
Calibrating Provability Logic: From Modal
Logic to Reflection Calculus

Lev Beklemishev 1

Steklov Institute of Mathematics, Moscow

Several interesting applications of provability logic in proof theory made use
of a polymodal logic GLP due to Giorgi Japaridze. This system, although de-
cidable, is not very easy to handle. In particular, it is not Kripke complete. It is
complete w.r.t. neighborhood semantics, however this could only be established
recently by rather complicated techniques [1].

In this talk we will advocate the use of a weaker system, called Reflection
Calculus, which is much simpler than GLP, yet expressive enough to regain
its main proof-theoretic applications, and more. From the point of view of
modal logic, RC can be seen as a fragment of polymodal logic consisting of
implications of the form A→ B, where A and B are formulas built-up from >
and the variables using just ∧ and the diamond modalities. In this paper we
formulate it in a somewhat more succinct self-contained format.

Further, we state its arithmetical interpretation, and provide some evidence
that RC is much simpler than GLP. We then outline a consistency proof for
Peano arithmetic based on RC and state a simple combinatorial statement,
the so-called Worm principle, that was suggested by the use of GLP but is
even more directly related to the Reflection Calculus.

1 Reflection calculus RC

Basic symbols of RC are propositional variables p, q, . . . , constant >, con-
junction ∧, the symbols n, for each n ∈ ω, and the brackets. Informally, n
corresponds to the n-th modality 〈n〉.

The formulas α of RC are generated by the following grammar:

α ::= > | p | (α ∧ α) | nα n ∈ ω.

Example: α = 3(2> ∧ 32>). The symbols > occurring after a number
symbol can be omitted without impairing the readability of the formula, e.g.,
the previous formula can be shortened to 3(2 ∧ 32).

Derivable objects of RC are sequents, that is, expressions of the form α ` β
with α, β formulas.

1 Supported by the Russian Foundation for Basic Research (RFBR), Russian Presidential
Council for Support of Leading Scientific Schools, and the Swiss–Russian cooperation project
STCP–CH–RU “Computational proof theory.”

90 Calibrating Provability Logic: From Modal Logic to Reflection Calculus

RC rules:

(i) α ` α; α ` >; if α ` β and β ` γ then α ` γ;

(ii) α ∧ β ` α, β; if α ` β and α ` γ then α ` β ∧ γ;

(iii) nnα ` nα; if α ` β then nα ` nβ;

(iv) nα ` mα for n > m;

(v) nα ∧mβ ` n(α ∧mβ) for n > m.

For example, the following is derivable in RC:

3 ∧ 23 ` 3(> ∧ 23) ` 323.

Notice that Axioms 1 and 2 express that ` induces a Tarskian consequence
relation and that ∧ has the usual properties of conjunction. Axioms 3 corre-
spond to the modal axioms of K4. (Notably, any principle related to Löb’s
axiom is absent.) Axioms 4 and 5 relate different modalities to each other.

In the following, the variable-free fragment of RC will, in a sense, be more
important than RC itself. We denote it RC0.

2 Arithmetical interpretation of RC

Let S be a first order r.e. theory containing enough arithmetic to satisfy the
assumptions of Gödel’s second incompleteness theorem. For each n ∈ ω, re-
flection principles Rn(S) are the formulas in the language of S naturally ex-
pressing that each arithmetical Σ0

n-sentence provable in S is true. Reflection
principles are well-known in proof theory; their use is going back to Rosser,
Turing, Kreisel and Feferman. They are best to be seen as generalizations of
Gödel’s consistency assertion to higher levels of arithmetical complexity.

Having fixed the formulas Rn(S), we now define an interpretation of the
language of RC in the style of provability logic.

Let f be a substitution mapping propositional variables to sentences in
the language of S. Arithmetical translation fS(α) of a formula α is defined
inductively as follows:

• fS(>) = >; fS(p) = f(p); fS(α ∧ β) = (fS(α) ∧ fS(β));

• fS(nα) = Rn(S + fS(α)).

Suppose N � S and S contains Peano arithmetic PA.

Theorem 2.1 α ` β in RC iff S ` fS(α)→ fS(β), for all f .

We note that if α is variable-free, then fS(α) does not depend on f . We
abbreviate fS(α) by αS .

3 Interpretation of RC in GLP

As we mentioned before, RC can be seen as a fragment of polymodal provability
logic GLP. We translate RC-formulas α to GLP-formulas α∗ as follows:
>∗ = >, p∗ = p, (α ∧ β)∗ = (α∗ ∧ β∗), and (nα)∗ = 〈n〉α∗. Thus, 3(2 ∧ 32)
translates to 〈3〉(〈2〉> ∧ 〈3〉〈2〉>).

Beklemishev 91

The following theorem is an adaptation of the results of Dashkov [6].

Theorem 3.1 (i) GLP is a conservative extension of RC, that is, for each
α, β, RC proves α ` β iff GLP ` α∗ → β∗;

(ii) RC is polytime decidable;

(iii) RC enjoys the finite model property.

We note that by the results of Shapirovsky, GLP is PSpace-complete. We
also note that Theorem 2.1 follows from part 1 and Japaridze’s arithmetical
completeness theorem for GLP.

From now on we shall mainly work in the variable-free fragment of RC.

4 RC0 as an ordinal notation system

Let W denote the set of all RC0-formulas. Using derivability in RC we define
the following relations on W :

• α ∼ β if (α ` β and β ` α);

• α <n β if β ` nα.

Obviously, ∼ is an equivalence relation and <n is correctly defined on the
equivalence classes. We note that by the results of the previous section both
of these relations are polynomially decidable.

A formula without variables and ∧ is called a word. In fact, any such
formula syntactically is a sequence of numbers (followed by >).

Theorem 4.1 (i) Every α ∈W is equivalent to a word;

(ii) (W/∼, <0) is isomorphic to (ε0, <).

Here, ε0 is the first ordinal α such that ωα = α. The isomorphism can be
established by the following function o : W/∼ → ε0.

First, define o(0k) = k, for each k ∈ ω. Any other word can be written in
the form α = α10α20 · · · 0αn, where each αi does not contain 0 and not all of
them are empty. Then we define

o(α) = ωo(α
−
n) + · · ·+ ωo(α

−
1),

where β− means subtracting 1 from each letter of a word β.

Example 4.2 o(1012) = ωo(01) + ωo(0) = ωω
1+ω0

+ ω = ωω+1 + ω

Thus, calculating the ordinal o(α) gives a criterium for the equivalence and
comparison of words. It is useful, however, to regard the set of words as a
specific notation system for ordinals alternative to Cantor normal forms. In
fact, in what follows we can completely disregard Cantor normal forms.

5 Reduction property

For the proof-theoretic applications of RC we need to state a basic property of
reflection principles called the reduction property. Finitely iterated reflection

92 Calibrating Provability Logic: From Modal Logic to Reflection Calculus

principles are defined as follows:

R1
n(S) = Rn(S), Rk+1

n (S) = Rn(S +Rkn(S)).

Let A and B be two sets of formulas over a given arithmetical theory S. We
write A ≡n B modulo S, if S + A and S + B prove the same arithmetical
Π0
n+1-sentences. The following theorem is proved in [2].

Theorem 5.1 (reduction) Suppose S ⊆ Π0
n+2 and V ` S. Then

Rn+1(V) ≡n {Rkn(V) : k < ω} modulo S.

Let us now apply this theorem to the situation when V = S + βS , for some
β ∈W .

Denote α = (n+ 1)β and α[[0]] := nβ, α[[k + 1]] := n(β ∧ α[[k]]).
It is easy to check that α[[0]] <0 α[[1]] <0 α[[2]] <0 · · · → α. Moreover, the

formulas α[[k]] correspond to k-fold iterated reflection principles Rkn(V). Thus,
from the reduction property we infer

Corollary 5.2 αS ≡n {α[[k]]S : k < ω}, whenever S ⊆ Π0
n+2.

6 Consistency proof for PA

Theorem 6.1 Primitive recursive arithmetic together with transfinite induc-
tion over (W,<0) proves the consistency of PA.

We sketch a proof of this version of Gentzen’s theorem. As our basic system
we take S = EA, the Elementary Arithmetic, aka I∆0 + exp. We have that
EA ⊆ Π0

2, so Corollary 5.2 applies for each n. We will also use the fact that
PRA proves R1(EA).

Let 3ϕ denote a standard arithmetical formula expressing the consistency
of a sentence (with the Gödel number) ϕ over S. In fact, 3ϕ is equivalent to
R0(S + ϕ).

First, we prove ∀α3αS within PRA together with (W,<0)-induction. Here
and below, quantifiers ∀α are understood as ranging over Gödel numbers of
words (under some natural Gödel numbering in S). Binary relation <0 on W
is arithmetized in a similar way.

It is sufficient to prove:

PRA ` ∀α (∀β <0 α3βS → 3αS).

The following argument can be formalized in PRA.
Assume ∀β <0 α3βS .

• If α = 0β, then 3βS . Since PRA ` R1(S), every Π0
1-sentence π implies 3π.

Taking 3βS for π we infer 33βS and 3αS .

• If α = (n+ 1)β, then ∀k 3α[[k]]S , because α[[k]] <0 α.
By Corollary 5.2 (formalizable in PRA),

αS ≡n {α[[k]]S : k < ω}.

Beklemishev 93

Therefore ∀k 3α[[k]]S yields 3αS .

Thus, we have proved ∀α 3αS . What remains to be seen is that ∀α 3αS
implies the consistency of PA. This follows from a well known observation
(originally due to Kreisel) that any instance of arithmetical induction follows
from EA together with Rn(EA), for an appropriate n. If, for each n ∈ ω, the
theory S + nS is consistent, then so is PA. In other words, ∀n3nS implies the
consistency of PA.

7 The Worm principle

For any word α, we say that α is higher than n if each letter of α exceeds n.
Given a word α, consider the following sequence (αn)n∈ω of words.

Set α0 := α and suppose αk is given. Define αk+1 by the following two
rules:

• If αk = 0β then αk+1 := β.

• If αk = (n+ 1)β, find the longest (possibly empty) prefix β0 of β such that
β0 is higher than n. Assume β = β0γ. Then let αk+1 := (nβ0)k+2γ.

The Worm principle states that, for each α, the sequence αk terminates in
an empty word. A proof of the following theorem is based on the observation
that the words αk are equivalent to the formulas α[[k]] in RC0 (see [4,3]).

Theorem 7.1 The Worm principle is true but unprovable in Peano arithmetic.
In fact, it is equivalent in PRA to the Σ1-reflection R1(PA) for PA.

The Worm principle can be seen as an analog of the well-known Hydra
battle principle due to Paris and Kirby. However, it deals with words rather
than finite trees. It can also be viewed, modulo some minor details, as a
linear version of the so-called Buchholz hydra battle which deals with labeled
trees. A version of the Worm principle deriving from Buchholz hydra battle
has been analyzed by Hamano and Okada [7]. Independently but later, the
Worm principle has been found (and baptized in the current form) in [4]. This
paper was based on different, provability logical, considerations. A detailed
correspondence between the Worm principle and the Hydra battle has been
established by Carlucci [5], see also Lee [8].

References

[1] L. Beklemishev and D. Gabelaia. Topological completeness of the provability logic GLP.
Preprint arXiv:1106.5693v1 [math.LO], 2011.

[2] L.D. Beklemishev. Provability algebras and proof-theoretic ordinals, I. Annals of Pure
and Applied Logic, 128:103–123, 2004.

[3] L.D. Beklemishev. Reflection principles and provability algebras in formal arithmetic.
Uspekhi Matematicheskikh Nauk, 60(2):3–78, 2005. In Russian. English translation in:
Russian Mathematical Surveys, 60(2): 197–268, 2005.

[4] L.D. Beklemishev. The Worm Principle. In Z. Chatzidakis, P. Koepke, and W. Pohlers,
editors, Lecture Notes in Logic 27. Logic Colloquium ’02, pages 75–95. AK Peters, 2006.
Preprint: Logic Group Preprint Series 219, Utrecht University, March 2003.

94 Calibrating Provability Logic: From Modal Logic to Reflection Calculus

[5] L. Carlucci. Worms, gaps and hydras. Mathematical Logic Quarterly, 51(4):342–350,
2005.

[6] E.V. Dashkov. On a positive fragment of polymodal provability logic GLP.
Matematicheskie Zametki, 91(3):331–336, 2012. English translation in: Mathematical
Notes 91(3):318–333, 2012.

[7] M. Hamano and M. Okada. A relationship among Gentzen’s proof-reduction, Kirbi-Paris’
Hydra game, and Buchholz’s Hydra game. Mathematical Logic Quarterly, 43(1):103–120,
1997.

[8] Gyesik Lee. A comparison of well-known ordinal notation systems for ε0. Annals of Pure
and Applied Logic, 147(1-2):48–70, 2007.

	Reflection calculus RC
	Arithmetical interpretation of RC
	Interpretation of RC in GLP
	RC0 as an ordinal notation system
	Reduction property
	Consistency proof for PA
	The Worm principle
	References

