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Abstract

Bi-intuitionistic logic, also known as Heyting-Brouwer logic or subtractive logic, is extended in various
ways by a strong negation connective used to express commitments arising from denials. These logics
have been introduced and investigated in [48]. In the present paper, an inferentialist semantics in
terms of proofs, disproofs, and their duals is developed. Whereas the Brouwer-Heyting-Kolmogorov
interpretation of intuitionistic logic uses just the notion of proof as primitive, and López-Escobar’s
inferentialist interpretation of Nelson’s logics with strong negation utilizes only the notions of proof
and disproof as primitive, the inferentialist interpretation of bi-intuitionistic logic with strong negation
employs the four notions of proofs, disproofs, dual proofs, and dual disproofs as primitive concepts.

Keywords: proofs, disproofs, dual proofs, dual disproofs, proof-theoretic semantics, constructive logic,
connexive logic, constructive negation, constructive implication, constructive co-implication.

1 Introduction

1.1 Inferential status and speech acts

It seems to be an accepted view that assertion and denial are particularly important
speech acts in the context of a use-based, inferentialist account of linguistic meaning.
In particular, the idea is that the rules of use that determine the meaning of linguistic
expressions provide a basis for warranted assertions and denials. In order to make an
assertion, it is enough to seriously utter a sentence, for example the sentence ‘Mary is
beautiful’. In order to obtain an absolutely clear case of denying that Mary is beautiful,
the contrary predicate ‘is ugly’ may be used, i.e., the sentence ‘Mary is ugly’ may be
seriously uttered. Instead of replacing the adjective ‘beautiful’ by another, contrary
item from the lexicon, namely the adjective ‘ugly’, one may employ a suitable unary
negation connective, ∼ ‘it is definitely false that’. It is definitely false that Mary is
beautiful if and only if Mary is ugly. The “only if” may not be clear. If it is definitely
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false that Mary is beautiful, then Mary not just fails to be beautiful, but she is ugly.
It is then denied that Mary is beautiful by seriously uttering the negated sentence
‘∼ Mary is beautiful’. This move is supported by the existence of more systematically
and regularly connected pairs of contrary predicates in the lexicon: ‘sane’ versus ‘insane’,
‘believes’ versus ‘disbelieves’, ‘desirable’ versus ‘undesirable’, etc. The prefixes ‘in’, ‘dis’
and ‘un’ suggest the introduction of the negation connective ∼, so that a denial of a
sentence A may be represented as an assertion of ∼A.

Negation can be iterated. Is a denial of ∼A an assertion of A? Can denying be iter-
ated? Can asserting be iterated? It seems plausible to assume that a speaker may assert
that Mary is beautiful not only by seriously uttering the sentence ‘Mary is beautiful’,
but also by seriously uttering the sentence ‘I assert that Mary is beautiful’. Similarly,
a speaker may deny that Mary is beautiful not just by seriously uttering the sentences
‘Mary is ugly’, but also by seriously uttering the sentence ‘I deny that Mary is beautiful’.
Clearly, first- and other-person asserting-that-ascriptions and denying-that-ascriptions
may be iterated. A sentence such as ‘I deny that I deny that Mary is beautiful’ is per-
fectly grammatical, though perhaps difficult to parse. Seriously uttering this sentence
amounts to performing the same speech act as uttering the perhaps more idiomatic sen-
tence ‘I deny that Mary is ugly’. A clear case of denying that Mary is ugly is seriously
uttering the sentence ‘Mary is beautiful’. A denial of ∼A thus seems to be an assertion
of A, and recall that an assertion of ∼A was introduced as a denial of A.

The notions of assertion and denial stand in a close relation to the notions of proof
and disproof, respectively. If I assert that A, then I commit myself to be ready to prove
A, and if I deny that A, then I commit myself to be ready to disprove A. Assertion and
denial are basic speech acts which are insensitive to the complexity and composition of
the asserted or denied sentence A. No matter how complex A may be and no matter
how A is composed, in order to assert or deny A, it is enough to seriously utter the
sentence A or its strong negation ∼A. A (canonical) proof or a (canonical) disproof of a
sentence A, however, is sensitive to the complexity and composition of A. A canonical
proof of a conjunction (A ∧ B), for example, requires a proof of A and a proof of B,
whereas a canonical disproof of (A ∨B) requires a disproof of A and a disproof of B.

If we look only at proofs and disproofs of elementary sentences representable by
atomic formulas of a propositional or first-order language, then proofs and disproofs
often are basic acts. We can take up an example provided by A. Grzegorczyk [13].
Suppose that l is a yellow lemon. We may prove that l is yellow just by drawing visual
attention to l, and we may disprove that l is red again just by drawing visual attention
to l. The falsification of the proposition that l is red is as direct as the verification of
the proposition that l is yellow. Neither would we attempt to disprove that l is red by
leading the assumption that l is red to an absurdity, nor would we attempt to prove that
l is yellow by leading the assumption that l fails to be yellow to an absurdity. We would,
under normal circumstances at least, just point to the colour of l. It might be objected
that the provability of an elementary sentence such as ‘l is yellow’ requires a theory and
that in verifying by eye that l is yellow, we do not just see that l is yellow but infer that l
is yellow from a theory based on our visual experience. But then in falsifying by eye that
l is red, we still do not seem to lead the assumption that l is red to an absurdity. If in the
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verification case we directly infer from (a theory based on) our visual experience that
l is yellow, then in the falsification case it seems that we directly infer from (a theory
based on) our visual experience that l is definitely not red. Therefore, if disproving by
eye that l is red is conceived of as an inference of the proposition that l is definitely
not red, then this “definitely not” is not a so-called negation as inconsistency. In other
words ‘l is definitely not red’ is not to be understood as ‘l implies absurdity’, cf. [9,42].

What is absurdity? A sentence expresses absurdity, the absurd proposition, if in
every model, the sentence fails to be true. If we consider possible worlds models, a
sentence expresses absurdity, if the sentence fails to be true at every possible world in
every model. Possible worlds are often conceived of as classical models satisfying the
principle of bivalence. But they may also be conceived of as information states that
may or may not support the truth or the falsity of propositions. If absence of truth
is distinguished from falsity, so that the principle of bivalence is violated, a sentence
may express absurdity without being false in every model or false at every state in
every model. A sentence thus expresses absurdity if it is never true, and, in general, a
reduction to absurdity is a reduction to non-truth. Of course, we may then also consider
reductions to non-falsity. A sentence expresses non-falsity, if it is never false.

If an act of assertion commits a speaker to be ready to prove the asserted proposition,
and an act of denial commits a speaker to be ready to disprove the denied proposition,
one may wonder what kind of action is such that it commits a speaker to be ready
to reduce the assumption that a certain proposition A is true to absurdity (or, more
generally, to non-truth) and what kind of action is such it commits a speaker to be ready
to reduce the assumption that A is definitely false to non-truth. It seems that the first
kind of commitment comes with asserting that nothing supports the truth of A. If I
assert that nothing supports the truth of the sentence ‘Person b stabbed person c’, I am
committed to be ready to show that any piece of information (in particular any piece
of information that seems to establish the truth of the assumption that b stabbed c)
fails to establish the truth of the assumption that b stabbed c. If there is a witness who
claims to have seen that b stabbed c, for example, I may point out that the witness used
to be extremely unreliable on previous occasions. Proceeding in this way, I may try to
show that there is no conclusive evidence in favour of ‘b stabbed c’.

What makes it difficult, perhaps, to see the difference between disproofs and reduc-
tions to absurdity is that one might hold that every direct falsification of A also reduces
the assumption that A to absurdity. If I present a group of very reliable witnesses who
confirm that b was not at the crime scene, this may be viewed as a direct falsification
of ‘b stabbed c’, in addition leading the assumption that b stabbed c to absurdity. But,
firstly, this does not show that there is no difference between disproving and reducing
to absurdity, and, secondly, note that information may be contradictory. Someone else
might present another group of highly reliable witnesses who claim that they saw that
b stabbed c, so that the available testimony both supports the truth and supports the
falsity of ‘b stabbed c’. Thus, it is not at all clear that disprovability always implies
reducibility to non-truth. Indeed, the implication may fail.

The second kind of commitment appears to come with asserting that no
information supports the falsity of assumption A. If I assert that no information supports
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the falsity of ‘b stabbed c’, I am committed to be ready to show that the assumption
that b definitely did not stab c leads to absurdity. Again, I might try to point to certain
facts that are incompatible with the assumption under consideration, although they do
not prove that b stabbed c. I might, for example, point out that b’s fingerprints can be
found on the dagger that has been removed from c’s corpse.

The view that the denial of a sentence s can be profitably analyzed as the assertion
of a suitable negation of s is contentious. According to Greg Restall [31]

[d]enial is not to be analysed as the assertion of a negation,

whereas Bryson Brown [3, p. 646] explains that he has

a modest proposal: negation is denial in the object language.

Graham Priest [27, p. 105] concedes that the uttering of a negated sentence sometimes
may be interpreted as a denial but holds that “asserting a negation (in the Fregean sense)
is not necessarily a denial.” Priest regards rejection as the linguistic expression of denial
and takes rejecting something to be putting a bar on accepting it. “When justified, it is
so because there is evidence against the claim: positive grounds for keeping it out of one’s
beliefs” [27, p. 103]. This exclusion from belief is stronger than agnosticism (absence of
belief) but, as it seems, weaker than disbelief. Timothy Williamson [51, p. 10] explains
that “we can regard assertion as the verbal counterpart of judgement and judegement
as the occurrent form of belief”. The association of assertions with proofs and denials
with disproofs takes the negative judgement of denial as the occurrent form of disbelief
and not as the occurrent form of refusal from belief. 1

In this paper I would like to discuss logics in which it is important to distinguish
between provability, disprovability, and their duals. The term ‘duality’ has several mean-
ings even in mathematics. In one usage the concept of duality is related to order reversal.
In this sense, the dual of provability is reducibility to non-truth. The dual of disprov-
ability is reducibility to non-falsity. The picture summarized in Table 1 emerges.

inferential status related speech act

∅ ` A A is provable to assert that A

∅ ` ∼A A is disprovable to deny that A

A ` ∅ A is reducible to non-truth to assert that no information
supports the truth of A

∼A ` ∅ A is reducible to non-falsity to assert that no information
supports the falsity of A

Table 1
Speech acts and the inferential status of propositions.

1 I intend to discuss the relation between assertion, denial, and negation in more detail in a separate
paper.
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1.2 Inferential relations and logical operations

If A is provable, then it is warranted to assert that A, if A is disprovable, then it is
warranted to deny that A, if A is reducible to non-truth, then it is warranted to assert
that no information supports the truth of A, and if A is reducible to non-falsity, then it
is warranted to assert that no information supports the falsity of A.

The above considerations on the inferential status of a sentence A can be
generalized to proofs from a finite set of sentences assumed to true A1, . . . , An and
reductions from a finite set of sentences A1, . . . , An assumed not to be true. If the ex-
pression ‘assumptions’ is reserved for sentences assumed to be true, there seems to be
a semantic gap in English and other natural languages, as there is no idiomatic term
for sentences assumed not to be true. Let us agree to call sentences assumed not to be
true counterassumptions. Sentences assumed to be false may be called rejections (or re-
pudiations), so that sentences assumed not to be false might be called counterrejections
(counterrepudiations). Table 2 lists eight different kinds of inferential relations.

inferential relation

A1, . . . , An ` A A is provable from assumptions A1, . . . , An

A1, . . . , An ` ∼A A is disprovable from assumptions A1, . . . , An

A ` A1, . . . , An A is reducible to absurdity from counterassumptions
A1, . . . , An

∼A ` A1, . . . , An A is reducible to non-falsity from counterassumptions
A1, . . . , An

∼A1, . . . ,∼An ` A A is provable from rejections A1, . . . , An

∼A1, . . . ,∼An ` ∼A A is disprovable from rejections A1, . . . , An

A ` ∼A1, . . . ,∼An A is reducible to absurdity from counterrejections
A1, . . . , An

∼A ` ∼A1, . . . ,∼An A is reducible to non-falsity from counterrejections
A1, . . . , An

Table 2
Inferential relations.

If we want to reduce the inferential relation between the sentences A1, . . . , An and the
sentence A to the inferential status of a single formula, we may use suitable connectives:
conjunction ∧, disjunction ∨, implication→, and the less well-known co-implication −� ,
see Table 3.

We thereby arrive at the following vocabulary: {∧,∨,→,−� ,∼}. Whereas ∧,∨,→,
and −� may be seen to emerge from the reduction of inferential relations to inferential
status stated in Table 3, ∼ reflects the distinction between provability and disprovability.
Conjunction ∧ combines formulas in antecedent position, i.e., on the left of `, and
disjunction combines formulas in succedent position, i.e., on the right of `. Implication
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inferential relation inferential status

A1, . . . , An ` A ∅ ` (A1 ∧ . . . ∧An)→ A

A1, . . . , An ` ∼A ∅ ` (A1 ∧ . . . ∧An)→ ∼A

A ` A1, . . . , An A−� (A1 ∨ . . . ∨An) ` ∅

∼A ` A1, . . . , An ∼A−� (A1 ∨ . . . ∨An) ` ∅

∼A1, . . . ,∼An ` A ∅ ` (∼A1 ∧ . . . ∧ ∼An)→ A

∼A1, . . . ,∼An ` ∼A ∅ ` (∼A1 ∧ . . . ∧ ∼An)→ ∼A

A ` ∼A1, . . . ,∼An A−� (∼A1 ∨ . . . ∨ ∼An) ` ∅

∼A ` ∼A1, . . . ,∼An ∼A−� (∼A1 ∨ . . . ∨ ∼An) ` ∅

Table 3
From inferential relations to inferential status.

is a vehicle for registering formulas that appear in antecedent position in succedent
position, and co-implication is a vehicle for registering formulas that appear in succedent
position in antecedent position. We read A−�B as “B co-implies A” or as “A excludes
B”. Whereas implication is the residuum of conjunction, co-implication is the residuum
of disjunction:

(A ∧B) ` C iff A ` (B → C) iff B ` (A→ C),

C ` (A ∨B) iff (C−�A) ` B iff (C−�B) ` A.

The strong negation ∼ is a primitive negation. Other kinds of negation connectives are
definable in the presence of → and −� . Let p be a certain propositional letter. Then we
define non-falsity as follows: > := (p → p), and non-truth in this way: ⊥ := (p−� p).
We can then introduce two negation connectives:

−A := (>−�A) (co-negation), and

¬A := (A→ ⊥) (intuitionistic negation).

Other defined connectives of HB are equivalence,↔, and co-equivalence, �−� , which are
defined as follows:

A ≡ B := (A→ B) ∧ (B → A); A�−�B := (A−�B) ∨ (B−�A).

The connectives ∧,∨,→, and −� are the primitive connectives of bi-intuitionistic
logic BiInt, also known as Heyting-Brouwer logic HB or as subtractive logic, see
[5,6,10,11,12,16,28,29,30,33,52]. Extensions of HB by strong negation ∼ have been
introduced and investigated in [48], see also [18]. Logics with strong negation and
intuitionistic implication have been introduced by David Nelson in the late 1940s
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and subsequently have been investigated by many researchers, see, for example,
[1,8,14,15,17,19,21,22,23,25,35,37,38,39,40,42,44,46].

2 Syntax and relational semantics of HB

The propositional language L′ of HB is defined in Backus–Naur form as follows:

atomic formulas: p ∈ Atom

formulas: A ∈ Form(Atom)

A ::= p | (A ∧A) | (A ∨A) | (A→ A) | (A−�A).

It is well-known that intuitionistic propositional logic is faithfully embeddable into
the modal logic S4 (= KT4), the logic of necessity and possibility on reflexive and
transitive frames. The relational frame semantics of HB is simple and reveals that HB

can be faithfully embedded into temporal S4 (= KtT4).

Definition 2.1 A frame is a pre-order 〈I,≤〉. Intuitively, I is a non-empty set of
information states, and ≤ is a reflexive transitive binary relation of possible expansion
of states on I.

Instead of w ≤ w′, we also write w′ ≥ w.

Definition 2.2 An HB-model is a structure 〈I,≤, v+〉, where 〈I,≤〉 is a frame and v+

is a function that maps every p ∈ Atom to a subset of I (namely the states that support
the truth of p). It is assumed that v+ satisfies the following persistence (or heredity)
condition for atoms:

if w ≤ w′, then w ∈ v+(p) implies w′ ∈ v+(p).

The relation M, w |=+ A (‘state w supports the truth of L′-formula A in model M’) is
inductively defined as follows:

M, w |=+ p iff w ∈ v+(p)

M, w |=+ (A ∧B) iff M, w |=+ A and M, w |=+ B

M, w |=+ (A ∨B) iff M, w |=+ A or M, w |=+ B

M, w |=+ (A→ B) iff for every w′ ≥ w :M, w′ 6|=+ A or M, w′ |=+ B

M, w |=+ (A−�B) iff there exists w′ ≤ w :M, w′ |=+ A and M, w′ 6|=+ B

where M, w 6|=+ A is the classical negation of M, w |=+ A.

For intuitionistic negation and co-negation one obtains the following support of truth
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conditions:
M, w |=+ ¬A iff for every w′ ≥ w,M, w′ 6|=+ A;

M, w |=+ −A iff there exists w′ ≤ w and M, w′ 6|=+ A.

Proposition 2.3 For every L′-formula A, HB-model 〈I,≤, v+〉, and w, w′ ∈ I:

if w ≤ w′, then M, w |=+ A implies M, w′ |=+ A.

Definition 2.4 HB is the set of all L′-formulas A such that for every HB-model 〈I,≤
, v+〉, and w ∈ I: M, w |=+ A.

3 Extensions of HB by strong negation

The propositional language L is defined in Backus–Naur form as follows:

atomic formulas: p ∈ Atom

formulas: A ∈ Form(Atom)

A ::= p | ∼A | (A ∧A) | (A ∨A) | (A→ A) | (A−�A).

Definition 3.1 A model is a structure 〈I,≤, v+, v−〉, where 〈I,≤〉 is a frame. Moreover,
v+ and v− are functions that map every p ∈ Atom to a subset of I (namely the states that
support the truth of p and the falsity of p, respectively. The functions v+ and v− satisfy
the following persistence conditions for atoms: if w ≤ w′, then w ∈ v+(p) implies w′ ∈
v+(p); if w ≤ w′, then w ∈ v−(p) implies w′ ∈ v−(p). The relationsM, w |=+ A (‘state
w supports the truth of L-formula A in model M’) and M, w |=− A (‘state w supports
the falsity of L-formula A in model M’) are inductively defined as follows:

M, w |=+ p iff w ∈ v+(p)

M, w |=− p iff w ∈ v−(p)

M, w |=+ ∼A iff M, w |=− A

M, w |=− ∼A iff M, w |=+ A

M, w |=+ (A ∧B) iff M, w |=+ A and M, w |=+ B

M, w |=− (A ∧B) iff M, w |=− A or M, w |=− B

M, w |=+ (A ∨B) iff M, w |=+ A or M, w |=+ B

M, w |=− (A ∨B) iff M, w |=− A and M, w |=− B

M, w |=+ (A→ B) iff for every w′ ≥ w :M, w′ 6|=+ A or M, w′ |=+ B

M, w |=+ (A−�B) iff there exists w′ ≤ w :M, w′ |=+ A and M, w′ 6|=+ B.
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In Table 4, a number of natural support of falsity conditions for strongly negated im-
plications and co-implications are listed. For each choice of pairs of conditions, support
of falsity is persistent for arbitrary formulas.

cI1 M, w |=− (A→ B) iff M, w |=+ A and M, w |=− B

cI2 M, w |=− (A→ B) iff for every w′ ≥ w :M, w′ 6|=+ A or M, w′ |=− B

cI3 M, w |=− (A→ B) iff there is w′ ≤ w :M, w′ |=+ A and M, w′ 6|=+ B

cI4 M, w |=− (A→ B) iff there is w′ ≤ w :M, w′ 6|=− A and M, w′ |=− B

cC1 M, w |=− (A−�B) iff M, w |=− A or M, w |=+ B

cC2 M, w |=− (A−�B) iff there is w′ ≤ w :M, w′ |=− A and M, w′ 6|=+ B

cC3 M, w |=− (A−�B) iff for every w′ ≥ w :M, w′ 6|=+ A or M, w′ |=+ B

cC4 M, w |=− (A−�B) iff for every w′ ≥ w :M, w′ |=− A or M, w′ 6|=− B
Table 4

Support of falsity conditions for implications and co-implications

Proposition 3.2 For every L-formula A, model 〈I,≤, v+, v−〉, and w, w′ ∈ I: if w ≤
w′ then w |=+ A implies w′ |=+ A; if w ≤ w′, then w |=− A implies w′ |=− A.

The different support of falsity conditions for implications and co-implications listed
in Table 4 result in sixteen systems of constructive propositional logic with strong nega-
tion that extend HB. Valid equivalences characteristic of these logics are stated in Table
5. The logics in the language L that differ from each other only with respect to validat-
ing a certain pair of these equivalences (one from the I-equivalences and one from the
C-equivalences) are referred to as systems (Ii, Cj), i, j ∈ {1, 2, 3, 4}. 2

I1 ∼(A→ B)↔ (A ∧ ∼B) negated implication, classical reading

I2 ∼(A→ B)↔ (A→ ∼B) negated implication, connexive reading

I3 ∼(A→ B)↔ (A−�B) negated implication as co-implication

I4 ∼(A→ B)↔ (∼B−�∼A) negated implication as contraposed co-impl.

C1 ∼(A−�B)↔ (∼A ∨B) negated co-implication, classical reading

C2 ∼(A−�B)↔ (∼A−�B) negated co-implication, connexive reading

C3 ∼(A−�B)↔ (A→ B) negated co-implication as implication

C4 ∼(A−�B)↔ (∼B → ∼A) negated co-implication as contraposed impl.
Table 5

Constructively negated implications and co-implications

2 In the sequel I will sometimes omit the qualification i, j ∈ {1, 2, 3, 4}.
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Definition 3.3 The logics (Ii, Cj) are defined as the triples (L, |=+
Ii,Cj

, |=−Ii,Cj
),

where the entailment relations |=+
Ii,Cj

, |=−Ii,Cj
⊆ P(L) × P(L) are defined as

follows:
∆ |=+

Ii,Cj
Γ iff for every model M = 〈I,≤, v+, v−〉 defined with clauses cIi and cCj and

every w ∈ I, if M, w |=+ A for every A ∈ ∆, then M, w |=+ B for some B ∈ Γ, and
∆ |= −Ii,Cj Γ iff for every model M = 〈I,≤, v+, v−〉 defined with clauses cIi and cCj

and every w ∈ I, if M, w |=− A for every A ∈ Γ, then M, w |=− B for some B ∈ ∆.
For singleton sets {A} and {B}, we write A |=+

Ii,Cj
B (A |=−Ii,Cj

B) instead of
{A} |=+

Ii,Cj
{B} ({A} |=−Ii,Cj

{B}).

This definition of a logic as comprising two entailment relations instead of just one
is unusual but not at all unnatural, see, for instance, [34,49,50]. The set of all con-
structively false sentences is not the complement of the set of all constructively true
sentences, and we can make the following observation.

Proposition 3.4 If (Ii, Cj) 6= (I4, C4), then |=+
Ii,Cj
6= |=−Ii,Cj

.

We do not require that for atomic formulas p, v+(p) ∩ v−(p) = ∅. Therefore, the
logics under consideration are paraconsistent. Neither is it the case that for any formula
B, {p,∼p} |=+

Ii,Cj
B nor is it the case that B |=−Ii,Cj

{p,∼p}. 3

The next observation on negation normal forms is used in the proof of the complete-
ness result in Section 5. A formula is in negation normal form (nnf) if it contains ∼ only
in front of atoms. The following translations ρIi,Cj send every formula A to a formula
in nnf, where p ∈ Atom and � ∈ {∨,∧,→,−� }:

ρIi,Cj
(p) = p

ρIi,Cj
(∼p) = ∼p

ρIi,Cj
(∼∼ A) = ρIi,Cj

(A)

ρIi,Cj
(A�B) = ρIi,Cj

(A)� ρIi,Cj
(B)

ρIi,Cj
(∼(A ∨B)) = ρIi,Cj

(∼A) ∧ ρIi,Cj
(∼B)

ρIi,Cj
(∼(A ∧B)) = ρIi,Cj

(∼A) ∨ ρIi,Cj
(∼B)

ρI1,Cj
(∼(A→ B)) = ρI1,Cj

(A) ∧ ρI1,Cj
(∼B)

ρI2,Cj
(∼(A→ B)) = ρI2,Cj

(A)→ ρI2,Cj
(∼B)

ρI3,Cj
(∼(A→ B)) = ρI3,Cj

(A)−� ρI3,Cj
(B)

ρI4,Cj
(∼(A→ B)) = ρI4,Cj

(∼B)−� ρI4,Cj
(∼A)

ρIi,C1(∼(A−�B)) = ρIi,C1(∼A) ∨ ρIi,C1(B)

ρIi,C2(∼(A−�B)) = ρIi,C2(∼A)−� ρIi,C2(B)

ρIi,C3(∼(A−�B)) = ρIi,C3(A)→ ρIi,C3(B)

ρIi,C4(∼(A−�B)) = ρIi,C4(∼B)→ ρIi,C4(∼A)

3 Co-negation is, of course, also a paraconsistent negation, see [4,36], whereas intuitionistic negation is
paracomplete, i.e., does not validate the law of excluded middle.
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Lemma 3.5 For every formula A, ρIi,Cj
(A) is in negation normal form and A |=+

Ii,Cj

ρIi,Cj
(A), ρIi,Cj

(A) |=+
Ii,Cj

A, A |=−Ii,Cj
ρIi,Cj

(A), ρIi,Cj
(A) |=−Ii,Cj

A.

4 Inferentialist (proof-theoretic) interpretation

The plan now is to interpret the connectives of L in the style of the Brouwer-Heyting-
Kolmogorov (BHK) interpretation of the intuitionistic connectives in terms of canonical
proofs, see, for example, [7, p. 154]. It is well-known that David Nelson’s constructive
logics with strong negation admit of a sound interpretation in terms of both proofs and
disproofs, see [20,40]. We will supplement the BHK interpretation by interpretations
in terms of canonical disproofs, canonical reductions to absurdity (alias non-truth),
and canonical reductions to non-falsity. That is, we will define the notions of canonical
proofs, disproofs, dual proofs, and dual disproofs of complex L-formulas by simultaneous
induction. To make sure that the interpretation is correct for the logics (Ii, Cj), we will
make the following assumptions:

(i) for no L-formula A there exists both a proof and a dual proof of A;

(ii) for no L-formula A there exists both a disproof and a dual disproof of A;

(iii) every L-formula A either has a proof or dual proof;

(iv) every L-formula A either has a disproof or dual disproof.

Note that we do not need clauses for the constants⊥ and> and the negation operations ¬
and −, because in L these connectives are definable. We also assume that the conditions
under which an entity is a canonical proof, disproof, dual proof, or dual disproof of an
atomic sentence depend on the appropriate and relevant social practice and are not a
matter of logic.

4.1 Canonical proofs

We first consider the inductive definition of the notion of a canonical proof of a compound
L-formula.

• A canonical proof of a strongly negated formula ∼A is a canonical disproof of A.
• A canonical proof of a conjunction (A∧B) is a pair (π1, π2) consisting of a canonical

proof π1 of A and a canonical proof π2 of B.
• A canonical proof of a disjunction (A ∨ B) is a pair (i, π) such that i = 0 and π is a

canonical proof of A or i = 1 and π is a canonical proof of B.
• A canonical proof of an implication (A → B) is a construction that transforms any

canonical proof of A into a canonical proof of B.
• A canonical proof of a co-implication (A−�B) is a pair (π1, π2), where π1 is a canonical

proof of A and π2 is a canonical dual proof of B. (This pair is a canonical dual proof
of (A→ B)).
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4.2 Canonical disproofs

• A canonical disproof of a strongly negated formula ∼A is a canonical proof of A.
• A canonical disproof of a conjunction (A∧B) is a pair (i, π) such that i = 0 and π is

a canonical disproof of A or i = 1 and π is a canonical disproof of B.
• A canonical disproof of a disjunction (A∨B) is a pair (π1, π2) consisting of a canonical

disproof π1 of A and a canonical disproof π2 of B.
• A canonical disproof of an implication (A→ B) in

(I1Cj) is a pair (π1, π2) consisting of a canonical proof π1 of A and a canonical
disproof π2 of B.
(I2Cj) is a construction that transforms any canonical proof of A into a
canonical disproof of B.
(I3Cj) is a pair (π1, π2), where π1 is a canonical proof of A and π2 is a canonical
dual proof of B. (This pair is a canonical dual proof of (A→ B)).
(I4Cj) is a pair (π1, π2), where π1 is a canonical disproof of B and π2 is a canonical
dual disproof of A.

• A canonical disproof of a co-implication (A−�B) in
(IiC1) is a pair (i, π) such that i = 0 and π is a canonical disproof of A or i = 1 and
π is a canonical proof of B.
(IiC2) is a pair (π1, π2), where π1 is a canonical disproof of A and π2 is a canonical
dual proof of B. (This pair is a canonical dual proof of (∼A→ B)).
(IiC3) is a construction that transforms any canonical proof of A into a canonical
proof of B.
(IiC4) is a construction that transforms any canonical disproof of B into a canonical
disproof of A.

4.3 Canonical reductions to non-truth (canonical dual proofs)

• A canonical reduction to non-truth of a strongly negated formula ∼A is canonical
dual disproof of A.

• A canonical reduction to non-truth of a conjunction (A∧B) is a pair (i, π) such that
i = 0 and π is a canonical dual proof of A or i = 1 and π is a canonical dual proof of
B.

• A canonical reduction to non-truth of a disjunction (A∨B) is a pair (π1, π2) consisting
of a dual proof π1 of A and a dual proof π2 of B.

• A canonical reduction to non-truth of an implication (A→ B) is a pair (π1, π2), where
π1 is a canonical proof of A and π2 is a canonical dual proof of B. (This pair is a
canonical proof of (A−�B)).

• A canonical reduction to non-truth of a co-implication (A−�B) is a construction that
transforms any dual proof of B into a dual proof of A.
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4.4 Canonical reductions to non-falsity (canonical dual disproofs)

• A canonical reduction to non-falsity of a strongly negated formula ∼A is a
canonical dual proof of A.

• A canonical reduction to non-falsity of a conjunction (A∧B) is a pair (π1, π2) consisting
of a dual disproof π1 of A and a dual disproof π2 of B.

• A canonical reduction to non-falsity of a disjunction (A∨B) is a pair (i, π) such that
i = 0 and π is a canonical dual disproof of A or i = 1 and π is a canonical dual
disproof of B.

• A canonical reduction to non-falsity of an implication (A→ B) in
(I1Cj) is a pair (i, π) such that i = 0 and π is a canonical dual proof of A or i = 1
and π is a canonical dual disproof of B.
(I2Cj) is a pair (π1, πs), where pi1 is a canonical proof of A and π2 is a canonical
dual disproof of B.
(I3Cj) is a construction that transforms any canonical dual proof of B into a canon-
ical dual proof of A. (This pair is a canonical dual proof of (A−�B)).
(I4Cj) is a construction that transforms any canonical dual disproof of A into a
canonical dual disproof of B.

• A canonical reduction to non-falsity of a co-implication (A−�B) in
(IiC1) is a pair (π1, π2), where π1 is a canonical dual disproof of A and π2 is a
canonical dual proof of B.
(IiC2) is a construction that transforms any canonical dual proof of B into a canon-
ical dual disproof of A. (This construction is a canonical dual proof of (∼A−�B)).
(IiC3) is a pair (π1, π2), where π1 is a canonical proof of A and π2 is a canonical
dual proof of B. (This pair is a canonical dual proof of (A→ B)).
(IiC4) is a pair (π1, π2), where π1 is a canonical disproof of B and π2 is a canonical
dual disproof of A.

In order to show by induction on the construction of inferences that the logics (Ii, Cj)
are sound with respect to the above BHK-style interpretation in terms of proofs, dis-
proofs, and their duals, we need proof systems for the semantically defined logics (Ii, Cj).
We consider the display calculi defined in [48].

5 Display calculi

The structural proof theory of bi-intuitionistic logic is confronted with a num-
ber of problems, which are described, for example, in [5,10,48]. The sequent
calculus for Heyting-Brouwer logic in [6] uses single-conclusion sequents but imposes
a ‘singleton on the left’ constraint on the left introduction rule for co-implication (and a
‘singleton on the right’ constraint on the right introduction rule for implication). This
asymmetric sequent calculus does not enjoy cut-elimination. Also the sequent calculus
for HB in [28] does not allow cut-elimination. These problems can be overcome in display
logic and in other types of sequent calculi that differ from ordinary Gentzen systems,
see [5,10,11,12,48]. We will use the display sequent calculi δ(Ii, Cj) for the logics (Ii, Cj)
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developed [48] and therefore briefly rehearse the presentation of δ(Ii, Cj).
The set of structures (or Gentzen terms) is defined as follows:

formulas: A ∈ Form(Atom)

structures X ∈ Struc(Form)

X ::= A | I | (X ◦X) | (X •X).

The intended interpretation of the connective ◦ as conjunction in antecedent position and
as implication in succedent position and of • as co-implication in antecedent position
and as disjunction in succedent position justifies certain ‘display postulates’ (dp) (we
omit outer brackets, each column states two structural inference rules):

Y ` X ◦ Z
X ◦ Y ` Z
X ` Y ◦ Z

X ` Y ◦ Z
X ◦ Y ` Z
Y ` X ◦ Z

X • Z ` Y
X ` Y • Z
X • Y ` Z

X • Y ` Z
X ` Y • Z
X • Z ` Y

Moreover, the interpretation of I as the empty structure suggests the following structural
inference rules:

X ◦ I ` Y
X ` Y

I ◦X ` Y

I ◦X ` Y
X ` Y

X ◦ I ` Y

X ` Y • I
X ` Y

X ` I • Y

X ` I • Y
X ` Y

X ` Y • I

In addition there are various ‘logical’ structural rules:

p ` p (id) ∼p ` ∼p (id∼) X ` A A ` Y
X ` Y (cut)

and versions of the familiar structural rules from standard Gentzen systems for classi-
cal logic, monotonicity (weakening), exchange (permutation), and contraction, together
with associativity, see Table 6.

X ` Y
X ` Y • Z (rm) X ` Y

X ◦ Z ` Y (lm)

X ` Y • Z
X ` Z • Y (re) X ◦ Z ` Y

Z ◦X ` Y (le)

X ` Y • Y
X ` Y (rc) X ◦X ` Y

X ` Y (lc)

X ` (Y • Z) •X ′

X ` Y • (Z •X ′)
(ra)

(X ◦ Y ) ◦ Z ` X ′

X ◦ (Y ◦ Z) ` X ′
(la)

Table 6
Structural sequent rules
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X ` A Y ` B
X ◦ Y ` (A ∧B)

(` ∧) A ◦B ` X
(A ∧B) ` X

(∧ `)

X ` A •B
X ` (A ∨B)

(` ∨) A ` X B ` Y
(A ∨B) ` X • Y

(∨ `)

X ` A ◦B
X ` (A→ B)

(` →) X ` A B ` Y
(A→ B) ` X ◦ Y

(→ `)

X ` B A ` Y
X • Y ` B−�A (` −� ) B •A ` X

B−�A ` X (−� `)

X ` ∼A • ∼B
X ` ∼(A ∧B)

(` ∼∧) ∼A ` X ∼B ` Y
∼(A ∧B) ` X • Y

(∼∧ `)

X ` ∼A Y ` ∼B
X ◦ Y ` ∼(A ∨B)

(` ∼∨) ∼A ◦ ∼B ` X
∼(A ∨B) ` X

(∼∨ `)

X ` A
X ` ∼∼A (` ∼∼) A ` X

∼∼A ` X (∼∼ `)

Table 7
Introduction rules shared by all logics (Ii, Cj)

The display sequent calculi δ(Ii, Cj), i, j ∈ {1, 2, 3, 4}, for the constructive logics
(Ii, Cj) share these rules and the introduction rules stated in Table 7. The particular
display calculus δ(Ii, Cj) then is the proof system obtained by adding the rules rIi and
rCj from Table 8.

A derivation of a sequent s from a set of sequents {s1, . . . , sn} in δ(Ii, Cj) is defined as
a tree with root s such that every leaf is an instantiation of (id), (id∼), or a sequent from
{s1, . . . , sn}, and every other node is obtained by an application of one of the remaining
rules. A proof of a sequent s in δ(Ii, Cj) is a derivation of s from ∅. Sequents s and s′

are said to be interderivable iff s is derivable from {s′} and s′ is derivable from {s}.
Two sequents s and s′ are said to be structurally equivalent if they are interderivable

by means of display postulates only. It is characteristic for display calculi that any
substructure of a given sequent s may be displayed as the entire antecedent or succedent
of a structurally equivalent sequent s′.

If s = X ` Y is a sequent, then the displayed occurrence of X (Y ) is an antecedent
(succedent) part of s. If an occurrence of (Z ◦W ) is an antecedent part of s, then the
displayed occurrences of Z and W are antecedent parts of s. If an occurrence of (Z •W )
is an antecedent part of s, then the displayed occurrence of Z (W ) is an antecedent
(succedent) part of s. If an occurrence of (Z ◦W ) is a succedent part of s, then the
displayed occurrence of Z (W ) is an antecedent (succedent) part of s. If an occurrence
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rI1

X ` A Y ` ∼B
X ◦ Y ` ∼(A→ B)

A ◦ ∼B ` X
∼(A→ B) ` X

rI2

X ` A ◦ ∼B
X ` ∼(A→ B)

X ` A ∼B ` Y
∼(A→ B) ` X ◦ Y

rI3

X ` A B ` Y
X • Y ` ∼(A→ B)

A •B ` X
∼(A→ B) ` X

rI4

X ` ∼B ∼A ` Y
X • Y ` ∼(A→ B)

∼B • ∼A ` X
∼(A→ B) ` X

rC1

X ` ∼A •B
X ` ∼(A−�B)

∼A ` X B ` Y
∼(A−�B) ` X • Y

rC2

X ` ∼A B ` Y
X • Y ` ∼(A−�B)

∼A •B ` X
∼(A−�B) ` X

rC3

X ` A ◦B
X ` ∼(A−�B)

Y ` A B ` X
∼(A−�B) ` Y ◦X

rC4

X ` ∼B ◦ ∼A
X ` ∼(A−�B)

Y ` ∼B ∼A ` X
∼(A−�B) ` Y ◦X

Table 8
Sequent rules for negated implications and co-implications

of (Z • W ) is a succedent part of s, then the displayed occurrences of Z and W are
succedent parts of s.

Theorem 5.1 (cf. (Belnap 1982)) For every sequent s and every antecedent
(succedent) part X of s, there exists a sequent s′ structurally equivalent to s such that
X is the entire antecedent (succedent) of s′.

Proposition 5.2 For every L-formula A and every calculus δ(Ii, Cj), A ` A is provable.

One can define translations τ1 and τ2 from structures into formulas such that these
translations make explicit the intuitive, context-sensitive interpretation of the structural
connectives: translation τ1 translates structures which are antecedent parts of a sequent,
whereas τ2 translates structures which are succedent parts of a sequent.

Definition 5.3 The translations τ1 and τ2 from structures into formulas are
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inductively defined as follows, where A is a formula and p is a certain atom:

τ1(A) = A τ2(A) = A

τ1(I) = p→ p τ2(I) = p−� p

τ1(X ◦ Y ) = τ1(X) ∧ τ1(Y ) τ2(X ◦ Y ) = τ1(X)→ τ2(Y )

τ1(X • Y ) = τ1(X)−� τ2(Y ) τ2(X • Y ) = τ2(X) ∨ τ2(Y )

Theorem 5.4 (Soundness) (1) If the X ` Y is provable in δ(Ii, Cj), then
τ1(X) |=+

Ii,Cj
τ2(Y ). (2) If X ` Y is provable in δ(Ii, Cj), then ∼τ2(Y ) |=−Ii,Cj

∼τ1(X).

The language L∗ results from L by adding for every atomic formula p a new atom
p∗. If A is an L-formula, (A)∗ is the result of replacing every strongly negated atom ∼p
in A by p∗.

Lemma 5.5 For every L-formula A, if ∅ |=+
Ii,Cj

A, then (ρIi,Cj
(A))∗ is valid in HB.

Lemma 5.6 For every ∼-free L-formula A, if A is provable in HB, then I ` A is
provable in δ(Ii, Cj) without using any sequent rules for strongly negated formulas.

Lemma 5.7 For every L-formula A, A ` ρIi,Cj (A) and ρIi,Cj (A) ` A are provable in
δ(Ii, Cj).

Lemma 5.8 Every sequent X ` τ1(X) and τ2(X) ` X is provable in δ(Ii, Cj), for all
i, j ∈ {1, 2, 3, 4}.

Theorem 5.9 (Completeness) (1) If ρIi,Cj
(τ1(X)) |=+

Ii,Cj
ρIi,Cj

(τ2(Y )), then X ` Y
is provable in δ(Ii, Cj). (2) If ρIi,Cj

(∼τ2(Y )) |=−Ii,Cj
ρIi,Cj

(∼τ1(X)), then X ` Y is
provable in δ(Ii, Cj).

Let δ(Ii, Cj)+ denote the result of dropping all sequent rules exhibiting ∼ from
δ(Ii, Cj).

Theorem 5.10 If X ` Y is provable in system δ(Ii, Cj), then (ρIi,Cj
(τ1(X)))∗ `

(ρIi,Cj (τ2(Y )))∗ is provable in δ(Ii, Cj)+ without any applications of (cut).

6 Correctness of the the logics (Ii, Cj) with respect to
the inferentialist semantics

We show that if a sequent is provable in δ(Ii, Cj), then there exists a certain construc-
tion made up from proofs, disproofs, and their duals that transforms any proof of the
antecedent of the sequent into a proof of its succedent. 4

Theorem 6.1 Let i, j ∈ {1, 2, 3, 4}. If X ` Y is provable in δ(Ii, Cj), then

(i) there exists a construction π such that π(π′) is a canonical proof of τ2(Y ) whenever
π′ is a canonical proof of τ1(X).

4 This result may give rise to a four-sorted typed λ-calculus.



500 Proofs, Disproofs, and Their Duals

(ii) there exists a construction π such that π(π′) is a canonical dual proof of τ1(X)
whenever π′ is a canonical dual proof of τ2(Y ).

Proof. By simultaneous induction on derivations in δ(Ii, Cj).
(i): We first consider the display postulates. The first display postulates for ◦ are:

Y ` X ◦ Z
X ◦ Y ` Z
X ` Y ◦ Z

Suppose, by the induction hypothesis for (i), that there exists a construction π that
transforms any canonical proof of τ1(Y ) into a canonical proof of τ2(X ◦Z) (= τ1(X)→
τ2(Z)), i.e., into a construction that transforms any canonical proof of τ1(X) into a
canonical proof of τ2(Z). Let π′ be any canonical proof of τ1(X ◦Y ) (= τ1(X)∧ τ1(Y )).
The proof π′ is a pair (π′1, π

′
2), where π′1 is a canonical proof of τ1(X) and π′2 is canonical

proof of τ1(Y ). Then (π(π′2))(π′1) is a proof 5 of τ2(Z).
Suppose next, by the induction hypothesis for (i), that there is a construction π that
transforms any proof of τ1(X ◦Y ) (= τ1(X)∧τ1(Y )) into a proof of τ2(Z). Let π′ be any
proof of τ1(X). Then π∗(π′) = π((π′, )) is a construction that transforms any proof of
τ1(Y ) into a proof of τ2(Z).
The second pair of display postulates for ◦ is dealt with similarly.
The first pair of display postulates for • is:

X • Z ` Y
X ` Y • Z
X • Y ` Z

Suppose, by the induction hypothesis for (i), that there exists a construction π that
transforms any proof of τ1(X • Z), (= τ1(X)−� τ2(Z)), i.e., any pair (π1, π2), where π1

is a proof of τ1(X) and π2 is a dual proof of τ2(Z), into a proof of τ2(Y ). Let π′ be any
proof of τ1(X). There either is a dual proof of τ2(Z) or there is not. If there is such
a dual proof, let π′′ be a fixed dual proof of τ2(Z). Then (0, π((π′, π′′))) is a proof of
(τ2(Y )∨τ2(Z)). If there does not exist any dual proof of τ2(Z), then there exists a proof
of τ2(Z). Let π′′′ be such a proof. Then (1, π′′′) is a proof of (τ2(Y ) ∨ τ2(Z)).
Suppose now, by the induction hypothesis for (i), that there is a construction π that
transforms any proof of τ1(X) into a proof of τ2(Y • Z) (= τ2(Y ) ∨ τ2(Z)). Let π′ be
any proof of τ1(X • Y ) (= τ1(X)−� τ2(Y )), i.e., any pair (π1, π2), where π1 is a proof
of τ1(X) and π2 is a dual proof of τ2(Y ). Since τ2(Y ) has no proof, π(π1) is a proof of
τ2(Z).
The second pair of display postulates for • is dealt with similarly.
The case of the logical structural rules is simple; the axiomatic sequents are dealt with
by the identity function and (cut) by functional application. The case of the other
structural sequent rules from Table 6 is quite obvious.
We present here, by way of example, just the cases of three introduction rules.

5 In the sequel I will often omit the expression ‘canonical’.



Heinrich Wansing 501

(` −� ):
X ` B A ` Y
X • Y ` B−�A

Suppose, by the induction hypothesis for (i), that there is a construction π that trans-
forms any proof of τ1(X) into a proof of τ2(B) and, by the induction hypothesis for
(ii), that there is a construction π′ that transforms any dual proof of τ2(Y ) into a dual
proof of τ1(A). Let π∗ be a proof of τ1(X • Y ) (= τ1(X)−� τ2(Y )). Then π∗ is a pair
(π1, π2), where π1 is a proof of τ1(X) and π2 is a dual proof of τ2(Y ). Therefore, the
pair (π(π1), π′(π2)) is proof of (B−�A).
rI4, first rule:

X `∼ B ∼ A ` Y
X • Y `∼ (A→ B)

Suppose, by the induction hypothesis for (i), that π is a construction that transforms
any proof τ1(X) into a proof of ∼ B, and, by the induction hypothesis for (ii), that π′

is a construction that transforms any dual proof of τ2(Y ) into a dual proof of ∼ A, i.e.,
into a dual disproof of A. Let π∗ be a proof of τ1(X • Y ) (= τ1(x)−� τ2(Y )). Then π∗

is a pair (π1, π2), where π1 is a proof of τ1(X) and π2 is a dual proof of τ2(Y ). A proof
of ∼ (A → B) in (I4, Cj) is a disproof of (A → B) in (I4, Cj), which is a pair (π′1, π

′
2),

where π′1 is a proof of ∼ B, and π′2 is a dual proof of ∼ A. Note that (π(π1), π′(π2)) is
such a pair.
rC1, second rule:

∼ A ` X B ` Y
∼ (A−�B) ` X • Y

Suppose, by the induction hypothesis for (i), that π′ is a construction that transforms
any proof of B into a proof of τ2(Y ) and that π′′ is a construction that transforms any
proof ∼ A into a proof of τ2(X). Let π∗ be a proof of ∼ (A−�B) in (Ii, C1), i.e., a
disproof of (A−�B) in (Ii, C1). Then π∗ is a pair (i, π) such that i = 0 and π is a
disproof of A or i = 1 and π is a proof of B. But then either (0, π′′(π)) or (1, π′(π)) is
a proof of τ2(X • Y ).
(ii): We present here just the case of the second pair of display postulates for ◦:

X ` Y ◦ Z
X ◦ Y ` Z
Y ` X ◦ Z

Suppose, by the induction hypothesis for (ii), that π is a construction that transforms
any dual proof of τ1(Y )→ τ2(Z) (i.e., any pair (π1, π2), where π1 is a proof of τ1(Y ) and
π2 is dual proof of τ2(Z)) into a dual proof of τ1(X). Either there is a proof of τ1(Y )
or not. If there is a proof of τ1(Y ), let π′′ be such a proof. Then (0, π(π′′, π′)) is a dual
proof of τ1(X ◦Y ). If there is no proof of τ1(Y ), then there is a dual proof of τ1(Y ). Let
π′′′ be such a dual proof. Then (1, π′′′) is a dual proof of τ1(X ◦ Y ).
Now suppose that, by the induction hypothesis for (ii), there exists a construction π

that transforms any dual proof of τ2(Z) into a dual proof of τ1(x) ∧ τ1(Y ). Let π′ be
any dual proof of τ1(X)→ τ2(Z), i.e., a pair (π1, π2), where π1 is a proof of τ1(X) and
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π2 is a dual proof of τ2(Z). Then there is no dual proof of τ1(X) and (0, π(π2)) is a dual
proof of τ1(Y ). 2

Corollary 6.2 Let i, j ∈ {1, 2, 3, 4}. If X ` Y is provable in δ(Ii, Cj), then

(i) there exists a construction π such that π(π′) is a canonical disproof of τ2(Y ) when-
ever π′ is a canonical disproof of τ1(X).

(ii) there exists a construction π such that π(π′) is a canonical dual disproof of τ1(X)
whenever π′ is a canonical dual disproof of τ2(Y ).

Proof. Every canonical disproof of A is a canonical proof of ∼A and every canonical
dual disproof of A is a canonical dual proof of ∼A. 2

The following claims follow from Theorem 6.1 and Corollary 6.2.

Theorem 6.3 Let i, j ∈ {1, 2, 3, 4}.

(i) If I ` A is provable in δ(Ii, Cj), then there exists a construction π which is a proof
of A.

(ii) If A ` I is provable in δ(Ii, Cj), then there exists a construction π which is a dual
proof of A.

(iii) If I ` ∼A is provable in δ(Ii, Cj), then there exists a construction π which is a
disproof of A.

(iv) If ∼A ` I is provable in δ(Ii, Cj), then there exists a construction π which is a dual
disproof of A.

Proof. Note that any canonical proof of τ1(I) = (p→ p) and any canonical dual proof
of τ2(I) = (p−� p) is the identity function. 2

Example 6.4 The sequent I ` q∨−q is provable in the logics (Ii, Cj), and it can easily
be seen that there exists a construction that is a (canonical) proof of q ∨ ((p→ p)−� q).
A proof of q ∨ ((p→ p)−� q) is a pair (i, π), where i = 0 and π is a proof of q, or i = 1
and π is a proof of ((p → p)−� q). Now, π is a proof of ((p → p)−� q) iff π is a pair
(π1, π2), where π1 is a proof of (p → p) and π2 is a dual proof of q. Since the identity
function is a proof of (p → p) and since every L-formula either has a proof or a dual
proof, there exists a proof of q ∨ ((p→ p)−� q).

Example 6.5 There exists a construction that is a proof of ∼ (p → q) → (p−� q) in
the logics (I3, Cj). A proof of ∼ (p → q) → (p−� q) in (I3, Cj) is a construction that
transforms any proof of ∼ (p → q) into a proof of (p−� q). A proof of ∼ (p → q) in
(I3, Cj) is a disproof of (p→ q), which is a pair (π1, π2), where π1 is a proof of p and π2

is a dual proof of q. But this pair is a proof of (p−� q) in (I3, Cj), so that the identity
function is a proof of ∼ (p→ q)→ (p−� q) in (I3, Cj).

7 Summary

We have considered sixteen extensions of propositional Brouwer-Heyting logic by strong
negation. Each of these logics (Ii, Cj) (i, j ∈ {1, 2, 3, 4}) turned out to be correct with
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respect to an extended BHK-style inferentialist interpretation. The interpretation makes
use of four primitive notions, namely the notions of proof, disproof, dual proof, and dual
disproof. This correctness result supports the view that the logics (Ii, Cj) are indeed
constructive propositional logics. 6 The findings of this paper can be summarized as in
a Table 9. 7

(propositional) logic soundness with respect to an interpretation

intuitionistic logic in terms of proofs

Nelson’s logics in terms of proofs and disproofs

dual intuitionistic logic in terms of dual proofs

bi-intuitionistic logic in terms of proofs and dual proofs

bi-intuitionistic logic extended in terms of proof, disproofs, and their duals
by strong negation

Table 9
Summary
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