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Abstract

We address the problems of separation and description in some fragments of modal logics. The former
consists in finding a formula that is true in some given subset of the domain and false in another. The
latter is a special case when one separates a singleton from the rest. We are interested in the shortest
size of both separations and descriptions. This is motivated by applications in computational linguis-
tics. Lower bounds are given by considering the minimum size of Spoiler’s strategies in the classical
Ehrenfeucht-Fräıssé game. This allows us to show that the size of such formulas is not polynomially
bounded (with respect to the size of the finite input model). Upper bounds for these problems are also
studied. Finally we give a fine hierarchy of succinctness for separation over the studied logics.

Keywords: Modal logic, referring expression, shortest formula size, lower bound, Ehrenfeucht-Fräıssé,
succinctness.

1 Introduction

We informally say that a formula ϕ describes an element e in the domain of some model
M whenever ϕ is true when evaluated at e and false when evaluated at every other point
in the domain of M. One can then define the description problem as that of finding a
description for a given e, if such description exists. 3

1 S. Figueira was partially supported by CONICET (grant PIP 370), ANPCyT (grant PICT 2067) and
UBA (grant UBACyT X615).
2 D. Goŕın was partially supported by ANPCyT (grant PICT 2067).
3 We are being deliberately unspecific about the logic in question here, since one can in principle define
a description problem for any logic with suitable semantics.
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This a fundamental problem in the Generation of Referring Expressions (GRE), a
key task in the field of Natural Language Generation with continuous active research
(see [6,7,8,16,17] among others). GRE is the generation of noun-phrases that refer
unequivocally to certain objects in the context of conversation. The description problem
amounts to finding the relevant features that identify an object (e.g., kid∧〈carries〉(ball∧
red)) the outcome of which can be given to a surface realization module that deals with
the generation of an equivalent expression in natural language (e.g., “the kid carrying a
red ball”).

In this paper we focus on the description problem for the basic modal logicML and
some of its syntactical fragments. Multi-modal versions of these languages have been
previously considered in the context of GRE because of their combination of expressive-
ness and good computational behavior [3].

In particular, we are interested in the computational complexity of the description
problem for modal languages. This question was initially addressed in [3] where it is
shown that a standard algorithm for computing bisimulation minimization [15,12] can
be adapted to compute anML-description for every equivalence class in the minimized
model (we revisit this idea in Section 5). Since bisimulation minimization can be done
in polynomial time, if new formulas are built by combining, in constant-time, formulas
that were computed in previous iterations, the resulting algorithm will run in polynomial
time too.

Can we conclude that the description problem for ML can be solved in polynomial
time? One must be careful here. In order to implement formula constructors (such
as ∧, 2, etc.) as constant-time operations one needs to resort to pointers or similar
mechanisms based on aliasing; the upshot of this is that we will be computing ML-
descriptions that are compactly represented as direct acyclic graphs (DAG). The size of
these DAGs is, by construction, bounded by a polynomial in the size of the model, but
it is not clear, in principle, that such a bound exists with respect to the expansion of
these DAGs to full-blown trees.

It is shown in [2] that for certain class of models this algorithm can lead to DAGs
whose expansions cannot be bounded by a polynomial (cf. Section 5). However, every
element in that class of models has a description of linear size. That example only proves
that this algorithm may compute very degenerate solutions, but already shows that one
has to be careful about complexity claims for this problem. 4

The description problem is a particular instance of a more general problem: given
a model M and two non-empty sets C,D (of the domain of M), find a formula that is
true at every element in C and false at every element in D. We call this the separation
problem. In this article we show that no polynomial can bound the size of the solutions
to the separation and description problems. More precisely, we give exponential lower
bounds for the worst-case size of solutions for the separation problem for C and D

singleton sets. We show similar lower bounds when weak fragments ofML (such as the
one without negation) are used.

The article is structured as follows. We begin in Section 2 by introducing the notation

4 Surface realization algorithms do not exploit subformula sharing, but will produce a noun-phrase that
is proportional (typically, linear) in length to the size of the formula.
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we will use throughout the paper. In Section 3 we present the tool we will use to establish
lower bound results: uniform strategy trees. These formalize a strategy for Spoiler in an
Ehrenfeucht-Fräıssé game in a way such that the size of a minimum winning uniform
strategy tree corresponds to the size of the minimum formula that separates the elements
in the initial position of the game. Using these, we give, in Section 4, exponential
lower bounds for the separation problem using different fragments of ML formulas. In
Section 5 we give an upper bound for this problem that is slightly higher than the lower
bound of Section 4. Though the upper and lower bounds are almost tight, the question
of which are the optimal bounds remains open. Finally, in Section 6 we relate these
results with the standard notion of succinctness, and use them to form a hierarchy for
the studied fragments ofML in terms of it. Conclusions and future work are presented
in Section 7.

2 Preliminaries

We will work on the basic modal language, presented for convenience in negation normal
form. Results can be trivially extended to multi-modal languages.

Definition 2.1 [Syntax] The language of the basic modal logic ML is given by the
following grammar:

ϕ ::= > | ⊥ | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 3ϕ | 2ϕ

where p, q, r . . . are propositional symbols. A literal is formula of the form >, ⊥, p or
¬p. ML3∧¬ is the fragment of ML with no occurrences of 2 and ∨. ML3∧ is the
fragment of ML3∧¬ with no literals of the form ¬p.

For ϕ ∈ML, we use ϕ to denote the negation of ϕ: > = ⊥, p = ¬p, ϕ ∧ ψ = ϕ ∨ ψ,
3ϕ = 2ϕ, etc. We use d(ϕ) for the modal depth of ϕ, i.e., the maximum number of
nested modalities occurring in ϕ.

To measure formula size, we define |ϕ| as the number of literals (counting repetitions)
that occur in ϕ; therefore, we have |ϕ ∨ ψ| = |ϕ ∧ ψ| = |ϕ| + |ψ|; |¬ϕ| = |ϕ|; |3ϕ| =
|2ϕ| = |ϕ|; |p| = 1 for propositional symbols p; and |>| = |⊥| = 1. Of course there are
other reasonable notions of formula size, for instance those counting modal or boolean
operators, or even parenthesis. But any reasonable measure of size || · || should satisfy
||3ϕ|| ≥ ||ϕ||, ||ϕ ∧ ψ|| ≥ ||ϕ||+ ||ψ||, etc. and, therefore, will satisfy ||ϕ|| ≥ |ϕ|. Hence
all the lower bounds presented in this work will hold for any reasonable definition of
size.

As usual, formulas are interpreted using Kripke models M = 〈W,R, V 〉 where W is
a non-empty carrier set, R is a binary relation on W and V maps proposition symbols to
subsets of W . We use sucsM(w) for {w′ | (w,w′) ∈ R} (or simply sucs(w) ifM is clear
from context). The size of the finite model M = 〈W,R, V 〉 (with finite domain W and
finite valuation V ), denoted |M|, is taken to be |W | + |R| + |V |. Here |V | denotes the
size of the set of all pairs (w, p) where where p ranges over a finite set of propositional
symbols and w ∈ V (p), while |R| is the number of pairs (w, v) ∈ R.
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Definition 2.2 [Semantics] GivenM = 〈W,R, V 〉, the satisfaction relation |= is induc-
tively defined as:

M, w |= >

M, w |= p iff w ∈ V (p)

M, w |= ¬p iff w 6∈ V (p)

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ

M, w |= 3ϕ iff M, w′ |= ϕ for some w′ ∈ sucsM(w)

M, w |= 2ϕ iff M, w′ |= ϕ for every w′ ∈ sucsM(w)

If C ⊆ W , we write M, C |= ϕ when M, w |= ϕ for every w ∈ C. When M is fixed or
clear from context, we shall use the shorter versions w |= ϕ and C |= ϕ.

The description problem can be seen as a particular case of the more general problem
of finding a formula that separates two arbitrary sets.

Definition 2.3 Let M = 〈W,R, V 〉 and let C,D ⊆ W be two non-empty sets. We
say that ϕ separates C and D in M whenever M, C |= ϕ and M, D |= ϕ. When ϕ

separates {w} and W \ {w} in M, we say that ϕ is a description for w. For c, d ∈ W ,
by ‘ϕ separates c and d’ we mean ‘ϕ separates {c} and {d}’.

3 Games, strategies and shortest description size

The standard way of establishing lower bounds on formula size is using Adler-Immerman
games [1] (for other techniques and logics see [9,14,18]). In these games, one of the players
tries to build a tree that induces a formula of the same size separating two models (or
points in a model), while an opponent tries to prevent it. The latter has an optimal
strategy in these games, so one only needs to show that the former has a strategy that
beats it. This is essentially the technique we will employ.

In order to make this paper self-contained, we will define in this section all the ma-
chinery needed. But we shall do it with a slight twist. The trees constructed during
Adler-Immerman games can be reinterpreted as decision trees that act as winning strate-
gies for Spoiler in classical Ehrenfeucht-Fräıssé games. This means that while existence
of a winning strategy for Duplicator in these games can be used to give lower bounds
on the number of nested modalities needed for some task, the minimum size of (certain
formalization of) a strategy for Spoiler can be used to give lower bounds on the size of
a formula.

We start then defining the classical n-turn Ehrenfeucht-Fräıssé game forML. Instead
of being played on two Kripke models, we find it convenient to define it on two elements
of the same Kripke model. Since modal truth is invariant under disjoint unions, no
generality is lost.
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Definition 3.1 The n-turn Ehrenfeucht-Fräıssé game over modelM = 〈W,R, V 〉 start-
ing on (w, v) ∈ W 2 (notation: GM(w, v, n)) is played between two players, Spoiler and
Duplicator. The rules of the games are:

pl: Spoiler picks a p such that w ∈ V (p) and v 6∈ V (p) and wins.

pr: Spoiler picks a p such that v ∈ V (p) and w 6∈ V (p) and wins.

Rl: If n > 0, Spoiler may pick a w′ ∈ sucs(w); then Duplicator must respond choosing
a v′ ∈ sucs(v) or otherwise loses. In the first case, the turn ends and they continue
to play GM(w′, v′, n− 1).

Rr: If n > 0, Spoiler may pick a v′ ∈ sucs(v); then Duplicator must respond choosing
a w′ ∈ sucs(w) or otherwise loses. In the first case, the turn ends and they continue
to play GM(w′, v′, n− 1).

Duplicator wins whenever Spoiler cannot play. We write G3∧¬
M (w, v, n) for the variation

of GM(w, v, n) without rule Rr, and G3∧
M (w, v, n) for the one that additionally drops rule

pr. We will write G(w, v, n) when the model is clear from context.

Rules pl and pr are not typically part of presentations of Ehrenfeucht-Fräıssé games
forML; they include, instead, the additional constraint on rules Rl and Rr that w′ and
v′ must agree propositionally. Our formulation is clearly equivalent.

Informally, a strategy for the game GM(w, v, n) is a way of playing in which a player’s
moves are determined by the previous ones. It is a winning strategy for player P when P ,
following the commands of the strategy, wins the game independently of the opponent’s
moves. Before turning into the formal definition of strategy and winning strategy let
us mention some is well-known results (see [5, Chapter 3] for more details) regarding
winning strategies, bisimilarity and modal equivalence. The following are equivalent:

• Duplicator has a winning strategy for GM(w, v, n);
• For every formula ϕ of ML with modal depth n, M, w |= ϕ iff M, v |= ϕ

Hence, w and v are modally equivalent in M if and only if, for every n, Duplicator has
a winning strategy for GM(w, v, n). If we drop the restriction of n-rounds and allow for
infinite games, then a winning strategy for player P denotes a way of playing in such a
way that P can always answer to his opponent’s move. Let GM(w, v) denote this infinite
game with no limit in the number of rounds. Then Duplicator has a winning strategy
for GM(w, v) (that is, one that prevents Spoiler from reaching any of his winning states)
if and only if u and v are bisimilar inM. If u and v are bisimilar inM then u and v are
modally equivalent in M. The converse is not true for arbitrary M but it holds when
M is finitely branching (this is known as the Hennessy-Milner Theorem [4,10]).

Any strategy for GM(w, v, n) can be formalized in a more or less straightforward
way using a simple lookup table. However, we are interested in a formalization that
will ultimately allow us to correlate strategy and formula size. We therefore formalize
Spoiler’s strategies using a form of decision tree, which we call uniform strategy trees.

Definition 3.2 Let M = 〈W,R, V 〉 be some fixed model. A uniform strategy tree for
Spoiler is an annotated tree.We write x→ y to mean that nodes x and y are linked by



Santiago Figueira and Daniel Goŕın 125

an edge and use x C→ y when the edge is annotated with a non-empty C ⊆ W . Nodes
can be of six different types: those of type 1 and 2 are annotated with a non-empty set
C ⊆W and are denoted 〈C〉 and [C], respectively; those of type 3 and 4 are annotated
with a proposition symbol p and denoted (p) and (p); finally, those of type 5 and 6,
denoted (∧) and (∨), are not annotated (that is, they do not have any other information
apart from the type itself).

Let C,D ⊆W be non-empty sets; we say that a uniform strategy tree with root x is
winning for GM(C,D) whenever these inductive conditions hold:

(i) If x = 〈E〉, then we must have E∩sucs({w}) 6= ∅ for all w ∈ C, and if sucs(D) 6= ∅,
then x→ y for some y that is winning for GM(E, sucs(D)).

(ii) If x = [E], then we must have E∩ sucs({w}) 6= ∅ for all w ∈ D, and if sucs(C) 6= ∅,
then x→ y for some y that is winning for GM(sucs(C), E).

(iii) If x = (p), then we must have C ∩ V (p) = C and D ∩ V (p) = ∅.
(iv) If x = (p), then we must have C ∩ V (p) = ∅ and D ∩ V (p) = D.

(v) If x = (∧), then D =
⋃
{A | ∃y, x A→ y and y is winning for GM(C,A)}.

(vi) If x = (∨), then C =
⋃
{A | ∃y, x A→ y and y is winning for GM(A,D)}.

When a uniform strategy tree that is winning for GM(C,D) has no nodes of type 2 nor 6
we say that it is winning for G3∧¬

M (C,D); if it doesn’t have nodes of type 4 either, we
say that it is also winning for G3∧

M (C,D). Again, we will drop the model when clear
from context and say, e.g., that a strategy is winning for G(C,D).

The size |s| of a uniform strategy tree s is the number of leaf nodes in s; its depth
d(s) is the maximum number of nested nodes of type 1 or 2.

Notice that every uniform strategy tree s has, by definition, a finite height. Therefore,
it has a finite size if and only if every node is finitely branching.

Readers familiar with Adler-Immerman games may recognize in conditions (i)–(vi)
the rules of the modal version of these games (for formulas in negation normal form).
Since in Adler-Immerman games Duplicator has an optimal strategy, it is not surprising
that we can give a static characterization of them.

The first thing we need to show is that winning uniform strategy trees indeed con-
stitute winning strategies.

Theorem 3.3 If there exists a uniform strategy tree for Spoiler with d(s) ≤ n that is
winning for G?

M(C,D), then Spoiler wins every game G?
M(w, v, n) with w ∈ C, v ∈ D

(for G? ∈ {G,G3∧¬,G3∧}).

Proof. We proceed by induction on the tree, so let x be its root. If x = (p) or x =
(p), then by definition, Spoiler can play p according to rule pl or pr, respectively, and
win immediately. If x = 〈E〉, then Spoiler may play according to rule Rl, picking
(non-deterministically) some w′ ∈ E that is an R-successor of w (observe that since
E ∩ sucs({w}) 6= ∅, some such successor exists); if Duplicator answers with some v′ ∈
sucs(D), then sucs(D) 6= ∅ and there must exist some x→ y such that y is winning for
G(E, sucs(D)), and by inductive hypothesis, Spoiler wins every instance of G(w′, v′, n−
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1). If x = [E], Spoiler may play according to rule Rr and we reason analogously. Suppose
now x = (∧); for some A with v ∈ A we must have x A→ y and since y is winning for
G(C,A), we conclude that Spoiler wins every instance of G(w, v, n). The case for x = (∨)
is analogous. 2

We will now prove again the well-known Ehrenfeucht-Fräıssé Theorem for ML but
paying attention not only to the modal depth of formulas but also to their sizes. For the
rest of this section, we assume a fixed but otherwise arbitrary model M = 〈W,R, V 〉.

Lemma 3.4 Let C,D ⊆ W be non-empty. If ϕ ∈ L? separates C and D in M, then
Spoiler has a uniform strategy tree s that is winning for G?

M(C,D), with |s| ≤ |ϕ| and
d(s) ≤ d(ϕ) (for (L?,G?) ∈ {(ML,G), (ML3∧¬,G3∧¬), (ML3∧,G3∧)}).

Proof. We proceed by induction on ϕ. Since C and D are non-empty, we cannot have
ϕ = > nor ϕ = ⊥. If ϕ = p, then a leaf-node (p) suffices while (p) works in case ϕ = ¬p.
If ϕ = 3ψ then we know there exists a E ⊆ sucs(C) such that E ∩ sucs({w}) 6= ∅ for
all w ∈ C and E |= ψ. In case sucs(D) = ∅, we can use 〈E〉 (or 〈sucs(C)〉) as strategy
tree. Otherwise, by inductive hypothesis, there is a strategy with root y that is winning
for G(E, sucs(D)), |y| ≤ |ψ| and d(y) ≤ d(ψ). Therefore, the uniform strategy tree with
root x = 〈E〉 such that x→ y must be winning for G(C,D), |x| = |y| ≤ |ψ| = |3ψ| and
d(x) = 1 + d(y) ≤ 1 + d(ψ) = d(3ψ). The case for ϕ = 2ψ is analogous. Suppose now
that ϕ = ψ1 ∧ · · · ∧ ψk and let Fi = {v ∈ D | v |= ψi}. Observe that D =

⋃k
i=1 Fi,

so for some i, Fi 6= ∅. For each 1 ≤ i ≤ k, if Fi 6= ∅ then there exists, by inductive
hypothesis, a uniform strategy tree yi that is winning for G(C,Fi). Therefore, the
uniform strategy tree whose root x is (∧) and such that x Fi→ yi for every Fi 6= ∅, is
winning for G(C,D). Observe also that, by inductive hypothesis, |x| ≤

∑k
i=i |ψi| = |ϕ|

and, similarly, d(x) ≤ d(y). The case for ϕ = 2(ψ1 ∨ · · · ∨ ψk) is analogous. 2

Theorem 3.5 (Ehrenfeucht-Fräıssé Theorem) If Duplicator has some strategy that
is winning for G?

M(w, v, n), then for every ϕ ∈ L? with d(ϕ) ≤ n, M, w |= ϕ implies
M, v |= ϕ ((L?,G?) ∈ {(ML,G), (ML3∧¬,G3∧¬), (ML3∧,G3∧)}).

Proof. Suppose w |= ϕ and v 6|= ϕ. This means that ϕ separates w and v and, by
Lemma 3.4, Spoiler has a uniform strategy tree s with d(s) ≤ n that is winning for
G?({w}, {v}). Therefore, by Theorem 3.3, Spoiler wins every instance of G?(w, v, n), so
Duplicator cannot have a winning strategy. 2

Observe that the condition “M, w |= ϕ impliesM, v |= ϕ” is equivalent to “M, w |=
ϕ iffM, v |= ϕ” inML, but not inML3∧ norML3∧¬, since they are not closed under
negation.

For the converse of Lemma 3.4 we need the additional requirement that s is finitely
branching.

Lemma 3.6 If Spoiler has a uniform strategy tree s of finite size that is winning for
G?(C,D), then there exists a ϕ ∈ML? such that |ϕ| ≤ |s| and d(ϕ) ≤ d(s) that separates
C and D (for (L?,G?) ∈ {(ML,G), (ML3∧¬,G3∧¬), (ML3∧,G3∧)}).
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Proof. We proceed by induction on s, and let x be its root. If x = (p), then p trivially
satisfies C |= p and D |= p. Similarly, ¬p can handle the case x = (p). In case x = 〈E〉,
then either sucs(D) = ∅ and 3> is the formula we need or else there exists an y that
is winning for G(E, sucs(D)) and, by inductive hypothesis for some ψ we have E |= ψ,
sucs(D) |= ψ, |ψ| ≤ |y| and (ψ) ≤ d(y). Clearly, D |= 2ψ, |3ψ| ≤ |x|, d(3ψ) ≤ d(x)
and, because E ∩ sucs({w}) = ∅ for every w ∈ C, we can also conclude C |= 3ψ. The
case for for x = [E] is analogous. Suppose now that x = (∧). Since s has finite size,
there can be only finitely many y such that x A→ y (there is at least one y since D is
non-empty). For every such y there exists, by inductive hypothesis, a formula ϕy such
that C |= ϕy and A |= ϕy; by taking ϕ to be the conjunction of all such ϕy, we get
C |= ϕ and D |= ϕ. The case for x = (∨) is symmetrical. 2

We are now ready to give the main result of this section.

Definition 3.7 We say that a uniform strategy tree s that is winning for G?
M(C,D)

is minimum whenever for any other uniform strategy tree s′ winning for G?
M(C,D),

|s| ≤ |s′| (for G? ∈ {G,G3∧¬,G3∧}). Similarly, a formula ϕ ∈ ML? that separates C
and D in M is minimum whenever for any ψ ∈ ML? that separates C and D in M,
|ϕ| ≤ |ψ| (for ML? ∈ {ML,ML3∧¬,ML3∧}).

Theorem 3.8 If s is a minimum uniform strategy tree winning for G?
M(C,D) and ϕ ∈

ML? is a minimum formula that separates C and D inM, then |s| = |ϕ| (for (L?,G?) ∈
{(ML,G), (ML3∧¬,G3∧¬), (ML3∧,G3∧)}).

Proof. By Lemma 3.6, there exists a ψ that separates C and D such that |ψ| ≤ |s|,
and since ϕ is minimum, we know |ϕ| ≤ |ψ| ≤ |s|. Now, by Lemma 3.4, there exists
an s′ that is winning for G?(C,D) with |s′| ≤ |ϕ|, and since s is minimum we conclude
|s| ≤ |s′| ≤ |ϕ| ≤ |ψ| ≤ |s|. 2

A simple inspection of Definition 3.2 shows that if a uniform tree strategy is winning
for G(C,D), then it is also winning for G(C ′, D′) for every non-empty C ′ ⊆ C and
D′ ⊆ D. This shows that in order to give a lower bound for the description problem for
w it suffices to guarantee that w has a description and give a lower bound for the size
of a formula that separates {w} and D for some D with w /∈ D. This will be pursued in
Section 4 and the following results will be useful.

Proposition 3.9 If s is a uniform strategy tree winning for G?(C,D) whose root is
of the form 〈E〉 (resp. [E]), then there exists a uniform strategy tree s′ with root 〈E′〉
(resp. [E′]) that is winning for G?(C,D) and such that |s| = |s′| and E′ ⊆ sucs(C)
(resp. E′ ⊆ sucs(D)), for G? ∈ {ML,ML3∧¬,ML3∧}.

Proof. Let x = 〈E〉 be the root of s; define x′ = 〈E∩ sucs(C)〉 and set x′ → y for every
y such that x → y. Since C is not empty and for every w ∈ C, E ∩ sucs(w) 6= ∅, we
know E ∩ sucs(C) is not empty. If x → y then y is winning for G(E, sucs(D)) and, by
the observation above, y is also winning for G(E ∩ sucs(C), sucs(D)) and therefore x′ is
winning for G(C,D). The case for [E] is analogous. 2
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Proposition 3.10 If s is a uniform strategy tree that is winning for G?(C,D) (G? ∈
{G,G3∧¬,G3∧}), then C ∩D = ∅.

Proposition 3.11 Let G? ∈ {G,G3∧¬,G3∧} and let s be a winning strategy for
G?(C,D) of minimum size. If D is singleton (resp. C is singleton) and the root of
s is of type (∧) (resp. of type (∨)) then there is a winning strategy s′ for G?(C,D) such
that |s| = |s′| and the root of s′ is not of type (∧) (resp. of type (∨)).

Proof. If s is of type (∧) and D is singleton then s D→ s1 is the only possible beginning of
s (here s1 is the only child of s because s is minimum). Like s, the subtree s1 is winning
for G?(C,D) and |s| = |s1|. Let n be the least such that s D→ s1

D→ s2 . . . sn−1
D→ sn and

sn is not of type (∧). By a simple induction one can show that the subtree sn of s is
winning for G?(C,D) and |s| = |sn|. The case for C singleton is analogous. 2

Proposition 3.12 If s is a uniform strategy tree winning for G(C,D), then there exists
a winning strategy tree s′ for G(D,C) and |s| = |s′|.

Proof. We obtain s′ from s by applying on each node of s substitution σ, where σ =
[〈E〉 7→ [E], [E] 7→ 〈E〉, (p) 7→ (p), (p) 7→ (p), (∧) 7→ (∨), (∨) 7→ (∧)]. By a trivial
induction, s is winning for G(C,D) iff s′ = σ(s) is winning for G(D,C). 2

4 Lower bound for the size of modal descriptions

We say that, for a modal logic L, the size of the L-separation problem is bounded by f
if for all finite modelsM = 〈W,R, V 〉 and non-empty C,D ⊆W if there is an L-formula
that separates C and D then there is one such formula of size at most f(|M|). We say
it is polynomially bounded when it is bounded by some polynomial. Similarly, we say
that f is a lower bound for the size of the L-separation problem when there are infinitely
many models M = 〈W,R, V 〉 and non-empty C,D ⊆ W such that an L-formula ϕM
separates C and D, and all such formulas have size at least f(|M|). We say that the size
of the L-separation problem has an exponential lower bound when there is a fixed b > 1
such that bx is a lower bound for the L-separation problem. The notions are analogously
defined for the L-description problem.

In general one cannot conclude that an a in the domain of M has exclusively L-
descriptions of size at least f(M) from the fact that a is L-separable from some b

exclusively by formulas of size at least f(|M|) (a could have no L-descriptions at all).
However, the implication is true when the a in question does have an L-description.

In this section we show that, for L ∈ {ML,ML3∧¬,ML3∧}, the size of the L-
separation and L-description problems has an exponential lower bound and therefore
it cannot be polynomially bounded. We use the machinery introduced in Section 3 to
show lower bounds on Spoiler’s winning uniform strategy trees and hence the size of the
corresponding formulas.

Theorem 4.1 There is a recursive family of acyclic finite models with two distinguished
points (Mn, an, bn)n∈N such that |Mn| ∈ O(n) and the size of the shortest ML-formula
ϕn that separates an from bn in Mn is exponential in n. Furthermore, there exists an
ML-description of an in Mn.
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a0

a′0

b0

an+1

a′n+1

an

a∗n+1

b′n+1

bn+1

bn

...
...

a) (M0, a0, b0) b) (Mn+1, an+1, bn+1)

Fig. 1. Recursive family of models (Mn, an, bn)n∈N

Proof. The definition of (Mn, an, bn)n∈N is shown in Figure 1. It is not hard to see
that for all n, Mn is acyclic and |Mn| ∈ O(n). We now show by induction on n that
for all n there exists a minimum uniform strategy tree sn such that |sn| = 2n. Since
|Mn| ∈ O(n), we conclude from this that |sn| is exponential in |M| and by Theorem 3.8
the minimum formula ϕn that separates an from bn is exponential in |M| too.

For n = 0, we have that s0 = 〈{a′0}〉 is clearly winning for G({a0}, {b0}) and
since |s0| = 1, s0 is minimum. Now assume sn is a minimum uniform strategy tree
that is winning for G({an}, {bn}) and let sn+1 be a minimum winning strategy tree
for G({an}, {bn}). We do a case analysis of sn+1 to rule out possibilities and ensure
that sn+1 is unique (up-to redundant occurrences of nodes of type (∧), see below) and
exponentially large.

In what follows, we avoid subscript n+ 1 for convenience (e.g., we write a′ for a′n+1).
The reader can track the name of the nodes we use and the shape of the resulting
strategy in Figure 2. We use the convention for nodes of type 〈·〉 and [·] guaranteed by
Proposition 3.9.

The first thing to observe is that since Mn |= ¬p, for all p, no nodes of type (p)
or (p) can occur in sn+1 at all. Secondly, observe that using Proposition 3.11, we can
assume without loss of generality that the root of sn+1 is not of type (∧) or (∨). Next
we can rule out also the case sn+1 = [E] → x, for some E ⊆ {a′, b′}, for that would
imply that x is winning for G({a′, b′}, E), which contradicts Proposition 3.10.

We can assume, therefore that sn+1 = 〈E〉 → x, for some non-empty E ⊆ {a′, b′, a∗}
and that x is winning for G(E, {a′, b′}). But by Proposition 3.10, we may conclude
a′ /∈ E and b′ /∈ E. Hence, we must have E = {a∗}.

We now perform a similar case analysis on x. By Proposition 3.11, we may assume
that x is not of type (∨). If x = 〈F 〉 → y, for some non-empty F ⊆ {an, bn}, then y would
have to be winning for G(F, {an, bn}) which contradicts Proposition 3.10. Similarly, we
can see that we cannot have x = [F ]→ y.

Therefore, we can assume that x is of type (∧), winning for G({a∗}, {a′, b′}) and
minimum. Notice that we can ignore, without loss of generality, the case where x has
only one successor y with x {a

′,b′}→ y (for in that case y would also be a minimum uniform
strategy tree for G({a∗}, {a′, b′})). We conclude, then, that x has two children y1 and
y2 such that x {a

′}→ y1 and x
{b′}→ y2. Furthermore, y1 is winning for G({a∗}, {a′}) and y2

is winning for G({a∗}, {b′}).
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〈{a∗n+1}〉sn+1 :

(∧)x :

〈{bn}〉y1 :

sn

z1 :

{a′n+1}

〈{an}〉y2 :

sn

z2 :

{b′n+1}

Fig. 2. sn+1, minimum uniform strategy tree winning for GMn+1 ({an+1}, {bn+1}).

Using again Proposition 3.11, we conclude that y1 and y2 are not of type (∧) nor
(∨). If y1 = [G1] → z1, the only possibility for G1 is {an}. So z1 would have to be
winning for G({an, bn}, {an}) contradicting Proposition 3.10.

Hence we must have y1 = 〈E1〉 → z1 and y2 = 〈E1〉 → z2 with Ei ⊆ {an, bn};
z1 must be winning for G({E1}, {an}) and z2 for G({E2}, {bn}). By Proposition 3.10,
an /∈ E1 and bn /∈ E2, so E1 = {bn} and E2 = {an}.

For s to be minimum, both z1 and z2 have to be minimum strategies winning for
G({bn}, {an}) and G({an}, {bn}) respectively. We can therefore assume that z1 = sn

and, by inductive hypothesis, |z1| = 2n. Using Proposition 3.12, we conclude |z2| = 2n

and since |sn+1| = |z1|+ |z2|, we obtain |sn+1| = 2n+1.
By Lemma 3.6, there exists a separating formula ϕn associated to each sn. It is not

hard to see that they are ϕ0 := 3> and ϕn+1 := 3(3ϕn ∧3ϕn). But observe that ϕn

is stronger than 32n+1> and since clearly Mn, w 6|= 32n+1> for all w other than an

and bn, we have that ϕn is a description for an. 2

Corollary 4.2 The size of the ML-separation and ML-description problems has an
exponential lower bound and therefore it is not polynomially bounded.

An inspection of the proof of Theorem 4.1 reveals that any ML-formula that sepa-
rates an and bn in Mn (with n > 1) must use 2 and ∨. This already implies that one
cannot separate an and bn inMn using the logicsML3∧ orML3∧¬ (one could alterna-
tively show that consistently playing a′n constitutes a winning strategy for Duplicator).

In order to show that the size of the L-separation and L-description problem for
L ∈ {ML3∧,ML3∧¬} has an exponential lower bounds, we need to find another family
of models. The models in this case turned out to be somehow more complex.

Theorem 4.3 There is a recursive family of acyclic finite models with two distinguished
points (Nn, an, bn)n∈N such that |Nn| ∈ O(n) and the size of the shortest ML3∧¬-
formula ψn that separates an and bn in Nn is exponential in n. Furthermore, there
exists an ML3∧¬-description of an in Nn.

Proof. The definition of (Nn, an, bn)n∈N is given in Figure 3. Notice that now the
models interpret a propositional variable p. It is not hard to see that for all n, Nn is
acyclic and |Nn| ∈ O(n). One proceeds as in the proof of Theorem 4.1, and shows by
induction on n that the minimum uniform strategy tree winning for G3∧¬({an}, {bn})
has size, in this case, 2n3 − 2, which is the closed form of |s0| = 1; |sn+1| = 2|sn| + 2.
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b0

bn+1

b1n+1 b2n+1

b3n+1
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b4n+1 b5n+1

p

b6n+1

an+1

a1
n+1

a2
n+1

p

a3
n+1

an bn

.

..
.
..

a) (N0, a0, b0) b) (Nn+1, an+1, bn+1)

Fig. 3. Recursive family of models (Nn, an, bn)n∈N

Details can be found in Appendix A. 2

Corollary 4.4 The size of the ML3∧¬-separation and ML3∧¬-description problems
has an exponential lower bound and therefore it is not polynomially bounded.

The proof of Theorem 4.3 shows that atomic negation is necessary to separate an and
bn in Nn. Therefore, there is noML3∧-formula separating an and bn in Nn. However a
simple modification of the models (Nn)n∈N in the proof of Theorem 4.3 shows the same
result for ML3∧ instead of ML3∧¬.

Theorem 4.5 There is a recursive family of acyclic finite models with two distinguished
points (N ′n, an, bn)n∈N such that |N ′n| ∈ O(n) and the size of the shortestML3∧-formula
ψ′ that separates an and bn in N ′n is exponential in n. Furthermore, there exists an
ML3∧-description of an in Nn.

Proof. Define N ′n in the same way as Nn in the proof of Theorem 4.3, but introduce
a second propositional variable q and set V (q) = {a3

n, b
4
n, b

6
n} in N ′n; that is, make q

true in all the nodes of the third level of Nn where p was false. The proof is completely
analogous. 2

Corollary 4.6 The size of the ML3∧-separation and ML3∧-description problems has
an exponential lower bound and therefore it is not polynomially bounded.

5 Upper bound for the size of modal descriptions

In the previous section we found an exponential lower bound for the size of a modal
formula that describes an element of the domain, more precisely, O(b|M|) for b ∈ (1, 2].
We will now analyze the complexity of a simple algorithm that computes such formulas
in order to find an upper bound for this problem. We will see that its complexity is
O(2|M|

2 · |M|), so, while the lower bound is not tight it is still reasonable. We expect
that tighter upper bounds can be obtained by considering better algorithms.

Assume a fixed finite model M = 〈W,R, V 〉. We define now a simple procedure
which maintains, at each step s, a relation ∼s⊆ W ×W and a map fs : W → ML
that satisfy the following invariant: “if w 6∼s v, then Spoiler has a winning strategy for
the game G(w, v, d(fs(w)); witnessed by the fact that w |= fs(w) and v 6|= fs(w)”. The
algorithm computes the largest such ∼s, which, of course, corresponds to the maximum
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autobisimulation onM (in fact, it can be seen as a variation of Hopcroft’s bisimulation
algorithm [11]). The procedure goes as follows:

• Step 0: Let P (v) := {p | v ∈ V (p)} and P (v) := {¬p | v /∈ V (p)}. Define

f0(w) :=
∧

(P (w) ∪ P (w)) for all w ∈W
∼0 := {(u, v) | P (u) = P (v)}

• Step s + 1: Pick any two u, v ∈ W with u ∼s v that satisfy Condition 1 or 2 below
and proceed accordingly. If no such elements exist, stop.
· Condition 1: For some u′ ∈ sucs(u), there is no element v′ ∈ sucs(v) such that
u′ ∼s v

′. In that case, set

fs+1(u) := fs(u) ∧3fs(v′)

fs+1(v) := fs(v) ∧2fs(v′)

fs+1(x) := fs(x) for any x /∈ {u, v}
∼s+1 :=∼s \{(u, v), (v, u)}

· Condition 2: For some v′ ∈ sucs(v), there is no element u′ ∈ sucs(u) such that
u′ ∼s v

′. In that case, set

fs+1(u) := fs(u) ∧2fs(v′)

fs+1(v) := fs(v) ∧3fs(v′)

fs+1(x) := fs(x) for any x /∈ {u, v}
∼s+1 :=∼s \{(u, v), (v, u)}

Clearly the invariant holds after Step 0, and assuming it holds at the beginning of
Step s+1, it is straightforward to see that whenever Condition 1 holds, then Spoiler wins
any G(u, v, n) (for certain n) by playing first u′ according to rule Rl, so the invariant is
maintained (similar for Condition 2). The procedure is guaranteed to terminate and, if
it does by stage k then, because of the invariant, fk(u) is a description for u whenever
u 6∼k v for u 6= v.

Notice that this procedure does not compute a minimum description for u (this
problem appears to be harder). Even more, it is shown in [2] that for the class of
converse well-founded, linear models, there exist executions of this procedure 5 that
lead to formulas whose size cannot be bound by a polynomial. However, every element
in a model in this class has a modal formula description of linear size.

In any case, the analysis of this simple procedure will give us an upper bound for
the size of the minimum modal description of an element.

The first thing to observe is that the procedure terminates at most by stage 1
2 (|W |2−

|W |). This is because at each step s we have |∼s+1| = |∼s| − 2, |∼0| ≤ |W |2 and for
every w ∈W and s, w ∼s w.

Let M(s) = max{|fs(v)| | v ∈ W}. It is clear that M(0) ∈ O(|V |) and (since
the witnesses u and v are distinct) we have M(s + 1) ≤ 2 ·M(s). We conclude that

5 The procedure is non-deterministic on the choice of u and v on Step s + 1.
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M(s) ∈ O(2s · |V |). Therefore, if v ∈ W has a modal description, the one computed by
this procedure has size at most M( 1

2 (|W |2 − |W |)).

Theorem 5.1 Let M = 〈W,R, V 〉 and v ∈ W . If ϕ ∈ ML is a minimum description
of v in M, then |ϕ| ∈ O(2

1
2 |W |

2 · |V |).

Obtaining an upper bound for ML3∧ and ML3∧¬ is not difficult. The main dif-
ference is that the simulation notion for these two logics is no longer symmetric. Hence
we have to treat (u, v) and (v, u) separately. For ML3∧¬ the same procedure applies
with the following three modifications: a) since Spoiler cannot play according to rule
Rr, only Condition 1 is considered; b) only the value for u has to be updated in fs+1

(i.e., fs+1(v) = fs(v)); c) ∼s+1 has to be defined as ∼s \{(u, v)}. For ML3∧ the same
three modifications have to be made, plus d) replace = by ⊆ in the initialization of ∼0.

The procedure for ML3∧ or ML3∧¬ terminates at most by step |W |2 − |W | and
the same analysis as the one explained for ML applies in this case. Hence the upper
bound for the size of minimum descriptions in ML3∧ or ML3∧¬ is O(|W 2| − |W |).

Theorem 5.2 Let M = 〈W,R, V 〉 and v ∈ W . If ϕ ∈ ML3∧¬ (or ϕ ∈ ML3∧) is a
minimum description of v in M, then |ϕ| ∈ O(2|W |

2 · |V |).

6 Succinctness for separation

The bounds established in the previous sections resemble classical succinctness results.
It is therefore interesting to analyze in which way they differ.

Succinctness deals with how short a formula can be found to express a given property.
It is especially important when studying two equally expressive logics L and L′. In these
situations, succinctness is the foremost quantitative measure to distinguish L and L′.
Informally speaking, if we find a an infinite collection of properties Φn, each expressible
in L with a formula ϕn of size f(n) and all the formulas of L′ expressing the same
property Φn (that is, all the L′-formulas semantically equivalent to ϕn) are much larger
than f(n), then we say that L is more succinct than L′.

In this section we will see that the results of Section 4 can also be used to distinguish
the three logics considered (and, more generally, other logics) by means of a quantitative
measure. Informally, if an L-formula ϕn of size f(n) separates Cn and Dn inMn (for an
infinite collection of modelsMn) and Cn and Dn are also separable in L′, but only with
L′-formulas much larger than f(n) then we say that L is more succinct for separation
than L′. It is interesting to observe, though, that this notion is not a form of succinctness
as described above: the short L-formula ϕn need not be semantically equivalent to none
of the exponentially larger ones of L.

We will ultimately show that ML is more succinct for separation than ML3∧¬,
which in turn is more succinct for separation than ML3∧. We shall do this in a rather
formal (arguably, too formal) way, but this will allow us to close this section drawing
some promising connections with the field of Algorithmic Information Theory.

Let us turn to the formal analysis. We say that L ≥p L′ if there is a truth-preserving
translation T mapping L′-formulas into L-formulas and p is a polynomial such that
|T (ϕ)| ≤ p(|ϕ|) for all L′-formula ϕ.
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Knowing L ≥p L′ tells us, for example, that every two sets separated by a formula ϕ
of L′ can be separated by a formula of L which is not much larger than ϕ. But L might
in principle separate sets in a much shorter way.

Definition 6.1 Given a modal logic L and a suitable Kripke model H = 〈W,R, V 〉, let
SLH : P(W )2 → N be the separation complexity of L within H. For C,D ⊆W , SLH(C,D)
is defined as the size of the shortest L-formula which separates C and D in H in case
there is such separator or ∞ otherwise.

Clearly if L ≥p L′ then the following hold:

SLH ≤ p ◦ SL
′

H (1)

SLH(C,D) = SLH(D,C) (2)

SLH(C ′, D′) ≤ SLH(C,D) (whenever C ′ ⊆ C and D′ ⊆ D). (3)

The notion of size of the L-separation problem bounded by f introduced in Section 4
can be restated in the following way: the size of the L-separation problem is bounded
by f if for all finite model H = 〈W,R, V 〉 and C,D ⊆ W if SLH(C,D) < ∞ then
SLH(C,D) ≤ f(|H|).

The argument we have used in Section 4 to show that the size of the L-separation
problem (for L ∈ {ML,ML3∧¬,ML3∧}) has an exponential lower bound is to exhibit
a sequence (Hn, an, bn)n∈N where an and bn are elements of Hn such that there is b > 1
such that for all n, ∞ > SLHn

({an}, {bn}) > b|Hn|. On the other hand, results of Section
5 show that for all H = 〈W,R, V 〉 and a ∈W , SMLH ({a},W \ {a}) ∈ O(|V | · 2 1

2 |W |
2
) and

SL
′

H ({a},W \ {a}) ∈ O(|V | · 2|W |2), for L′ ∈ {ML3∧,ML3∧¬}.
We next introduce formally our notion of succinctness for separation that may be

applied to logics which do not necessarily have the same expressive power.

Definition 6.2 Let L ≥ L′. We say that L is f -more succinct for separation than L′ if
there is a sequence

(Hn = 〈Wn, Rn, Vn〉, Cn ⊆Wn, Dn ⊆Wn)n∈N (4)

of finite models with two distinguished sets such that Cn, Dn is separable in L′ and
there is a polynomial p such that for almost all n (that is for all n except finitely many),
SL
′

Hn
(Cn, Dn)− SLHn

(Cn, Dn) > f(|Hn|).

The idea is that L is f -more succinct for separation than L′ when there is a sequence
of examples (4) showing that the difference between SL

′

Hn
and SLHn

grows faster than
f(|Hn|). When f is of the form bx, for a fixed b > 1, we simply say that L is exponentially
more succinct for separation than L′.

We ask if the additional expressive power of ML over ML3∧¬ is enough to be
exponentially more succinct for separation than ML3∧¬, and if the additional expres-
sive power of ML3∧¬ is enough to be exponentially more succinct for separation than
ML3∧. As we have anticipated, in both cases the answer is yes.
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Theorem 6.3 ML is exponentially more succinct for separation than ML3∧¬.

Proof. Recall (Nn, an, bn)n∈N from the proof of Theorem 4.3. For each n, an and bn can
be separated in Nn by χn, where χ0 := 3> and χn+1 := 323χn. Clearly |χn| ∈ O(n),
so ML is exponentially more succinct for separation than ML3∧¬. In fact, ML3∧¬

plus 2 is already exponentially more succinct for separation thanML3∧¬. Surprisingly
χn does not use ∧ or ¬. 2

Theorem 6.4 ML3∧¬ is exponentially more succinct for separation than ML3∧.

Proof. Recall the proof of Theorem 4.5. Let N ′n = 〈Wn, Rn, Vn〉. For a new propo-
sitional symbol r, define N ′′n = 〈Wn, Rn, Vn[r → {bn}]〉. It is easy to verify that the
proof of Theorem 4.5 goes through with N ′′n instead of N ′n. Now elements an and bn
can be separated in N ′′n by the constant-size formula θ = ¬r ofML3∧¬. ThenML3∧¬

is exponentially more succinct for separation than ML3∧. 2

We close this section with a short digression. For a fixed and suitable model of
computation M , the Kolmogorov complexity of a string σ relative to M , denoted KM (σ),
is defined as the length of the shortest program which computes σ in M , or ∞ if there
is no such program. (For more details on Kolmogorov Complexity Theory, see [13].)
This underlying model of computation M may range from finite automata to Turing
machines relativized to oracles. Here the meaning of a program is seen as the output it
produces in the fixed model of computation M . Hence programs are seen as descriptors
of strings, and the Kolmogorov complexity of a given string σ is just the length of the
shortest description of σ within M . Informally speaking, stronger models of computation
yield smaller Kolmogorov complexity. That is, if M is more powerful than M ′ then
KM ≤ KM ′ (up to additive constant).

The notion of separation complexity S given in Definition 6.1 has some similarities
with the classical Kolmogorov Complexity K. First, S needs some underlying language
L and a suitable model H. Second, in the context of logic, the meaning of a formula
ϕ is given by its extension, that is by the set of points of H where ϕ is true. Hence
formulas are seen as descriptors of elements of H. As with K, if L is more expressive
than L′, in the sense of L ≥ L′, then SL is ‘smaller’ than SL′ in the sense of equation
(1). But unlike programs which are simply executed in M to produce some output, for
formulas evaluated in a fixed model H we may conceive different ‘semantic tasks’: here
separation was analyzed, but one can conceive many others as well.

It is not the purpose of this article to study the resemblance of the algorithmic
Kolmogorov Complexity with other logical description complexities. Although a fine
analysis is needed, we want to point out that some results from the algorithmic side and
the logical side may be somehow harmonized in a natural way.

7 Conclusions and future work

The line of research that motivated this work comes from the study of the computational
complexity of the description problem for modal languages. We seek for efficient algo-
rithms to compute modal descriptions, for various languages –including sub-boolean
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ones. Is it true that the problem of finding an L-description for a given element is
computable in polynomial time? The answer depends in the way the output is repre-
sented. If one allows the output formula to be representable as a DAG then the answer
is ‘yes’ [2]. But if we stick to the standard complexity computational model of Turing
machines where ‘compute a formula’ means, literally, to write it down in the output
tape then the answer is ‘no’: we have shown that the length of the output formula may
be exponentially larger than the input model.

We have employed classical Ehrenfeucht-Fräıssé games as a theoretical tool for prov-
ing lower bounds on formula size. In this respect, our work is close to Adler and Im-
merman’s [1], who propose a new kind of Ehrenfeucht-Fräıssé game to establish lower
bounds for various kinds of logics. In their game, Spoiler can be seen as trying to con-
struct what we have called a winning uniform strategy tree while Duplicator tries to
identify deficiencies in it. The fact that Duplicator possesses an optimal strategy in this
kind of games suggests, in our opinion, that the problem does not require a dynamic
view in terms of games, but can be analyzed using the static notion of strategy over
standard games.

We have only analyzed a few modal fragments, but the problem of the size of L-
descriptions is of course applicable to other logics. One can, for instance, study this
problem for First Order Logic or Propositional Logic. These are two extremes, since
P ≤ML3∧ ≤ML3∧¬ ≤ML ≤ FO=.

Consider FO=, the first-order logic with equality (over the modal correspondence
language). It is well-known that one can characterize up-to-isomorphism any finite
model H with domain {a1 . . . an} using a sentence ϕ ∈ FO= that is polynomial in the
size of H. Taking this as a basis, one can define for each ai a formula of ϕi(x) ∈ FO=,
with one free variable x, polynomial in H (that is there is a polynomial such that for
all such H, |ϕi(x)| ≤ p(|H|)), such that if ai is FO=-describable then ϕi is a suitable
description. In fact, this polynomial formula can be constructed in polynomial time.

Proposition 7.1 The size of the FO=-description problem is polynomially bounded.

We now go the the other extreme and regard Propositional Logic P as a fragment of
ML. For any finite Kripke model H = 〈W,R, V 〉 with W = {a1, . . . , an} and Dom V =
{p1, . . . , pm}, we define, ψk :=

∧
ak∈V (pj)

pj ∧
∧

ak /∈V (pj)
¬pj . Now if ak is P-describable

in H then ψk is one such P-description.

Proposition 7.2 The size of the P-description problem is polynomially bounded.

Propositions 7.1 and 7.2 are clearly opposed to Corollaries 4.2, 4.4 and 4.6. While
the modal fragments studied in this article (ML, ML3∧¬ and ML3∧) do not have
polynomially bounded descriptions problems two extreme logics in terms of expressivity
do.

It is interesting to study the size of the description problem for other fragments
not addressed in this article such that ML3∧¬ plus 2 but without ∨, or others with
restrictions in the shape of nestings of ∧ and ∨. Even for the logics considered here, it
would be interesting to have a better understanding of the computational complexity of
their description and separation problems. In particular, one would like to close the gap
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between lower and upper bounds and determine the complexity of finding a minimum
description or separation.
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A Proof of Theorem 4.3

The definition of (Nn, an, bn)n∈N is given in Figure 3 (Section 4). Notice that now the
models interpret a propositional variable p. It is not hard to see that for all n, Nn is
acyclic and |Nn| ∈ O(n).

We proceed as in the proof of Theorem 4.1, and show by induction on n that the
minimum uniform strategy tree winning for G3∧¬({an}, {gn}) has size, in this case,
2n3− 2, which is the closed form of |s0| = 1; |sn+1| = 2|sn|+ 2.

For n = 0, we take s0 = 〈a1
0〉 and it is clearly a minimum uniform strategy tree

winning for G3∧¬({a0}, {b0}). Assume now that sn is the minimum uniform strategy
tree winning for G3∧¬({an}, {bn}). We perform again a case analysis of sn ruling out
possibilities, but recall that uniform strategy trees for G3∧¬ comprise only nodes of type
〈·〉, (∧), (p) or (p). The reader can track the name of the nodes and the general shape
of the strategy in Figure A.1. Again, we avoid subscript n + 1 and write, for instance
a1 for a1

n+1. We use the convention for nodes of type 〈·〉 guaranteed by Proposition 3.9.
We will write 〈a〉 for 〈{a}〉.

Since there are no propositional symbols true at a or b, the root of sn is not of type (p)
nor (p). By Proposition 3.11, the only possibility is then sn = 〈a1〉; so let x be the child
of s, that is 〈a1〉 → x, where x is winning for G3∧¬({a1}, {b1, b2}). Again, x is not of type
(p) nor (p). Suppose then x = 〈E〉 → y, for a non-empty E ⊆ {a2, a3} and a y winning
for G3∧¬(E, {b3, b4, b5, b6}). This would imply that y is winning for G3∧¬({a2}, {b5}) or
for G3∧¬({a3}, {b4}), which is absurd, so this possibility is discarded.

We conclude that x is of type (∧). Again, we can ignore without loss of generality
the case x {b

1,b2}→ y, and assume that x has two children y1 and y2, such that x {b
1}→ y1

and x
{b2}→ y2. Furthermore, y1 is winning for G3∧¬({a1}, {b1}) and y2 is winning for

G3∧¬{a1}, {b2}).
Again, we observe that y1 and y2 can only be of type 〈·〉. Suppose y1 = 〈E1〉 → z1,

for a non-empty E1 ⊆ {a2, a3} and a z1 that is winning for G3∧¬(E1, {b3, b4}). Since
clearly there cannot be a uniform strategy tree winning for G3∧¬({a3}, {b4}), we have
a3 /∈ E1 and, then E1 = {a2} and z1 is winning for G3∧¬({a2}, {b3, b4}). In a similar
way, we conclude that y2 = 〈a3〉 → z2 with z2 winning for G3∧¬({a3}, {b5, b6}).

Since p is true in b3 and false in b4, z1 is not of type (p) nor (p). The same can be
said about z2. Suppose z1 = 〈F 〉 → h1; then necessarily F = {an} and h1 has to be
winning for G3∧¬({an}, {an, bn}) contradicting Proposition 3.10. Similarly, z2 cannot
be of type 〈·〉 either.

Therefore, z1 and z2 must be of type (∧) and, once again, we can assume with-
out loss of generality that they have both two children each. Suppose z1

{b3}→ h1,
z1

{b4}→ h2, z2
{b5}→ h3 and z2

{b6}→ h4 where h1 is winning for G3∧¬({a2}, {b3}), h2 is
winning for G3∧¬({a2}, {b4}), h3 is winning for G3∧¬({a3}, {b5}) and h4 is winning for
G3∧¬({a3}, {b6}). Furthermore, we assume all such strategies are minimum, so h2 and
h3 are necessarily of type (p) and (p) respectively. Since no propositional variable dis-
tinguishes a2 from a3, h1 is not of type (p) nor (p). And by Proposition 3.11 h1 is not
of type (∧) either. The same can be said about h4.
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〈a1
n+1〉sn+1 :

(∧)x :

〈a2
n+1〉y1 :

(∧)z1 :

〈an〉h1 :

sn

k1 :

{b3n+1}

(p)h2 :

{b4n+1}

{b1n+1}

〈a3
n+1〉y2 :

(∧)z2 :

(p)h3 :

{b5n+1}

〈an〉h4 :

sn

k2 :

{b6n+1}

{b2n+1}

Fig. A.1. sn+1, minimum uniform strategy tree winning for G3∧¬
Nn+1

({an+1}, {bn+1}).

Hence h1 = 〈an〉 → k1 and h4 = 〈an〉 → k2, where k1 and k2 are minimum strategies
winning for G3∧¬({an}, {bn}), that is k1 = k2 = sn. Therefore, we have that |sn+1| =
2|sn| + 2, so these uniform strategy trees cannot be polynomially bounded. As in the
proof of Theorem 4.1, it is easy to see that the associated formulas ψ0 := 3> and
ψn+1 := 3(3(p ∧3ψn) ∧3(¬p ∧3ψn)) describe an in Nn.
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