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Abstract

Given a measure space 〈X,µ〉, we define its measure algebra Aµ as the quotient of the algebra of all

measurable subsets of X modulo the relation X
µ∼ Y if µ(X4Y ) = 0. If further X is endowed with

a topology T , we can define an interior operator on Aµ analogous to the interior operator on P(X).
Formulas of S4u (the modal logic S4 with a universal modality ∀ added) can then be assigned elements
of Aµ by interpreting 2 as the aforementioned interior operator.
In this paper we prove a general completeness result which implies the following two facts:

(i) the logic S4u is complete for interpretations on any subset of Euclidean space of positive Lebesgue
measure;

(ii) the logic S4u is complete for interpretations on the Cantor set equipped with its appropriate
fractal measure.

Further, our result implies in both cases that given ε > 0, a satisfiable formula can be satisfied every-
where except in a region of measure at most ε.

Keywords: Modal logic, topological semantics, measure theory

1 Introduction

One of the primary appeals of modal logic is the flexibility in its interpretation. Since
2 could be taken to have many different meanings, the same modal logic can often be
used in several seemingly unrelated contexts.

The logic S4 is a particularly good example of this, because along with its relational
many-worlds semantics, it can be given a topological interpretation, as was already
known by McKinsey and Tarski before 1940. With these semantics, modal logic can be
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used for reasoning about space, a perspective which has proven to be very fruitful. 1

Perhaps the most famous theorem in this field is McKinsey and Tarski’s result that S4

is complete for topological interpretations on the real line and, more generally, for any
separable metric space without isolated points [11]. More recently, this result has been
followed by new proofs and strengthenings for the real line [4,13], as well as the Cantor
set [12].

The result is modified slightly when we consider the universal modality from [9],
giving rise to the logic S4u. We once again have completeness of S4u for the class of
finite topological spaces, but in general these must be disconnected [3]. In Euclidean
spaces (and any other connected, separable metric spaces without isolated points) [14]
proves that the logic we obtain is S4u + Conn, where Conn denotes the connectedness
axiom ∀(2p ∨2q)→ ∃(2p ∧2q).

This shows that a well-understood and -behaved modal logic can be used without
trouble to reason about topological spaces, despite their richness and complexity. But
why stop at topology? We can interpret S4 over spaces which have even deeper structure.
The real line, for example, about which much work on S4 has focused, admits not only
a natural metric (which is used to interpret the modal operator 2) but also a natural
measure. Thus in addition to the question Can we satisfy a given formula ϕ on a model
based on the real line? we can ask Can we satisfy a formula ϕ with a high probability on
a model based on the real line?

Formulas of S4 can be interpreted over subsets of Euclidean space “up to measure
zero”; that is, over the algebra of measurable sets modulo all null sets. This intepretation
was called to my attention in a lecture given by Dana Scott in the conference Topology,
Algebra and Categories in Logic, 2009. I immediately became interested in the question
of finding an analogue to McKinsey and Tarski’s theorem.

Here we should remark that topological completeness of S4 does not a priori imply
its measure-theoretic completeness, or vice-versa. It is true that every model of S4

based on Euclidean space gives rise to a measure-theoretic model (provided that all
valuations of propositional variables are measurable); simply take the original valuation
modulo null sets. However, the resulting model does not satisfy the same set of formulae.
Indeed, many sets which are topologically “large”, such as the set of rational numbers
which is dense in the real line (or even a dense Gδ, which is topologically large in a more
precise sense) can have measure zero and hence “disappear” under our measure-theoretic
interpretation. Because of this, even a formula that was topologically satisfied by every
point may no longer be satisfied after doing away with null sets.

As an example, consider the formula ∀(3p ∧ 3¬p). This formula can be satisfied
topologically on the real line by interpreting p as the set of rational numbers. Since both
the interpretation of p and its complement are dense, it follows that every point satisfies
3p ∧3¬p and hence ∀(3p ∧3¬p).

Meanwhile, if we were to translate this directly into a measure-theoretic model, we
would be interpreting p as a null set because the set of rationals has measure zero.

1 Although the basic modal language is not too expressive over the class of topological spaces, there
are polymodal systems which turn out to be surprisingly powerful, such as the polymodal Gödel-Löb
logic GLP [2] and Dynamic Topological Logic [1,10].
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Therefore, every point would satisfy ¬3p, and our original formula would be false ev-
erywhere.

In order to give a measure-theoretic model, we would need to interpret p as a set
such that every open set U intersects both p and its complement with positive measure.
Such a set exists, but the reader unfamiliar with how to construct it may find doing so
quite challenging! We will not give an explicit solution, but one can be extracted from
our more general completeness proof.

Along these lines, existing proofs of topological completeness cannot serve as proofs
of measure-theoretic completeness simply because it is not clear which of the sets that
are generated have positive measure and which do not. This of course does not rule
out modifying these proofs, taking care of the technical issues arising in the measure-
theoretic setting: precisely what we shall set out to do.

On the other hand, working with measure-theoretic semantics has some advantages
which might inspire us to think that S4 and related systems are sometimes more likely
to be measure-theoretically complete than topologically complete. The reason for this is
that there are several extensions of S4 which are incomplete for topological interpreta-
tions on Euclidean spaces precisely because said spaces are topologically connected; two
examples of this are S4u, as mentioned above, and Dynamic Topological Logic, which
can be shown to be incomplete for the plane due to local connectedness 2 [7]. However,
measure-theoretically, Euclidean space is quite disconnected. Recall that a topological
space is disconnected if it contains proper subsets which are both open and closed. Well,
open balls in Euclidean space are both open and closed up to measure zero, because their
boundaries carry no measure.

It is the author’s opinion that there should be many more measure-theoretic com-
pleteness results to be found where topological completeness fails, but here we shall limit
our discussion to S4u. Our main results are that S4u is complete for interpretations on
the measure algebra of any subset of RN which has positive measure (the real line and
the unit interval are examples of this, but this class of sets is much more general) and
for interpretations on the measure algebra of the Cantor set, where we must take the
Hausdorff measure of appropriate fractal dimension (in this case, ln(2)/ln(3); see Appendix
A). Further, in all of the above cases, if we take any ε > 0, a satisfiable formula ϕ can
be satisfied everywhere except for a set of measure at most ε; in the case that the set
we began with was a probability space (such as the unit interval), this means that every
satisfiable formula can be satisfied with probability arbitrarily close to one.

2 Syntax and semantics

We will work in a bimodal language L consisting of propositional variables p ∈ PV with
the Boolean connectives ¬ and ∧ (other Booleans are defined in the standard way) and
two modal operators, 2 and ∀.

2 Dynamic Topological Logic is also incomplete for the real line but this can be shown using a formula
which is not valid on all locally connected spaces [15].
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The logic S4u is that obtained by all S4-axioms for 2:

2ϕ ∧2ψ → 2(ϕ ∧ ψ),

2ϕ → ϕ,

2ϕ → 22ϕ;

all S5-axioms for ∀ (S4 with the additional axiom ∃ϕ → ∀∃ϕ) and the ‘bridge’ axiom
∀ϕ→ 2ϕ, together with propositional tautologies, necessitation for both operators and
modus ponens.

We wish to define semantics for S4u on topological measure spaces, which we define
below 3 :

Definition 2.1 [Measure algebra] Let X = 〈X,A, µ〉 be a measure space. We define the
measure algebra of X, which we will denote Aµ, to be the set of equivalence classes of A
under the relation

µ∼ given by E
µ∼ F if and only if µ(E4F ) = 0.

In this paper we will refer to elements of Aµ as regions.
Denote the equivalence class of S ∈ A by [S]µ. Boolean operations can be defined

on Aµ in the obvious way; [E]µ u [F ]µ = [E ∩ F ]µ, [E]µ − [F ]µ = [E \ F ]µ. We can also
define [E]µ v [F ]µ by µ(E \F ) = 0. In general we will use ‘square’ symbols for notation
of the measure algebra and ‘round’ symbols for set notation in order to avoid confusion.
As a slight abuse of notation, if o ∈ Aµ and o = [S]µ we may write µ(o) instead of µ(S);
note that this is well-defined, independently of our choice of S ∈ o.

In order to interpret our modal operators, we need to consider measure spaces which
also have a topological structure:

Definition 2.2 [topological measure space] A topological measure space is a triple
〈X, T , µ〉 where X is a set, T a topology on X and µ a σ-finite measure such that
every open set is µ-measurable.

A set S ⊆ X is almost open if S
µ∼ U for some U ∈ T . The region [S]µ is open if S

is almost open.

Equivalently, we can say o ∈ Aµ is open if o = [U ]µ for some open set U .
Given a σ-finite measure space 〈X,µ〉 and O ⊆ Aµ, the supremum of O, which we

will denote
⊔
O, always exists; see Appendix B for details. With this operation we can

define an interior operator on any measure algebra:

Definition 2.3 [interior] Let 〈X, T , µ〉 be a topological measure space and o ∈ Aµ. We
define the interior of o by o� =

⊔
{[U ]µ v o : U ∈ T } .

Proposition 2.4 If 〈X, T , µ〉 is a topological measure space and o ∈ Aµ,

(i) o� is open,

(ii) o� v o,

3 For a brief review of measure spaces, see Appendix A.



104 Absolute Completeness of S4u for Its Measure-Theoretic Semantics

(iii) (o�)� = o�.

Proof. See Appendix B. 2

We are now ready to define our semantics:

Definition 2.5 [Measure-theoretic semantics] If 〈X,A, µ〉 is a topological measure
space, a measurable valuation on X is a function J·K : L → Aµ satisfying

Jα ∧ βK = JαK u JβK

J¬αK = [X]µ − JαK

J2αK = JαK2

J∀αK =

{
[X]µ if JαK = [X]µ
[∅]µ otherwise.

A topological measure model is a topological measure space equipped with a measur-
able valuation.

The system S4u is sound for our semantics:

Theorem 2.6 (soundness) Let 〈X, T , µ, J·K〉 be a topological measure model. Then,
for every formula ϕ which is derivable in S4u, JϕK = [X]µ.

Proof. This follows from the fact that all axioms are valid and all rules preserve validity;
note that the S4 axioms for 2 are a direct consequence of Proposition 2.4. 2

3 µ-Bisimulations

Our completeness proof depends on a well-known result that S4u is complete for the class
of finite Kripke frames where the accessibility relation is a preorder (that is, reflexive
and transitive).

Definition 3.1 [Kripke frame; Kripke model] A (transitive, reflexive) Kripke frame is
a preordered set 〈W,4〉.

A Kripke model is a Kripke frame equipped with a valuation L·M : L → 2W satisfying
the standard clauses for Boolean operators,

w ∈ L2ϕM⇔ ∀v 4 w, v ∈ LϕM

and
w ∈ L∀ϕM⇔ ∀v ∈W, v ∈ LϕM.

The following well-known result can be found, for example, in [3]:

Theorem 3.2 S4u is complete with respect to the class of all finite, transitive, reflexive
Kripke models.
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In order to prove our main result, we shall construct a type of bisimulation between
a topological measure space and a given Kripke frame. For this we need to define the
proper notion of bisimulation. In what follows, ↓w = {v : v 4 w} and a set U ⊆ W is
open if, for all w ∈ U , ↓w ⊆ U .

Definition 3.3 [almost continuous, strongly open] Let 〈X, T , µ, J·K〉 be a topological
measure model and 〈W,4, L·M〉 a Kripke model.

Given a partial function 4 β : X → W and S ⊆ X, define β[S]µ to be the set of all
w ∈W such that β−1(w) ∩ S has positive measure.

A partial function β : X → W is almost continuous if β−1(↓w) is almost open for
all w ∈W . It is strongly open if whenever S is almost open, β[S]µ is open, and strongly
surjective if β−1(w) has positive measure for all w ∈W .

Definition 3.4 [µ-Bisimulation]
With notation as above, a µ-bisimulation is a partial function β : X →W which is

(i) almost continuous,

(ii) strongly open,

(iii) defined almost everywhere,

(iv) strongly surjective and

(v) satisfies JpK = [β−1LpM]µ for all p ∈ PV .

µ-Bisimulations preserve valuations of formulae. Before proving this fact we need a
preliminary lemma.

Lemma 3.5 If 〈X,µ〉 is a measure space, W a finite set and β : X →W a partial func-
tion defined almost everywhere, then for every measurable S ⊆ X, [S]µ v [β−1β[S]µ]µ.

Proof. Clearly
[S]µ =

⊔
w∈W

(
[β−1(w)]µ u [S]µ

)
,

since β is defined almost everywhere and W is finite. Now,

[β−1(w)]µ u [S]µ = [∅]µ

unless w ∈ β[S]µ, so we can write

⊔
w∈W

(
[β−1(w)]µ u [S]µ

)
=
⊔
w∈β[S]µ

[β−1(w)]µ u [S]µ

(Lemma B.2) =
[⋃

w∈β[S]µ

(
β−1(w) ∩ S

)]
µ

v
[⋃

w∈β[S]µ

(
β−1(w)

)]
µ

=
[
β−1β[S]µ

]
.

2

4 That is, a function whose domain is a subset of X and possibly all of X.
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Theorem 3.6 Suppose that 〈X, T , µ, J·K〉 is a topological measure model, 〈W,4, L·M〉 a
finite Kripke model and β : X → W a µ-bisimulation. Then, for every formula ϕ,
JϕK = [β−1LϕM]µ.

Proof. The proof follows by a simple induction on the build of formulas, with only the
case for 2ϕ and ∀ϕ being non-standard.

For 2ϕ, note that L2ϕM ⊆ LϕM and by induction hypothesis JϕK = [β−1LϕM]µ.
Now, L2ϕM is open in W and since β is almost continuous,

[β−1L2ϕM]µ =

 ⋃
w∈L2ϕM

β−1(↓w)


µ

is open, because each β−1(↓w) is almost open. But

[
β−1L2ϕM

]
µ
v [β−1LϕM]µ = JϕK,

so [β−1L2ϕM]µ v JϕK� (recall that JϕK� is the supremum over all open o v JϕK) and
hence [β−1L2ϕM]µ v J2ϕK.

For the other direction, consider J2ϕK. This is an open region and hence if w ∈
βJ2ϕK, it follows that ↓w ⊆ βJ2ϕK, because β is strongly open. But βJ2ϕK ⊆ βJϕK and
from our induction hypothesis we can see that βJϕK ⊆ LϕM, so ↓w ⊆ LϕM. This implies
that w ∈ L2ϕM and, given that w was arbitrary, βJ2ϕK ⊆ L2ϕM. Applying β−1 to both
sides and using Lemma 3.5 we conclude that J2ϕK v [β−1L2ϕM]µ, as desired.

The case of ∀ϕ is simpler and uses the fact that β is strongly surjective and defined
almost everywhere; we will skip the details. 2

4 Provinces

We will focus much of our discussion on what we shall call provinces; these are an
abstract class of spaces which have the basic properties we need of bounded subsets of
Euclidean space, but are more general and include other familiar spaces (such as the
Cantor set with its appropriate Hausdorff measure).

Definition 4.1 [Province] A province is a triple 〈X, d, µ〉 where X is a set, d a metric
and µ a measure on X satisfying

(i) every open set is µ-measurable;

(ii) every non-empty open set has finite positive measure;

(iii) for every ε > 0 there exists δ > 0 such that, given x ∈ X, µ(Bδ(x)) < ε;

(iv) the boundary of every open ball has measure zero;

(v) X is totally bounded.
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Lemma 4.2 If i and j0, ..., jN−1 are open balls in a province 〈X, d, µ〉, then

i \
⋃
n<N

jn
µ∼

(
i \

⋃
n<N

jn

)◦
.

Proof. For every n < N , µ
(
jn \ jn

)
= 0 because the boundaries of open balls have

measure zero in a province. Hence j
µ∼ j and

i \
⋃
n<N

jn
µ∼ i \

⋃
n<N

jn.

But
⋃
n<N jn is closed (it is a finite union of closed sets) so i\

⋃
n<N jn is an open subset

of i \
⋃
n<N jn (in fact, its interior) and the result follows. 2

Lemma 4.3 If 〈X, d, µ〉 is a province and U ⊆ X is non-empty and open, then U is
infinite.

Proof. Suppose towards a contradiction that U was a finite, non-empty, open set and
x ∈ U . Then, for δ small enough we have that Bδ(x) = {x} (take δ to be less than the
distance between x and any point in U). Now, Bδ(x) is non-empty and open, so by the
definition of province it has positive measure. Then there must exist ε ∈ (0, δ) such that
µ(Bε(x)) < µ(Bδ(x))

2 (once again by the definition of province); but this cannot be, since
Bε(x) = Bδ(x) = {x}, so they must have the same measure. Thus we have reached a
contradiction and conclude that U must be infinite. 2

5 Constructing µ-bisimulations

In this section we will construct continuous, open maps from an arbitrary province to
a preorder. This, along with the Bisimulation Theorem, will establish the completeness
of S4u for these spaces and, more generally, for countable unions of provinces.

Definition 5.1 [Graded partition] Let 〈X, d, µ〉 be a province. A graded partition 5 on
X is a set p of open balls in X such that

(i) X ∈ p and

(ii) if i, j ∈ p and i ∩ j 6= ∅, then either i ⊆ j or j ⊆ i.

Definition 5.2 [Placement function] Let p be a graded partition on a province 〈X, d, µ〉.
The placement function of p is the (possibly partial) function plp : X → p assigning to
each x ∈ I the least i ∈ p such that x ∈ i.

We will write grp instead of pl−1
p and call grp(i) the ground of i.

5 Compare to the open ball trees from [7].
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Definition 5.3 [Fine graded partition] Let η ∈ (0, 1). A graded partition p is η-fine if
for every i ∈ p we have that

µ
(⋃
{j ∈ p : j ( i}

)
< η · µ(i).

Note that if p is an η-fine graded partition and i ∈ p, it follows that µ(grp(i)) > 0;
specifically, µ(grp(i)) > (1− η)µ(i).

Lemma 5.4 Let η ∈ (0, 1) and p be an η-fine graded partition. Then, given any i ∈ p,
there exist only finitely many j ∈ p such that i ⊆ j.

Proof. Note that if i ( j, then µ(i) < η · µ(j), because p is η-fine.
It follows that if

i = i0 ( i1 ( ... ( in

is a chain of elements of p, then µ(in) ≥ (1/η)nµ(i); since µ(X) is finite and

lim
n→∞

(1/η)n =∞,

n must be bounded by some fixed N < ω. But the elements of p properly containing i
are totally ordered, so there can be at most N of these. 2

In view of the previous lemma we can give the following definition:

Definition 5.5 [Height] Given an η-fine graded partition p and i ∈ p, we can define the
height of i, denoted hgt(i), as the largest n such that there exists a sequence

i = i0 ( i1 ( ... ( in

in p.
We define p[n] to be the set of all elements of p of height n.

Lemma 5.6 Let p be an η-fine graded partition on a province 〈X, d, µ〉. Then,

µ
(⋃

p[n]
)
< ηnµ(X).

Proof. We prove this by induction on n. Clearly, every i ∈ p[n + 1] is contained in a
unique j ∈ p[n]; since p is η-fine, it follows that, for a fixed j ∈ p[n],

µ
(⋃
{i ∈ p[n+ 1] : i ∈ j}

)
< η · µ(j).

Now, writing
p[n+ 1] =

⋃
j∈p[n]

{i ∈ p[n+ 1] : i ⊆ j}
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we have that

µ(p[n+ 1]) = µ

 ⋃
j∈p[n]

⋃
{i ∈ p[n+ 1] : i ∈ j}



=
∑
j∈p[n]

µ
(⋃
{i ∈ p[n+ 1] : i ∈ j}

)

< η
∑
j∈p[n]

µ(j)

IH
< ηn+1µ(X),

as desired (note that we are using the fact that elements of p[n] are disjoint, a conse-
quence of Definition 5.1.ii; this allows us to commute unions and sums). 2

Corollary 5.7 If p is an η-fine graded partition on a province 〈X, d, µ〉, then plp is
defined almost everywhere on X.

Proof. We know that X ∈ p by definition, so plp(x) can only be undefined if x lies
on some i ∈ p but there is no minimal such i. If that is the case, we have an infinite
sequence

i0 ) i1 ) ... ) in ) ...

of elements of p containing x; therefore x ∈
⋃

p[n] for all n < ω.
However, by Lemma 5.6, µ (

⋃
p[n]) < ηnµ(X), so

µ

(⋂
n<ω

⋃
p[n]

)
< ηkµ(X)

for all k and must equal zero. Since plp is defined on the complement of this set in X,
it follows that plp is defined almost everywhere. 2

Definition 5.8 [Naming function] Let p be a graded partition. A naming function on
p is a function ν : p→W , where W is a preordered set, such that ν(i) 4 ν(j) whenever
i ⊆ j.

Given a named graded partition 〈p, ν〉 on X, we define a partial function ν̇ : X →W

by ν̇ = ν ◦ plp.

Lemma 5.9 If η ∈ (0, 1) and 〈p, ν〉 is a named η-fine graded partition on a province
〈X, d, µ〉, then ν̇ is defined almost everywhere, almost continuous and, for all i ∈ p,

µ({x ∈ i : ν̇(x) = ν(i)}) > 0.

Proof. That ν̇ is defined almost everywhere is an immediate consequence of Lemma
5.7.



110 Absolute Completeness of S4u for Its Measure-Theoretic Semantics

To see that ν̇ is continuous, pick w ∈W and consider ↓w. Suppose that x ∈ ν̇−1(w),
so that ν(plp(x)) = w. Note that for all i ∈ p such that i ⊆ plp(x), we have that
ν(i) ∈ ↓w (by the definition of a naming function). Hence whenever y ∈ plp(x) and ν̇(y)
is defined, we have that ν̇(y) ∈ ↓w; since ν̇ is defined almost everywhere, we have that
almost every point of plp(x) lies in ν̇−1(↓w). Since plp(x) is an open neighborhood of x
we conclude that ν̇ is almost continuous.

The last claim follows from the fact that

µ(grp(i)) > (1− η)µ(i).

2

Definition 5.10 [Refinement; ε-refinement] Let 〈p, ν〉 and 〈p′, ν′〉 be named graded
partitions on a province 〈X, d, µ〉. We say p′ is a refinement of p if

(i) p ⊆ p′,

(ii) ν = ν′ � p and

(iii) if i ∈ p and j ∈ p′ are such that i ⊆ j, it follows that j ∈ p.

Further, we say p′ is an ε-refinement of p if, for almost every x ∈ X and every
v 4 ν̇(x), there exists i ∈ p′ such that i ⊆ Bε(x) and ν′(i) = v.

Lemma 5.11 Given η ∈ (0, 1) and ε > 0, every finite η-fine graded partition p admits
a finite ε-refinement which is also η-fine.

Proof. Let i ∈ p, and consider (grp(i))◦
µ∼ grp(i) (Lemma 4.2). Because X is totally

bounded, there exists a finite set

{x0, ..., xN−1} ⊆ (grp(i))◦

which is ε/2-dense in (grp(i))◦.
Pick δ ∈ (0, ε) such that, for all x ∈ X, µ(Bδ(x)) < η/N, Bδ(xn) ⊆ (grp(i))◦ whenever

n < N and δ < d(xn, xm) whenever n < m < N .
Let M = # ↓ ν(i). By Lemma 4.3, Bδ(xn) is infinite for each n < N , so we can find

y0,n, ..., yM,n ∈ Bδ(xn). Then, taking ι > 0 small enough, we can ensure that the balls
Bι(ym,n) are mutually disjoint, contained in Bδ(xn), and

µ(Bι(x)) <
ηµ(i)− µ(i \ grp(i))

MN
(1)

for all x.
Define b(i, n,m) = Bι(ymn), N(i) = N and M(i) = M . Fix a numbering

wi0, ..., w
i
M−1 of the elements of ↓ ν(i).
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Now, let p′ = p ∪ {b(i, n,m) : i ∈ p,m < M,n < N(i)} and

ν′(i) =


ν(i) if i ∈ p,

wjm if i = b(j, n,m).

It is not hard to see that 〈p′, ν′〉 satisfies the desired properties. In particular, con-
dition 1 guarantees that it remains η-fine. 2

Definition 5.12 [Fine sequence of graded partitions] Let η ∈ (0, 1). A sequence of
named graded partitions 〈pn, νn〉n<ω is η-fine if

(i) each pn is η-fine and

(ii) each pn+1 is an ηn-refinement of pn.

We set pω =
⋃
n<ω pn and define νω =

⋃
n<ω νn.

Lemma 5.13 Given any province 〈X, d, µ〉, η ∈ (0, 1), a preordered set 〈W,4〉 and
w ∈ W , there exists an η-fine sequence of graded partitions 〈pn, νn〉n<ω with p0 = {X}
and νω(X) = ν0(X) = w.

Proof. This follows by applying Lemma 5.11 ω times. 2

Lemma 5.14 If 〈pn, νn〉n<ω is an η/2-fine sequence of graded partitions, then pω is
η-fine.

Proof. Pick i ∈ pω, and let N be large enough so that i ∈ pN .
For N ≤ n ≤ ω let Sn =

⋃
{j ∈ pn : j ( i}.

Note that µ(Sn) < η/2µ(i) whenever N ≤ n ≤ ω, because pn is η-fine.
Further, Sn ⊆ Sm whenever n ≤ m and Sω =

⋃
N<n<ω Sn, from which it follows

that

µ(Sω) = lim
n→∞

µ(Sn) ≤ η/2,

the limit holding because µ is a measure.
In particular, µ(Sω) < η, as desired. 2

Lemma 5.15 If 〈pn, νn〉n<ω is an η-fine sequence of graded partitions, then ν̇ω is
strongly open.

Proof. Let U ⊆ X be a non-empty, open set and w ∈ ν̇ω[U ]µ. This means that there
exists i ∈ pω such that νω(i) = w and µ(i ∩ U) > 0.

Pick N large enough so that i ∈ pN .
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Now, for all n ≥ N we have that grpn(i) is almost open, hence

grpω (i) =
⋂
n≥N

grpn(i)

µ∼
⋂
n≥N

(grpn(i))◦;

the last step is valid by Lemma 4.2.
Pick x ∈

⋂
n≥N (grpn(i))◦, ε > 0 small enough so that Bε(x) ⊆ U and M large

enough so that ηM < ε.
Then, for every v 4 w there exists j ∈ pM+1 such that νM+1(j) = v and j ⊆ Bε(x),

because pM+1 is an ηM -refinement of pM .
But µ(grpω (j)) > 0, and for any y ∈ grpω (j) we have ν̇ω(y) = v.
Since v was arbitrary, we conclude that ↓w ⊆ ν̇ω[U ]µ, and since U was arbitrary ν̇ω

is strongly open, as desired. 2

Proposition 5.16 Let 〈X, d, µ〉 be a province, 〈W,4〉 a finite preordered set and w ∈W .
Then, given ε > 0 there exists an almost continuous, strongly open map

β : X →W

such that
µ(β−1(W \ {w})) < ε.

Proof. Let η = ε/µ(X). By Lemma 5.13, there is an η/2-fine sequence of named graded
partitions 〈pn, νn〉n<ω such that νω(X) = w. Then we can take β = ν̇ω.

Since pω is η-fine and νω(X) = w, we have that

X \
⋃
{i ∈ pω : i ( X} ⊆ β−1(w)

and
µ
(⋃
{i ∈ pω : i ( X}

)
< η · µ(X).

It follows that µ(β−1(W \ {w})) < ε, as desired. 2

Corollary 5.17 Let 〈X, d, µ〉 be a province, 〈W,4〉 a finite preordered set and w ∈W .
Then, for every ε > 0 there exists an almost continuous, strongly open surjection β :
X →W such that µ(β−1(W \ {w})) < ε.

Proof. Let N = #W . By Lemma 4.3, X is infinite so we can find points x1, ..., xN−1

and δ > 0 such that Bδ(xi) ∩ Bδ(xj) = ∅ whenever i 6= j. Taking δ small enough, we
can ensure that

µ

(
X \

⋃
n<N

Bδ(xn)

)
> 0
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and

µ

( ⋃
n<N

Bδ(xn)

)
< ε/2.

Define
X0 = X \

⋃
n<N

Bδ(xn)

and Xn = Bδ(xn) for 1 ≤ n < N . By Lemma 4.2, X0 is almost open, as are the rest of
the Xn.

Write
W = {w = w0, w1, ..., wN−1} .

Clearly each Xn is a province, so by Proposition 5.16 there exist almost continuous,
strongly open maps βn : Xn →W with µ(β−1

n (wn)) 6= 0 and µ(X0\β−1(w)) < ε/2. Then
we can set β =

⋃
n<N βn; it is not hard to see that β has all the desired properties. 2

These results can be generalized to structures we will call territories:

Definition 5.18 [Territory] A territory is a triple 〈X, d, µ〉 such that X =
⋃
n<N Xn,

where N ≤ ω, the sets Xn are disjoint, almost open subsets of X and

〈Xn, d � Xn, µ � Xn〉

is a province for all n < N .

Note that in the above definition, if N is finite then 〈X, d, µ〉 is itself a province.

Corollary 5.19 Let 〈X, d, µ〉 be a territory.
Then, for every w ∈W and ε > 0 there exists a strongly surjective, almost continuous

and strongly open map β : X →W such that

µ
(
X \ β−1(w)

)
< ε.

Proof. Write X =
⋃
n<N Xn as in Definition 5.18. By Corollary 5.17, for all n < N

there is a surjective, continuous, open map βn : Xn →W such that

µ
(
Xn \ β−1(w)

)
< ε/2n+1,

so that
µ
(⋃

n<ωXn \ β−1(w)
)

=
∑
n<ω µ(Xn \ β−1(w))

<
∑
n<ω

ε/2n+1

= ε.

We can then take
β =

⋃
n<N

βn.

2
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6 Completeness results

In this section we will prove completeness of S4u for its measure-theoretic semantics on
subsets of Euclidean space as well as the Cantor set with its fractal measure. In fact we
will use a stronger notion of completeness:

Definition 6.1 [Absolute completeness] Let X = 〈X, T , µ〉 be a topological measure
space with µ(X) > 0 and ϕ a formula of L.

We say ϕ is absolutely satisfiable on X if, for every ε > 0 there exists a valuation J·K
on X such that µ(J¬ϕK) < ε.

A logic Λ is absolutely complete for X if for every ϕ ∈ L, ¬ϕ 6∈ Λ implies that ϕ is
absolutely satisfiable on X.

Note that absolute satisfiability implies satisfiability and absolute completeness im-
plies completeness.

Our main results are direct consequences of the following more general theorem:

Theorem 6.2 Let ϕ be a formula of S4u such that ¬ϕ 6∈ S4u. Suppose that 〈X, d, µ〉 is
a territory.

Then, ϕ is absolutely satisfiable on 〈X, d, µ〉.

Proof. Suppose ϕ is a satisfiable formula. Then, by Theorem 3.2 there exists a finite
Kripke model 〈W,4, L·M〉 with some w∗ ∈ LϕM.

By Corollary 5.19, there exists an almost continuous, open surjection β : X → W

such that µ
(
X \ β−1(w∗)

)
< ε.

Setting J·K = β−1L·M, β becomes a µ-bisimulation, and by Theorem 3.4, J¬ϕK v
[X \ β−1(w∗)]µ, from which the result follows. 2

As we will see, our main completeness results, for subsets of Euclidean space and the
Cantor set, are special cases of Theorem 6.2.

In what follows, | · | denotes the N -dimensional Lebesgue measure.

Lemma 6.3 Let X be a Lebesgue-measurable subset of RN of positive measure. Then,
up to a set of measure zero, X is a territory.

Proof. First assume X is bounded. We will show that it is already a province.
X is totally bounded (as is every bounded subset of Euclidean space), and clearly

for every ε > 0 there is δ > 0 such that |Bδ(x) ∩X| < ε for all x ∈ X (use the same δ
that works for all of RN ).

Now, let Y be the set of all Lebesgue points of density of X (see Appendix A).
|X4Y | = 0, and if U ⊆ Y is open in Y and x ∈ U , then for ε small enough we have
Bε(x) ∩ Y ⊆ U and

|Bε(x) ∩ Y | > |Bε(x)|
2

;

this implies that |U | > 0.
Finally, the boundary of every open ball in Y has measure zero because the boundary

of any open ball in RN does.
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We conclude that Y is a province, and Y ∼ X, as desired.
Now, if X is not bounded, write

X =
⋃

k∈ZN
{x ∈ X : xn ∈ [kn, kn+1) for all n < N} .

This is a countable, disjoint union of bounded subsets of RN and hence each component
which has positive measure can be written as a province, up to a set of measure zero.
Clearly, X is equivalent to the union of these components. 2

Corollary 6.4 Given any Lebesgue-measurable X ⊆ RN of positive measure, S4u is
absolutely complete for X.

Proof. Immediate from Theorem 6.2 and Lemma 6.3. 2

Corollary 6.5 S4u is absolutely complete for the Cantor set under the ln(2)/ln(3)-
Hausdorff measure 6 .

Proof. Immediate from Proposition 5.16 and the fact that the Cantor set is a province
under this measure. 2

A Notions from measure theory

Here we review some notions from measure theory that are used throughout the text; we
will assume basic familiarity with metric and topological spaces. All of the background
we need should be covered in any standard text on real analysis and measure theory,
such as [8].

If 〈X, T 〉 is a topological space and S ⊆ X, we will use S◦ to denote the topological
interior of S and S to denote its closure.

If 〈X, d〉 is a metric space, x ∈ X and ε > 0, then Bε(x) denotes the open ball
around x with radius ε; that is, the set of all y ∈ X such that d(x, y) < ε. Every metric
space natuarlly acquires a topology given by U ⊆ X being open if and only if, whenever
x ∈ U , there exists ε > 0 such that Bε(x) ⊆ U . All metric spaces will be assumed to be
endowed with this topology.

A metric space 〈X, d〉 is totally bounded if for all ε > 0 there exist finitely many
elements x0, ..., xN−1 ∈ X such that for every y ∈ X there is n < N with d(y, xn) < ε.
Every bounded subset of Euclidean space is totally bounded.

A measure space is a triple 〈X,A, µ〉 where X is a set, A ⊆ 2X is a σ-algebra (that is,
a collection of sets containing ∅ and X which is closed under set difference and countable
unions) and µ : A → [0,∞] (the non-negative reals with a maximal element ∞ added)
satisfying

(i) µ(∅) = 0

(ii) µ(A \B) = µ(A)− µ(B) if B ⊆ A and

6 See Appendix A.
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(iii) if 〈An〉n<ω is an increasing sequence of elements of A,

µ

(⋃
n<ω

An

)
= lim
n→∞

µ(An).

Elements of A will be called µ-measurable. Note that A can be reconstructed from µ,
since it is the domain of µ; because of this we will often omit explicit mention of A and
speak of measure spaces as pairs 〈X,µ〉. We say µ is σ-finite if there are countably many
sets Sn ⊆ X such that µ(Sn) is finite for all n < ω and X =

⋃
n<ω Sn. Measure spaces

which are σ-finite cannot contain an uncountable collection of disjoint sets of positive
measure.

We always assume that Euclidean space RN is equipped with the standard Euclidean
metric and Lebesgue measure; the latter will be denoted | · |.

Given a set S ⊆ RN and x ∈ RN , x is a Lebesgue point of density of S if

lim
ε→0

|Bε(x) ∩ S|
|Bε(x)|

= 1.

It is a famous theorem of Lebesgue that for every measurable set S ⊆ RN , almost every
x ∈ S is a point of density of S; that is, the set of elements of S which are not Lebesgue
points of S has measure zero. For a proof and further details see, for example, [5].

The Cantor set has Lebesgue measure zero. However, it has measure one under the
ln(2)/ln(3)-dimensional Hausdorff measure. Hausdorff measures can be used to measure
fractals (sets of non-integer dimension) and provide a generalization of Lebesgue mea-
sure; a full definition is beyond our scope, but it is known that the Cantor set is a
province under this measure (although the terminology is our own and this would be
stated differently elsewhere). A thorough treatment of Hausdorff measures can be found
in [6].

B Properties of the interior operator

Here we will develop some of the theory needed to establish the properties we use of the
interior operator on a measure algebra.

We first note that the relation v is well-behaved under taking countable unions:

Lemma B.1 Suppose that 〈X,µ〉 is a measure space, E ⊆ X and 〈Sn〉n<ω is a sequence
of subsets of S such that [Sn]µ v [E]µ for all n < ω.

Then, [ ⋃
n<ω

Sn

]
v [E]µ.
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Proof. We have that

µ
((⋃

n<ω Sn
)
\ E
)
≤ µ

(⋃
n<ω(Sn \ E)

)
≤
∑
n<ω µ(Sn \ E)

=
∑
n<ω 0

= 0.

But this implies that
[⋃

n<ω Sn
]
v [E]µ, as desired. 2

If 〈X,µ〉 is a measure space and O ⊆ Aµ,
⊔
O denotes the supremum of O, that is,

the least u ∈ Aµ such that o v u for all o ∈ O. As we show below, if µ is σ-finite,
⊔
O

is always defined 7 .

Lemma B.2 If 〈X,µ〉 is a measure space and 〈Sn〉n<ω is a sequence of subsets of X,
then

⊔
〈[Sn]µ〉n<ω is defined and equals

[⋃
n<ω Sn

]
.

Proof. Clearly
[⋃

n<ω Sn
]

is an upper bound for
⊔
〈[Sn]µ〉n<ω; Lemma B.1 guarantees

that it is the least upper bound, since any element of Aµ which is greater than all [Sn]µ
is also greater than their union. 2

All operations on the measure algebra are essentially countable in the following sense:

Lemma B.3 If 〈X,A, µ〉 is a σ-finite measure space and O ⊆ Aµ, then
⊔
O (the supre-

mum of O) is defined and there is a sequence 〈en〉n<ω of elements of O such that⊔
O =

⊔
n<ω

en.

Proof. Suppose O = 〈oξ〉ξ<γ , where γ is a possibly uncountable cardinal.
By cardinal induction, we can assume that Oξ =

⊔
ζ<ξ oξ is defined for all ξ < γ.

Let I be the set of all ξ < γ such that µ(Oζ) < µ(Oξ) for all ζ < ξ. Write I as an
increasing sequence I = 〈ιξ〉ξ<λ.

One can see that for all χ 6= ζ < λ,

(Oιξ+1 −Oιξ) u (Oιζ+1 −Oιζ ) = [∅]µ

and each Oιξ+1 −Oιξ is of positive measure; since µ is σ-finite, it follows that there can
be only countably many of them, and therefore I must be countable.

We claim that
⊔
ξ∈I Oξ =

⊔
O. Note that this is sufficient to establish our result;

by induction hypothesis, for each ξ < γ we can write Oξ =
⊔
n<ω e

ξ
n with eξn ∈ O, so

that
⊔
ξ∈I Oξ =

⊔
ξ∈I
⊔
n<ω e

ξ
n. Since I is countable the latter is a supremum over a

countable set, as desired.

7 Indeed, Aµ is a complete Boolean algebra, a fact which was proven by Tarski in [16]. The same paper
indicates that Jaskowski proved the result in the special case of the Lebesgue measure algebra in 1931,
but did not publish the proof at the time.
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Clearly
⊔
ξ∈I Oξ v

⊔
O, so to show that

⊔
ξ∈I Oξ =

⊔
O it suffices to prove that⊔

ξ∈I Oξ is an upper bound for O.
Pick ζ < γ and consider the least ordinal ϑ such that µ(Oϑ) = µ(Oζ). By the way

we defined I we have that ϑ ∈ I; but then Oζ v Oϑ, and hence Oζ v
⊔
ξ∈I Oξ. Since

oζ v Oζ and ζ was arbitrary, the claim follows. 2

We are now ready to prove Proposition 2.4.

Proof. [Proof of Proposition 2.4] Let 〈X, T , µ〉 be a topological measure space and o

an element of its measure algebra.
By Lemma B.3 there are countably many open sets Un with [Un]µ v o such that

o� =
⊔
n<ω[Un]µ; by Lemma B.2,

⊔
n<ω[Un]µ =

[⋃
n<ω Un

]
µ
. Then,

(i) o� is open, since
⋃
n<ω Un is an open set;

(ii) follows from the definition of the interior operator;

(iii) follows immediately from the fact that o� is open.
2
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