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Abstract

We show that all the complexities of a possible axiomatisation of S5n, the n-modal logic of products
of n equivalence frames, are already present in any axiomatisation of Kn. Then we show that if
3 ≤ n < ω then, for any set L of n-modal formulas between Kn and S5n, the class of all frames for
L is not closed under ultraproducts and is therefore not elementary. So any modal axiomatisation for
a Kripke complete logic in the interval between Kn and S5n must contain modal formulas with no
first-order correspondents. The proof is based on a construction of Hirsch and Hodkinson [15] showing
that the class of strongly representable n-dimensional cylindric algebra atom structures is not closed
under ultraproducts. We show that this construction can be carried through in a diagonal-free setting.

Keywords: many-dimensional modal logic, products of Kripke frames, ultraproducts

1 Introduction

As usual in any area of logic, when one considers the “logic” or “theory” of a class
C of structures (the “intended models”), then there are always “non-intended”, “non-
standard” models of this “logic”. These non-standard structures are often hard to
describe. In this paper we discuss this problem in the setting of n-modal logics: propo-
sitional multi-modal logics having finitely many unary modal operators 30, . . . ,3n−1

(and their duals 20, . . . ,2n−1), where n is a non-zero natural number. Formulas of this
language, using propositional variables from some fixed countably infinite set, are called
n-modal formulas. Frames for n-modal logics — n-frames — are structures of the form
F = (W,Ti)i<n where W is a non-empty set and each Ti is a binary relation on W , for
i < n. Validity of a set Σ of n-modal formulas in an n-frame F (in symbols: F |= Σ) is
defined as usual. If F |= Σ then we also say that F is a frame for Σ. Given a class C of
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n-frames, we denote by Log(C) the set of all n-modal formulas that are valid in every
n-frame in C.

Our “intended” structures are the following special n-frames. Given 1-frames Fi =
(Wi, Ri), i < n, their product is the n-frame

F0 × · · · × Fn−1 = (W0 × · · · ×Wn−1, R̄i)i<n,

where W0× · · · ×Wn−1 is the Cartesian product of the Wi and for all u,v ∈W0× · · · ×
Wn−1 and i < n,

uR̄iv iff uiRivi and uj = vj for j 6= i, j < n.

Such n-frames we call n-dimensional product frames. They have been introduced in
[9,24] and have been extensively studied both in pure modal logic and in applications,
see [8,21] and the references therein.

Two examples of classes of n-dimensional product frames are:

Cnall = the class of all n-dimensional product frames,
Cnequiv = the class of all n-dimensional products of equivalence frames.

Let us also introduce notations for the n-modal logics they determine:

Kn = Log(Cnall),
S5n = Log(Cnequiv).

It can be hard to describe an arbitrary n-frame for Kn or S5n. As is shown in [16],
if n ≥ 3 and L is any set of n-modal formulas such that Kn ⊆ L ⊆ S5n, then it is
undecidable whether a finite n-frame is a frame for L or not. (So no such logic L can
be finitely axiomatisable.) Here we show that these non-standard n-frames are hard to
“catch” in an other sense: They cannot be described in the first-order “frame language”,
that is, in the language having n binary predicate symbols and equality.

Theorem 1.1 Let 3 ≤ n < ω and let L be any set of n-modal formulas such that
Kn ⊆ L ⊆ S5n. Then the class of all frames for L is not closed under ultraproducts,
and so is not elementary.

Note that both K2 and S52 are (finitely) axiomatisable by Sahlqvist-formulas (see
[9,14]), so the respective classes of all their frames are elementary. Also note that
Theorem 1.1 only says that the class of all frames for certain modal logics is not closed
under ultraproducts. Such a logic can still be determined by some smaller, ultraproduct-
closed class of n-frames. This is indeed the case for many, see Prop. 2.9 below. As
is shown in [20], Kn is even determined by a class of n-frames that can be finitely
axiomatised in the first-order frame language.

However, as a consequence of Theorem 1.1 we obtain the following quite discouraging
result, as far as finding an explicit axiomatisation for the logics in question is concerned:
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Corollary 1.2 Let 3 ≤ n < ω and let L be any Kripke-complete n-modal logic such that
Kn ⊆ L ⊆ S5n. Then any axiomatisation for L must contain n-modal formulas with no
first-order correspondents.

We conjecture that, for canonical logics L in the interval between Kn and S5n, a
combination of the techniques of the present paper with those of Hodkinson and Venema
[17] might result in an even stronger statement: Any axiomatisation for such an L must
contain infinitely many non-canonical n-modal formulas.

The structure of the paper is as follows. In Section 2 we give a general characteri-
sation of arbitrary frames of multi-modal logics determined by frame-classes satisfying
some closure conditions. Using this we show that if we could “deal” with non-standard
n-frames for Kn, then we could do that with arbitrary n-frames for S5n as well. In
particular, we show that S5n is finitely axiomatisable over Kn. Then in Sections 3 and
4 we prove Theorem 1.1. The proof is based on a construction of Hirsch and Hodkin-
son [15] showing that the class of strongly representable n-dimensional cylindric algebra
atom structures is not closed under ultraproducts. We show that this construction can
be carried through in a diagonal-free setting, and then apply the results of Section 2.

2 Non-standard frames for logics determined by
classes of n-dimensional product frames

We begin with proving some general results on modal logics determined by special classes
of relational structures of any signature. In what follows we use the words frame and
relational structure as synonyms. (So the n-frames introduced in Section 1 are special
frames.) We use without explicit reference standard notions and results from basic
modal logic and universal algebra; such as p-morphisms, generated subframes, Sahlqvist
formulas and canonicity, duality between relational structures and Boolean algebras with
operators (BAOs), homomorphisms, subalgebras, direct products, ultraproducts, varieties,
subdirect embeddings and subdirectly irreducible algebras. For notions and statements
not defined or proved here, see [3,4,10,13].

If x is a point in a relational structure F then we denote by Fx the smallest generated
subframe of F containing x. We call Fx a point-generated subframe of F. If F = Fx for
some x, then F is called rooted. Apart from the usual operators H , S and P on classes
of algebras (denoting homomorphic images, subalgebras, and isomorphic copies of direct
products, respectively), we use the following operators on classes of frames of the same
signature:

Gsf C = isomorphic copies of generated subframes of frames in C,
Gsfp C = isomorphic copies of point-generated subframes of frames in C.

The (full) complex algebra of a frame F = (W,Ri)i∈I is denoted by Cm F. That is,
Cm F = (P(W ),∩,−W , fi)i∈I , where (P(W ),∩,−W ) is the Boolean algebra of all subsets
of W , and for each k + 1-ary relation Ri, fi is a k-ary function defined by taking, for
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every X1, . . . , Xk ⊆W ,

fi(X1, . . . , Xk) = {w ∈W : Ri(w, x1, . . . , xk) for some x1 ∈ X1, . . . , xk ∈ Xk}.

Given a class C of frames of the same signature, we denote by Cm C the class of complex
algebras of frames in C. The starting point of the duality between Kripke complete
modal logics and BAOs is the following well-known property. For any class C of frames,
and for any frame F of the same signature,

F |= Log(C) ⇐⇒ Cm F ∈ HSPCm C. (1)

The following general result shows that if C satisfies some closure conditions, then H is
not needed in generating the variety corresponding to Log(C):

Theorem 2.1 (Goldblatt [11]) If C is a class of frames that is closed under ultraprod-
ucts, then SPCm Gsf C is a canonical variety.

Let us have a closer look at the subdirectly irreducible algebras of these varieties.

Lemma 2.2 For any class C of frames, the subdirectly irreducible members of
SPCm Gsf C belong to SCm Gsfp C.

Proof. Let A ∈ SPCm Gsf C and let A �
∏
i∈I Ai be a subdirect embedding, for some

Ai ∈ SCm Gsf C, i ∈ I. If A is subdirectly irreducible then there is an i ∈ I such
that A is isomorphic to Ai, and so A is isomorphic to a subalgebra of Cm F for some
F ∈ Gsf C. Then for each point x in F, Fx ∈ Gsfp Gsf C ⊆ Gsfp C. It is not hard to show
(see e.g. [10, 3.3]) that Cm F �

∏
x∈F Cm Fx is a (subdirect) embedding. So there exist

subalgebras Bx of Cm Fx such that A �
∏
x∈F Bx is a subdirect embedding as well. As

A is subdirectly irreducible, there is some x in F such that A is isomorphic to Bx, and
so A ∈ SCm Gsfp C. 2

Now Theorem 2.1 and Lemma 2.2 imply the following characterisation of varieties
generated by certain classes of complex algebras.

Theorem 2.3 If C is a class of frames that is closed under ultraproducts and point-
generated subframes, then SPCm C = HSPCm C is a canonical variety.

We can also have a ‘dual’ structural characterisation of subdirectly irreducible alge-
bras of these varieties. Recall that an ultrafilter of a BAO A = (A,∧,−, fi)i∈I is any
subset µ of A such that, for all a, b ∈ A,

• if a ∈ µ and a ∧ b = a then b ∈ µ;
• if a, b ∈ µ then a ∧ b ∈ µ;
• a ∈ µ iff −a /∈ µ.

Let Uf (A) denote the set of all such ultrafilters. Given a BAO A = (A,∧,−, fi)i∈I , we
denote by Uf A = (Uf (A), Ri)i∈I its ultrafilter frame, where for each k-ary function fi,
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Ri is the following k + 1-ary relation: for any µ, ν1, . . . , νk ∈ Uf (A),

Ri(µ, ν1, . . . , νk) iff ∀a1 ∈ ν1, . . . , ak ∈ νk fi(a1, . . . , ak) ∈ µ.

The ultrafilter extension of a frame F is Ue F = Uf CmF.

Theorem 2.4 Let C be a class of frames that is closed under ultraproducts and point-
generated subframes. Then for every subdirectly irreducible algebra A,

A ∈ SPCm C ⇐⇒ A ∈ SCm C ⇐⇒ Uf A is a p-morphic image of some G ∈ C.

Proof. ⇐: By Jónsson and Tarski’s [19] theorem, A is embeddable into Cm UfA. And
by duality, Cm UfA is embeddable into Cm G ∈ Cm C.
⇒: If A ∈ SPCm C then there is a subdirect embedding A �

∏
i∈I Ai, for some

Ai ∈ SCm C, i ∈ I. As A is subdirectly irreducible, there is an i ∈ I such that A is
isomorphic to Ai, that is, A is isomorphic to a subalgebra of Cm F for some F ∈ C. By
duality, Uf A is a p-morphic image of Ue F. As Ue F is a p-morphic image of an ultrapower
of F (see [7,1,2]) and C is closed under taking ultraproducts, the proof is completed. 2

As a consequence, we obtain a characterisation of “non-standard” frames for certain
logics of the form Log(C):

Corollary 2.5 Let C be a class of frames that is closed under ultraproducts and point-
generated subframes. Then for every rooted frame F,

F |= Log(C) ⇐⇒ Ue F is a p-morphic image of some G ∈ C.

Proof. By (1) and Theorem 2.3,

F |= Log(C) ⇐⇒ Cm F ∈ SPCm C.

As the complex algebra of a rooted frame is subdirectly irreducible [10], the statement
follows from Theorem 2.4. 2

As the ultrafilter extension of a finite frame is isomorphic to the frame itself, we
obtain:

Corollary 2.6 Let C be a class of frames that is closed under ultraproducts and point-
generated subframes. Then for every finite rooted frame F,

F |= Log(C) ⇐⇒ F is a p-morphic image of some G ∈ C.

Now we would like to apply these general results to various classes of n-dimensional
product frames, whenever 0 < n < ω. To this end, observe that the product operation
commutes with ultraproducts and point-generated subframes:
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Claim 2.7 Let U be an ultrafilter over some index set I, and let Fik be a 1-frame, for
i ∈ I, k < n. Then:∏

i∈I
(Fi0 × · · · × Fin−1)/U is isomorphic to (

∏
i∈I

Fi0/U)× · · · × (
∏
i∈I

Fin−1/U).

Claim 2.8 Let F = F0 × · · · × Fn−1 and x be a point in F. Then:

Fx = Fx0
0 × · · · × F

xn−1
n−1 .

Given classes Ci of 1-frames, for i < n, let us define

C0 × · · · × Cn−1 = {F0 × · · · × Fn−1 : Fi ∈ Ci, i < n}.

As a consequence of Claims 2.7 and 2.8, we obtain:

Proposition 2.9 If, for i < n, Ci is a class of 1-frames that is closed under ultraproducts
and point-generated subframes, then the class C0 × · · · × Cn−1 of n-dimensional product
frames is closed under ultraproducts and point-generated subframes.

Now, by Theorem 2.3, (1) and Corollary 2.5, we have:

Theorem 2.10 If, for i < n, Ci is a class of 1-frames that is closed under ultraproducts
and point-generated subframes, then:
(i) SPCm (C0 × · · · × Cn−1) = HSPCm (C0 × · · · × Cn−1) is a canonical variety.
(ii) Log(C0 × · · · × Cn−1) is a canonical n-modal logic.
(iii) For every rooted n-frame F,

F |= Log(C0 × · · · × Cn−1) ⇐⇒
Ue F is a p-morphic image of some G ∈ C0 × · · · × Cn−1 .

Remark 2.11 The condition of Theorem 2.10 clearly holds if each Ci is defined by a set
of 1-modal formulas having first-order correspondents, such as the classes of all frames
of well-known modal logics like K, K4, K4.3, S4.3, S5, Log{(Q, <)}.

In particular, the classes Cnall and Cnequiv introduced in Section 1 are examples of
classes of the form C0 × · · · × Cn−1 within the scope of Theorem 2.10. So, for every
rooted n-frame F,

F |= Kn ⇐⇒ Ue F is a p-morphic image of some G ∈ Cnall , (2)
F |= S5n ⇐⇒ Ue F is a p-morphic image of some G ∈ Cnequiv . (3)

Also, SPCm Cnall and SPCm Cnequiv are canonical varieties. The latter is a variety well-
known in algebraic logic: the variety of n-dimensional representable diagonal-free cylin-
dric algebras [14].

The following lemma shows that any n-frame having n equivalence relations and
being a p-morphic image of an arbitrary n-dimensional product frame is also a p-morphic
image of a product of n equivalence frames.
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Lemma 2.12 Let n > 0 be an arbitrary natural number, and let F = (W,Ti)i<n be
an n-frame such that every Ti is an equivalence relation, for i < n. Suppose that
f : G0 × · · · ×Gn−1 → F is a surjective p-morphism, for some 1-frames Gi = (Ui, Ri),
i < n. Then there exist 1-frames G∗i = (Ui, R∗i ), i < n, such that

• each R∗i is an equivalence relation extending Ri, and
• f : G∗0 × · · · ×G∗n−1 → F is still a surjective p-morphism.

Proof. In order to obtain the ‘equivalence-closure’ R∗i of each Ri, one can add the
missing pairs step by step, like it is done for the n = 2 case in the proof of [8, Lemma 5.8].
The fact that now n is an arbitrary natural number does not make any difference. 2

Remark 2.13 Note that a similar proof would prove a stronger statement. The prop-
erty of each Ti being an equivalence relation can be replaced with any property of Ti that
can be defined by a set of universal Horn formulas in the first-order language having
a binary predicate symbol and equality (and there can be different such properties for
different i).

As a consequence of Theorem 2.10 and Lemma 2.12 we obtain:

Theorem 2.14 Let L be any canonical n-modal logic with Kn ⊆ L ⊆ S5n. Then S5n

is finitely axiomatisable over L: S5n is the smallest n-modal logic containing L and the
S5-axioms for 3i, i < n.

Proof. One inclusion is clear, let us prove the other. The S5-axioms are well-known
examples of Sahlqvist formulas, and their first-order correspondent is the property of
being an equivalence relation. So, by Sahlqvist’s completeness theorem, the smallest
n-modal logic containing L and the S5-axioms for 3i, i < n is canonical, and so Kripke
complete. So it is enough to show that every rooted n-frame F for this logic is a frame
for S5n.

Take such an n-frame F. As F is a frame for Kn = Log(Cnall), by (2), Ue F is a
p-morphic image of some n-dimensional product frame G. As F validates the canonical
S5-axioms, they also hold in Ue F, and so all the relations in Ue F are equivalence rela-
tions. Now by Lemma 2.12, Ue F is a p-morphic image of some G∗ ∈ Cnequiv, and so by
(3), F is a frame for S5n = Log(Cnequiv). 2

Remark 2.15 By Remarks 2.11 and 2.13 we can have similar statements for any Log(K)
in place of S5n, whenever K = C0 × · · · × Cn−1 for some classes Ci of 1-frames, each of
which is definable by Sahlqvist formulas having universal Horn first-order correspon-
dents.

Theorem 2.14 shows that any negative result on the equational axiomatisation of
the variety on n-dimensional representable diagonal-free cylindric algebras (such as its
non-finiteness [18], for n ≥ 3) transfers not only to its logic counterpart S5n, but also to
other many-dimensional modal logics like Kn. In other words, this theorem also means
that all the complexities of a possible axiomatisation of S5n come from the many-
dimensional nature of the product frames and are already present in an axiomatisation
of Kn. Though, by a general result of [9], Kn is known to be recursively enumerable, an
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axiomatisation of Kn should be quite complex, whenever n ≥ 3: any such axiomatisation
should contain modal formulas of arbitrary modal depth for each modality [20], and
infinitely many propositional variables [22]. (At the moment we cannot use Theorem 2.14
to infer the latter, as it is not known whether S5n can be axiomatised using finitely many
variables, whenever n ≥ 3.) As Theorem 1.1 above shows, it will be quite hard to find
an explicit axiomatisation for Kn, as any such must contain n-modal formulas having
no first-order correspondents.

3 Frames constructed from graphs

This and the next section are devoted to the proof of Theorem 1.1. Throughout, we fix
a natural number n ≥ 3. We will use n as a notation for both this number and for the
set {0, . . . , n− 1}. In order to show Theorem 1.1, we will give n-frames Gk, for k < ω,
such that each Gk is a frame for S5n, but any non-principal ultraproduct of the Gks is
not a frame for Kn.

We will use a construction of Hirsch and Hodkinson [15], so let us introduce the
necessary notions. To begin with, let us enrich n-frames by adding some unary relations.
An nδ-frame is a relational structure of the form F = (W,Ti, Eij)i,j<n where (W,Ti)i<n
is an n-frame and Eij ⊆ W for all i, j < n. For any n-dimensional product frame
F = (W0 × · · · ×Wn−1, R̄i)i<n, we define an nδ-frame Fδ by taking

Fδ = (W0 × · · · ×Wn−1, R̄i, δij)i,j<n,

where δij = {w ∈ W0 × · · · ×Wn−1 : wi = wj}, for i, j < n. These δijs are called
diagonal elements. Now let

Cnδcube = {(F× · · · × F︸ ︷︷ ︸
n

)δ : F = (U,U × U) for some non-empty set U}.

Note that if Fδ ∈ Cnδcube then F ∈ Cnequiv. Using Claims 2.7 and 2.8, it is not hard
to see that Cnδcube is closed under ultraproducts and point-generated subframes. So, by
Theorem 2.3, SPCm Cnδcube is a canonical variety, well-known in algebraic logic: the
variety of n-dimensional representable cylindric algebras [14].

Next, we define special nδ-frames with the help of graphs. By a graph we mean
a pair (Γ, E), where Γ is non-empty set and E is an irreflexive and symmetric binary
relation on Γ (the edges). We identify a graph with its underlying set Γ of nodes. Given
a graph Γ = (Γ, E), a set X ⊆ Γ is called independent, if (x, y) /∈ E whenever x, y ∈ X.
The chromatic number χ(Γ) of Γ is the smallest k < ω such that Γ can be partitioned
into k independent sets, and ∞ is there is no such k. An ultrafilter on Γ is an ultrafilter
of the Boolean algebra of all subsets of Γ. For any graph Γ and n < ω, we define the
graph Γ × n as n disjoint copies of Γ, with all possible edges between distinct copies
being added. For notions not defined here and general information on graphs, see [5].

Given a graph Γ, Hirsch and Hodkinson [15] define an nδ-frame

FΓ = (HΓ,≡i, Dij)i,j<n
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as follows.

• HΓ is the set of all pairs (K,∼), where K : n → Γ× n is a partial map, and ∼ is an
equivalence relation on n, satisfying one of the following properties:
· Either: all distinct i, j < n are not ∼-equivalent, K(i) is defined for all i < n, and
{K(0), . . . ,K(n− 1)} is not an independent set in Γ× n.
· Or: {i, j} is a 2-element ∼-class, all other ∼-classes are singletons, K(i) and K(j)

are both defined and K(i) = K(j), and K(k) is not defined for k 6= i, j.
· Or: the number of ∼-classes is ≤n− 2 and K = ∅.

• For every i < n, ≡i is a binary relation on HΓ defined by

(K,∼) ≡i (K ′,∼′) iff ∼ |n−{i} =∼′ |n−{i}, and
either both K(i) and K ′(i) are undefined,
or both K(i) and K ′(i) are defined and K(i) = K ′(i).

• For all i, j < n, Dij is the following subset of HΓ:

Dij = {(K,∼) : i ∼ j}.

The following two propositions are proved in [15]:

Proposition 3.1 [15, Prop.5.2]
If χ(Γ) =∞ then Cm FΓ is an n-dimensional representable cylindric algebra.

Proposition 3.2 [15, Prop.5.4]
If Γ is infinite and χ(Γ) < ω, then Cm FΓ is not an n-dimensional representable cylindric
algebra.

Observe that Cm FΓ is a BAO of the form (A,∧,−, ci, dij)i,j<n, where each ci is a
unary function on A and each dij is an element of A. If we forget about the dijs, we
obtain what is called the diagonal-free reduct of Cm FΓ. It should be clear that this
diagonal-free reduct is in fact Cm F−Γ , where F−Γ is the n-frame (HΓ,≡i)i<n.

We would like to have the diagonal-free “analogues” of Propositions 3.1 and 3.2. On
the one hand, it is straightforward to see that if Cm FΓ is an n-dimensional representable
cylindric algebra, that is, it belongs to SPCm Cnδcube, then its diagonal-free reduct Cm F−Γ
belongs to SPCm Cnequiv. So by (1) and Prop. 3.1 we obtain:

Proposition 3.3 If χ(Γ) =∞ then F−Γ is a frame for S5n.

On the other hand, having the analogue of Prop. 3.2 is not so easy. As is well-known
in algebraic logic, there are nδ-frames G such that though Cm G is not an n-dimensional
representable cylindric algebra, yet its diagonal-free reduct Cm G− is an n-dimensional
representable diagonal-free cylindric algebra [14]. We will show that if Γ is infinite
and χ(Γ) < ∞ then for G = FΓ this is not the case: Cm F−Γ is not an n-dimensional
representable diagonal-free cylindric algebra, and so F−Γ is not a frame for S5n.

Let us begin with showing some further properties of FΓ:
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Claim 3.4 (i) For every i < n, ≡i is an equivalence relation, and Dii = HΓ.
(ii) For all i, j < n, ≡i and ≡j commute.
(iii) For all i, j, k < n, i 6= j, k 6= i, j and for all (K ∼) ∈ HΓ,

(K,∼) ∈ Dij iff there is (K ′,∼′) ∈ Dik ∩Dkj such that (K,∼) ≡k (K ′,∼′).

(iv) For all i, j < n, i 6= j, if (K,∼), (K ′,∼′) ∈ Dij and (K,∼) ≡i (K ′,∼′), then
(K,∼) = (K ′,∼′).
(v) FΓ is rooted.

Proof. The proofs of items (i) and (ii) are tiresome at places, but straightforward.
(iii): Fix some k 6= i, j. First, let (K,∼) ∈ Dij . Then i ∼ j and K(k) is not

defined for k 6= i, j. Let K ′ = ∅ and ∼′ such that ∼′|n−{k} =∼|n−{k} and k ∼′ i ∼′ j.
Then (K ′,∼′) ∈ HΓ as required. For the other direction, let (K ′,∼′) ∈ Dik ∩ Dkj

and (K,∼) ≡k (K ′,∼′). Then i ∼′ k ∼′ j and ∼′ |n−{k} =∼|n−{k}, so i ∼ j, thus
(K,∼) ∈ Dij .

(iv): If (K,∼), (K ′,∼′) ∈ Dij and (K,∼) ≡i (K ′,∼′), then i ∼ j, i ∼′ j and
∼|n−{i} =∼′|n−{i}. Therefor ∼=∼′ follows. Then there are two cases: either all of K(i),
K(j), K ′(i), K ′(j) are defined and equal, or none of them is defined. In either case,
K = K ′ follows.

(v): (cf. [15, proof of Lemma 5.1]) We show that (∅, n × n) ∈ HΓ is suitable as
root. To this end, take any (K,∼) ∈ HΓ. For any i < n, define a partial function
Ki : n→ Γ× n by taking

Ki(j) =

K(i), if j = 0 or j = i, and K(i) is defined,

undefined, else.

Let ∼i be the unique equivalence relation such that ∼i|n−{i} =∼|n−{i} and i ∼i 0. Then
(Ki,∼i) ∈ HΓ and (K,∼) ≡i (Ki,∼i). So we have

(K,∼) ≡1 (K1,∼1) ≡2 (K12,∼12) · · · ≡n−1 (K12...n−1,∼12...n−1).

As n ≥ 3, we have 0 ∼12 1 ∼12 2, so K12 = · · · = K12...n−1 = ∅. Also, ∼12...n−1= n× n.
Therefore, by item (i), (∅, n× n) is a root of FΓ. 2

Properties (i)–(iv) above form the definition of what is called in algebraic logic an n-
dimensional cylindric atom structure (see [13, 2.7.40]). Complex algebras of these special
nδ-frames belong to the variety of n-dimensional cylindric algebras. The interested
reader can find the definition of this class in e.g. [13]. Here we only use that, being a
variety, the class of n-dimensional cylindric algebras is closed under subalgebras. So, in
particular, by Claim 3.4 we have that

any subalgebra of Cm FΓ is an n-dimensional cylindric algebra. (4)

An element a in an algebra A = (A,∧,−, ci, dij)i,j<n is called < n-dimensional, if
there is some i < n such that ci(a) = a. We will use the following result:
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Theorem 3.5 (Johnson [18], see also [12,14])
Let A be an n-dimensional cylindric algebra that is generated by its <n-dimensional
elements. If the diagonal-free reduct A− of A is an n-dimensional representable diagonal-
free cylindric algebra, then A is an n-dimensional representable cylindric algebra.

In Section 4 below we will define a subalgebra AΓ of Cm FΓ and show the following
two statements:

Proposition 3.6 AΓ is an n-dimensional cylindric algebra generated by its <n-dimen-
sional elements.

Proposition 3.7 (cf. [15, Prop.5.4])
If Γ is infinite and χ(Γ) < ω, then AΓ is not an n-dimensional representable cylindric
algebra.

Now if Γ is infinite and χ(Γ) < ω then, by Theorem 3.5, the diagonal-free reduct A−Γ
of AΓ is not an n-dimensional representable diagonal-free cylindric algebra, that is, it
does not belong to SPCm Cnequiv. As A−Γ is a subalgebra of Cm F−Γ , it follows that Cm F−Γ
does not belong to SPCm Cnequiv either. So, by Claim 3.4(v) and (3), Ue F−Γ is not a p-
morphic image of a product of n equivalence frames. On the other hand, by Claim 3.4(i),
all the relations ≡i in F−Γ are equivalence relations, for i < n. Therefore, the n-frame
F−Γ validates the canonical S5-axioms, for all i < n, so they also hold in Ue F−Γ , meaning
that all its relations are equivalence relations as well. So, by Lemma 2.12, Ue F−Γ is not
a p-morphic image of any product frame. So, by (2), we have the required analogue of
Prop. 3.2:

Proposition 3.8 If Γ is infinite and χ(Γ) < ω, then F−Γ is not a frame for Kn.

Now we can complete the proof of Theorem 1.1 precisely as it is done in the proof
of [15, Thm.6.1]: It is not hard to see that if U is a non-principal ultrafilter over some
index set I, then ∏

i∈I
F−Γi

/U is isomorphic to F−∏
i∈I Γi/U

. (5)

So what is left is to have a sequence (Γk)k<ω of graphs such that

• χ(Γk) =∞ for all k < ω.
• If Γ is any non-principal ultraproduct of the Γk, then Γ is infinite and χ(Γ) < ω.

As is shown in [15], one can have such a sequence of graphs by using Erdős’s famous
theorem [6]. Now let L be any set of n-modal formulas such that Kn ⊆ L ⊆ S5n. Then,
by Prop. 3.3, each F−Γk

is a frame for L. On the other hand, by (5) and Prop. 3.8, any
non-principal ultraproduct of the F−Γk

is not a frame for Kn, and so not a frame for L.

4 The algebra AΓ

What is left is to define a subalgebra AΓ of Cm FΓ, and prove Propositions 3.6 and 3.7
about it. We define AΓ using notions introduced in [15, Defs. 4.1, 4.4]. To this end, for
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i < n, let

Fi =
⋂

j,k 6=i, j 6=k

(HΓ −Djk) = {(K,∼) ∈ HΓ : K(i) is defined}.

Now, for any X ⊆ Γ× n, put

X(i) = {(K,∼) ∈ Fi : K(i) ∈ X},

and let AΓ be the subalgebra of Cm FΓ generated by the set

{X(i) : i < n, X ⊆ Γ× n}.

Proof of Prop. 3.6. By (4), AΓ is an n-dimensional cylindric algebra. Now take any
i < n and X ⊆ Γ × n. Let (K,∼) ∈ X(i) and (K ′,∼′) ∈ HΓ such that (K,∼) ≡i
(K ′,∼′). Then both K(i) and K ′(i) are defined, (K ′,∼′) ∈ Fi and K(i) = K ′(i), so
(K ′,∼′) ∈ X(i) as well. This shows that ci(X(i)) = X(i), so X(i) is <n-dimensional.

Proof of Prop. 3.7. We establish a connection between ultrafilters of AΓ and ultrafil-
ters over Γ× n, just like it is done in [15] between ultrafilters of Cm FΓ and ultrafilters
over Γ× n.

For any i < n, let Ei denote the binary relation corresponding to ci in the ultrafilter
frame of AΓ. For any S ⊆ Fi, put S(i) = {K(i) : (K,∼) ∈ S}. For any i < n, and any
ultrafilter µ of AΓ, let

µ(i) = {S(i) : S ∈ µ, S ⊆ Fi}.

Claim 4.1 (analogue of [15, Lemma 4.6])
Let µ be an ultrafilter of AΓ such that Fi ∈ µ for some i < n. Then:
(i) µ(i) is an ultrafilter on Γ× n.
(ii) If j < n and Dij ∈ µ, then Fj ∈ µ and µ(j) = µ(i).
(iii) For any ultrafilter ν of AΓ, we have µEiν iff Fi ∈ ν and µ(i) = ν(i).

Proof. (i): An arbitrary element of µ(i) is of the form S(i) for some S ∈ µ, S ⊆ Fi.
Suppose that S(i) ⊆ X ⊆ Γ× n. Then it is not hard to see that S ⊆ S(i)(i) ⊆ X(i). As
X(i) is an element of AΓ and µ is an ultrafilter of AΓ, X(i) ∈ µ follows. We also have
X(i) ⊆ Fi. So X = X(i)(i) ∈ µ(i).

The proofs of the other two ultrafilter-properties, and of (ii) and (iii) are the same
as those of the corresponding items in [15, Lemma 4.6]. 2

Now we can complete the proof of Prop. 3.7 by following precisely the same steps as
in the proof of [15, Prop.5.4]), using ultrafilters of AΓ in place of ultrafilters of Cm FΓ. If
χ(Γ) < ω, then also χ(Γ×n) < ω. So Γ×n = I0 ∪ · · · ∪ Ik−1 for some natural number k
and independent sets Ij , for j < k. So, for every ultrafilter µ on Γ×n, there is a unique
j < k such that Ij ∈ µ. As Γ is infinite, so is HΓ, and so is AΓ.

Now suppose that AΓ is an n-dimensional representable cylindric algebra. As is
shown in [15, Lemma 5.1], every subalgebra of Cm FΓ is subdirectly irreducible, there-
fore so is AΓ. Thus, by Theorem 2.4, Uf AΓ is a p-morphic image of some frame
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from Cnδcube, that is, there exist an infinite set U and a surjective function h : Un →
{ultrafilters of AΓ} such that

(h1) for all i < n, a,b ∈ Un, if aj = bj for all j < n, j 6= i, then h(a)Eih(b),

(h2) for all i, j < n, a ∈ Un, ai = aj iff Dij ∈ h(a).

(We will not use the ‘backward’ condition w.r.t. Ei.) So if a ∈ Un is such that all the
ai are different for i < n then, by (h2) and Claim 4.1(i),(

h(a)(0), . . . , h(a)(n− 1)
)

is an n-tuple of (Γ× n)-ultrafilters. We show that for each i < n, h(a)(i) depends only
on the set {a0, . . . , an−1}−{ai}. That is, such a function h determines of what is called
in [15] a patch system.

Claim 4.2 Let i, j < n and a,b ∈ Un be such that

• ak 6= a` whenever k, ` 6= i, k, ` < n,
• bk 6= b` whenever k, ` 6= j, k, ` < n, and
• {ak : k < n, k 6= i} = {bk : k < n, k 6= j}.

Then h(a)(i) = h(b)(j).

Proof. This claim is claimed and proved in the proof of [15, Lemma 4.12(2)]. Using
ultrafilters of AΓ instead of ultrafilters of Cm FΓ does not make any difference. 2

As a consequence we obtain:

Claim 4.3 (cf. [15, Def. 4.11, Lemma 4.12(2)])
Given h as above, define a function

∂h : {n− 1-element subsets of U} → {ultrafilters on Γ× n}

by taking, for every n-element subset A of U an n-tuple a ∈ Un such that A =
{a0, . . . , an−1} − {ai} for some i < n and putting

∂h(A) = h(a)(i).

Then ∂h is well-defined.

Take the functions h and ∂h as defined above. As AΓ is infinite, the domain Un of h
should also be infinite. Choose an infinite sequence a0, a1, . . . of distinct elements from
U , and define a function

f : {n− 1-element subsets of ω} → k

by taking
f({i1, . . . , in−1}) = j iff Ij ∈ h

(
{ai1 , . . . , ain−1}

)
.

By Ramsey’s theorem [23], we may assume that the value of f is constant, say, c. Let
A = {a0, . . . , an−1} and a = (a0, . . . , an−1). Then Ic ∈ ∂h(A− {ai}) = h(a)(i), for each
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i < n. So for every i < n there exists some Si ∈ h(a) such that Si ⊆ Fi and Si(i) = Ic.
As h(a) is an ultrafilter of AΓ and

⋂
i<n Si ∈ h(a), we have that

⋂
i<n Si 6= ∅. Take

any (K,∼) ∈
⋂
i<n Si. Then on the one hand, K(i) is defined for all i < n, so the set

{K(0), . . . ,K(n− 1)} is not independent. (This argument is written in the proof of [15,
Lemma 4.10].) On the other hand, as Si(i) = Ic, we have {K(0), . . . ,K(n − 1)} ⊆ Ic,
so it is independent, a contradiction, completing the proof of Prop. 3.7.
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