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Abstract

We consider the original Lambek calculus and its natural modification called the Lambek calculus allow-
ing empty premises. Both calculi have three binary connectives: an associative product operator and
its two residuals, the left and right division. This paper contains a short survey of complexity results
concerning fragments of these calculi obtained by restricting the set of connectives and/or the number
of variables.
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Introduction

The Lambek syntactic calculus L (introduced in [8]) is one of the logical calculi used in
the paradigm of categorial grammar for deriving reduction laws of syntactic types (also
called “categories”) in natural and formal languages. In categorial grammars based on
the Lambek calculus (or its variants), an expression is assigned to category B /A (resp.
A \ B) if and only if the expression produces an expression of category B whenever it
is followed (resp. preceded) by an expression of category A. An expression is assigned
to category A · B if and only if the expression can be obtained by concatenation of an
expression of category A and an expression of category B. The reduction laws derivable
in this calculus are of the form A→ B (meaning “every expression of category A is
also assigned to category B”). An overview of logical frameworks used in categorial
grammars can be found, e.g., in [2] and [11].

There is a natural modification of the original Lambek calculus, which we call the
Lambek calculus allowing empty premises and denote by L∗ (see [21, p. 44]). Intuitively,
the modified calculus allows the empty expression to be assigned to some categories.
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The calculus L∗ is in fact a fragment of noncommutative linear logic (introduced by
V. M. Abrusci in [1]). Essentially the same logic was called BL2 by J. Lambek [9] (it
was also studied by several other authors). Also the cyclic linear logic proposed by
J.-Y. Girard and expounded by D. N. Yetter (see [5,22]) is conservative over L∗. In the
propositional multiplicative fragments of all these logics, the cut rule can be eliminated
and all cut-free proofs are of polynomial size. Thus, the derivability problem for these
fragments is in NP.

In 2003, it was proved that for L (and L∗) the derivability problem is NP-hard and
thus NP-complete. This was done by establishing a polynomial-time reduction from the
Boolean satisfiability problem to the derivability problem for L (this reduction works
also for L∗, and thus also for the multiplicative fragment of noncommutative linear logic
and for the multiplicative fragment of cyclic linear logic). The derivability problem for
all fragments obtained from the original Lambek calculus L (or L∗) by restricting the set
of connectives (except for the trivial fragment with only the multiplication) remained
open. All these complexity problems were solved in 2006–2009 by Yury Savateev who
established polynomial-time reductions from the Boolean satisfiability problem to the
derivability problems for those fragments that contain two of the three connectives of the
Lambek calculus. It turned out that for the unidirectional Lambek calculus (the frag-
ment that has only one division operator and no multiplication) the derivability problem
is decidable in deterministic polynomial time. To establish this theorem, Y. Savateev
invented an efficient method for testing derivability in the unidirectional Lambek calcu-
lus. At first, one decomposes the given types into atomic building blocks, labels them
with natural numbers (which indicate the “Horn depth” in the original type), and puts
them in a certain order (which reflects the group-theoretic interpretation of the division
operator). Next, one evaluates an auxiliary predicate of ‘acceptability’ for all substrings
of the string of labelled atomic building blocks. Doing this in the manner of dynamic
programming we obtain a straightforward cubic algorithm for deciding derivability in
the unidirectional Lambek calculus.

For each of the above fragments, the derivability problem remains in the same com-
plexity class if we allow for only one variable.

The proofs of all these results are sketched in this survey. We also propose a mod-
ification of Y. Savateev’s construction for the product-free fragments. The modified
construction uses less variables and yields slightly shorter sequents.

This paper is organized as follows. The first section contains definitions of the calculi
L and L∗. In Section 2, we define the calulus CMLL and show that it is conservative
over L∗. In Section 3, we formulate a criterion for derivability in CMLL. In Section 4,
we sketch the proof of NP-completeness for L and L∗. Complexity results for fragments
of L and L∗ are presented in the last two sections.

1 Lambek Calculus

First we define the Lambek calculus allowing empty premises (denoted by L∗).
Assume that an enumerable set of variables Var is given. The types of L∗ are built

of variables (also called primitive types in the context of the Lambek calculus) and three
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binary connectives ·, /, and \. The set of all types is denoted by Tp. The letters p,
q, . . . range over the set Var, capital letters A, B, . . . range over types, and capital Greek
letters range over finite (possibly empty) sequences of types. For notational convenience,
we assume that · has higher priority than \ and /.

The sequents of L∗ are of the form Γ→A (note that Γ can be the empty sequence).
The calculus L∗ has the following axioms and rules of inference:

A→A,
Φ→B ΓB∆→A

ΓΦ∆→A
(cut),

ΠA→B
Π→B / A

(→/), Φ→A ΓB∆→ C
Γ(B / A)Φ∆→ C

(/→),

AΠ→B
Π→A \B

(→\), Φ→A ΓB∆→ C
ΓΦ(A \B)∆→ C

(\→),

Γ→A ∆→B
Γ∆→A ·B (→·), ΓAB∆→ C

Γ(A ·B)∆→ C
(·→).

As usual, we write L∗ ` Γ→A to indicate that the sequent Γ→A is derivable in L∗.

Example 1.1 The sequent (p \ p) \ p→ p can be derived in L∗ as follows:

p→ p

→ p \ p
(→\)

p→ p

(p \ p) \ p→ p
(\→).

The calculus L has the same axioms and rules with the only exception that in the
rules (→\) and (→/) we require Π to be nonempty. Thus, if L ` Γ→ A, then Γ is
nonempty. In fact, L is the original syntactic calculus introduced in [8]. Evidently, if
L ` Γ→A, then L∗ ` Γ→A.

It is known that the cut-elimination theorem holds for both L and L∗.

Example 1.2 The sequent (p \ p) \ p→ p cannot be derived in L.

Example 1.3 The sequent r · (q \ s)→ (q / r) \ s can be derived in L as follows:

r→ r q→ q

(q / r) r→ q
(/→)

s→ s

(q / r) r (q \ s)→ s
(\→)

r (q \ s)→ (q / r) \ s
(→\)

r · (q \ s)→ (q / r) \ s
(·→).

The intended linguistic use of the Lambek calculus is demonstrated by the following
example.

Example 1.4 Let s and np be two primitive types (s is intended to be the type of
sentences and np is intended to be the type of noun phrases). In an example from [8],
the English words Jane and likes are assigned the types np, and (np\s)/np, respectively.
The type of likes shows that likes yields a sentence if two noun phrases are added to
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it, one on the right-hand side, another one on the left-hand side. Further, in this toy
grammar the pronouns he and she are assigned the type s / (np \ s), since any of them
yields a sentence when combined with a sentence missing a noun phrase on the left-hand
side. To check the grammaticality of a string of words, say he likes Jane, we attempt
to derive a sequent whose left-hand side consists of types corresponding to these words.
Since the sequent

(s / (np \ s)) ((np \ s) / np) np→ s

is derivable in L, we see that he likes Jane is accepted as a grammatically correct
sentence by this grammar.

Similarly, him and her are assigned the type (s / np) \ s. In view of

L ` np ((np \ s) / np) ((s / np) \ s)→ s,

we see that Jane likes him is a grammatically correct sentence. Moreover, she likes him
is also accepted, since

L ` (s / (np \ s)) ((np \ s) / np) ((s / np) \ s)→ s.

The rules (→\), (→/), and (·→) are reversible in both L and L∗ (the converse rules
are easy to derive with the help of the cut rule).

If L ` A→ B and L ` B → A, then we write A ↔
L
B and say that A and B are

equivalent. Replacing a type by an equivalent type in a sequent does not affect the
derivability of the sequent. It is easy to verify that (A · B) · C ↔

L
A · (B · C) and

(A \B) / C ↔
L
A \ (B / C), which allows us to omit parentheses in certain types.

2 Cyclic Linear Logic

The cyclic linear logic was proposed by J.-Y. Girard and expounded by D. N. Yetter
[5,22]. It is conservative over L∗. We consider its multiplicative fragment without the
constants ⊥ and 1. There are several equivalent sequent calculi for this fragment; here
we consider only one of them and denote it by CMLL. The calculus CMLL may also
be considered as a fragment of Lambek’s bilinear logic BL3 from [9]; however, we use O
instead of ⊕.

In the definition of formulas of CMLL we shall employ the same enumerable set
Var that was used in the definition of Lambek calculus types. It is well known that
in CMLL every formula has an equivalent normal form, where the negation operator is
only applied to variables. For simplicity, we shall only consider formulas in normal form.
The negation of a variable p will be denoted by p.

The set of formulas Fm of the calculus CMLL is defined as the smallest set satisfying
the following conditions:

• if p ∈ Var, then p ∈ Fm and p ∈ Fm;
• if A ∈ Fm and B ∈ Fm, then (A⊗B) ∈ Fm and (AOB) ∈ Fm.
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The binary connective ⊗ is called ‘tensor’, and O is called ‘par’. Variables and their
negations (i.e., the formulas shown in the first item of the definition of formulas) are
called atoms.

In the linear logic context, capital letters A, B, . . . range over the set Fm and capital
Greek letters range over the set of finite (possibly empty) sequences of formulas from
Fm.

The sequents of the calculus CMLL are of the form → Γ.
We need an operation ( · )⊥ : Fm→ Fm defined on the set Fm. It maps each formula

to its negation as follows:

(p)⊥ = p,

(p)⊥ = p,

(A⊗B)⊥ = (B)⊥ O (A)⊥,

(AOB)⊥ = (B)⊥ ⊗ (A)⊥

(as usual, p ranges over Var). Evidently, A⊥⊥ = A.

Example 2.1 Let s ∈ Var and np ∈ Var. According to the definition,

(sO (s⊗ np))⊥ = (np O s)⊗ s and ((np O s) O np)⊥ = np ⊗ (s⊗ np).

The axioms of the calculus CMLL are → p p and → p p, where p ∈ Var.
The calculus CMLL has the following rules of inference:

→ ΓAB∆
→ Γ(AOB)∆

(O),

→ ΓAΓ′ →B∆
→ Γ(A⊗B)∆Γ′

(⊗1), → ΓA →∆B∆′

→∆Γ(A⊗B)∆′
(⊗2),

→ ΓAΓ′ → (A)⊥∆
→ Γ∆Γ′

(cut1),
→ ΓA →∆(A)⊥∆′

→∆Γ∆′
(cut2).

We shall write CMLL ` → Γ if the sequent → Γ is derivable in CMLL.
The cut-elimination theorem holds for CMLL, i.e., the set of derivable sequents does

not change if we drop the rules (cut1) and (cut2).
It can be proved by induction on derivation length that if → ΦΨ is derivable, then

→ΨΦ is derivable too. Thus, only cyclic permutations of formulas in a sequent are
allowed. This justifies the word ‘cyclic’ in the name of the logic.

To embed L∗ into CMLL, we shall map each type A ∈ Tp to a formula Â ∈ Fm:

p̂ = p,

Â / B = ÂO (B̂)⊥,

Â \B = (Â)⊥ O B̂,

Â ·B = Â⊗ B̂.
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In [7], this mapping is denoted by ( · )[.

Lemma 2.2 Let C1, . . . , Cn, D ∈ Tp. The sequent C1 . . . Cn→D is derivable in L∗ if

and only if the sequent → Ĉn

⊥
. . . Ĉ1

⊥
D̂ is derivable in CMLL.

Proof. This lemma was proved in [12, Sec. 7]. 2

Example 2.3 Let s ∈ Var and np ∈ Var. According to the definition, ̂s/(np\s) =
s O (s ⊗ np), ̂(np\s)/np = (np O s) O np, and ̂(s/np)\s = (np ⊗ s) O s. Thus, the
sequent (s / (np \ s)) ((np \ s) / np) ((s / np) \ s)→ s from Example 1.4 corresponds to
the CMLL-sequent

→ (s⊗ (sO np)) (np ⊗ (s⊗ np)) ((np O s)⊗ s) s,

which is indeed derivable in CMLL.

In view of Lemma 2.2, any algorithm for deciding derivability in CMLL also provides
an algorithm for deciding derivability in L∗.

3 Proof Nets

To characterize derivability in CMLL, we shall use a proof-net-based criterion introduced
in [13], where it was exposed for the multiplicative fragment of Abrusci’s noncommu-
tative linear logic (with the multiplicative constants). Essentially the same criterion is
given in [3], where it is formulated for the constant-free multiplicative fragment of the
cyclic linear logic. This criterion is quite similar to the one presented in Section 4 of the
survey [7] and credited to Chapter 5 of [4]. In all these criteria, a planar graph consisting
of a parse tree and axiom links divides the plane into regions, a binary relation is defined
on the set of all regions (this is where the definitions from [13] and [7] differ), and the
acyclicity condition is imposed on the graph corresponding to this binary relation.

In this section, we give an informal exposition of the criterion from [13] for CMLL.
Given a sequent →A1A2 . . . Ak−1Ak, we replace it by the sequent

→A1 O (A2 O . . .O (Ak−1 OAk) . . .)

(it is well known that they are either both derivable or both nonderivable in CMLL).
Thus, we may assume that we have a sequent →A, containing n occurrences of atoms.
Evidently, it contains n− 1 occurrences of binary connectives.

On the set of all occurrences of connectives and atoms in A, we define the binary
relation ≺ so that α ≺ β if and only if α is in the scope of β.

Now we draw the parse tree of the formula A so that (1) moving from left to right we
visit all nodes in the infix order, (2) if α ≺ β, then α is placed higher than β (thus, the
root of the parse tree is at the bottom), and (3) the edges of the parse tree are drawn as
straight line segments, and they do not intersect. We add one dummy occurrence of O at
the bottom left corner and connect it with the root by a dummy edge (again a straight
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line segment). This dummy occurrence becomes the new root of the tree. The extended
parse tree (i.e., the parse tree together with the dummy node and the dummy edge) is
the first component of a proof net. It is uniquely determined by the given sequent.

Example 3.1 Let p, q, and s be different elements of Var. Let us consider the sequent

→
(
p⊗

(
((q O (s⊗ s))⊗ s) O s

))
O
((

((s⊗ s) O (sO s))⊗ q
)

O p
)
.

Its extended parse tree is shown in Figure 1.
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O

ccccccccccccccccccccccc
O

Fig. 1. An extended parse tree

The second component of a proof net is a set of axiom links. In general, axiom links
are not uniquely determined by the given sequent. Each axiom link is an edge between
two occurrences of atoms that are negations of each other. Each atom occurrence must
be incident to exactly one axiom link. The axiom links must be drawn above the parse
tree without intersecting each other or edges from the extended parse tree. Thus, the
first two components together form a planar graph, which divides the plane into regions
(in [7,3] they are called faces). It is easy to see that we obtain n

2 + 1 regions.

Example 3.2 One possible set of axiom links for the sequent from Example 3.1 is shown
in Figure 2 using dotted lines.

For each occurrence of a binary connective, we specify to which adjacent region it
“belongs”. The dummy occurrence belongs to its only adjacent region, the outer region
of the graph (in [7] this region is called the infinite face). Each nondummy occurrence
of O or ⊗ belongs to the region adjacent to both edges leading from this occurrence
to its children (for an occurrence of O, in [7] this region is called the Inner face of
the occurrence). Thus, every occurrence of a binary connective belongs to the region
immediately above it.

Now we come to the third component of a proof net. We require that in each region
there must be exactly one occurrence of O (i.e., there must be exactly n

2 + 1 occurrences
of O and they must all belong to different regions). The third component of a proof tree
consists of arcs leading from each tensor occurrence to the par occurrence in the same
region. These arcs (we call them region arcs) together with the arcs specified by the
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Fig. 2. Axiom links

partial order ≺ (directed towards the root) form a directed graph. This graph should
not contain cycles (of course, we consider only directed cycles). In other words, if we
denote the set of all region arcs by A, then the binary relation ≺ ∪ A must be acyclic
(we call a binary relation acyclic if its transitive closure is irreflexive). Note that if the
first two components of a proof net are given, then the third component either does not
exist or is uniquely determined.

If all the above conditions are satisfied, then we have a proof net for →A. We shall
call such proof nets region proof nets.

Example 3.3 Let us consider the extended proof tree and axiom links from Exam-
ple 3.2. Indeed, in each of the seven regions there is exactly one occurrence of O. The
region arcs are shown in Figure 3 (we indicate the left-to-right order of occurrences of
connectives by subscripts). However, there is a cycle in the directed graph consisting of
region arcs and arcs specified by the partial order ≺ (the cycle consists of the vertices
denoted by O2, ⊗4, O8, and ⊗10). Thus, the structure shown in Figure 3 is not a region
proof net.

Theorem 3.4 A sequent →A is derivable in CMLL if and only if there exists a region
proof net for →A.

Proof. The proof is similar to that of Theorem 7.12 from [13]. 2

4 The Complexity of L∗ and L

We give a sketch of the proof of the NP-completeness for L∗ and L that can be found
in [14,15].

In this and the next section, we construct mappings that take Boolean formulas
in conjunctive normal form to sequents of the Lambek calculus. In both sections, we
assume that we are given a Boolean formula in the conjunctive normal form c1∧ . . .∧cm,
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Fig. 3. Region arcs

with clauses c1, . . . , cm and variables x1, . . . , xn. The reduction we are going to present
in this section maps the formula to a sequent that is derivable in L∗ (and in L) if and
only if the formula c1 ∧ . . . ∧ cm is satisfiable.

For any Boolean variable xi let ¬0xi stand for the literal ¬xi and ¬1xi stand for
the literal xi. Note that 〈t1, . . . , tn〉 ∈ {0, 1}n is a satisfying assignment for the Boolean
formula c1∧ . . .∧cm if and only if for every positive integer j ≤ m there exists a positive
integer i ≤ n such that the literal ¬ti

xi occurs in the clause cj (as usual, 1 stands for
“true” and 0 stands for “false”).

Let pj
i (where 0 ≤ i ≤ n and 0 ≤ j ≤ m) be distinct primitive types from Var.

We define three families of types:

G0
i � p0

0 \ p0
i if 1 ≤ i ≤ n,

Gj
i � (pj

0 \G
j−1
i ) · pj

i if 1 ≤ i ≤ n and 1 ≤ j ≤ m,
H0

i � p0
i−1 \ p0

i if 1 ≤ i ≤ n,
Hj

i � pj
i−1 \ (Hj−1

i · pj
i ) if 1 ≤ i ≤ n and 1 ≤ j ≤ m,

E0
i (t) � p0

i−1 \ p0
i if 1 ≤ i ≤ n and t ∈ {0, 1},

Ej
i (t) �

{
(pj

i−1 \ E
j−1
i (t)) · pj

i if the literal ¬txi occurs in the clause cj ,
pj

i−1 \ (Ej−1
i (t) · pj

i ) otherwise

if 1 ≤ i ≤ n, 1 ≤ j ≤ m, and t ∈ {0, 1}.



Mati Pentus 319

For convenience we introduce the following abbreviations:

G � Gm
n ,

Hi � Hm
i if 1 ≤ i ≤ n,

Ei(t) � Em
i (t) if 1 ≤ i ≤ n and t ∈ {0, 1},

Fi � (Ei(1) / Hi) ·Hi · (Hi \ Ei(0)) if 1 ≤ i ≤ n.

Example 4.1 Let n = 1, m = 2, c1 = x1, and c2 = ¬x1. Then

G = (p2
0 \ ((p1

0 \ (p0
0 \ p0

1)) · p1
1)) · p2

1,

H1 = p2
0 \ ((p1

0 \ ((p0
0 \ p0

1) · p1
1)) · p2

1),
E1(0) = (p2

0 \ (p1
0 \ ((p0

0 \ p0
1) · p1

1))) · p2
1,

E1(1) = p2
0 \ (((p1

0 \ (p0
0 \ p0

1)) · p1
1) · p2

1),
F1 = (E1(1) / H1) ·H1 · (H1 \ E1(0)).

The proofs of the following lemmas can be found in [14] and [15].

Lemma 4.2 Let 1 ≤ i ≤ n and t ∈ {0, 1}. Then L ` Fi→ Ei(t).

Lemma 4.3 Suppose 〈t1, . . . , tn〉 is a satisfying assignment for the Boolean formula
c1 ∧ . . . ∧ cm. Then L ` E1(t1) . . . En(tn)→G.

Example 4.4 Let n = 2, m = 1, c1 = x1∨x2, t1 = 0, and t2 = 1. In view of Lemma 4.3,
L ` E1(0)E2(1)→G, where

G = (p1
0 \ (p0

0 \ p0
2)) · p1

2,

E1(0) = p1
0 \ ((p0

0 \ p0
1) · p1

1),
E2(1) = (p1

1 \ (p0
1 \ p0

2)) · p1
2.

Lemma 4.5 If the formula c1 ∧ . . . ∧ cm is satisfiable, then L ` F1 . . . Fn→G.

Proof. Suppose 〈t1, . . . , tn〉 is a satisfying assignment for the formula c1 ∧ . . . ∧ cm.
According to Lemma 4.3 L ` E1(t1) . . . En(tn)→G. It remains to apply Lemma 4.2 and
the cut rule n times. 2

Example 4.6 Let n = 1, m = 1, and c1 = x1. In view of Lemma 4.5, we have
L ` (E1(1) / H1) ·H1 · (H1 \ E1(0))→G, where

G = (p1
0 \ (p0

0 \ p0
1)) · p1

1,

H1 = p1
0 \ ((p0

0 \ p0
1) · p1

1),
E1(0) = p1

0 \ ((p0
0 \ p0

1) · p1
1),

E1(1) = (p1
0 \ (p0

0 \ p0
1)) · p1

1.

Lemma 4.7 If L∗ ` F1 . . . Fn → G, then L∗ ` E1(t1) . . . En(tn) → G for some
〈t1, . . . , tn〉 ∈ {0, 1}n.
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Lemma 4.8 Let 〈t1, . . . , tn〉 ∈ {0, 1}n. If L∗ ` E1(t1) . . . En(tn)→ G, then the assign-
ment 〈t1, . . . , tn〉 is a satisfying assignment for the Boolean formula c1 ∧ . . . ∧ cm.

Example 4.9 Let n = 2, m = 1, and c1 = x1 ∨ x2. We consider the assignment
〈0, 0〉, which is not a satisfying assignment for the Boolean formula x1 ∨ x2. In view of
Lemma 4.8, L∗ 0 E1(0)E2(0)→G, where

G = (p1
0 \ (p0

0 \ p0
2)) · p1

2,

E1(0) = p1
0 \ ((p0

0 \ p0
1) · p1

1),
E2(0) = p1

1 \ ((p0
1 \ p0

2) · p1
2).

Lemma 4.10 If L∗ ` F1 . . . Fn→G, then the formula c1 ∧ . . . ∧ cm is satisfiable.

Proof. Immediate from Lemma 4.7 and Lemma 4.8. 2

Theorem 4.11 The L-derivability problem is NP-complete.

Proof. The number of variable occurrences in a cut-free derivation in L can not exceed
the square of the number of variable occurrences in the final sequent. Thus, the L-
derivability problem is in NP.

According to Lemma 4.5 and Lemma 4.10, the mapping that takes c1 ∧ . . . ∧ cm to
F1 . . . Fn→G yields a reduction from the classical satisfiability problem SAT to the L-
derivability problem. The problem SAT is known to be NP-hard. Thus the L-derivability
problem is NP-hard as well. 2

Theorem 4.12 The L∗-derivability problem is NP-complete.

Proof. The theorem follows immediately from Lemma 4.5 and Lemma 4.10. The proof
is similar to that of the previous theorem. 2

All the lemmas in Sections 4 and 5 can be proved using the region proof nets defined
in Section 3. To reformulate any result concerning L∗ in terms of proof nets, we use
Lemma 2.2 and Theorem 3.4. When we deal with L, to reformulate L ` C1 . . . Cn→D,
we need a variant of region proof nets with the additional stipulation that the connective

occurrence preceding a (not necessarily proper) subformula of D̂ or Ĉi

⊥
is not in the

same region as the connective occurrence succeeding this subformula (in [6] such proof
nets are called strong).

Example 4.13 To illustrate Lemma 4.8, we consider the sequent E1(0)E2(0)→G from
Example 4.9. This sequent corresponds to the Boolean formula x1 ∨ x2 and the assign-
ment where both x1 and x2 are false. Our aim is to show that L∗ 0 E1(0)E2(0)→ G.
In view of Lemma 2.2, this is equivalent to

CMLL 0→ Ê2(0)
⊥
Ê1(0)

⊥
Ĝ.



Mati Pentus 321

Note that

Ĝ = (p1
0 O (p0

0 O p0
2))⊗ p1

2,

Ê1(0) = p1
0 O ((p0

0 O p0
1)⊗ p1

1),

Ê2(0) = p1
1 O ((p0

1 O p0
2)⊗ p1

2),

Ê1(0)
⊥

= (p1
1 O (p0

1 ⊗ p0
0))⊗ p1

0,

Ê2(0)
⊥

= (p1
2 O (p0

2 ⊗ p0
1))⊗ p1

1.

In view of Theorem 3.4, it suffices to show that there is no proof net for the sequent

→ Ê2(0)
⊥
Ê1(0)

⊥
Ĝ.

The extended parse tree for Ê2(0)
⊥

O (Ê1(0)
⊥

O Ĝ) is shown in Figure 4.
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Fig. 4. The extended parse tree corresponding to x1 ∨ x2 and 〈0, 0〉

There is a unique way to establish axiom links between occurrences of atoms that
are negations of each other. The axiom links are shown in Figure 5. We indicate the
left-to-right order of occurrences of connectives by subscripts.

Finally, we add the region arcs. In order to demonstrate some regularities of extended
parse trees and axiom links corresponding to sequents of the form E1(t1) . . . En(tn)→G,
we distort the graph layout in a continuous way, as shown in Figure 6. The occur-
rences denoted by O1, ⊗3, O5, ⊗7, O9, and ⊗11 form a cycle. Hence the sequent

→ Ê2(0)
⊥
Ê1(0)

⊥
Ĝ is not derivable in CMLL.

Example 4.14 To illustrate Lemma 4.3, we consider the sequent E1(0)E2(1)→G from
Example 4.4. This sequent corresponds to the Boolean formula x1 ∨ x2 and the assign-
ment where x1 is false and x2 is true. Our aim is to show that L ` E1(0)E2(1)→G. It
suffices to find a strong proof net for the sequent

→ Ê2(1)
⊥
Ê1(0)

⊥
Ĝ.

The types Ê1(0)
⊥

and Ĝ are the same as in Example 4.13, and

Ê2(1)
⊥

= p1
2 O ((p0

2 ⊗ p0
1)⊗ p1

1).
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Fig. 5. The extended parse tree and axiom links corresponding to x1 ∨ x2 and 〈0, 0〉
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Fig. 6. The extended parse tree, axiom links, and region arcs corresponding to x1 ∨ x2 and 〈0, 0〉

The proof net is shown in Figure 7. Evidently, it is strong.

Example 4.15 The Boolean formula x1 ∧ ¬x1 is not satisfiable. This means that
L 0 E1(0) → G and L 0 E1(1) → G (the types G, E1(0), and E1(1) are shown in
Example 4.1). For both assignments, we can draw the axiom links and region arcs, but
there is a cycle consisting of region arcs and arcs specified by the partial order ≺. For
the sequent E1(0)→G, this can be seen in Figure 8, where the occurrences denoted by
O2, ⊗4, O8, and ⊗10 form a cycle.
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Fig. 7. The proof net corresponding to x1 ∨ x2 and 〈0, 1〉
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5 The Complexity of Fragments with Restricted Sets
of Connectives

5.1 The Product-Free Fragments of L∗ and L

A proof of the NP-completeness for L∗(\, /) and L(\, /) was discovered by Y. Savateev
and published in [18]. Here we follow the exposition from [20], but slightly modify the
notation in order to avoid name collision.

Let pj
i , qj

i , aj
i , and bji (where 0 ≤ i ≤ n and 0 ≤ j ≤ m) be distinct primitive types

from Var.
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We define the following families of types:

Ǧ0 � (p0
0 \ p0

n),

Ǧj � (qj
n / ((qj

0 \ p
j
0) \ Ǧj−1)) \ pj

n,

Ǧ � Ǧm

Ǎ0
i � (a0

i \ p0
i ),

Ǎj
i � (qj

i / ((bji \ a
j
i ) \ Ǎj−1

i )) \ pj
i ,

Ǎi � Ǎm
i ,

Ě0
i (t) � p0

i−1,

Ěj
i (t) �

{
qj
i / (((qj

i−1 / Ě
j−1
i (t)) \ pj

i−1) \ pj−1
i ), if ¬txi occurs in cj ,

(qj
i−1 / (qj

i / (Ěj−1
i (t) \ pj−1

i ))) \ pj
i−1, otherwise,

F̌i(t) � (Ěm
i (t) \ pm

i ),
B̌0

i � a0
i ,

B̌j
i � qj

i−1 / (((bji / B̌
j−1
i ) \ aj

i ) \ pj−1
i−1 ),

B̌i � B̌m
i \ pm

i−1.

Let Πi denote the sequence of types (F̌i(0) / (B̌i \ Ǎi)) F̌i(0) (F̌i(0) \ F̌i(1)).

Lemma 5.1 If the formula c1 ∧ . . . ∧ cm is satisfiable, then L(\, /) ` Π1 . . .Πn→ Ǧ.

Lemma 5.2 If L∗(\, /) ` Π1 . . .Πn→ Ǧ, then the formula c1 ∧ . . . ∧ cm is satisfiable.

Theorem 5.3 The derivability problems for L∗(\, /) and L(\, /) are NP-complete.

The length of the sequent Π1 . . .Πn → Ǧ (i.e., the total number of variable occur-
rences) equals (6n+ 1)(4m+ 2).

We propose a modification of Savateev’s construction. In this modification, a Boolean
formula in conjunctive normal form with n clauses and m variables is mapped to a se-
quent of length (5n+ 1)(4m+ 2).

We use the types Ǧ and F̌i(t) defined above and introduce the following family of
types:

Č0
i � p0

i ,

Čj
i � (qj

i / Č
j−1
i ) \ pj

i .

We denote Či � Čm
i .

Let Γi denote the sequence of types (F̌i(0) / (Či−1 \ Či)) F̌i(0) (F̌i(0) \ F̌i(1)).

Lemma 5.4 If the formula c1 ∧ . . . ∧ cm is satisfiable, then L(\, /) ` Γ1 . . .Γn→ Ǧ.

Lemma 5.5 If L∗(\, /) ` Γ1 . . .Γn→ Ǧ, then the formula c1 ∧ . . . ∧ cm is satisfiable.

The above lemmas show that our modification of Savateev’s construction provides
another polynomial time reduction of the classical satisfiability problem SAT to the
L∗(\, /)-derivability problem and the L(\, /)-derivability problem.



Mati Pentus 325

5.2 The Fragments with Multiplication and One Division

A proof of the NP-completeness for L∗(·, \), L∗(·, /), L(·, \), and L(·, /) can be found in
Y. Savateev’s thesis [19].

Using the types introduced in Section 4 and additional primitive types ri (where
1 ≤ i ≤ n), we define the following family of types:

Ḟ1 � E1(0) · ((E1(0) \ E1(1)) · (H1 \ r1)),

Ḟi � ((Ei−1(0) \ ri−1) \ Ei(0)) · (Ei(0) \ Ei(1)) · (Hi \ ri) if 1 < i ≤ n,
Ḟn+1 � (En(0) \ rn) \Hn+1.

Lemma 5.6 If the formula c1 ∧ . . . ∧ cm is satisfiable, then L(·, \) ` Ḟ1 . . . Ḟn+1→G.

Lemma 5.7 If L∗(·, \) ` Ḟ1 . . . Ḟn+1→G, then the formula c1 ∧ . . . ∧ cm is satisfiable.

Theorem 5.8 The derivability problems for L∗(·, \), L∗(·, /), L(·, \), and L(·, /) are
NP-complete.

5.3 The Fragments with One Connective

The fragments L∗(·) and L(·) are obviously decidable in polynomial time: a sequent is
derivable if its antecedent and succedent yield the same sequence of primitive types after
we remove all parentheses and all occurrences of the connective ·.

A deterministic polynomial-time algorithm for L(\) and L(/) was discovered by Y. Sa-
vateev and published in [16] and [17]. It relies on a graph-based presentation of deriva-
tions. Here we shall call these graphs strong unidirectional proof nets. We give an
informal exposition of the criterion from [16] in a slightly modified form.

With each type of L(\) we associate a directed tree together with a linear order on
its vertices; we draw the tree so that this linear order corresponds to the left-to-right
direction. The vertices are the occurrences of primitive types in the given type. To
obtain the tree corresponding to A \ B, we take the tree corresponding to B, add the
left-right converse of the tree for A on the left, and draw an arc from the root of B to
the root of A.

In a directed tree, each vertex has depth, the number of edges in the unique path
from the root to this vertex. In the following diagrams, we shall indicate the depth of
a vertex by the number of short horizontal lines over the primitive type.

Example 5.9 The following three trees correspond to q \ r, s \ (q \ r), and (q \ r) \ t.

q

r

^^<<<<
s q

r

^^<<<<
ffMMMMMM

q

r

BB����

t

ffMMMMMM

Now we can give the definition of a strong unidirectional proof net for a sequent
C1 . . . Cn→D. The first component of such a proof net is the tree that corresponds to
Cn \ (Cn−1 \ . . . \ (C1 \D) . . .). The second component of the proof net is a set of axiom
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links. Each axiom link is an edge between two occurrences of the same primitive type.
Each vertex must be incident to exactly one axiom link. The axiom links must be drawn
above the tree without intersecting each other or edges from the tree.

We require that for each axiom link the depth of its left end be one greater than the
depth of its right end. Moreover, if the right end of an axiom link has non-zero even
depth, then between the two ends of the axiom link there must be a vertex of smaller
depth.

If all the above conditions are satisfied, then we have a strong unidirectional proof
net for C1 . . . Cn→D.

Example 5.10 Consider the sequent (r \ p) ((s \ p) \ t)→ (s \ r) \ t, which is derivable
in L. A strong unidirectional proof net for this sequent is shown in Figure 9.

sdd
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wwwwww s;;

wwwwww

t mm

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ pll

ZZZZZZZZZZZZZZZZZZZZZZ r jj

TTTTTTTTTTT

t

Fig. 9. A strong unidirectional proof net

Theorem 5.11 A sequent C1 . . . Cn→D is derivable in L(\) if and only if there exists
a strong unidirectional proof net for C1 . . . Cn→D.

The proof of the theorem can be found in [16].
Now a polynomial-time algorithm for the derivability problem in L(\) is easy to

design. We construct the tree corresponding to a given sequent, and for each interval of
vertices (in the sense of the left-to-right order), we find out whether there exists a set
of axiom links that involves all the vertices of the interval and does not involve other
vertices (each axiom link must satisfy the conditions from the definition of a strong
unidirectional proof net). The maximal interval covers all the tree and gives an answer
whether a strong unidirectional proof net exists.

A deterministic polynomial-time algorithm for L∗(\) and L∗(/) was also discovered
by Y. Savateev. To obtain a derivability criterion for L∗(\) it suffices to modify the
definition of a proof net. The only difference is in the last condition (about axiom links
whose right end has non-zero even depth). For L∗(\) the corresponding condition is the
following. If the right end of an axiom link has depth 2k, where k > 0, and the depth
of the left predecessor of the left end is greater than 2k, then there must be a vertex
of depth less than 2k between the two ends of the axiom link. We shall call proof nets
of this kind unidirectional. It is easy to see that each strong unidirectional proof net is
a unidirectional proof net.

Example 5.12 Consider the sequent (q \ q) \ s→\s, which is derivable in L∗, but not
in L. A unidirectional proof net for this sequent is shown in Figure 10.
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Fig. 10. A unidirectional proof net

Theorem 5.13 A sequent C1 . . . Cn→D is derivable in L∗(\) if and only if there exists
a unidirectional proof net for C1 . . . Cn→D.

Theorem 5.13 provides a deterministic polynomial-time algorithm for the derivability
problem for L∗(\). We use the method of dynamic programming, similarly to the case
of L(\).

6 The Complexity of Fragments with Restricted
Number of Variables

For each of the above fragments, the derivability problem remains in the same complexity
class if we allow for only one variable (or restrict the number of variables by any positive
integer).

We introduce the abbreviation

Ak � A · . . . ·A︸ ︷︷ ︸
k times

,

where A is a type and k is a positive integer.
If a fragment contains both \ and / and a sequent contains only the variables qi,

where 0 < i < N , then we can replace each variable qi by the type pi \ p / pN−i, where
p ∈ Var, and this does not affect derivability (this substitution is based on a construction
from [10]). Since (A · B) \ C ↔

L
B \ (A \ C) and C / (A · B) ↔

L
(C / B) / A, the above

types can be replaced by equivalent types that do not contain ·.

Example 6.1 It is easy to see that L 0 q1 \ q2→ q1. In the one-variable fragment, this
corresponds to

L 0 ((p \ p / p) / p) \ (p \ (p \ p / p))→ (p \ p / p) / p.

Here N = 3.

To prove the NP-completeness of the one-variable fragments of L(·, \) and L∗(·, \),
we use a substitution discovered by S. Kuznetsov (see [6]) involving only the left division
(of course, there is a dual substitution, which fits for L(·, /) and L∗(·, /)). Let in L or
L∗ a sequent contain only the variables qi, where 0 < i < N . Then we can replace each
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variable qi by the type (
pi+1 ·

(
((p · p) \ p) \ p

)
· pN−i

)
\ p,

and this does not affect derivability. Obviously, these types can be replaced by equivalent
types that do not contain · or /.

Example 6.2 If N = 3, then Kuznetsov’s substitution maps q1 to

p \ (p \ (((p \ (p \ p)) \ p) \ (p \ (p \ p))))

and q2 to
p \ (((p \ (p \ p)) \ p) \ (p \ (p \ (p \ p)))).

Conclusion

The complexity results for the derivability problem for fragments of L and L∗ are sum-
marized in Table 1, where NP denotes NP-completeness. One-variable fragments are
denoted by L(p1) and L∗(p1).

L L∗ L(p1) L∗(p1)

·, \, / NP NP NP NP

·, \ NP NP NP NP

·, /

· P P P P

\, / NP NP NP NP

\ P P P P

/

Table 1
The complexity of fragments of L and L∗
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editors, Substructural Logics, Oxford University Press, Oxford, 1993 pp. 207–237.

[10] Métayer, F., Polynomial equivalence among systems LLNC, LLNCa and LLNC0, Theoretical
Computer Science 227 (1999), pp. 221–229.

[11] Moortgat, M., Categorial type logics, in: J. van Benthem and A. ter Meulen, editors, Handbook of
Logic and Language, Elsevier/MIT Press, Amsterdam/Cambridge, MA, 1997 pp. 93–177.

[12] Pentus, M., Equivalent types in Lambek calculus and linear logic, MIAN Prepublication Series for
Logic and Computer Science LCS-92-02, Steklov Mathematical Institute, Moscow (1992).

[13] Pentus, M., Free monoid completeness of the Lambek calculus allowing empty premises, in: J. M.
Larrazabal, D. Lascar and G. Mints, editors, Proc. Logic Colloquium ’96, Springer, Berlin, 1998
pp. 171–209.

[14] Pentus, M., Lambek calculus is NP-complete, CUNY Ph.D. Program in Computer Science Technical
Report TR-2003005, CUNY Graduate Center, New York (2003).

[15] Pentus, M., Lambek calculus is NP-complete, Theoretical Computer Science 357 (2006), pp. 186–
201.

[16] Savateev, Y., The derivability problem for Lambek calculus with one division, Artificial Intelligence
Preprint Series 56, Utrecht University (2006).

[17] Savateev, Y., Lambek grammars with one division are decidable in polynomial time, in: E. A.
Hirsch, A. A. Razborov, A. L. Semenov and A. Slissenko, editors, Computer Science—Theory and
Applications, Third International Computer Science Symposium in Russia, CSR 2008, Moscow,
Russia, June 7–12, 2008, Proceedings, Springer, Berlin, 2008 pp. 273–282.

[18] Savateev, Y., Product-free Lambek calculus is NP-complete, CUNY Ph.D. Program in Computer
Science Technical Report TR-2008012, CUNY Graduate Center, New York (2008).

[19] Savateev, Y., “Algorithmic Complexity of Fragments of the Lambek Calculus,” Ph.D. thesis,
Moscow State University (2009), (in Russian).

[20] Savateev, Y., Product-free Lambek calculus is NP-complete, in: S. N. Artemov and A. Nerode,
editors, Proc. Logical Foundations of Computer Science 2009, Springer, Berlin, 2009 pp. 380–394.

[21] van Benthem, J., “Language in Action: Categories, Lambdas and Dynamic Logic,” North-Holland,
Amsterdam, 1991.

[22] Yetter, D. N., Quantales and (noncommutative) linear logic, Journal of Symbolic Logic 55 (1990),
pp. 41–64.


	Lambek Calculus
	Cyclic Linear Logic
	Proof Nets
	The Complexity of  L* and  L
	The Complexity of Fragments with Restricted Sets of Connectives
	The Product-Free Fragments of  L* and  L
	The Fragments with Multiplication and One Division
	The Fragments with One Connective

	The Complexity of Fragments with Restricted Number of Variables
	References

