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Abstract

In this paper we present a complete quantifier-free axiomatization of several logics on region-based theory
of space based on contact relation and connectedness predicates. We prove completeness theorems for
the logics in question with respect to three different semantics: algebraic – with respect to several
important classes of contact algebras, topological – based on the contact algebras over various classes of
topological spaces, and relational semantics with respect to Kripke frames with reflexive and symmetric
relations.
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Introduction

This paper is in the field of region-based theory of space (RBTS). The origin of this

theory goes back to Whitehead [34] and de Laguna [10] and consists of a radical recon-

struction of the classical Euclidean approach to the theory of space, putting on the base

of the new approach the more realistic primitive notions, like region as an abstraction

of physical body, and some intuitive relations between regions, like part-of, overlap and

contact. In this way geometry has been based on mereology – the theory of parts and

wholes [30]. While at the beginning this new approach was only on the center of at-

tention of some philosophers and philosophically oriented logicians and mathematicians,



Tinko Tinchev and Dimiter Vakarelov 435

now Whitehead’s ideas on RBTS flourished and found applications in some areas of

computer science: qualitative spatial reasoning (QSR), knowledge representation, geo-

graphical information systems, formal ontologies in information systems, image process-

ing, natural language semantics etc. The reason is that the languages of RBTS are quite

simple and suitable for description of some qualitative spatial features and properties of

space bodies. Recent surveys are [1,4,27,32], surveys concerning various applications are

[8,9] (see also special issues of Fundamenta Informaticæ [16] and the Journal of Applied

Non-classical Logics [2]). One of the most popular systems among the community of

QSR-researchers is the system of Region Connection Calculus (RCC) introduced in [28].

RCC attracted quite intensive research in the field of region-based theory of space and

related spatial logics, both on its applied and mathematical aspects. An algebraic refor-

mulation of RCC as a Boolean algebra with an additional relation C called connection

was presented in [31] (in the subsequent literature connection has been renamed with

the more convenient name contact). Now a common name for various similar systems

is the notion of contact algebra, the simplest one introduced in [11]. The elements of a

given contact algebra are formal counterparts of regions and by means of the Boolean

operations one can define new regions by means of given ones. Standard models of con-

tact algebras are the algebras of regular closed subsets over some topological spaces with

contact aCb holding if the regions a and b share a common point. The relationship of

a class of contact algebras and the corresponding class of topological spaces is studied

in the topological representation theory of that class, which states that each algebra of

the class is representable (in some definite sense) as a contact algebra of regular-closed

subsets of a topological space. Representation theory for contact algebras corresponding

to RCC was given for the first time in [13], representation theory for contact algebras

corresponding to various important classes of topological spaces, was given in [11]. Let

us note that contact algebras have also non-topological models based on the notion of

adjacency space formalizing some discrete versions of region-based theory of space (see

[17], [12], [3]). Note that adjacency spaces can be identified with the standard notion of

reflexive graph.

In the present paper we study several spatial logics related to RCC system, containing

the connectedness predicates c(a) and c≤n(a). In topological models the predicate c(a)

says that the region a is connected (in a topological sense) and c≤n(a) says that the

region a has at most n connected components. These predicates were studied for the

first time in [25,26] (see also [32]). Recently a quite intensive investigation of spatial

logics containing c(a) and c≤n(a) with respect to their expressiveness and complexity has

been done in [19] – [23]. In some sense we continue the study started in [19] – [23], but

with respect to the question of complete quantifier-free axiomatizations of some of the

logics considered in [19]– [23]. Namely we are interested in logics based on the language

of contact algebras extended with predicates c and c≤n. Let us note that in contact

algebras considered as first-order theories, the predicates c and c≤n are definable, for

instance for c we have the following equivalence:

(#) c(a)↔ (∀b, d)(b 6= 0 ∧ d 6= 0 ∧ a = b + d→ bCd).

The problem is that the logics considered in [19]– [23] are quantifier-free, and we also

want to obtain quantifier-free axiomatizations. The implication from left to the right
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in (#) is a universal sentence and is equivalent to the following quantifier-free formula,

which can be taken as an axiom:

c(a) ∧ b 6= 0 ∧ d 6= 0 ∧ a = b + d→ bCd

The converse implication of (#) is not, however, a universal formula, and we will simulate

it axiomatically by a special finitary rule of inference. Quantifier-free axiomatizations of

spatial logics based on contact algebras, and some additional finitary rules of inference

imitating reasoning with quantifiers were studied for the first time in [3]. In this paper

we continue this study in the presence of the new predicates c≤n (in fact c is just c≤1).

We introduce also a simplified language in which we replace the predicates c≤n,

(n = 1, 2, . . .), by corresponding sets of nominals C≤n, denoting regions satisfying c≤n.

We introduce three kinds of semantics of the languages in consideration: algebraic –

based on contact algebras, topological – corresponding to the main type of point-based

models of space, and a Kripke style semantics based on the notion of adjacency space.

Let us note that the Kripke semantics is a new one for the considered logics and gives a

graph sense of the connectedness predicates, for instance c(a) means that a is a connected

(in a graph-theoretic sense) set of points. We present axiomatic systems strongly com-

plete in several important classes of topological spaces including all topological spaces,

all connected topological spaces, all spaces related to RCC system, all (connected) com-

pact Hausdorff spaces. This makes possible to transfer some of the complexity results

obtained in [19] to some new classes of topological spaces. Completeness theorems are

based on a special representation theory of contact algebras with predicates c≤n in topo-

logical spaces and separately, the representation theory in adjacency spaces. We show

also that with respect to weak completeness some of the additional rules of the logics in

question can be eliminated, which implies collapsing of some of the logics. Using a new

filtration techniques applicable to axiomatic systems with additional rules of inference,

we prove that each of the considered logics is complete in a corresponding class of finite

models, from which we derive their decidability.

The rest of the paper is organized as follows. In Section 1 we remind some facts for

contact algebras. Section 2 is devoted to contact algebras with predicates c and c≤n

and their representation theory both in topological spaces and in adjacency spaces. In

Section 3 we introduce two kinds of spatial logics: one based on contact algebras and

predicates c and c≤n, and another one, in which predicates c≤n are replaced by sets

C≤n of nominals denoting regions satisfying c≤n. We prove here several completeness

theorems. Section 4 is for some concluding remarks and future plans.

1 Contact algebras

Definition 1.1 Following [11], by a contact algebra we mean any system B = (B, C) =

(B, 0, 1, ·, +, ∗, C), where (B, 0, 1, ·, +, ∗) is a nondegenerate Boolean algebra, ∗ denotes

the Boolean complement, and C is a binary relation in B, called a contact, such that

(C1) if xCy, then x, y 6= 0,

(C2) xC(y + z) if and only if xCy or xCz,

(C3) if xCy, then yCx,
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(C4) if x · y 6= 0, then xCy.

B is a complete contact algebra if it is a complete Boolean algebra.

Elements of B are called regions. The complement of C is denoted by C . The relation

� of nontangential inclusion is defined as follows: x� y if and only if xCy∗.

Axioms (C2) and (C3) imply the monotonicity of C with respect to ≤:

(Mono) if aCb and a ≤ a′ and b ≤ b′, then a′Cb′.

We consider the standard definitions of subalgebra, isomorphism, embedding, etc.

(cf. [7, Ch. V]). A contact subalgebra B1 of B2 is said to be dense if

(Dense) (∀a2 ∈ B2)(a2 6= 0→ (∃a1 ∈ B1)(a1 6= 0 and a1 ≤ a2))

If h embeds B as a dense contact subalgebra, then h is called dense embedding.

Consider contact algebras satisfying some of the following axioms:

(Con) if a 6= 0 and a 6= 1, then aCa∗ connectedness

(Ext) if a 6= 1, then ∃b 6= 0 such that aCb extensionality

(Nor) if a� b, then ∃d such that a� d� b normality

A contact algebra satisfying axiom (Con) ((Ext) or (Nor)) is said to be connected

(extensional or normal).

Contact algebras satisfying axioms (Con) and (Ext) were introduced in [31] under

the name Boolean contact algebras and were considered as an equivalent formulation

of the system RCC [28]. It is proved in [31] that (Ext) is equivalent (under axioms

(C1)–(C4)) to each of the following axioms:

(Ext′) a ≤ b if and only if (∀d ∈ B)(aCd→ bCd),

(Ext′′) a = b if and only if (∀d ∈ B)(aCd ↔ bCd),

(Ext′′′) (∀b 6= 0)(∃a 6= 0)(a� b).

Note that axiom (Con) is equivalent to the axiom

(Con′) if a 6= 0, b 6= 0, and a + b = 1, then aCb.

Similarly, (Nor) is equivalent to the axiom

(Nor′) if aCb, then (∃a′b′)(aCa′ and bCb′ and a′ + b′ = 1).

Example 1.2 (1) Topological contact algebras. Let X be a topological space with

operations of closure Cl(a) and interior Int(a). A subset a of X is regular closed if

a = Cl(Int(a)). The set of all regular closed subsets of X is denoted by RC(X). As

is known, the regular closed sets with operations a + b = a ∪ b, a · b = Cl(Int(a ∩ b)),

a∗ = Cl(X \ a) = Cl(−a), 0 = ∅, and 1 = X form a Boolean algebra. Moreover, if

we consider the infinite join operation
∑

i∈I ai = Cl(
⋃

i∈I ai), then the Boolean algebra

RC(X) is complete. The contact is defined as follows: a CX b if and only if a∩ b 6= ∅. It

satisfies axioms (C1)–(C4) and consequently RC(X) is a contact algebra. All the alge-

bras of the kind RC(X) and all their subalgebras are called topological contact algebras.

(2) Discrete contact algebras. Let (W, R) be a relational system with a symmetric and
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reflexive binary relation R on W . Following Galton [17] we call such systems adjacency

spaces and the relation R – adjacency relation. For a, b ⊆ W define a contact aCRb

iff (∃x ∈ a)(∃y ∈ b)(xRy). It can be seen that the Boolean algebra CA(W, R) of all

subsets of W with the above relational contact is a contact algebra. Since this is a non-

topological example of contact algebras we call CA(W, R) and its subalgebras discrete

contact algebras. Regions in CA(W, R) are arbitrary subsets of W .

Lemma 1.3 ([12]) Let CA(W, R) be discrete contact algebra over the adjacency space

(W, R). Then:

(i) CA(W, R) satisfies (Nor) iff R is an equivalence relation.

(ii) CA(W, R) satisfies (Con) iff (W, R), considered as a graph, is a connected graph,

i.e. for any two points x, y ∈W there is an R-path connecting x and y.

We recall in Appendix A some topological notions used later on.

Theorem 1.4 (Topological representation of contact algebras) Let B =

(B, C) be a contact algebra. Then:

(I) (i) There exists a compact semiregular T0-space X and a dense embedding h of

B in the contact algebra of regular closed sets RC(X). Moreover,

(i1) B satisfies (Nor) iff X is κ-normal.

(i2) B satisfies (Con) iff X is connected.

(ii) If B satisfies axiom (Ext), then there exists a compact weakly regular T1-space

X and a dense embedding h of B in the contact algebra of regular closed sets RC(X).

Moreover,

(ii1) B satisfies (Nor) iff X is κ-normal.

(ii2) B satisfies (Con) iff X is connected.

(iii) If B satisfies both axioms (Ext) and (Nor), then there exists a compact Hausdorff

space (X, τ) and a dense embedding h of B in the contact algebra of regular closed sets

RC(X). Moreover,

(iii1) B satisfies (Con) iff X is connected.

(II) If B is a complete contact algebra then in all of the above cases h becomes an

isomorphism between (B, C) and (RC(X), CX ). In all cases the set {h(a) : a ∈ B} is a

base for the closed sets of X.

Remark 1.5 Different parts of Theorem 1.4 have been proved by different authors. In

the present form the theorem is taken from [32]. The case (iii) was proved for the first

time in [33]. The case (i)+(i1) and (i)+(i1)+(II) was proved in [11, Sec. 5]. The case

(ii)+ (ii1) covers RCC system [28]. This case, without compactness, was proved for the

first time in [13], and the case with compactness – in [11, Sec. 5]. The fact that in all

cases we have compact representation is important, because it will be used in the next

section in the representation theory of contact algebras with connectedness predicates.

Definition 1.6 By Theorem 1.4 for each class Σ of contact algebras determined by

some of the axioms (Con), (Ext) and (Nor) there exists a class Top(Σ) of topological

spaces in which the members of Σ are representable. We call the spaces from Top(Σ)

corresponding to the algebras from Σ.
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Theorem 1.7 (Discrete representation of contact algebras [12]) Let B =

(B, C) be a contact algebra. Then there exists an adjacency space (W, R) and an em-

bedding h into the contact algebra CA(W, R). Moreover, B = (B, C) satisfies (Nor) iff

R is an equivalence relation. If B is finite then (W, R) is also finite and h becomes an

isomorphism between B and CA(W, R).

2 Contact algebras with connectedness predicates

We will use the notations of connectedness predicates as in [19,26] – c(a) and c≤n(a). In

topological spaces c(a) means that the region a is connected in a topological sense and

c≤n(a) – that a is a sum of at most n (n ≥ 1) connected components. Obviously c(a)

iff c≤1(a). The following lemma is well known for c (see Lemma 4.1 (iii)) and can easily

be proved for c≤n by induction on n.

Lemma 2.1 Let X be a topological space and a ∈ RC(X). Then:

(i) c(a) iff (∀b0 6= ∅, b1 6= ∅ ∈ RC(X))(a = b0 ∪ b1 → b0 ∩ b1 6= ∅),

(ii) c≤1(a) iff c(a),

c≤(n+1)(a) iff (∀b 6= ∅, d 6= ∅ ∈ RC(X))(a = b ∪ d→ c≤n(b) ∨ b ∩ d 6= ∅),

(iii) c≤n(a) iff (∀b0 6= ∅ . . . bn 6= ∅ ∈ RC(X))(a = b0 ∪ . . . ∪ bn →

(∃i, j : 1 ≤ i < j ≤ n)(bi ∩ bj 6= ∅)).

Note that Lemma 2.1 (ii) presents an inductive definition for the predicate c≤n and

(iii) – a direct definition for each n ≥ 1. This suggests to adopt the following abstract

definition of predicates c≤n in arbitrary contact algebras.

Definition 2.2 Let B be a contact algebra. We define c≤n(a) for an arbitrary a ∈ B,

n = 1, 2, . . . by induction as follows:

(i) c(a)↔def (∀b, d ∈ B)(b 6= 0 ∧ d 6= 0 ∧ a = b + d→ bCd),

(ii) c≤1(a)↔def c(a),

(iii) c≤(n+1)(a)↔def (∀b, d ∈ B)(b 6= 0 ∧ d 6= 0 ∧ a = b + d→ c≤n(b) ∨ bCd).

We denote by C≤n(B) the set of all regions a such that c≤n(a).

Note that the sets C≤n(B) are non-empty, because we always have c≤n(0).

Lemma 2.3 The following equivalence is true for any a ∈ B:

c≤n(a) iff (∀b0 . . . bn ∈ B)(b0 6= 0 ∧ . . . ∧ bn 6= 0 ∧ a = b0 + · · ·+ bn →

(∃i, j : 0 ≤ i < j ≤ n)(biCbj)).

Proof. The proof proceeds by induction on n and the definition of c≤n. 2

Now we will see that the abstract definition of connectedness predicates c≤n in

contact algebras CA(W, R) over adjacency spaces coincides with the standard graph-

theoretic connectedness (note that each adjacency space (W, R) can be considered as a

graph in a standard way).

In order to characterize the predicates c≤n in discrete contact algebras (see Example

1.2 (2)) we will use the following notations. Let (W, R) be an adjacency space and



440 Logics of Space with Connectedness Predicates: Complete Axiomatizations

a ⊆W . We denote by Ra the restriction of R on a, and R∗
a will denote the reflexive and

transitive closure of Ra. Since R is a symmetric and reflexive relation on W , then Ra is

the same on the set a and in this case R∗
a is an equivalence relation on a. Having in mind

the above remarks, (W, R) is connected in a graph-theoretic sense (path-connected) if

for each x, y ∈ W we have xR∗y. Since for any a ⊆ W the system (a, Ra) is also an

adjacency space, a is connected if for each x, y ∈ a we have xR∗
ay. Since R∗

a is an

equivalence relation then a is path-connected iff R∗
a is the universal relation on a. In

general R∗
a divides a into equivalence classes called connected components of a. Having

the notion of a connected component, c(a) means that a is itself a connected component

and c≤n(a) means that a is a sum of at most n connected components.

Lemma 2.4 Let (W, R) be adjacency space and a ⊆W . Then:

(i) c(a) iff (∀x, y ∈ a)(xR∗
ay).

(ii) c≤n(a) iff (∀x0 . . . xn ∈ a)(∃i, j : 0 ≤ i < j ≤ n)(xiR
∗
axj).

Proof. See the appendix B. 2

In the next theorem we deal with topological representation theory of contact alge-

bras with connectedness predicates c≤n. Although c≤n is definable in contact algebras,

if we put this predicate among the signature of contact algebra, it changes the notion of

embedding – now every embedding must preserve also the new predicate.

Theorem 2.5 Let B = (B, C) be a contact algebra, X be a semiregular and compact

topological space and h be an embedding of (B, C) into the contact algebra RC(X) such

that the set {h(b) : b ∈ B} forms a base for the closed sets in X. Then for any a ∈ B:

c≤n(a) holds in B iff c≤n(h(a)) holds in RC(X).

Proof. See the Appendix C. 2

Let us recall that all embeddings h in Theorem 1.4 are in compact spaces X such

that the set {h(a) : a ∈ B} forms a base for closed subsets of X . So the assumptions

of Theorem 2.5 are fulfilled and hence h preserves the connectedness predicates c≤n. So

we have:

Corollary 2.6 All embeddings from Theorem 1.4 preserve the predicates c≤n.

In the next theorem we deal with discrete representation of finite contact algebras

with connectedness predicates.

Theorem 2.7 Let B = (B, C) be a finite contact algebra. Then there exists a finite

adjacency space (W, R) and an isomorphism h between B and CA(W, R) such that for

every a ∈ B the following equivalence is true: c≤n(a) holds in B iff c≤n(h(a)) holds in

CA(W, R). Moreover,

(i) B satisfies (Con) iff the graph (W, R) is connected;

(ii) B satisfies (Nor) iff the relation R is an equivalence relation.

Proof. The theorem is a direct corollary of Theorem 1.7 and Lemma 2.4. 2
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3 Spatial logics with connectedness predicates

We will introduce in this section two kinds of spatial logics. The first kind is based on the

language of contact algebras extended with connectedness predicates c≤n. The second

kind is also based on the language of contact algebras, but instead of the predicates c≤n,

we consider for each natural number n ≥ 1 a special set of nominals denoting regions

with the property c≤n.

Definition 3.1 (RCC-like logics) The minimal logic without connectedness predi-

cates and nominals based on the class of all contact algebras, was studied in [3] under

the name “Propositional Weak RCC” and denoted by PWRCC. The adjective “Propo-

sitional” is used because all logics are quantifier-free, i.e. propositional. We considered

in [3] several other logics based on the same language corresponding to the classes of

contact algebras satisfying some or all of the axioms (Con), (Ext) and (Nor). We denote

these logics putting indices Con, Ext and Nor to the abbreviation PWRCC. The logic

PWRCCCon,Ext is denoted also by PRCC, because it corresponds to the class of all con-

nected and extensional contact algebras, the algebraic equivalent of the RCC system.

By the same reason the system PWRCCCon,Ext,Nor is denoted by PRCCNor.

In [3] axiomatization of all of these logics was given (see also Appendix D) and strong

and weak completeness theorems were proved with respect to topological semantics,

corresponding to contact algebras over some classes of topological spaces (namely the

topological spaces in which the corresponding contact algebras are representable), and

weak completeness with respect to Kripke semantics – corresponding to the contact

algebras over some classes of adjacency spaces. It was shown in [3] that with respect to

the weak completeness theorem all RCC-like logics collapse into two systems – PWRCC

and PWRCCCon. The collapsing classes can be seen in the following diagram.

Fig. 1. Propositional RCC type logics

The systems PWRCC and PWRCCCon are equivalent to the systems BRCC-8 in-

troduced by Wolter and Zakharyschev in [35] and interpreted in all topological spaces
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and in all connected topological spaces. These two systems extended with predicates c

and c≤n are among the important logics studied in [19] – [23].

In this paper we will study all of the logics in the above diagram extended first with

the predicates c≤n, and second extended with nominals denoting some regions satisfying

c≤n. We will denote the corresponding logics as follows.

Definition 3.2 (Logics with predicates c≤n and nominals) If L is the name of

one of the above RCC-like logics, its extension with the predicates c≤n, n ≥ 1, will be

denoted by LC , while extensions with nominals for the regions satisfying c≤n, n ≥ 1,

will be denoted by LNomC . The logics LC and LNomC have the same inclusion diagram

as their counterparts L from Fig 1.

We will present a complete axiomatization of all of these logics, considered in the cor-

responding classes of contact algebras and prove strong and weak completeness theorems

with respect to algebraic, topological and Kripke semantics.

3.1 Syntax

We consider two languages denoted by LC = L(≤, C, c≤n) and LNomC = L(≤, C,

NomC≤n). The language L(≤, C, c≤n) consists of:

• a denumerable set V ar of Boolean variables,

• Boolean operations: + (Boolean sum), · (Boolean meet), ∗ (Boolean complement),

0,1 (Boolean constants).

• Relational symbols: ≤ (part-of), C (contact), c≤n for each natural number n ≥ 1.

• Standard propositional connectives: ¬,∧,∨,⇒,⇔ and the propositional constants

⊥,>.

• parentheses: (, ).

The set of Boolean terms is defined in a standard way from Boolean variables and

constants by means of Boolean operations.

Atomic formulas are of the type: a ≤ b, aCb, c≤n(a), ⊥, >, where a, b are Boolean

terms. Formulas are defined from atomic formulas by using propositional connectives in

a standard way.

Abbreviations: a = b =def (a ≤ b)∧ (b ≤ a), a 6= b =def ¬(a = b), aCb =def ¬(aCb),

a� b =def aCb∗.

The restriction of the language L(≤, C, c≤n) only for n = 1 is denoted by Lc = L(≤

, C, c). Let us note that in [19] the above languages are denoted correspondingly LC by

Ccc and Lc by Cc.

The language L(≤, C, NomC≤n) differs from the language L(≤, C, c≤n) as follows:

instead of predicate symbols c≤n, it has for each natural number n ≥ 1 a denumerable

set NomC≤n of new propositional letters called nominals (NomC≤1 is denoted also by

NomC). If a ∈ NomC≤n then the number n is attached to the nominal a and called its

characteristic number. Terms now are defined by Boolean variables, Boolean constants

and nominals by Boolean operations. Atomic formulas are only of the form a ≤ b, aCb,

⊥ and > where a, b are Boolean terms. The difference between Boolean variables and

nominals is that variables can be substituted by arbitrary terms, while nominals can be
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substituted only by nominals with the same characteristic number.

3.2 Semantics

Both languages are interpreted in contact algebras as follows. Let B = (B, C) be a

contact algebra with definable predicates c≤n. A mapping v : V ar → B is called a

valuation. Valuations are extended homomorphically to arbitrary Boolean terms in a

standard way. A pair M = (B, v) is called a model. We define a truth of a formula α in

a model (B, v), denoted by (B, v) |= α, inductively as follows:

(B, v) |= a ≤ b iff v(a) ≤ v(b),

(B, v) |= aCb iff v(a)Cv(b)

(B, v) |= c≤n(a) iff c≤n(v(a))

The interpretation in the language L(≤, C, NomC≤n) differs as follows. Any val-

uation v maps Boolean variables into elements of B and if p ∈ NomC≤n then

v(p) ∈ C≤n(B). So nominals from NomC≤n are mapped into regions satisfying c≤n.

The interpretation of formulas is the same.

A formula α (in both languages) is true in the contact algebra (B, C) if for all

valuations v we have (B, C, v) |= α. If Σ is a class of contact algebras then α is true

in Σ if it is true in each member of Σ. The set L(Σ) of all formulas (from the given

language) true in Σ is called the logic of Σ. M = (B, v) is a model of a set of formulas

A if (B, v) |= α for every α ∈ A. This is the algebraic semantics of both languages and

the models in the form M = (B, v) are called algebraic models.

If we consider interpretations in contact algebras of the form RC(X) from a given

topological space – this is the topological semantics, and if we consider only interpreta-

tions in contact algebras of the form CA(W, R) over some adjacency space (W, R) – this

is the Kripke (relational) semantics of the presented languages.

It is shown in [19,21] that the language with predicates c≤n is equally expressive with

the language having only the predicate c, but the translations need exponentially more

new variables. Consequently our languages L(≤, C, c≤n) and L(≤, C, c) also have equal

expressive power.

Although the languages with nominas do not contain the predicates c≤n, we can

simulate them by the corresponding nominals from NomC≤n and some new variables in

a way similar to the proof of the above result given in [19,21], showing in this way that

the languages with nominals are equally expresive with the languages with predicates

c≤n. For instance formulas from the language L(≤, C, c) can be reduced to formulas

from the language L(≤, C, NomC) as follows. Let α be a formula from L(≤, C, c), Each

positive occurrence of predicates of the form c(a) have to be replaced by a = q with

a fresh nominal q ∈ NomC. Each negative occurrence of formulas of the form c(a)

have to be replaced by the formula (a = q1 + q2) ∧ (q1 6= 0) ∧ (q2 6= 0) ∧ q1Cq2 with

fresh variables q1, q2. In this way we obtain a formula α′ in the language L(≤, C, NomC)

equally satisfiable with the formula α. So, the advantage of logics with the predicates c≤n

is that they allow to speak in a shorter way about connectedness, while the advantage

of logics with nominals is that they are simpler, and as we shall see in the next section,

they do not require in their axiomatization additional rules.
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3.3 Axiomatizations and completeness theorems

Let L be any of the logics from Definition 3.1. The axiomatization of LC (see Definition

3.2) can be obtained from the axiomatization of L given in [3] (see Appendix D) by

adding one additional axiom denoted by (Ax c≤n) for each natural number n ≥ 1, and

by adding one additional rule denoted by (Rule c≤n) for each n ≥ 1:

(Ax c≤n) c≤n(a) ∧
n∧

i=0

pi 6= 0 ∧ a =
n∑

i=0

pi ⇒
∨

0≤i<j≤n

piCpj

(Rule c≤n)

α ∧
n∧

i=0

pi 6= 0 ∧ a =
n∑

i=0

pi ⇒
∨

0≤i<j≤n

piCpj

α⇒ c≤n(a)
,

where α is a formula and p0, . . . , pn are different Boolean variables not occurring in the

term a and the formula α (the parameters of the application of the rule).

The axiomatization of LNomC can be obtained by adding to the axiomatization of

L an additional axiom denoted by (Ax NomC≤n) for all n ≥ 1 and for all nominals

a ∈ C≤n:

(Ax NomC≤n)
n∧

i=0

pi 6= 0 ∧ a =
n∑

i=0

pi ⇒
∨

0≤i<j≤n

piCpj .

Theorem 3.3 (Strong Completeness theorem) Let L be any logic from Definition

3.1 and L be any of the logics LC and LNomC . Denote by Σ(L) the class of contact alge-

bras corresponding to L and by Top(Σ(L)) the class of topological spaces corresponding

(by Definition 1.6) to Σ(L) in which the members of Σ(L) are representable. Then the

following conditions are equivalent for any set of formulas A in the language of L:

(i) A is consistent in L,

(ii) A has an algebraic model in Σ(L),

(iii) A has a topological model in Top(Σ(L)).

Proof. See Appendix E. 2

Theorem 3.4 (Weak completeness theorem including finite models) Let L be

any logic from Definition 3.1 and L be any of the logics LC and LNomC . Then the

following conditions are equivalent for any formula α of the language of L:

(i) α is a theorem of L.

(ii) α is true in all contact algebras from Σ(L),

(iii) α is true in all contact algebras RC(X) from Top(Σ(L)).

(iv) α is true in all finite contact algebras in which all theorems of L are true.

(v) α is true in all contact algebras CA(W, R) over all finite adjacency spaces (W, R)

in which all theorems of L are true.

Proof. The equivalence of (i), (ii) and (iii) follow from Theorem 3.3. The equivalence of

(iv) and (v) is a corollary of Theorem 2.7. Obviously (ii) implies (iv). For the implication

(iv)→(i) suppose that α is not theorem of L. Then there is a canonical model (B, C, v) of

L determined by a maximal consistent set Γ (see the proof of Theorem 3.3) which falsifies

α. Now by a special filtration construction we will define a finite model (B ′, C ′, v′)
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which also falsifies α. Let p1, . . . , pk be the Boolean variables occurring in α. Let βi,

i = 1, . . . , βl be the sequence of all sub-formulas of α not belonging to Γ which have a

form of the conclusion of some of the special rules. By the properties of Γ for each βi there

exists a finite sequence of Boolean variables making the premise of the corresponding rule

not belonging to Γ. For instance if the conclusion βi = γ ⇒ c≤n(a) of the rule (Rule c≤n)

does not belong to Γ then the premise γ ∧
∧n

i=0 ri 6= 0∧ a =
∑n

i=0 ri ⇒
∨

0≤i<j≤n riCrj

also does not belong to Γ for some Boolean variables r0, . . . , rn. Now let q1, . . . , qm be

the sequence of all such variables determined by the formulas βi. Consider the finite

Boolean subalgebra B′ of B generated by the elements |p1|, . . . , |pk|, |q1|, . . . , |qm| of B. It

is itself a contact subalgebra of (B, C) with the same contact C. Let v′ be the canonical

valuation v but restricted to the variables p1, . . . , pk, q1, . . . , qm. It is easy to see that

for all Boolean terms a from p1, . . . , pk, q1, . . . , qm we have v(a) = v′(a). The following

statement is a kind of Filtration Lemma:

Filtration Lemma. The following equivalence is true for all subformulas γ of α:

(B, C, v) |= γ iff (B′, C, v′) |= γ.

The proof goes by induction on the construction of γ. The nontrivial part is for the

atomic γ = c≤n(a).

(→) Suppose (B, C, v) |= c≤n(a), and for the sake of contradiction that (B′, C, v′)

6|= c≤n(a), i.e. c≤n(v′(a)) is not true in (B′, C). Then for some Boolean terms b0, . . . , bn

from p1, . . . , pk, q1, . . . , qm we have: v′(a) = v′(b0)+. . .+v′(bn), v′(bi) 6= 0 for i = 0, . . . , n

and for all i, j, 0 ≤ i < j ≤ n, we have v′(bi)Cv′(bj). Since B′ ⊆ B and v′(bi) = v(bi) for

all i = 0, . . . , n, we obtain that c≤n(v(a)) does not hold in (B, C, v), which contradicts

the assumption.

(←). We will reason by contraposition. Suppose that (B, C, v) 6|= c≤n(a). By the

properties of the canonical model this implies that c≤n(a) 6∈ Γ. Then by the properties of

the maximal consistent set Γ, the formula
∧n

i=0 ri 6= 0∧ a =
∑n

i=0 ri ⇒
∨

0≤i<j≤n riCrj

also does not belong to Γ for some Boolean variables r0, . . . , rn, such that (by the

above construction) |r0|, . . . , |rn| are from the generators of B′. This implies that

v′(a) =
∑n

i=0 v′(ri), v′(ri) 6= 0 for i = 0 . . . , n and for all i, j, 0 ≤ i < j ≤ n, we

have v′(ri)Cv′(rj). All this shows that (B′, C, v′) 6|= c≤n(a), which finishes the proof of

the Filtration lemma.

By the Filtration lemma we obtain that α is falsified in the finite Boolean alge-

bra (B′, C).

Now we will show that all theorems of L are true in (B′, C). To this end we first

show that all theorems of L are true in the canonical algebra (B, C), which would imply

that the same is true for (B′, C). This follows from the following observation. By the

properties of the canonical model (B, C, v) we have that for any formula β: (B, C, v) |= β

iff β ∈ Γ. So, if β is a theorem of L, then β ∈ Γ and hence (B, C, v) |= β. Let w be

an arbitrary valuation in B. Then w defines a substitution on Boolean variables Subw,

which can be applied to arbitrary formulas. It is easy to see that the following holds:

(B, C, w) |= β iff (B, C, v) |= Subw(β) iff Subw(β) ∈ Γ. But if β is a theorem then

Subw(β) is also a theorem which implies that (B, C, w) |= β. 2

As a consequence of Theorem 3.4 we obtain:
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Corollary 3.5 (i) The logics PWRCCC and PWRCCNomC are complete in the class

of all contact algebras CA(W, R) over arbitrary (finite) adjacency spaces.

(ii) The logics PWRCCC
Con and PWRCCNomC

Con are complete in the class of all contact

algebras CA(W, R) over arbitrary (finite) connected adjacency spaces.

Theorem 3.6 (Admisisibility of the rules (EXT) and (NOR)) (i) The rules

(EXT) and (NOR) are admissible in the logics PWRCCC and PWRCCNomC.

(ii) The rules (EXT) and (NOR) are admissible in the logics PWRCCC
Con and

PWRCCNomC
Con .

Proof. We proved in [3] that the rules (EXT) and (NOR) (see Appendix D) are ad-

missible for the logics PWRCC and PWRCCNor. Inspecting the proof in [3] it can be

seen that the same construction can be used for the proof of the logics PWRCCC and

PWRCCNomC . The proof uses Corollary 3.5. So we invite the reader to consult [3]. 2

Corollary 3.7 (Elimination of the rules (EXT) and (NOR)) (i) The logics

PWRCCC , PWRCCC
Ext, PWRCCC

Nor, PWRCCC
Ext,Nor have equal sets of theorems.

The logic PWRCCC is weakly complete in all classes of models in which PWRCCC
Ext,

PWRCCC
Nor, PWRCCC

Ext,Nor are strongly complete.

(ii) The logics PWRCCNomC , PWRCCNomC
Ext , PWRCCNomC

Nor , PWRCCNomC
Ext,Nor have

equal sets of theorems. The logic PWRCCNomC is weakly complete in all classes of

models in which PWRCCNomC
Ext , PWRCCNomC

Nor , PWRCCNomC
Ext,Nor are strongly complete.

(iii) The logics PWRCCC
Con, PWRCCC

Ext,Con, PWRCCC
Nor,Con, PWRCCC

Ext,Nor,Con

have equal sets of theorems. The logic PWRCCC
Con is weakly complete in all classes

of models in which PWRCCC
Ext,Con, PWRCCC

Nor,Con, PWRCCC
Ext,Nor,Con are strongly

complete.

(iv) The logics PWRCCNomC
Con , PWRCCNomC

Ext,Con, PWRCCNomC
Nor,Con,

PWRCCNomC
Ext,Nor,Con have equal sets of theorems. The logic PWRCCNomC

Con is

complete in all classes of models in which PWRCCNomC
Ext,Con, PWRCCNomC

Nor,Con,

PWRCCNomC
Ext,Nor,Con are strongly complete.

(v) All mentioned logics have finite model property, are finitely axiomatizable and

hence are decidable.

Let us note that with respect to the weak completeness Corollary 3.5 and Corol-

lary 3.7 show that we have only four interesting logics: PWRCCC , PWRCCC
Con,

PWRCCNomC and PWRCCNomC
Con , which do not contain the rules (Ext) and (Nor).

Note that PWRCCC and PWRCCC
Con are just the logics BRCC extended with the

predicates c≤n studied in [19] – [21] considered respectively in the classes of all topolog-

ical spaces and all connected topological spaces. The Corollary 3.7 in fact shows that

these rules are admissible for these logics, which implies that we may apply the Strong

completeness theorem 3.3 to obtain weak completeness for these logics for the classes of

models considered for the logics having these rules. For instance Corollary 3.7 says for

the logic PWRCCC
Con that it is complete in: (1) all connected topological spaces, (2)

all compact connected spaces, (3) all connected weakly regular spaces (spaces for the

system RCC), (4) all connected weakly regular and compact T1 spaces, (5) all compact

Hausdorff spaces, (6) all models over connected adjacency spaces (W, R). It is shown



Tinko Tinchev and Dimiter Vakarelov 447

in [19] that satisfiability for formulas from the language with predicate c is ExpTime

complete in the class of all connected topological spaces and NExpTime complete in the

same class for formulas from the language containing the predicates c≤n. Now this result

can be transferred for all mentioned classes of spaces. Similar transfers are true also for

the other three logics. Another remark for these logics is the following open question:

is it possible to eliminate the rule (Rule c≤n) replacing it only with some set of axioms.

The logics with nominals did not contain this rule and in a sense can be considered as

a result of elimination of this rule (Rule c≤n).

4 Concluding remarks

In this paper we have presented complete axiomatizations of several natural spatial

logics based on the language of contact algebras with connectedness predicates c and

c≤n. Some of these logics were studied semantically with respect to their complexity in

[19] – [21]. We proved for the introduced logics strong and weak completeness theorems

for various important classes of topological spaces and also completeness theorems with

respect to some non-topological spaces – adjacency spaces, which are used for certain

discrete models of space. This implies that all these classes have the same complexity of

satisfiability and allows to transfer some known results from [19] – [21]. The semantics

in adjacency spaces can be considered also as a kind of Kripke semantics over reflexive

and symmetric Kripke frames (W, R). This semantics allows to translate our logics in

the modal logics over KTB + universal modality, which shows that not only S4, but

also KTB has also a spatial meaning (see about this discussion [3, Sec. 1]). In [19]

– [21] several other languages containing the predicates c and c≤n are considered and

the problem for their complete axiomatization with respect to the intended semantics

remains open. We postpone this for our plans for the future.
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Appendix A. Some topological notions

A topological space X is said to be

• semiregular if it has a base B of regular closed sets; namely, every closed set is the

intersection of elements of B,

• normal if every pair of closed disjoint sets can be separated by a pair of open sets,

• κ-normal (cf. [29]) if every pair of regular closed disjoint sets can be separated by

a pair of open sets,

• weakly regular (cf. [13]) if it is semiregular and for every nonempty open set a there

exits a nonempty open set b such that Cl(b) ⊆ a,

• connected if it cannot be represented as the sum of two disjoint nonempty open

sets (if a ⊆ X , then a is connected if it is connected in the subspace topology),

• a T0-space if for every two different points x 6= y there exists an open set that

contains one of them and does not contain the other,

• a T1-space if every one-point set {x} is a closed set,

• a Hausdorff space (or a T2-space) if every two different points can be separated by

a pair of disjoint open sets,

• a compact space if it satisfies the following condition: if {Ai : i ∈ I} is a nonempty

family of closed sets of X such that for every finite nonempty subset J ⊆ I we have
⋂
{Ai : i ∈ J} 6= ∅, then

⋂
{Ai : i ∈ I} 6= ∅.

Lemma 4.1 The following assertions hold:

(i) Let X be semiregular. Then X is weakly regular if and only if RC(X) satisfies

(Ext) [13].

(ii) X is κ-normal if and only if RC(X) satisfies (Nor) [13].

(iii) X is connected if and only if RC(X) satisfies axiom (Con) [5,13].

(iv) If X is a compact Hausdorff space, then RC(X) satisfies (Ext) and (Nor) [33].

(iv) If X is a normal Hausdorff space, then RC(X) satisfies (Nor) [6].

Appendix B. Proof of Lemma 2.4

Proof. (i) Let a ⊆ W . Then (a, Ra) is an adjacency space. Then CA(a, Ra) satisfies

axiom (Con’) iff (∀b, d ⊆ a)(b 6= ∅∧d 6= ∅∧a = b∪d→ bCRd) iff c(a) iff (by Lemma 1.3

(ii)) a is path-connected, i.e. (∀x, y ∈ a)(xR∗
ay).

(ii) We will use the inductive definition of c≤n and proceed by induction on n. The

case n = 1 (the base of induction) is just (i). So suppose that the statement is true

for n and proceed for n + 1. We have to prove that the following two conditions are

equivalent:

(I) (∀b, d ⊆ a)(b 6= ∅ ∧ d 6= ∅ ∧ a = b ∪ d→ c≤n(b) ∨ bCRd),

(II) (∀x0, . . . , xn, xn+1 ∈ a)(∃i, j : 0 ≤ i < j ≤ n + 1)(xiR
∗
axj)

(I) → (II) Suppose (I) and for the sake of contradiction that (II) does not hold,

i.e. (∃x0, . . . , xn, xn+1 ∈ a)(∀i, j : 0 ≤ i < j ≤ n + 1)(xiR∗
axj). Denote by |xi| the

R∗
a-equivalence class generated by xi and let b =

⋃n

i=0 |xi|, d = a r b. Obviously b 6= ∅,

d 6= ∅ (xn+1 6∈ b and hence is in d) and a = b ∪ d. Since for all i, j, 0 ≤ i < j ≤ n,
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xiR∗
axj , xi ∈ b, then by the inductive hypothesis we have ¬c≤n(b). So by (I) we obtain

bCRd, so there exist y ∈ b and z ∈ d such that yRz. Since b =
⋃n

i=0 |xi|, then there

exists |xi| ⊆ b such that y ∈ |xi|, hence xiR
∗
ay and by yRaz we get xiR

∗
az. This implies

that z ∈ |xi|, so z ∈ b, which is impossible (z ∈ d, hence z 6∈ b).

(II) → (I) Suppose (II) and in order to obtain a contradiction that (I) does not

hold, i.e. there exist b 6= ∅, d 6= ∅, a = b ∪ d, ¬c≤n(b) and bCRd. The last condition

implies b ∩ d = ∅. Applying the inductive condition to ¬c≤n(b), we obtain that there

exist x0, . . . , xn ∈ b such that for all i and j, 0 ≤ i < j ≤ n, xiR
∗
bxj , so xiR∗

axj . Since

d 6= ∅, there exists xn+1 ∈ d. Applying (I) to the sequence x0, . . . xn, xn+1 we obtain

that there are i and j, i 6= j, such that xiR
∗
axj . The only possibility is j = n + 1 and

i ≤ n. So (∃m)(∃y0, . . . , ym ∈ a)(y0 = xi ∧ ym = xn+1 ∧ (∀k < m)(ykRyk+1)). Since

y0 ∈ b and ym ∈ d and b ∩ d = ∅, then there exist yk ∈ b and yk+1 ∈ d, so by ykRyk+1

we obtain bCRd – a contradiction. 2

Appendix C. Proof of Theorem 2.5

Proof. We will use the equivalent definition of c≤n from Lemma 2.3.

(→) Suppose c≤n(a) holds in B and for the sake of contradiction that c≤n(h(a)) does

not hold in RC(X). Then there are Pi ∈ RC(X), i = 0, . . . , n such that:

(1) Pi 6= ∅, i = 0, . . . , n,

(2) h(a) =
⋃n

i=0 Pi,

(3) for all i and j, 0 ≤ i < j ≤ n, we have Pi ∩ Pj = ∅.

(4) Since all Pi are closed sets each is an intersection of elements from the base

{h(q) : q ∈ B}, so for every Pi there is a Ai ⊆ B such that Pi =
⋂

p∈Ai
h(p). From (2)

we have Pi ⊆ h(a) so we may assume that a ∈ Ai for all i, i = 0, . . . , n.

Now let i 6= j, 0 ≤ i, j ≤ n be fixed. Then from (3) and (4) we obtain

(5) (
⋂

p∈Ai
h(p)) ∩ (

⋂
p∈Aj

h(p)) = ∅.

(6) Applying compactness to (5), there exist a finite subset A
j
i ⊆ Ai and a finite

subset Ai
j ⊆ Aj such that

(7) (
⋂

p∈A
j

i

h(p))∩(
⋂

p∈Ai
j
h(p)) = ∅. Without loss of generality we may assume that

a ∈ A
j
i and a ∈ Ai

j .

(8) Define A′
i =

⋃n
j=0,j 6=i A

j
i for all i = 0, . . . , n. Obviously A′

i is a finite subset of Ai

containing a.

(9) It follows from (4), (6), (7) and (8) that Pi ⊆
⋂

p∈A′

i
h(p) ⊆

⋂
p∈A

j

i

h(p) ⊆ h(a),

0 ≤ i, j ≤ n and i 6= j.

Now from (9) and (3) we get:

(10) (
⋂

p∈A′

i
h(p)) ∩ (

⋂
p∈A′

j
h(p)) = ∅, for all i, j = 0, . . . , n and i 6= j.

(11) It follows from (9) that Pi ⊆ h(p) for all p ∈ A′
i, i, j = 0, . . . , n. Since Pi ∈

RC(X), then by the Boolean product of RC(X) we obtain

(12) Pi ⊆
∏

p∈A′

i
h(p) = h(

∏
p∈A′

i
p) = h(pi), where pi =

∏
p∈A′

i
p, i = 0, . . . , n.

(13) It follows from (12) that pi ≤ p for all p ∈ A′
i especially pi ≤ a, because a ∈ A′

i.

From here we get
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h(pi) ⊆ h(p) for all p ∈ A′
i and hence

(14) h(pi) ⊆
⋂

p∈Ai
h(p), i = 0, . . . , n.

(15) Now from (14) and (10) we get h(pi) ∩ h(pj) = ∅ for all i and j, i 6= j,

i, j = 0, . . . , n, which implies

(16) piCpj for all i and j, i 6= j, i, j = 0, . . . , n.

(17) It follows from (1) and (12) that h(pi) 6= ∅, hence pi 6= 0, i = 0, . . . , n.

(18) Since by (13) Pi ⊆ h(pi) ⊆ h(a) then
⋃n

i=0 Pi ⊆
⋃n

i=0 h(pi) ⊆ h(a). From here

we get
⋃n

i=0 Pi ⊆ h(
⋃n

i=0 pi) ⊆ h(a).

(19) From (18) and (2) we get h(a) ⊆ h(p0 + · · ·+ pn) ⊆ h(a) which implies

(20) a = p0 + · · ·+ pn.

Now (16), (17) and (20) imply ¬c≤n(a) in B, which contradicts the assumption.

(←) Suppose the c≤n(h(a)) holds in RC(X) and for the sake of contradiction that

c≤n(a) does not hold in B. Then there are p0, . . . , pn ∈ B such that

(21) pi 6= 0, i = 0, . . . , n, a = p0 + · · ·+ pn, and

piCpj , for all i and j, i 6= j, i, j = 0, . . . , n.

¿From (21) we get

(22) h(pi) 6= ∅, i = 0, . . . , n, h(a) = h(p0) ∪ . . . ∪ h(pn), and

h(pi) ∩ h(pj) = ∅, for all i and j, i 6= j, i, j = 0, . . . , n.

But (22) implies that c≤n(h(a)) does not hold in RC(X). 2

Appendix D. Axiomatizations of the RCC-like logics

from Definition 3.1

Axioms of PWRCC (see [3, Sec. 6])

I. Axiom schemes of the classical propositional logics.

II. Axioms of Boolean algebra based on ≤.

III. Axioms for the contact relation C.

Since all predicate axioms of Boolean algebra and contact algebra are universal sen-

tences, they can be written in our language.

Rules of Inference Modus ponens (MP)
α, α⇒ β

β
The axiomatizations of the other logics from Definition 3.1 we remind the following

two rules from [3]:

For an analog of the first-order axiom (Ext) we introduce the rule of extensionality

(EXT)
α⇒ (p = 0 ∨ aCp)

α⇒ (a = 1)
, where p is a Boolean variable that

does not occur in a and α.

For an analog of axiom (Nor) we introduce the following rule of normality :

(NOR)
α⇒ (aCp ∨ p∗Cb)

α⇒ aCb
, where p is a Boolean variable that

does not occur in a, b, and α.

If L is any logic from definition 3.1, then its axiomatization can be obtained from
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the axiomatization of PWRCC as follows:

• If one wants to axiomatize valid formulas in the class of all connected contact

algebras – add the axiom (Con) a 6= 0 ∧ a 6= 1⇒ aCa∗.

• If one wants to axiomatize valid formulas in the class of all contact algebras satis-

fying the axiom (Ext) – add the rule (EXT).

• If one wants to axiomatize valid formulas in the class of all contact algebras satis-

fying the axiom (Nor) – add the rule (NOR).

Appendix E. Proof of Theorem 3.3

Proof. We will consider only the case L = LC , the other case can be treated similarly.

Note that the equivalence (ii)↔(iii) is a corollary from the topological representation

Theorem 1.4. The implication (ii)→(i) is obvious and for the implication (i)→(ii) we will

use a kind of canonical model construction. This construction is a variant of the Henkin

proof of the completeness theorem for the first-order logic adapted for the logics of the

considered kind with additional rules. This construction is described in [3, Sec. 7] (see

also [32, Sec. 3.3]), so we refer the reader to consult for the details the above references.

The main idea is shortly the following.

Each consistent set A can be extended into a maximal consistent set Γ with some

special properties depending on the rules of the logic:

(1) Γ contains all theorems of the logic and is closed under the rule modus ponens,

(2) If the conclusion α ⇒ c≤n(a) of the rule (Rule c≤n) does not belong to Γ then

the premise α ∧
∧n

i=0 pi 6= 0 ∧ a =
∑n

i=0 pi ⇒
∨

0≤i<j≤n piCpj also does not belong to

Γ for some parameters p0, . . . , pn. Similar conditions are formulated for the other rules.

Then, using Γ, one can construct in a canonical way a contact algebra (B, C) as

follows: define in the set of Boolean terms a ≡ b iff a = b ∈ Γ. It can be proved that this

is a congruence relation with respect to the Boolean operations which makes possible to

define a Boolean algebra over the classes |a| modulo this congruence. We define |a|C|b|

iff aCb ∈ Γ. The axioms of contact guarantee that (B, C) is a contact algebra. Moreover

the above properties of Γ and the additional axioms and rules of the logic guarantee that

the obtained contact algebra belongs to the class Σ(L). For instance the axiom (Ax c≤n)

guarantee the implication

c≤n(|a|) implies (∀|p0|, . . . , |pn| ∈ B)(|p0| 6= |0| ∧ . . . ∧ |pn| 6= |0| ∧

|a| = |p0|+ · · ·+ |pn| → (∃i, j : 0 ≤ i < j ≤ n)(|pi|C|pj |)).

The converse implication is guarantied by the property (2) of the set Γ, which shows

that the definition of c≤n(|a|) is fulfilled in (B, C).

By means of Γ one can define a canonical valuation v in B as follows: v(p) = |p| and

finally we need to prove the truth lemma saying that (B, C, v) |= α iff α ∈ Γ. Then this

shows that (B, C, v) is a model of Γ and hence a model of A. 2
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