | j ∈ I}, and interprets
�j as an equivalence relation and �j as a preorder, although not all of the
links are shown in the diagram. The distinguished node a contains the PDL-
transformation ⇑i ϕ, representing the action of updating i’s belief’s with ϕ,
and the other node, b, contains the identity transformation I, representing the
action of doing nothing. Only agent i knows which of the two possible actions
were performed, so a �j b for all j 6= i. Likewise, we will assume (although
there is room for more subtlety here) that each of these other agents regards it
as more plausible that i’s beliefs have not changed. This is captured by making
a �j b and not b �j a for all those j. Finally, the integrating transformation
H is defined by taking the (reflexive, transitive closure of) the unions of the
two epistemic and the two doxastic relations.

To see how this works, we will consider an application of (↑i ϕ) to the model
M displayed below: 12

r

u

¬r

v

∼1,∼2

≤1,≤2

r

u

¬r

v

β1, β2

β1, β2

We will think of M as representing a scenario with two agents, called 1 and 2,
who both falsely believe ¬r: ‘it hasn’t rained today’. Now, the operator ↑1 r
should represent the action of agent 1 privately upgrading her belief in r, in a
way that is unobserved by agent 2; perhaps she takes a furtive glance out of
the window and sees someone closing an umbrella. The resulting model (↑1 r)
is shown below (with βi displayed separately):

r〈u, a〉 ¬r 〈v, a〉

r

〈u, b〉

¬r

〈v, b〉

∼1,∼2

�2 �2

∼1,∼2

≤2

≤1

�2 �2

≤1,≤2

r ¬r

r ¬r

β1

β2

β1

β2

β1, β2

β1, β2

12Throughout this section reflexive loops and compositions of arrows for ∼ and ≤ are sup-
pressed in diagrams, and the relations β1 and β2, which are defined in terms of the others,
are shown separately.

Girard, Seligman and Liu 249

Here, the designated state satisfies [β1]r (agent 1 believes it to be raining),
[β2]¬r (agent 2 still believes it is not raining) and [β2][β1]¬r (agent 2 also
believes, falsely, that agent 1 still believes it not to be raining). 13

2.2 Axiomatisation

The key to understanding the logic of GDDL is to find a computable translation
ϕ[A,G,H,a] of each formula ϕ in L(P,R) such that

[A,G,H, a]ϕ↔ ϕ[A,G,H,a]

is valid as a formula of GDDL. From this (and the replacement of logical
equivalents) it follows that every formula of L+(P,R) is equivalent to a formula
of L(P,R), and can be proved to be so using these equivalences as axioms. We
can reduce the two senses of ‘dynamic’ in dynamic dynamic logic to one.

How, then, to define ϕ[A,G,H,a]? Our approach will be to define a formula
ϕ[A,G,d] of L(P,R) for each ϕ of L(P ∪ Q,R ∪ S) and a program π[A,G,d,e] of
T (P,R) for each π of T (P ∪Q,R∪ S) such that for any model M of signature
〈P,R〉, the following result holds:

Lemma 2.1 For each 〈u, d〉, 〈v, e〉 ∈ GW ,

(i) GM, 〈u, d〉 |= ϕ iff M,u |= ϕ[A,G,d], and

(ii) 〈u, d〉[[π]]GM 〈v, e〉 iff u[[π[A,G,d,e]]]Mv

This will be proved below. We can then define ϕ[A,G,H,d] = ϕH
[A,G,d]

so that

Lemma 2.2 For each operator [A,G,H, a] of GDDL and each formula ϕ of
L(P,R), the following is valid:

[A,G,H, a]ϕ↔ ϕ[A,G,H,a]

Proof: From Lemmas 2.1 and 1.1. (Note that, since GM is of signature 〈P ∪
Q,R ∪ S〉 and [A,G,H, d]M = HGM is of signature 〈P,R〉, the formula ϕH is
in L(P ∪Q,R ∪ S), as required by Lemma 2.1.) ,

To define π[A,G,d,e] we need a small excursion into automata theory. 14 For

13Although the definition of a private belief update operator is only an example to show
what can be done in GDDL, it illustrates the need for some constraints in getting sensible
results for epistemic logic. In particular, it is important that the epistemic relation �i in
the operator constrains the definition of the various transformations Gd so that each agent
knows that actions affecting her own psychological state have occurred, namely, that d �i e
implies both Gd(�i) = Ge(�i) and Gd(≤i) = Ge(≤i).
14This excursion into automata theory is solely for the purpose of producing the reduction
axioms, in a recursive way. Once the axioms are produced, however, no essential use of
automata remains in the logic. We find the technique useful and illuminating but recognise
that there may be an alternative approach that provides reduction axioms in a more direct
way. We leave this as an open problem.

250 General Dynamic Dynamic Logic

each signature, say that σ is a basic program of that signature if it is either
a relation symbol, E, or a test. Then for each model N and a program π,
define Σ(N, u, v, π) to be the set of strings σ1 . . . σn of basic subprograms of π
such that ui[[σi]]

Nui+1 for some sequence u0, . . . , un of states in N with u0 = u
and un = v. Say that a finite state automaton A over an alphabet of basic
subprograms of a program π represents π iff for all models N and states u and
v,

u[[π]]Nv iff some word of Σ(N, u, v, π) is accepted by A.

It has been well known since [16] that every PDL program is represented by some
automaton and every automaton represents some PDL program. 15 Moreover,
each can be computed from the other. 16 Now, given ϕ in L(P ∪Q,R∪S) and
π in T (P ∪Q,R ∪ S) and states d, e ∈ D, we will define ϕ[A,G,d] and π[A,G,d,e]

by mutual induction.

The definition of ϕ[A,G,d] is straightforwardly inductive:

p[A,G,d] = Gd(p)

q[A,G,d] =

{
> if d ∈ U(q)
⊥ otherwise

(¬ϕ)
[A,G,d]

= ¬ϕ[A,G,d]

(ϕ ∧ ψ)
[A,G,d]

= (ϕ[A,G,d] ∧ ψ[A,G,d])

(〈π〉ϕ)
[A,G,d]

=
∨
e∈D〈π[A,G,d,e]〉(|Ge| ∧ ϕ[A,G,e])

The program π[A,G,d,e] is obtained by constructing a corresponding automa-
ton, which will refer to ψ[A,G,d] for subprograms ψ? of π, which is inductively
legitimate. This will take the next couple of paragraphs.

First, consider an automaton Aπ which represents π. Let Aπ have states X, of
which X0 ⊆ X are initial states, X1 ⊆ X are accepting states, and for each σ
(a basic subprogram of π), T (σ) ⊆ X2 is such that there is a transition from
x1 to x2 labelled by σ iff 〈x1, x2〉 ∈ T (σ).

Now for each symbol σ in the alphabet of Aπ (a basic subprogram of π) and
each c1, c2 ∈ D, define σc1,c2 as follows:

σc1,c2 =

ψ[A,G,c]? if σ = ψ? and c1 = c2 = c
Gc(σ) if σ ∈ R and c1 = c2 = c
|Gc1 |?;E; |Gc2 |? if σ = E
>? if σ ∈ S and 〈c1, c2〉 ∈ U(σ)
⊥? otherwise

15The representation depends only on the compositional structure of the program not on
the particular choice of basic programs, so additions to PDL such as tests and E are not a
problem.
16The complexity of translating between the two representations has been investigated in
[8].

Girard, Seligman and Liu 251

Construct a new automatonBd,eπ , whose alphabet consists of the basic programs
σc1,c2 where σ is in the alphabet of Aπ, with states X ′ = X ×D, initial states
X ′0 = X0 × {d}, accepting states X ′1 = X1 × {e}, and transition function T ′

defined by

T ′(τ) = {〈〈x1, c1〉, 〈x2, c2〉〉 | for some σ, 〈x1, x2〉 ∈ T (σ) and σc1,c2 = τ}

Now, let π[A,G,d,e] be the program of T (P,R) represented by Bd,eπ .

The two automata are designed to be synchronised in the sense given by the
following technical lemma:

Lemma 2.3 Assume that for each test ψ? occurring in π, and each 〈w, c〉 ∈
GW , GM, 〈w, c〉 |= ψ iff M,w |= ψ[A,G,c]. Then, given x1, x2 ∈ X and
〈u, c1〉, 〈v, c2〉 ∈ GW , consider the following properties of the labels of the au-
tomata Aπ and Bd,eπ :

γ(σ) : 〈x1, x2〉 ∈ T (σ)

and

〈u, c1〉[[σ]]GM 〈v, c2〉

γ′(τ) : 〈〈x1, c1〉, 〈x2, c2〉〉 ∈ T ′(τ)

and

u[[τ]]Mv

Then for each symbol τ of the alphabet of Bd,eπ ,

γ′(τ) iff γ(σ) and σc1,c2 = τ for some σ in the alphabet of Aπ

Proof: See Appendix. ,

We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1: The rank of a formula or program is defined as follows.
Formulas of rank n are not of rank n − 1 but contain no programs of rank
n, and programs of rank n not of rank n − 1 but contain no test formulas of
rank n. (In particular, formulas of rank 0 contain no programs and programs
of rank 0 contain no test formulas; formulas of rank 1 contain at least one
program of rank 0 but none of rank 1 and programs of rank 1 contain at least
one test formula of rank 0 but none of rank 1, etc.) To prove the lemma we
show, by induction on the rank n of a formula ϕ of L(P ∪Q,R ∪ S), that for
〈u, d〉, 〈v, e〉 ∈W ′,

(i) GM,u, d |= ϕ iff M,u |= ϕ[A,G,d], and

(ii) for any program π of rank ≤ n, 〈u, d〉[[π]]GM 〈v, e〉 iff u[[π[A,G,d,e]]]Mv

We prove part 1 by induction on the structure of ϕ.

For propositional variables:
GM,u, d |= p iff u ∈ Vd(p) iff u ∈ [[Gd(p)]]

M iff M,u |= Gd(p) iff M,u |=
p[A,G,d]

GM,u, d |= q iff d ∈ U(q) iff q[A,G,d] = > iff M,u |= q[A,G,d] (given that
q[A,G,d] ∈ {>,⊥})

252 General Dynamic Dynamic Logic

For Booleans (¬ and ∧), the proof is straightforwardly inductive.

For formulas of the form 〈π〉ψ, note that π must be of rank < n and so for
each 〈w, f〉 ∈W ′

〈u, d〉[[π]]GM 〈w, f〉 iff u[[π[A,G,d,f]]]Mv

and by the (inner, structural) inductive hypothesis,

GM,w, f |= ψ iff M,w, |= ψ[A,G,f]

But then the following are equivalent:

GM,u, d |= 〈π〉ψ
〈u, d〉[[π]]GM 〈w, f〉 and GM,w, f |= ψ for some 〈w, f〉 ∈W ′
u[[π[A,G,d,f]]]Mw and M,w, |= ψ[A,G,f] for some 〈w, f〉 ∈W ′
M,w |= |Gf |, u[[π[A,G,d,f]]]Mw and M,w, |= ψ[A,G,f] for some f ∈ D,w ∈W
M,u |=

∨
f∈D〈π[A,G,d,f]〉(|Gf | ∧ ψ[A,G,f])

M,u |= 〈π〉ψ[A,G,d]

For part 2, we know that any test formula in π is of rank < n. So suppose
〈u, d〉[[π]]GM 〈v, e〉. Then by choice of Aπ we have that some word σ1 . . . σn in
Σ(GM, 〈u, d〉, 〈v, e〉, π) is accepted by Aπ. This implies that

(i) there are u0, . . . , un and c0, . . . , cn ∈ D such that u0 = u, c0 = d, un = v
cn = e and 〈ui, ci〉[[σi]]GM 〈ui+1, ci+1〉 for 0 ≤ i < n, and

(ii) there are x0, . . . , xn ∈ X and such that x0 ∈ X0, xn ∈ X1, and 〈xi, xi+1〉 ∈
T (σi) for 0 ≤ i < n.

Now for each i we have γi(σi):

〈xi, xi+1〉 ∈ T (σi) and 〈ui, ci〉[[σi]]GM 〈ui+1, ci+1〉

So, by Lemma 2.3, for τi = σ
ci,ci+1

i , we have γ′i(τi):

〈〈xi, ci〉, 〈xi+1, ci+1〉〉 ∈ T ′(τi) and ui[[τi]]
Mui+1

Also, since c0 = d, cn = e, x0 ∈ X0, xn ∈ X1, we have that 〈x0, c0〉 ∈ X ′0 and
〈xn, cn〉 ∈ X ′1. Thus:

(i) there are u0, . . . , un such that u0 = u, un = v and ui[[τi]]
Mui+1 for 0 ≤

i < n, and

(ii) there are x0, . . . , xn ∈ X and c0, . . . , cn ∈ D such that 〈x0, c0〉 ∈ X0,
〈xn, cn〉 ∈ X1, and 〈〈xi, ci〉, 〈xi+1, ci+1〉〉 ∈ T ′(τi) for 0 ≤ i < n.

This is precisely what is required for τ1 . . . τn to be accepted by Bd,eπ . Then by
definition of π[A,G,d,e], we have that u[[π[A,G,d,e]]]Mv, as required. The converse
is proved similarly. ,

Girard, Seligman and Liu 253

Theorem 2.4 The logic of GDDL is completely axiomatised by the axioms and
rules of PDL (see Definition 4.78 in [5]) and the schema

` [A,G,H, a]ϕ↔ ϕ[A,G,H,a]

Corollary 2.5 GDDL is decidable.

Proof: We have a computable reduction of GDDL to its PDL fragment, which
is itself decidable. ,

3 Applications

In the remainder of the paper, we show how two well-known systems for dy-
namic epistemic logic (BMS and LCC) are special cases of GDDL and make
further connections to more recent developments.

3.1 BMS

For BMS [3], we will be working with a signature 〈P,R〉 for which P is a
(countably infinite) set of propositional variables and R = {Ki | i ∈ I} is a set
of epistemic relations, one for each agent i ∈ I, with I finite. The BMS system is
not dynamic in the first (PDL) sense and so we will refer to basic modal language
(in which the only terms are the atoms Ki) as L−(P,R). A model M = 〈W,V 〉
of this signature is an epistemic model iff all the relations V (Ki) are equivalence
relations. So far, this is all just standard epistemic logic. The innovation was
to define an action structure to be a structure of the form 〈D,U, pre〉 for which
〈D,U〉 is an epistemic structure and pre:D → L−(P,R) assigns a formula to
each element of D that expresses the ‘precondition’ of performing the action
it represents. For example, if d represents the announcement of ϕ, then it is
usually assumed that, as a precondition, the announcement must be true, and
so pre(d) = ϕ. Action structures are finite and so can be added to the syntax
as dynamic operators. The full language of BMS is thus

ϕ : : = p | ¬ϕ | (ϕ ∨ ϕ) | 〈Ki〉ϕ | [D,U, pre, a]ϕ

where 〈D,U, pre〉 is an action structure and a ∈ D is the designated action.
Given action structure ∆ = 〈D,U, pre〉 and epistemic model M = 〈W,V 〉, the
product model ∆M is defined to be 〈∆W,∆V 〉, where

∆W = {〈u, d〉 | M,u |= pre(d)}
∆V (p) = {〈u, d〉 ∈ ∆W | u ∈ V (p)} for each p ∈ P
∆V (Ki) = {〈〈u, d〉, 〈v, e〉〉 ∈ (∆W)2 | 〈u, v〉 ∈ V (Ki) and 〈d, e〉 ∈ U(Ki)}

Finally, the semantics of the BMS operator [D,U, pre, a] is given by

M,u |= [D,U, pre, a]ϕ iff 〈D,U, pre〉M, 〈u, a〉 |= ϕ

254 General Dynamic Dynamic Logic

This can be seen as a special case of our general construction. First, we take
a copy K ′i of each symbol Ki, because we need to keep the signature of the
epistemic model distinct from that of the action structure. Then we define the
structure A = 〈D,U ′〉 of signature 〈Q,S〉, with Q = ∅ and S = {K ′i | i ∈ I},
such that U ′(K ′i) = U(Ki), for each i ∈ I. For each d ∈ D we define the
transformation Gd by 〈|Gd| = pre(d)〉. This captures the idea of a precondition.
Finally, we take H to be the PDL-transformation given by 〈Ki := Ki;K

′
i〉. To

show that [D,U, pre, a]ϕ is logically equivalent to [A,G,H, a]ϕ, the following
theorem is sufficient.

Theorem 3.1 With ∆ = 〈D,U, pre〉 and A, G and H defined as above,

∆M = [A,G,H]M

Proof: See Appendix. ,

It follows that every function on the class of models of a given signature that
is definable by a BMS operator is also definable by a GDDL operator.

3.2 LCC

LCC [21], the Logic of Communication and Change, extends BMS in two ways:
by expanding the base language to include PDL modalities, and by introduc-
ing ‘real-world’ change. The first extension is relatively straightforward. It
just amounts to moving from L−(P,R) to L(P,R), and the argument that the
resulting system is a fragment of GDDL goes through as above. The second
extension, to model ‘real-world’ change, is achieved using ‘propositional substi-
tutions’, which are functions σ : P → L(P,R) with a finite base, meaning that
σ is the identity function on all but a finite number of propositional variables.
An action that changes something other than just the psychological states of
agents can thus be represented by a propositional substitution σ such that, after
the change, p is true of state u iff σ(p) were true of it before the change. 17

A LCC action structure ∆ = 〈D,U, pre, sub〉 consists of a BMS-like 18 action
structure 〈D,U, pre〉 and a propositional substitution function subd for each
d ∈ D. Given an epistemic model M = 〈W,V 〉, the LCC product model ∆M is
defined to be 〈∆W,∆V 〉 as for BMS, except that

∆V (p) = {〈u, d〉 ∈ ∆W | u ∈ V (subd(p))} for each p ∈ P

To extend our earlier representation of BMS operators in GDDL requires only
one small change: the PDL-transformation Gd is now defined by 〈pre(d), p :=

17The restriction to σ of finite base requires the changes to be, in some sense, local. However,
the embedding of LCC in GDDL shows that what is important here is only that there is some
finite representation of σ, on the basis of which σ can be recovered algorithmically.
18The only difference is that pre(d) is not restricted to L−(P,R); it may be any formula of
L(P,R).

Girard, Seligman and Liu 255

subd(p)〉. With A and H defined as for BMS, we have the required result:

Theorem 3.2 With ∆ = 〈D,U, pre, sub〉 and A, G and H defined as above,

∆M = [A,G,H]M

Proof: See Appendix. ,

It follows that every function on the class of models of a given signature that
is definable by a BMS operator is also definable by a GDDL operator.

3.3 Other approaches

LCC was extended in [24] by basing it on PDL with relational converse (which
is still decidable). While GDDL does not include relational converse in the base
language, we can think of no reason why it could not be added, in a similar
manner to our addition of E over the vanilla PDL. We conjecture that other
decidable extensions of PDL could be taken as the base logic. The combination
of converse with nominals (which is decidable from [14,1], p.12, Theorem 3.5)
should present no further difficulty. Another particularly useful decidable ad-
dition would be atomic negation on programs (see [25]) on the basis of which
E and the ‘window’ operators are definable.

There have been several attempts to extend dynamic logic to cope with relation-
changing dynamic operators. Firstly, [22] shows how, for given finite epistemic
models M1 and M2, it is possible to define a BMS operator [D,U, pre, a]ϕ of
BMS such that [D,U, pre, a]ϕM1 = M2 but this is far from what is needed to
represent relation-changing operators that have a uniform action on all models.

Next, [2] presents an interesting extension of modal logic with ‘graph-
modification’ operators for models of arbitrary signature (as with GDDL).
There are three kinds of operator: ‘label modifications’ p+ϕ and p−ϕ, which
increase (and respectively decrease) V (p) by {u | M,u |= ϕ}; ‘edge label mod-
ification’ operators r + (ϕ,ψ) and r − (ϕ,ψ), which increase (resp. decrease)
V (r) by the set {〈u, v〉 | M,u |= ϕ and M,u |= ψ}; and ‘new state’ operators
nw and −→nw, which add a new isolated state to the domain (and shifts the point
of evaluation to it, in the case of −→nw). Of these, the label modification and
edge label modification operators define PDL-transformations and so can be
represented in GDDL. The new state operators are more tricky. Instead, in
GDDL, we can represent the addition of a set of (isolated) states, either with
or without a shift in evaluation point, but we know of no way to ensure that
this set is a singleton. 19 Importantly, GDDL extends the approach of [2] by

19For the analogue of nw, use the operator [A,G,H, a] in which A has domain {a, b} with an
empty signature, Ga is the identity, Gb maps all propositional variables to ⊥ and all relation
symbols to ⊥?, and H is also the identity. Then if M = 〈W,V 〉, [A,G,H, a]M is isomorphic
to 〈W ∪ W ′, V 〉 with W ′ disjoint from W . For −→nw, use [A,G,H, b]. The size of W ′ can
be diminished using a domain restriction component to Gb but without formulas that are

256 General Dynamic Dynamic Logic

including all PDL-transformations and products. 20

Finally, [9] and [10] propose a system of ‘arrow update’ operators with a novel
syntax in which new transitions for a relation are introduced by specifying their
pre- and post-conditions. They show that the resulting system is dynamically
equivalent to BMS, and so can be seen as a way of giving an explicit syntax
for the part of BMS that allows a limited form of relation-change. GDDL is a
genuine extension of both, as can be seen from the example of private belief
change in Section 2.1. 21

4 Conclusion

GDDL achieves our objective of generalising existing approaches to dynamic
epistemic logic to allow relational change and opens up a number of possibilities
for further work. Firstly, it would be interesting to look at fragments that can
be expressed in a more restricted syntax. Even the syntactically promiscuous
logics of BMS and LCC exploit only a small part of the generality of GDDL
operators, suggesting that other restrictions may be equally interesting in their
own right. A proper study of these would require a better understanding of
the class of model-transforming functions defined by GDDL. A good place to
start with this investigation is the category of PDL-transformations of models
of arbitrary signatures.

Secondly, we propose that many applications would profit from the ability to
code appropriate GDDL operators. For example, the study of the relationship
between first and higher-order psychological attitudes requires the interplay
between levels available in GDDL. This arises in preference logic when trying
to account for weakness of will, one analysis of which is the preference for
having different preferences: I may prefer an action in which my preference for
smoking is downgraded to one in which it is not. Moving from the personal
setting, similar level-distinctions occur when reflecting on normative systems.
Certain changes to the law, for example, may be regarded as permissible, while
others are not. And with a multi-agent perspective, one could try to devise
GDDL operators to model changes to conflicting normative systems, and so
provide a logic for reasoning about the effect of those changes, potentially giving
a new approach to reasoning about conflict resolution. When the relations in a

guaranteed to be true at only one state (such as the nominals of hybrid logic), we cannot
ensure that it is a singleton.
20 [2] also discusses ‘local’ graph modification operators, which significantly extend the ex-
pressive power of their system, sufficient to express the hybrid binder ↓ x, and so leads to
undecidability ([6]). Augmentation of GDDL with a distinguished nominal for the point of
evaluation should have a similar effect.
21 [9] only allows a uniform update for all agents (the ‘common update policy’) but hints at
the possibility of providing distinct updates for each agent ‘privately’. This is done in [10],
but these updates are not really ‘private’, just as our ⇑i operator (Section 2.1) is not private.
To achieve the genuine privacy of ↑i, some (as yet unformulated) hybrid of BMS and arrow
update logic would be needed.

Girard, Seligman and Liu 257

model are understood as state-transitions of some process (as in the standard
computational interpretation of PDL), GDDL operators encode operations for
changing what is possible to do, and so give a basis for reasoning about design.

Thirdly, from a technical point of view, the interaction between levels raises
interesting questions about the framing of general constraints on those inter-
actions so as to ensure sensible results. We saw an example of this in our brief
exploration of private belief change (Footnote 13) but as yet we have no idea
about how to frame a general theory of such constraints.

These suggestions are of course very speculative but they give a sense of how
GDDL could be used to open up a new area for applications. Our motivations for
developing the system arose from technical considerations in an ongoing project
called ‘logic in the community’ [17], which aims at studying the consequences
of social relationships for our understanding of rational procedures. We expect
there to be many further uses for GDDL in that project.

References

[1] Areces, C., P. Blackburn and M. Marx, The computational complexity of hybrid temporal
logics, Logic Journal of the IGPL 8 (2000), pp. 653–679.

[2] Aucher, G., P. Balbiani, L. F. del Cerro and A. Herzig, Global and local graph modifiers,
in: Proceedings of the 5th workshop on methods for modalities (MAM5 2007), Electronic
notes in theoretical computer science 231 (2009), pp. 293–307.

[3] Baltag, A., L. S. Moss and S. Solecki, The logic of public announcements, common
knowledge and private suspicious, Technical Report SEN-R9922, CWI, Amsterdam
(1999).

[4] Baltag, A. and S. Smets, The logic of conditional actions, in: R. van Rooij and
K. Apt, editors, New perspective on games and interaction, Texts in logic and games 4,
Amsterdam University Press, 2008 pp. 9–31.

[5] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge University Press,
Cambridge, Mass., 2001.

[6] Blackburn, P. and J. Seligman, What are hybrid languages?, in: M. Kracht, M. de Rijke,
H. Wansing and M. Zakharyaschev, editors, Advances in Modal Logic, 1, CSLI
Publications, Stanford University, 1998 pp. 41–62.

[7] Girard, P., “Modal Logic for Belief and Preference Change,” Ph.D. thesis, Stanford
University (2008).

[8] Harel, D. and R. Sherman, Propositional dynamic logic of flowcharts, Information and
Control 64 (1985), pp. 119–135.

[9] Kooi, B. and B. Renne, Arrow update logic, Review of Symbolic Logic 4 (2011), pp. 536–
559.

[10] Kooi, B. and B. Renne, Generalized arrow update logic, in: Proceedings of the 13th
Conference on Theoretical Aspects of Rationality and Knowledge, TARK XIII (2011),
pp. 205–211.

[11] Liu, F., “Changing for the Better: Preference Dynamics and Agent Diversity,” Ph.D.
thesis, Institute for logic, Language and Computation, Universiteit van Amsterdam,
Amsterdam, The Netherlands (2008), ILLC Dissertation series DS-2008-02.

[12] Liu, F., “Reasoning about Preference Dynamics,” Synthese Library 354, Springer, 2011.

[13] Miller, J. S. and L. S. Moss, The undecidability of iterated modal relativization, Studia
Logica 68 (2001), pp. 1–37.

258 General Dynamic Dynamic Logic

[14] Passy, S. and T. Tinchev, An essay in combinatory dynamic logic, Information and
Computation 93 (1991), pp. 263–332.

[15] Plaza, J., Logics of public communications, Synthese 158 (2007), pp. 165–179.

[16] Pratt, V. R., Using graphs to understand PDL, in: Logic of Programs, Workshop (1982),
pp. 387–396.

[17] Seligman, J., F. Liu and P. Girard, Logic in the community, in: M. Banerjee and A. Seth,
editors, ICLA, Lecture Notes in Computer Science 6521, 2011, pp. 178–188.

[18] van Benthem, J., Dynamic logic for belief revision, Journal of Applied Non-classical
Logic 17 (2007), pp. 129–155.

[19] Van Benthem, J., “Modal Logic for Open Minds,” CSLI lecture notes, Center for the
Study of Language and Information, 2010.

[20] van Benthem, J. and F. Liu, The dynamics of preference upgrade, Journal of Applied
Non-Classical Logics 17 (2007), pp. 157–182.

[21] van Benthem, J., J. van Eijck and B. Kooi, Logics of communication and change,
Information and computation 204 (2006), pp. 1620–1662.

[22] van Ditmarsch, H. and B. Kooi, Semantic results for ontic and epistemic change, in:
G. Bonanno, W. van der Hoek and M. Wooldridge, editors, Logic and the foundations
of game and decision theory (LOFT 7), Texts in logic and games (2008), pp. 87–117.

[23] van Ditmarsch, H., W. van der Hoek and B. Kooi, “Dynamic Epistemic Logic,” Berlin:
Springer, 2007.

[24] van Eijck, J. and Y. Wang, Propositional dynamic logic as a logic of belief revision, in:
W. Hodges and R. de Queiroz, editors, WoLLIC 2008 (2008), pp. 136–148.

[25] Walther, D., “Propositional Dynamic Logic with Negation on Atomic Programs,”
Master’s thesis, Dresden University of Technology (2004).

[26] Zhen, L. and J. Seligman, A logical model of the dynamics of peer pressure, Electronic
Notes in Theoretical Computer Science 278 (2011), pp. 275–288.

Appendix

Proof of Lemma 1.1: We prove the two claims simultaneously by induction.
Assume that u ∈ ΛW .

M,u |= qΛ iff M,u |= Λ(q) (definition of qΛ)
iff u ∈ [[Λ(q)]]M ∩ ΛW (u ∈ ΛW)
iff u ∈ ΛV (q) (definition ΛV (q))
iff ΛM,u |= q (definition ΛM)

Negation and conjunction are straightforward.

M,u |= (〈π〉ψ)Λ iff M,u |= 〈πΛ〉ψΛ (def. (〈π〉ψ)Λ)
iff u[[πΛ]]Mv and M, v |= ψΛ for some v ∈W (def.)
iff u[[π]]ΛMv and ΛM, v |= ψ for some v ∈ ΛW (IH)
iff ΛM,u |= 〈π〉ψ (def.)

u[[sΛ]]Mv iff u[[Λ(s); |Λ|?]]Mv (definition of sΛ)
iff ∃w : u[[Λ(s)]]Mw&w[[|Λ|?]]Mv (definition of [[Λ(s); |Λ|?]]M)
iff u[[Λ(s)]]Mv& v[[|Λ|?]]Mv (w[[|Λ|?]]Mv ⇒ w = v)
iff u[[Λ(s)]]Mv& v ∈ [[|Λ|]]M (definition of [[|Λ|?]]M)
iff u[[Λ(s)]]Mv& v ∈ ΛW (definition of ΛW)
iff u[[s]]ΛMv& v ∈ ΛW (definition of [[Λ(s)]]M)

Girard, Seligman and Liu 259

u[[(ψ?)Λ]]Mv iff u = v and v[[(ψΛ)?]]Mv (u[[(ψ?)Λ]]Mv ⇒ u = v)
iff u = v, v ∈ [[ψΛ]]M (definition of [[(ψΛ)?]]M)
iff u = v, v ∈ ΛW and v ∈ [[ψ]]ΛM (IH, and u ∈ ΛW)
iff u = v, v ∈ ΛW and v[[ψ?]]ΛMv (definition of [[ψ?]]ΛM)
iff v ∈ ΛW &u[[ψ?]]ΛMv (u[[ψ?]]ΛMv ⇒ u = v)

The remaining cases are straightforward.

,

Proof of Lemma 2.3: In the first direction, assume that 〈〈x1, c1〉, 〈x2, c2〉〉 ∈
T ′(τ) and u[[τ]]Mv. Then, for some σ, 〈x1, x2〉 ∈ T (σ) and σc1,c2 = τ . Since σ
is a basic program, it is either a relation symbol, E, or a test.

• If σ = ψ? and c1 = c2 = c, then σc1,c2 = ψ[A,G,c]?. So u[[ψ[A,G,c]?]]Mv implies
that u = v and M,u |= ψ[A,G,c]. Hence, GM, 〈u, c〉 |= ψ, by assumption, so
〈u, c1〉[[σ]]GM 〈v, c2〉.

• If σ = r ∈ R, c1 = c2 = c, then σc1,c2 = Gc(σ) = rGc . By Lemma 1.1,
u[[rGc]]v implies that u[[σ]]GcMv. Hence, 〈u, c1〉[[σ]]GM 〈v, c2〉, by definition.

• If σ = E, then σc1,c2 = |Gc1 |?;E; |Gc2 |?. So u[[|Gc1 |?;E; |Gc2 |?]]Mv implies
that u ∈ [[|Gc1 |]]M and v ∈ [[|Gc2 |]]M , so 〈u, c1〉 ∈ GW and 〈v, c2〉 ∈ GW .
Therefore, 〈u, c1〉[[E]]GM 〈v, c2〉.

• If σ ∈ S and 〈c1, c2〉 ∈ U(σ), then σc1,c2 = >?, so u[[>?]]Mv implies that
u = v. Thus, 〈u, c1〉[[σ]]GM 〈v, c2〉, by definition.

• In any other case, σc1,c2 = ⊥?. But this contradicts our assumption that
u[[σc1,c2]]Mv.

Therefore, 〈x1, x2〉 ∈ T (σ) and 〈u, c1〉[[σ]]GM 〈v, c2〉.

In the other direction, assume that γ(σ) and σc1,c2 = τ for some σ. But
〈x1, x2〉 ∈ T (σ) and σc1,c2 = τ implies that 〈〈x1, c1〉〉〈x2, c2〉 ∈ T ′(τ) by def-
inition, so we only need to show that u[[σc1,c2]]Mv. Again, since σ is a basic
program, it is either a relation symbol, E, or a test.

• If σ = ψ?, c1 = c2 = c, then σc1,c2 = ψ[A,G,c]?. Now, 〈u, c〉[[ψ?]]GM 〈v, c〉
implies that u = v and GM, 〈u, c〉 |= ψ. By assumption, M,u |= ψ[A,G,c], so
u[[σc1,c2]]Mv, by definition.

• If σ = r ∈ R, c1 = c2 = c, then σc1,c2 = Gc(σ). But 〈u, c〉[[r]]GM 〈v, c〉 implies
that 〈u, v〉 ∈ Vc(r), by definition, so u[[Gc(r)]]

Mv. Hence, u[[σc1,c2]]Mv.

• If σ = E, then σc1,c2 = |Gc1 |?;E; |Gc2 |?. Now, 〈u, c1〉[[E]]GM 〈v, c2〉 implies
that 〈u, c1〉 ∈ GW and 〈v, c2〉 ∈ GW , so u ∈ [[|Gc1 |]]M and v ∈ [[|Gc2 |]]M .
But u[[E]]Mv, so u[[|Gc1 |?;E; |Gc2 |?]]Mv.

• If σ = s ∈ S and 〈c1, c2〉 ∈ U(σ), then σc1,c2 = >?. Thus, 〈u, c1〉[[s]]GM 〈v, c2〉
implies that u = v. But M,u |= >, so u[[>?]]Mu. Hence, u[[σc1,c2]]Mv.

260 General Dynamic Dynamic Logic

• In any other case, σc1,c2 = ⊥?. But this contradicts our assumption that
〈u, c1〉[[σ]]GM 〈v, c2〉.

Therefore, u[[σc1,c2]]Mv.

,

Proof of Theorem 3.1: Let ∆M = 〈W ′, V ′′〉 and [A,G,M]M = 〈ΛGW,ΛGV 〉.
Then,

ΛGW = GW (|Λ| = >)
= {〈u, d〉 | u ∈ [[|Gd|]]} (definition)
= {〈u, d〉 | u ∈ [[|pre(d)|]]} (assumption)
= ∆W

ΛGV (p) = [[ΛG(p)]]M ∩ ΛGW (definition)
= [[p]]M ∩∆W (ΛGW = ∆W)
= ∆V (p) (definition)

[[ΛGd(ri)]]
ΛGM = [[Λ(ri)]]

ΛGM (Gd(ri) = ri)
= [[ri; si]]

GM (assumption)

But 〈u, d〉[[ri; si]]GM 〈v, e〉 iff there exists 〈w, f〉 ∈ GW such that
〈u, d〉[[ri]]GM 〈w, f〉 and 〈w, f〉[[si]]GM 〈v, e〉, iff d = f and w = v, by defini-
tion. Hence, 〈u, d〉[[ri; si]]GM 〈v, e〉 iff 〈u, d〉[[ri]]GM 〈v, d〉 and 〈v, d〉[[si]]GM 〈v, e〉
iff u[[Gd(ri)]]

Mv and d[[si]]
Ae, by definition, iff u[[ri]]

Mv and d[[si]]
Ae. Therefore,

[[ΛGd(ri)]]
ΛGM = ∆V (r). ,

Proof of Theorem 3.2: The proof is the same as the previous theorem but for
the propositional case:

ΛGdV (p) = [[ΛGd(p)]]
M ∩ ΛGW (definition)

= [[subd(p)]]
M ∩∆W (ΛGW = ∆W)

= ∆V (p) (definition)

,

Acknowledgements: We would like to thank the anonymous referees for
their valuable comments. Fenrong Liu is supported by the Major Program
of the National Social Science Foundation of China (NO. 11&ZD088) and the
National Natural Science Foundation of China (NO.81173464). Jeremy Selig-
man was supported by the National Social Science Foundation Key Project of
China (NO.11AZD57). He is also grateful to Auckland University for allowing
a period of absence during which time the research was completed.

	Preliminaries
	General Dynamic Dynamics
	Private Belief Change
	Axiomatisation

	Applications
	BMS
	LCC
	Other approaches

	Conclusion
	References

