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Abstract

Usually, in the Kripke semantics for intuitionistic propositional logic (or for superintuitionistic logics)
partially ordered frames are used. Why? In this paper we propose an intrinsically intuitionistic mo-
tivation for that. Namely, we show that every Kripke frame (with an arbitrary accessibility relation),
whose set of valid formulas is a superintuitionistic logic, is logically equivalent to a partially ordered
Kripke frame.
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While considering the Kripke semantics for intuitionistic propositional logic (or for
superintuitionistic logics), only partially ordered (p.o.) Kripke frames are usually used.
It is well known that quasi-ordered (i.e., reflexive and transitive) frames can be accepted
as well, but this is in essence just the same. In fact, the quotient (modulo the usual
equivalence) of a quasi-ordered Kripke frame is a p.o. frame, and intuitionistic formulas
‘do not notice’ this transformation. On the other hand, it is known (cf. e.g. [5], [4]) that
some non-quasi-ordered Kripke frames are sound for intuitionistic logic as well (via the
usual definition of intuitionistic validity).

So the conventional restriction of all frames to partial orderings seems to be slightly
ad hoc. The most common motivation 1 appeals to modal logic and to Gödel – Tarski

1 An anonymous referee reminded an informal motivation for using partial orderings in intuitionistic se-
mantics: possible worlds represent knowledge and the accessibility corresponds to acquiring knowledge.
The inclusion of sets is definitely a partial ordering, but this informal motivation does not seem convinc-
ing to us by different reasons. E.g., the generally accepted ‘monotonicity condition’ (knowledge grows
in future) is controversial, because it ignores delusions and mistakes. Nevertheless, the monotonicity is
almost necessary for intuitionistic semantics, because it corresponds to an intuitionistic axiom (cf. [4]
or Lemma 2.1(2) in Section 2.1).
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translation of intuitionistic logic in logic S4 (recall that Kripke frames sound for S4
are exactly the quasi-ordered ones). But this motivation seems rather external for in-
tuitionistic logic, and so it is not quite convincing (all the more, S4 is not the weakest
normal modal logic, in which intuitionistic logic can be embedded via the Gödel – Tarski
translation, see [1], [2], and [3]).

One can try to find a more intrinsically intuitionistic argument to explain, why
namely quasi-orderings (or equivalently, partial orderings) are in some sense immanent
for a sound interpretation of intuitionistic, or of superintuitionistic logics. Here we
propose such a motivation.

Namely, we show that every Kripke frame whose set of valid formulas is a superin-
tuitionistic logic, is logically equivalent to a partially ordered frame.

Now let us turn to exact definitions.

1 Intuitionistic sound Kripke frames

We consider superintuitionistic propositional logics understood in the usual way, as sets
of formulas containing all axioms of intuitionistic (or Heyting) propositional logic H and
closed under modus ponens and the substitution rule. So H is the smallest superintu-
itionistic logic. It is well known that all consistent superintuitionistic logics are included
in classical logic C = (H + p∨¬p); these logics are also called intermediate.

For convenience, in addition to connectives &,∨,→, we also use constants ⊥ (the
falsity) and > (the truth). We use the standard abbreviations ¬A = (A → ⊥) and
(A↔B) = (A→B)&(B→A).

Let Var be the set of variables and Im be the set of all implications.

Remark Obviously, one can eliminate the constant > by replacing it with (⊥→⊥)
or with (A→ A) for any formula A. Usually one can also eliminate ⊥ by using the
independent connective ¬ ; then ⊥ is defined as A&¬A or ¬(A→A) for an arbitrary A.
However, this is not quite semantically adequate, as we will see later (cf. e.g. Example 2
in Section 1.3). On the other hand, our considerations can be easily transferred to the
language with the basic connective ¬ instead of ⊥ (with minor modifications 2 ).

1.1 We consider propositional Kripke frames; such a frame F is a non-empty set W
with an arbitrary binary relation R on W . We write u∈F for u∈W .

A valuation (more precisely, an intuitionistic valuation) in a Kripke frame
F = (W,R) is a forcing relation u � A between points u∈F and formulas A, satisfying
the usual intuitionistic clauses (for all u∈F ):

u � (B&C)⇔ (u � B) & (u � C), u � (B ∨ C)⇔ (u � B) ∨ (u � C),

u � (B→C)⇔ ∀v [uRv & v � B ⇒ v � C ], u 6� ⊥, u � >,

2 E.g. one can use >→p at some point, where we use >→⊥, etc.
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and the following condition (for variables p ∈ Var): 3

(Atomic heredity) ∀u, v∈F [uRv & u � p ⇒ v � p ].

Clearly, u � ¬B ⇔ ∀v∈R(u) [ v 6�B ] and u � (A↔B)⇔ ∀v∈R(u) [ v�A⇔ v�B ].
A formula A is said to be true under a valuation in F if u � A for any u ∈ F . A

formula A is valid in a Kripke frame F if it is true under any valuation in F . Let L(F )
denote the set of all formulas valid in F .

We call a frame F intuitionistic sound (or H-sound, for short) if L(F ) is a superin-
tuitionistic (or equivalently, an intermediate) logic. We say that F is weakly H-sound
(or wH-sound) if all intuitionistic theorems are valid in F , i.e., if H⊆L(F ).

Later on we will see that a wH-sound frame is H-sound iff L(F ) is closed under
modus ponens. We suppose that Kripke frames violating modus ponens are rather
unsatisfactory for intuitionistic logic (even if they validate H). 4

Note that L(F ) is closed under modus ponens iff

(>→A) ∈ L(F ) ⇒ A ∈ L(F ) for any formula A. (MP)

In fact, (MP) implies that B, (B→A) ∈ L(F ) ⇒ A ∈ L(F ),
because if B∈L(F ), then ∀u(u � B) and so ∀u[u � (B→A) ⇔ u � (>→A) ] for every
valuation in F .

By the way, the converse implication A ∈ L(F ) ⇒ (>→A) ∈ L(F )
obviously holds in every Kripke frame F ; so the implication in the condition (MP)
actually means the equivalence.

By the semantics generated by a class K of frames we mean the class of logics S(K) =
{L(F ) | F ∈ K}. So the class of H-sound Kripke frames generates the maximal possible
Kripke semantics for superintuitionistic logics (with the usual definition of intuitionistic
forcing).

The following simple technical lemma will be unexpectedly useful further on:

Lemma 1.1 For any formula A there exists a formula

A′ = &
i

∨
j

Aij , where ∀i, j [Ai,j ∈ Im∪Var ] (∗)

(or A′ = ⊥) 5 such that:

(1) H ` (A↔ A′);

(2) u � A ⇔ u � A′ for every valuation in a frame 6 F and u∈F .

So A ∈ L(F ) ⇔ A′ ∈ L(F ) for every frame F .

3 Here we use the terminology from [5], [4].
4 If one prefers, another motivation for the validity of modus ponens is related to the notion of strong
soundness mentioned in Section 2.5.
5 Note that > can be presented by implication (⊥ → ⊥), but ⊥ is not semantically equivalent to
(>→⊥), as we will see later on (e.g. in a one-element irreflexive frame, cf. Example 2 in Section 1.3).
6 Here we in general do not suppose that F is (weakly) H-sound.
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Proof. Note that the formula A is a &,∨-combination of its subformulas from Im ∪
Var ∪ {⊥,>}. We transform it into an equivalent conjunctive normal form (∗). Now
(1) is obvious. And (2) holds, because the ‘inner’ connectives & and ∨ in a formula
correspond, by the definition of valuation, to the ‘external’ conjunction and disjunction
satisfying the distributivity laws etc. 2

1.2 Let R+ and R∗ be the transitive closure of R (in a frame F = (W,R) ) and the
corresponding quasi-ordering, i.e.,

uR+v ⇔ ∃n>0 (uRn v ), uR∗v ⇔ (u=v) ∨ (uR+v).
For u∈F define the cone Fu = (Wu, R |Wu ), where Wu = R∗(u) = {u}∪R+(u). A set
W ′ ⊆W is open if it is upward closed, i.e., ∀u∈W ′ ∀v∈R(u) (v ∈W ′), 7 or equivalently,
iff ∀u∈W ′ (Wu⊆W ′ ) (in other words, W ′ =

⋃
(Wu :u∈W ′)). Naturally, an open set

W ′ gives rise to an open subframe F ′ = (W ′, R |W ′) of F . Clearly, the restriction of a
valuation in F to a cone Fu or to any open subframe is a valuation again (the inductive
clauses are preserved obviously). So we conclude that

L(F ) ⊆ L(F ′) for any open subframe F ′ of F ,
and L(F ) =

⋂
( L(Fu) : u ∈ F ). Thus

(1) (F is wH-sound ) ⇔ ∀u∈F (Fu is wH-sound );
(2) ∀u∈F (Fu is H-sound ) ⇒ (F is H-sound ),

the converse to (2) in general does not hold, as we shall see later on.

It is well known that all p.o. frames are H-sound; moreover, quasi-ordered frames
are H-sound as well. Actually, for a quasi-ordered Kripke frame its quotient modulo
the equivalence relation (u ≡ v) ⇔ (uRv) & (vRu) is a p.o. frame S[F ] = (F/≡) (the
skeleton of F ). Clearly, F and S[F ] have in essence the same valuations (modulo ≡);
thus L(F ) = L(S[F ]) in this case.

Now we define the skeleton S[F ] for an arbitrary frame F = (W,R) as the skeleton
of the associated quasi-ordered frame F ∗ = (W,R∗). In other words, S[F ] is the quo-
tient (W/≡) modulo the equivalence relation ≡ given by the following three equivalent
conditions:

(u ≡ v) iff [(u=v) ∨ (uR+v& vR+u)] iff (v∈Fu &u∈F v) iff (Fu =F v),

partially ordered by the relation

(u/≡)RS (v/≡) ⇔ (uR∗v) ⇔ (v∈Fu).

Clearly (u ≡ v) ⇒ (u�p ⇔ v�p ) for a valuation in F ,
so the following valuation in S[F ] is well-defined (and satisfies the atomic heredity):

(u/≡) �S p ⇔ u � p for variables p .

Therefore there exists the natural one-to-one correspondence between valuations in F

and in S[F ]. However, in general we cannot guarantee that

(u/≡) �S A ⇔ u � A (S)

7 Obviously, the cone Wu is the least open set containing u.
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for non-atomic A, and the equality L(F ) = L(S[F ]) in general does not hold. Namely,
definitely L(F ) 6= L(S[F ]) for every frame F that is not H-sound. Also there exist
H-sound frames such that L(F ) 6= L(S[F ]); we will give an example in Section 2.4
(Appendix).

1.3 It is known that there exist H-sound not quasi-ordered Kripke frames. Let us begin
with some useful and instructive examples.

Example 1 Let F be a two-element frame W = {v1, v2} with irreflexive and non-
transitive relation R = {〈v1, v2〉, 〈v2, v1〉}, see Figure 1.

Clearly its skeleton S[F ] is a one-element reflexive frame, and one can easily check
the equivalence (S) by induction on the complexity of A. So we obtain that L(F ) =
L(S[F ]) = C, and thus F is H-sound.

Fig. 1.

Similarly, one can take an arbitrary p.o. frame F ′ and replace some of its points
u by cycles u1Ru2R . . . R unRu1; these cycles can be chosen either reflexive or non-
reflexive, transitive or non-transitive; and anyway we obtain a frame F such that S[F ] =
F ′, L(F ) = L(F ′).

Example 2 Let Π0 = {π0} be irreflexive one-element frame (with empty R), see Figure
2.

Fig. 2.

Clearly all implications are valid in Π0, i.e., Im ⊂ L(Π0). 8

8 So ¬(A→A), (A→A)&¬(A→A) ∈ L(Π0), and both these formulas are not semantically equivalent
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Lemma 1.2 (1) Let A′ be a formula (*) from Lemma 1.1. Then:

A′ ∈ L(Π0) ⇔ ∀i ∃j (Aij ∈ Im ).

(2) C ⊂ L(Π0).

Proof. The ‘if’ part of (1) is obvious. Also, a formula
∨
j

pj with variables pj clearly

does not belong to L(Π0) and is not classically valid. Hence the ‘only if’ part of (1)
follows as well. And if A′ ∈ C, then A′ ∈ L(Π0) by (1). 2

Thus the frame Π0 is wH-sound. However it is not H-sound; in fact, modus ponens
fails in L(Π0), since (>→⊥) ∈ L(Π0) and ⊥ 6∈ L(Π0).

On the other hand, for any partially ordered, and moreover, for any H-sound frame
F the disjoint union (F,Π0) of F and Π0 (see Figure 2) is H-sound, since

L(F,Π0) = L(F ) ∩ L(Π0) = L(F )

(recall that here L(F )⊆C ⊂L(Π0) ).

Example 3 Let F be a p.o. frame. Take a frame (Π0 + F ) obtained by adding a
minimal irreflexive point π0 to F (see Figure 3). Now, to extend relation R from F to
(Π0+F ), we have to define (in an arbitrary way) a non-empty set R(π0)⊆F (what does
π0 ‘see’?). 9

Fig. 3.

One can put, say, R(π0) = F ; then R is transitive on (Π0 +F ). And moreover,
obviously, R is transitive iff R(π0) is an open subset of F .

Clearly, for any choice of R(π0), all implications valid in F are valid in (Π0+F ) as
well, i.e., Im ∩ L(Π0+F ) = Im ∩ L(F ). So we obtain:

Lemma 1.3 H⊆L(Π0+F ), i.e., (Π0+F ) is wH-sound for any p.o. frame F (and for
any choice of R(π0)).

to ⊥ in this frame (cf. Remark at the beginning of Section 1). Moreover, one can easily see that there
does not exist a &,∨,→,¬-formula equivalent to ⊥; in fact, any formula of this kind is true at π0 if all
variables are true, while ⊥ is false (cf. also Lemma 1.1).
9 If R(π0) is empty, then we have a disjoint union (F,Π0).
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Proof. One can show that H ` A ⇒ A ∈ L(Π0+F ),
by induction on the complexity of A (not by induction on its proof!); for the case
A = A1∨A2 use the disjunction property of H. 2

Thus, if L(F ) = H, then L(Π0+F ) = H, and so (Π0+F ) is H-sound.
Similarly, if the logic L(F ) has the disjunction property, then one can show that

L(Π0 +F ) = L(F ). On the other hand, let F be a one-element reflexive frame, then
(Π0+F ) is not H-sound; in fact, modus ponens fails, since

(> → p∨¬p) ∈ L(Π0+F ) and p∨¬p 6∈ L(Π0+F ).
Similarly, one can show that (Π0 +F ) is not H-sound for any rooted finite F , and
moreover, for any rooted F of finite height (if π0Ru0, u0 being the root of F ). 10

The considered examples show us that there exist very simple and small (actually,
≤3-element) H-sound frames, which are: (a) non-transitive and non-reflexive,
(b) transitive and non-reflexive, (c) non-transitive and reflexive. Also there exist frames
of kinds (a) and (b) that are wH-sound, but not H-sound (on the other hand, every
reflexive wH-sound frame is H-sound, cf. Proposition 1 in Section 2.3).

In Section 2, basing on the presented examples, we shall describe the classes of wH-
sound and H-sound frames, and establish Reducibility Theorem:

Theorem For every H-sound Kripke frame F there exists a partially ordered frame
F ′ such that L(F ) = L(F ′).

This statement shows that the semantics of all H-sound Kripke frames equals the
usual semantics of partially ordered Kripke frames. In other words, non-transitive or
non-reflexive frames give nothing new for superintuitionistic logics (if we deal with the
usual definition of intuitionistic forcing).

2 Description of intuitionistic sound frames

In this section we describe the classes of H-sound and wH-sound frames. As the main
result, we obtain Reducibility Theorem.

2.1 Let F = (W,R) be a Kripke frame. We call u ∈W a parasite if ¬∃w (wRu); in
other words, parasites are minimal irreflexive points ‘stuck’ to the frame from below. A
parasite u is isolated if R(u) = ∅, i.e., if its cone Fu = {u} is isomorphic to Π0 (see
Example 2). Let Π[F ] and Π0[F ] be the sets of all parasites and of isolated parasites
from F , respectively. The essential part of F is E[F ] = F\Π[F ]; obviously, E[F ] is an
open subframe of F .

If E[F ] = ∅, then F = Π0[F ] and L(F ) = L(Π0), see Example 2.
A frame F is called co-serial if ∀u∈F ∃w∈F (wRu), i.e., iff Π[F ]=∅ (or equivalently,

E[F ]=F ).

10All mentioned claims will be proved later, in Section 2.4 (Appendix).
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Now we recall (and slightly reformulate) some notions introduced in [5]. A Kripke
frame F = (W,R) is called weakly reflexive if ∀u ∈ F (uR+u) and weakly transitive if
∀u, v ∈F [ (uR2v) ⇒ ∃w (uRw≡ v) ]. A frame F is weakly quasi-ordered if it is weakly
reflexive and weakly transitive. Clearly, reflexivity, transitivity, and quasi-ordering imply
the corresponding weak properties. Every weakly reflexive frame F is co-serial. Also
note that a transitive frame is weakly reflexive iff it is reflexive (since R+ = R in a
transitive frame).

Remark By the way, we can give a ‘uniform’ presentation of these notions.
Put [Ωn]: ∀u, v∈F [ (uRnv)⇒ ∃w (uRw≡v) ] for n≥0.

Clearly [Ω2] is the definition of weak transitivity. Moreover,
(I) F is weakly transitive iff ∀n>0 [Ωn], i.e.,

∀u, v∈F [ (uR+v)⇒ ∃w (uRw≡v) ].
In fact, we can establish [Ωn] by induction on n. The case n=1 is obvious; take w=v.

The induction step is straightforward, as well. Namely, if uRn−1u′R2v, then we find w′

such that u′Rw′≡v,and by induction hypothesis uRnw′ implies ∃w [uRw≡w′(≡v)].
Also we have

(II) F is weakly reflexive iff [Ω0], i.e.,
∀u∈F ∃w (uRw≡u).

In fact, if uR+u, i.e., uRwRnu for some w and n≥0, then w≡u.
Therefore,

(III) F is weakly quasi-ordered iff ∀n≥0 [Ωn], i.e.,
∀u, v∈F [ (uR∗v)⇒ ∃w (uRw≡v) ].

Recall that R is transitive iff R+ = R and R is a quasi-ordering iff R∗ = R. So
we see that a frame F is weakly reflexive, weakly transitive, or weakly quasi-ordered
iff the composition of R and ≡ is reflexive, transitive, or quasi-ordered, respectively. 11

In other words, weak reflexivity means ‘reflexivity up to equivalence’ (and similarly for
weak transitivity).

Let A be a formula. A valuation � in a frame F is called A-hereditary if

∀u, v∈F [uRv&u � A ⇒ v � A ], (A-heredity)

or equivalently, ∀u∈F [ (u � A) ⇒ ∀v∈Fu (v � A) ].
By definition, all our valuations are p-hereditary for variables p. A frame F is called
A-hereditary if all valuations in F are A-hereditary; F is called H-hereditary if it is
A-hereditary for all formulas A.

Lemma 2.1 Let F = (W,R) be a Kripke frame.

(1) ((>→p)→ p) ∈ L(F ) iff E[F ] is weakly reflexive.

(2) (A→ (>→A)) ∈ L(F ) iff E[F ] is A-hereditary (for a formula A).

(3) The following conditions are equivalent:

11By the way, (I) implies that (≡) ◦R ◦ (≡) equals R ◦ (≡) etc. (in a weakly transitive frame).
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(i) F is H-hereditary;

(ii) F is (p→q)-hereditary;

(iii) F is weakly transitive.

Therefore, if F is wH-sound, then E[F ] is weakly quasi-ordered.
Note that only (⇒)-parts of (1) and (2) are used for the latter statement; actually,

the converse statements are only to complete the picture. 12

Proof. (1) (⇒). Let wRu and ¬(uR+u). Take a valuation in F such that
v � p ⇔ uR+v. Then u � (>→p) and u 6� p, thus w 6� (>→p)→ p.

(⇐). Let E[F ] be weakly reflexive, and wRu, u � (>→ p) (for a valuation in F ).
Then v � p for any v ∈R(u), and thus by (Atomic heredity), for any v ∈R+(u). Also
uR+u since u∈E[F ], and hence u � p.
(2) (⇒). Let u∈E[F ], uRv, and u � A; also let wRu and w � (A → (>→A)) (for a
valuation in F ). Then u � (>→A), and so v � A.

(⇐). Let wRu and u � A. Then u ∈ E[F ], and so by A-heredity it follows that
∀v∈R(u) (v � A), i.e., u � (>→A).
(3) (ii) ⇒ (iii). Let uRv′Rv. Consider a valuation in F such that

w � p ⇔ w ∈ F v and w 6� q ⇔ v ∈ Fw.
Then v�p, v 6�q, thus v′ 6� (p→q), and so, by (p→q)-heredity, u 6� (p→q). Hence there
exists w∈R(u) such that w � p and w 6� q, i.e., w ≡ v.

(iii) ⇒ (i). Let F be weakly transitive. We establish A-heredity by induction on the
complexity of A. Clearly, it is sufficient to consider the induction step for A = (A1 →
A2).

Let uRv′, v′ 6� A, i.e., v � A1 and v 6� A2 for some v ∈ R(v′). Then by the weak
transitivity, we have w ∈ R(u) such that w ≡ v, i.e., w ∈ F v and v ∈ Fw. Hence by
A1-heredity and A2-heredity, w � A1 and w 6� A2. Thus u 6� A. 2

2.2 We see that weak transitivity expresses heredity of valuations (for all formulas).
Similarly, weak reflexivity is related to another property of valuations introduced in
[5] and called converse heredity. 13 Namely, a frame F is conversely A-hereditary if the
following condition holds (for any valuation in F ):

∀u∈F [∀v∈R(u) (v � A) ⇒ u � A ] . (converse A-heredity)
A frame F is conversely H-hereditary if this property holds for all formulas.

Clearly, converse A-heredity means that
[ u � (>→A) ⇒ u � A , for every valuation � and point u ] .

Therefore: ((>→A)→A) ∈ L(F ) ⇔ (E[F ] is conversely A-hereditary ). 14

12The statement (3) actually reformulates Proposition 15 from [5]; we repeat its short proof here,
to make our exposition self-contained and to reveal that (p → q)-heredity is sufficient for the weak
transitivity. Similarly, (2) almost reformulates Proposition 9 from [4] (note that in [4] the heredity in
E[F ] is called the conditional heredity in F ); here we give a simple proof omitted in [4].
13We will not use this notion, but we mention it here to explain the sense of the notions we consider.
14Cf. Proposition 10 in [4]; note that there converse heredity in E[F ] is called conditional converse
heredity in F .



Dmitrij Skvortsov 401

Moreover, for any frame F :
F is weakly reflexive iff F is conversely p-hereditary for variables p

(adapt the proof of Lemma 2.1(1), 15 or see Proposition 21 in [5]).

However, weak reflexivity is not sufficient for converse H-heredity.
Namely, take e.g. a weakly reflexive frame F shown at Figure 4,

a formula A = ¬¬p, and a valuation F such that u � p ⇔ u=v3.
Then u � ¬p ⇔ u=v1, hence v2 6� A and ∀u∈R(v2)(={v1, v3}) [u � A].

Fig. 4.

On the other hand, weak reflexivity together with weak transitivity imply converse
H-heredity; in other words,

every weakly quasi-ordered frame is conversely H-hereditary.

In fact, 16 let ∀v∈R(u) (v � A). Since uR+u (by weak reflexivity), take v∈R(u) such
that vRnu for some n≥ 0 (i.e., u∈F v ) . Then v �A, and by A-heredity (see Lemma
2.1(3)) u�A.

Therefore, we obtain:

Claim For a frame F the following conditions are equivalent:

(i) F is H-hereditary and conversely H-hereditary;

(ii) F is (p→q)-hereditary and conversely p-hereditary;

(iii) F is weakly quasi-ordered.

Remark 17 By the way, Lemma 2.1(2) makes a hint, how one can try to modify the
notion of intuitionistically acceptable valuations. Namely, one can admit weak valuations

15Lemma 2.1(1) readily gives the same equivalence for E[F ] (and so for any co-serial frame F ). However
the argument actually goes through for an arbitrary F as well.
16The statement actually follows from [5, Propositions 21 and 19], but in an indirect way, involving
some complicated and refined notions, which relate to rudimentary Kripke models; so we give a simple
and straightforward direct argument here.
17The reader may skip this remark and turn to Section 2.3 that contains the proof of Reducibility
Theorem.
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satisfying (Atomic heredity) only on E[F ], but not necessarily on F . In fact, this form
of heredity actually corresponds to the well-known intuitionistic axiom p → (q → p).
However this modification gives nothing new, because the following statement holds:

(+) for any 18 Kripke frame F , the set of formulas true under all weak valuations
equals our L(F ), defined via traditional valuations from Section 1.1.

Proof. In fact, it is sufficient to show that every formula refuted under a weak valuation,
does not belong to L(F ), i.e., it is refuted by a valuation defined in Section 1.1. This
statement easily follows from Lemma 1.1. Namely, let a weak valuation � in F satisfying
(Atomic heredity) on E[F ], be given. Take a valuation �′ in F equal to � on E[F ] and
such that u 6� ′p for all u∈Π[F ] and all variables p. Clearly, the valuation �′ satisfies
(Atomic heredity) on F . Now

u�A ⇔ u�′A for all u∈E[F ] and all formulas A.
Also u�A ⇔ u�′ A for u∈Π[F ] and A∈ Im. Hence we conclude that for
every u∈Π[F ] and for every formula A′ of the form (*) (from Lemma 1.1):

u 6� A′ implies u 6� ′ A′.
Therefore: u 6� A ⇒ u 6� ′ A for every A and u∈F . 2

Actually, the statement (+) together with Lemma 2.1(2) allows to show (in the
standard way) that

the set L(F ) is substitution closed for every wH-sound frame F . 19

Therefore: F is H-sound iff
(F is wH-sound and L(F ) is closed under modus ponens ).

Later on we will obtain another proof of the latter equivalence (see Proposition 3).

2.3. Clearly, the frames considered in Example 1 are weakly quasi-ordered; so this
example makes a hint, how to reduce an arbitrary weakly quasi-ordered frame to a quasi-
ordered one. Namely, a weakly reflexive frame F = (W,R) gives rise to a quasi-ordered
frame F ∗ = (W,R∗) = (W,R+) (recall that R+ is reflexive here, i.e., R+ = R∗).

Lemma 2.2 Let F = (W,R) be a weakly quasi-ordered frame and F ∗ = (W,R∗) be the
corresponding quasi-ordered frame. Then a forcing relation � is a valuation in F iff it
is a valuation in F ∗.

Hence L(F ) = L(F ∗), and so this set is an intermediate logic. Therefore,

all weakly quasi-ordered frames are H-sound.

Note that S[F ] = S[F ∗], thus L(F ) = L(S[F ]) for a weakly quasi-ordered F .

Proof. 20 Note that a valuation is uniquely determined for all formulas by its restriction

18 not necessarily (weakly) H-sound
19 In fact, if [B/q]A 6∈L(F ), i.e., v 6� [B/q]A for a valuation � in F , then v 6� ′ A for a weak valuation
�′ such that u �′ q ⇔ u � B; by Lemma 2.1(2), this �′ satisfies (Atomic heredity) on E[F ]. Thus
A 6∈L(F ) by (+).
20Cf. the proof of Proposition 6 from [5].
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to Var, by applying the usual inductive clauses, see Section 1.1. Thus, it is sufficient to
establish the ‘only if’ part. 21

Clearly, the atomic heredity in F and in F ∗ is just the same. So we have to check
the inductive clause for implication, i.e., to show that for any valuation in F and for all
formulas B, C the following equivalence holds:

∀v∈R(u) [ v � B ⇒ v � C ] ⇔ ∀v∈R+(u) [ v � B ⇒ v � C ].

In fact, let uR+v, v �B, v 6� C. Then uRnv′Rv for some v′ and n≥ 0 (i.e., v′ ∈ Fu).
Then v′ 6� (B→C) in F , and by H-heredity of F (see Lemma 2.1(3)), u 6� (B→C) in
F , i.e., there exists v′′∈R(u) such that v′′ � B, v′′ 6� C. 2

Recall that a frame F is called co-serial if E[F ] =F ; all weakly reflexive frames are
co-serial. So by applying Lemmas 2.1 and 2.2, we readily obtain the following description
of H-sound frames without parasites:

Proposition 1 For a frame F the following conditions are equivalent: 22

(1) F is co-serial and H-sound;

(2) F is co-serial and wH-sound;

(3) F is co-serial and (>→p)→ p, (p→q)→ (> → (p→q)) ∈ L(F );

(4) F is weakly quasi-ordered.

Thus in particular,
all transitive co-serial (w)H-sound frames are quasi-ordered.

Now let us consider the general case.

Proposition 2 For a frame F the following conditions are equivalent:

(1) F is wH-sound;

(2) (>→p)→ p, (p→q)→ (> → (p→q)) ∈ L(F );

(3) E[F ] is weakly quasi-ordered. 23

Proof. (2) ⇒ (3) follows from Lemma 2.1.
(3) ⇒ (1). If E[F ] = ∅, i.e., F = Π0[F ], then L(F ) = L(Π0) ⊃ C, by Lemma 1.2.

If E[F ] is a non-empty weakly quasi-ordered frame, then L(E[F ]) is an intermediate

By the way, that proposition actually states that L(F ∗) ⊆ Lr(F ) for an arbitrary frame F , where Lr(F )
is the set of formulas true under all rudimentary Kripke models in F (recall that in [5] a valuation is
called rudimentary if it satisfies A-heredity and converse A-heredity for all formulas A). One can show
that L(F ) = Lr(F ) = L(F ∗) for weakly quasi-ordered frames F (because all valuations in these frames
are rudimentary, cf. Claim in Section 2.2). However, this argument is rather detour, and we prefer
a simple direct argument to prove Lemma 2.2 without using the notion of rudimentary Kripke models
etc.
21Then the ‘if’ part readily follows as well. In fact, for a valuation � in F ∗ take its restriction to Var
and prolong it to a valuation in F . Now, by the ‘only if’ part, this is a valuation in F ∗, and so it equals
the original valuation �.
22 In fact, Lemma 2.1 gives (3) ⇒ (4) and Lemma 2.2 gives (4) ⇒ (1).
23For a reader familiar with [4] note that these conditions actually mean that all valuations in F
form conditionally rudimentary Kripke models; therefore, this proposition indirectly follows from [4,
Proposition 12 etc.].
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logic and H ⊆ L(F\Π0[F ]) ⊆ L(E[F ]) ⊆ C, cf. Lemma 1.3. 24 Now, if Π0[F ] 6= ∅, then
L(F ) = L(F\Π0[F ]) ∩ L(Π0) = L(F\Π0[F ]), since C ⊂ L(Π0). 2

Therefore,
to describe the semantics of (weakly) H-sound Kripke frames it is sufficient
to consider only (weakly) H-sound frames without isolated parasites.

Note that Proposition 2 implies in particular that
a transitive frame F is wH-sound iff E[F ] is quasi-ordered.

Proposition 3 For a frame F the following conditions are equivalent:

(1) F is H-sound;

(2) F is wH-sound and L(F ) is closed under modus ponens;

(3) F is wH-sound and L(F ) = L(E[F ]).

Proof. (3) ⇒ (1) follows from Proposition 2 (the implication (1) ⇒ (3) ) and Propo-
sition 1 (the implication (4) ⇒ (1) ).

(2) ⇒ (3). If A ∈ L(E[F ]), then (>→A) ∈ L(F ). Thus A ∈ L(F ) by (MP). 2

Therefore we have established Reducibility Theorem stated at the end of Section 1.
In fact, if a frame F is H-sound, then E[F ] is weakly quasi-ordered and
L(F ) = L(E[F ]) = L(F ′) for a partially ordered (p.o.) frame F ′ = S[E[F ]].

2.4 APPENDIX
A description of H-soundness given in Proposition 3, unlike Propositions 1 and 2, is
slightly implicit. Namely, it involves a vague condition

L(F ) = L(E[F ]). (λ)

By Lemma 1.1, the condition (λ) means that

A′ ∈ L(E[F ]) ⇒ A′ ∈ L(F ) for any A′ =
∨
j

Aj , Aj ∈ Im ∪Var.

Open Problem Try to find a more explicit description of H-soundness; in other
words, represent in a more ‘convenient’ form the condition (λ) for frames F with weakly
quasi-ordered essential part E[F ].

We suppose, Example 3 (from Section 1.3) makes a hint that this problem may not
have a satisfactory solution. However to conclude our considerations we mention here
some straightforward approaches to the problem (and explain that they do not give a
general description). So the whole problem seems to be too hopeless and does not worth
serious efforts.

24Note that L(F\Π0[F ]) =
⋂

( L({w} ∪ E[F ]) : w∈Π[F ]\Π0[F ] ) and every ({w}∪E[F ]) is a frame of
the kind (Π0+E[F ]) described in Example 3.
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First, it is sufficient to consider only frames described in Example 3, i.e.:

frames F with empty Π0(F ), one-element Π(F )={π0}, and p.o. E[F ]. (ϕ)

In fact, for a frame F with a weakly quasi-ordered E[F ] we consider a frame
F̃ = S[E[F ]] ∪Π[F ], in which Π[F̃ ] = Π[F ], E[F̃ ] = S[E[F ]], and

wR̃(u/≡) ⇔ ∃u′≡u (wRu′) for w∈Π[F ], u∈E[F ].
There exists a natural one-to-one correspondence between valuations in F̃ and in F

(cf. the end of Section 1.2); namely, the correspondent valuations satisfy the condition
(S) on E[F ] and coincide on Π[F ] (recall that E[F ] is H-hereditary, so forcing for all
formulas in E[F ] does not distinguish ≡-equivalent points). Hence L(F ) = L(F̃ ).

Now 25

L(F̃ ) =
⋂

( L(F̃w) : w∈Π[F ] ),

where F̃w = E[F̃ ]∪{w} for w∈Π[F ] is an open subframe of F̃ .
Thus L(F̃ ) = L(E[F̃ ]) ⇔ ∀w∈Π[F ] ( L(F̃w) = L(E[F̃ ]) ),

since L(F̃w) ⊆ L(E[F̃ ]) for any w∈ Π[F ].
Therefore we conclude that

F is H-sound iff all F̃w are H-sound.

Clearly, every F̃w is a frame of the form (ϕ).

Hence now we consider only frames F of the form (ϕ).
Recall that a frame F of this form can be described by a non-empty 26 subset R(π0) ⊆

E[F ], cf. Example 3.
We say that R(π0)(⊆ E[F ]) violates a formula A′ =

∨
j

(Bj → Cj ) if there exists a

valuation in E[F ] such that ∀j ∃u∈R(π0) [u � Bj , u 6� Cj ] .
Clearly, R(π0) violates A′ iff

there exists a valuation in F such that π0 6� A′ ∨
∨
k

pk

for an arbitrary (perhaps, empty) list of variables (pk : k). 27

Thus, if (A′ ∨
∨
k

pk) ∈ L(E[F ])\L(F ), then R(π0) violates A′. Hence we obtain:

Lemma 2.3 Let F be a frame of the form (ϕ). Then:
L(F ) = L(E[F ]) (i.e., F is H-sound) iff

[ for any formula A = A′ ∨A′′, where A′ =
∨
j

(Bj→Cj), A′′ =
∨
k

pk :

if R(π0) violates A′, then A 6∈ L(E[F ]) ]. (λ∗)

Actually in (λ∗) we may assume that A′′ is the disjunction of all variables occurring
in A′ (in fact, if (λ∗) holds for this A′′, then it readily holds for an arbitrary A′′ as well).

25Here we suppose that Π[F ] 6=∅, since otherwise F = E[F ] is definitely H-sound.
26 If R(π0)=∅, then L(F )=L(E[F ]), cf. Example 2, and F is H-sound again.
27For the ‘only if’ part one can prolong a given valuation in E[F ] (actually refuting A′ at π0) to a
valuation in F ; namely, put π0 6� p for all variables p.
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Clearly, if R(π0) violates A′, then (Bj → Cj) 6∈ L(E[F ]) for any j. Therefore if
L(E[F ]) has the disjunction property, then (λ∗) holds, and so F is H-sound.

Also note that F is H-sound e.g. if E[F ] is an infinite chain (recall that its logic
[ H + (p→ q) ∨ (q→ p) ] lacks the disjunction property). In fact, if R(π0) violates A′,
then A′ 6∈ L(E[F ]). Hence A′ is falsified in any sufficiently large (≥n-element for some
n) cone in E[F ]. Now, take u, v ∈ F such that uRv, u 6= v, and A′ 6∈ L(F v), then
A = (A′∨A′′) 6∈ L(Fu), since all variables can be refuted at u.

Another sufficient condition for H-soundness is in terms of R(π0) rather than E[F ].
We say that a set R(π0)⊆ E[F ] is co-directed if for any finite X ⊆ R(π0) there exists
vX ∈ E[F ]\X such that ∀u ∈ X (vXRu). Clearly, if R(π0) is co-directed and R(π0)
violates A′, then vX 6� A = A′∨A′′ for some X and a valuation � in E[F ]. Thus any F
with a co-directed R(π0) satisfies (λ∗), and so it is H-sound.

Now we are ready to describe the H-soundness for a natural particular case.

Proposition 4 Let F be a frame of the form (ϕ) with a rooted E[F ]. Then:

F is H-sound iff [u0 6∈ R(π0) ] or [ L(E[F ]) = L(E[F ]\{u0}) ],

where u0 is the root of E[F ].

Proof. If u0 6∈ R(π0), then R(π0) is co-directed (take vX = u0 for any X).
Now let L(E[F ]) = L(E[F ]\{u0}). If R(π0) violates A′, then u0 6� A′ for a valuation

in E[F ], i.e., A′ 6∈ L(E[F ]). Thus there exists a valuation �′ in E[F ]\{u0} such that
u 6� ′A′ for some u 6= u0. Then u0 6� ′A = A′∨A′′ in E[F ], since we may assume that
all variables are false at u0. Hence A 6∈ L(E[F ]).

Finally let u0∈R(π0) and B ∈ L(E[F ]\{u0}) \L(E[F ]). Consider a variable p non-
occurring in B, put A′ = (p→B), A = p ∨ A′. Then A ∈ L(E[F ]) and R(π0) violates
A′ with a valuation such that u0 6� B, u0 � p. 2

Remark By the way, one can rewrite the latter condition (in Proposition 4) in a more
‘syntactic’ form, using δ-operation of Hosoi – Ono. Namely,

[ L(E[F ]) = L(E[F ]\{u0}) ] iff [A∈L(E[F ])⇔ δA∈L(E[F ]) for every formula A ],

where δA = p∨(p→A) for a variable p non-occurring in A. 28

In fact, recall that clearly: δA ∈ L(E[F ]) iff A ∈ L(E[F ]\{u0}).

The proposition implies that F is not H-sound if E[F ] is a rooted frame of finite
height (and its root belongs to R(π0)). In fact, here frames E[F ] and E[F ]\{u0} have
different heights, so their logics are distinguishable by a well-known axiom. A similar
argument is applicable if, say, E[F ]\X is linearly ordered, where X is a non-empty (and
non-linear!) downward closed set of finite height (and in many other cases).

But note that we cannot reduce a general case to the case of rooted E[F ]. For
example, let E[F ] be a disjoint union of finite cones, say, Jaśkowski’s trees, or finite
chains, or finite binary trees (and R(π0) = E[F ]). Then F is H-sound, since L(E[F ]) =

28Note also that the implication (⇒) is obvious, so one can read (⇐) for (⇔) here.
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H (or Dummett’s logic, or Gabbay – de Jongh’s logic of binary trees, 29 respectively),
but all its (non-open!) subframes F ′∪{π0} for cones F ′ in E[F ] are not H-sound.

So we do not hope to find a general description of H-sound frames essentially less
cumbersome than the technical condition (λ∗). And such a description seems useless,
because we have proved that all these frames are actually reducible to partially ordered
ones.

Example Proposition 4 gives us an H-sound frame such that L(F ) 6= L(S[F ]), men-
tioned in Section 1.2. Namely, let F be a frame of the form (ϕ) such that E[F ] is the set of
all proper subsets of a 3-element set I (partially ordered by inclusion), see Figure 5, and
R(π0) is the set of all 2-element subsets of I. Then F is H-sound, since the root ∅ of E[F ]
does not belong to R(π0). Now, π0 becomes a reflexive minimal point in S[F ], and its
cone is the tree T2,3 of height 2 and branching 3. Thus L(S[F ]) = L(E[F ])∩L(T2,3),
and one can easily show that the Kreisel – Putnam’s formula

K = (¬p→q∨r)→ (¬p→q)∨(¬p→r)

belongs to L(E[F ])\L(S[F ]) = L(F )\L(S[F ]).

Fig. 5.

2.5 Additional Remark
Anonymous referees proposed to consider a stronger version of intuitionistic soundness,
cf. e.g. [5, Proposition 8]. 30

Recall the well-known notions of intuitionistic logical consequence:

Γ `H A iff [ H ` (&Γ0 → A ) for a finite Γ0 ⊆ Γ ]

and the semantic consequence (in a frame F ):

Γ �F A iff [ ∀u(u�Γ)⇒ ∀u(u�A), for any valuation � in F ]

(here u�Γ for a set Γ of formulas means that ∀B∈Γ(u�B) ).

29Recall that it has the disjunction property.
30We suppose that this version of soundness is too strong. However, its description is quite simple and
readily follows from our previous considerations, so we present it here.
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Say that a frame F is strongly H-sound (or sH-sound) if

Γ `H A ⇒ Γ �F A for all Γ and A. (σ)

Obviously, > `H A ⇔ H`A and > �F A ⇔ A∈L(F ). So
(I) Every sH-sound frame F is wH-sound.

Also, clearly: if Γ �F A , then ( Γ⊆L(F ) ⇒ A∈L(F ) ).
Hence every sH-sound frame satisfies modus ponens, i.e., the condition (MP) from

Section 1.1, because (>→A) `H A. Therefore by Proposition 3 we obtain
(II) Every sH-sound frame F is H-sound.

It is well known that all p.o. (and thus, all quasi-ordered) frames are sH-sound.
Finally, we obtain the following description of sH-soundness:

Claim For a frame F the following conditions are equivalent:

(1) F is sH-sound, i.e., it satisfies (σ) (with all Γ and A);

(2) the condition (σ) holds with all one-element Γ (and all A);

(3) F is co-serial and wH-sound;

(4) F is weakly quasi-ordered.

By the way, this claim gives another, slightly indirect, proof of (II), cf. Proposition
1. 31

Proof. (2) ⇒ (3). First, F is wH-sound by (I). Now suppose F is not co-serial, i.e,
Π[F ] 6= ∅. Take a valuation such that u�p ⇔ u∈E[F ]. Then we have:
∀u∈F (u � (>→p) ) and u 6� p for u∈Π[F ], so (>→p) 6�F p, while (>→p) `H p.

(4) ⇒ (1). By Lemma 2.2, the frames F and F ∗ have the same valuations, so the
sH-soundness of F readily follows from the sH-soundness of F ∗.

Now Proposition 1 gives (3) ⇒ (4), and concludes the proof. 2

So we see that the natural counterpart of Reducibility Theorem for sH-soundness
holds as well, namely:

For every sH-sound Kripke frame F there exists a partially ordered frame F ′ such
that

Γ �F A iff Γ �F ′ A.

Put F ′ = S[F ](= S[F ∗]).

By the way, we can also mention another, modified version of semantical consequence,
called local (cf. e.g. (∗∗) after Proposition 8 in [5]):

Γ �′F A iff [ u�Γ ⇒ u�A , for any u∈F and for any valuation � in F ].

Naturally, a frame F is s′H-sound if

Γ `H A ⇒ Γ �′F A for all Γ and A. (σ′)

31Note that our proof of the claim uses (I) and does not use (II).
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Clearly, Γ �′F A implies Γ �F A. The converse implication in general does not hold.
In fact, obviously, A �F (>→A) for every frame F (and formula A). On the other hand,
A �′F (>→A) iff F is A-hereditary (see Section 2.1). Therefore, by Lemma 2.1(3), �F

does not imply �′F for every F that is not weakly transitive (e.g. for the frame shown at
Figure 4, or for 3-element non-transitive chains, reflexive or non-reflexive). By the way,
one can show that �F does not imply �′F for p.o. frames as well, but we do not know so
small and simple counterexamples. 32

Nevertheless,
a frame is s′H-sound iff it is sH-sound.

In fact, an s′H-sound frame F is obviously sH-sound. On the other hand, if F is sH-
sound, i.e., weakly quasi-ordered, then (σ′) holds, again by Lemma 2.2, since it definitely
holds for a quasi-ordered frame F ∗.

Fig. 6.
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32Two simplest p.o. frames that we know are shown at Figure 6; they contain 6 points. Also let us
present formulas Ak, Bk such that Bk �Fk

Ak and Bk 6�′Fk
Ak for k=1, 2. Namely,

A1 =

2∨
i=0

¬Ci, B1 = &
i

(¬Ci →
∨
j 6=i

Cj), where C0 = p&q, C1 = p&¬q, C2 = ¬p&q.

and A2 = ¬p∨¬¬p, B2 = ((¬¬p→p)→ p∨¬p).
In fact, one can easily construct valuations �k in Fk such that u �k Bk, u 6�k Ak.
On the other hand, u0 � Bk ⇒ u0 � Ak for any valuation in Fk.
Note that F2 is the 6-element cone in Nishimura’s ladder and (B2 → A2) is the well-known Scott’s
formula.
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