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abstract. A logic LTD is defined, inspired by [37]. It is syntactically

like basic modal logic with an additional unary operator but it has an

interval-based semantics on structures with arbitrary linear frames. �ψ is
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Keywords: decidability, expressive power, interval tense logic, linear order,
negation, order type, von Wright, weak monadic second-order logic.

1 Introduction

G. H. von Wright suggested in his essay “Time, Change, and Contradiction”
[37] an original approach to the logical investigation of time, where the basic
objects of study are temporal intervals and their internal structure. In the
present paper a formal semantics doing justice to von Wright’s informally
presented semantic ideas is formulated;1 the resulting logic and its fragments
are then studied for their expressive power and decidability properties.
Background. The guiding idea in von Wright’s essay is to examine the
relation between time and change on the one hand, and time and contradic-
tion on the other. As von Wright saw it, in his paper — presented as the
22nd Eddington Memorial Lecture at Cambridge in 1968 — a new avenue
in tense logic was opened up, leading to a study of the logic of the division
of time into ‘bits’ of ever shorter duration [38, pp. xi–xii]. While Prior’s
tense logic [29] studies instants (time points) and their relationships, the
basic relation being succession in time, in von Wright’s approach one takes
as the point of departure ‘bits’ of time and proceeds to the analysis of their
internal structure; here the basic relation is division of time [39, p. 862].

Von Wright approaches the relation of time and contradiction by reference
to the following modal-logical axioms: (A1) or �(p∧q)↔ (�p∧�q), (A2)
or �(p ∨ q) → (�p ∨ �q), (A3) or �(p ∨ ∼p) and (A4) or ∼�(p ∧ ∼p).
Noting that one interpretation of � satisfying the axioms is ‘it will next be
the case that,’ he however proposes to use the axioms to speak of temporal
occasions and read � as ‘it is completely or throughout the case that.’ In this
framework he formulates the notion of ‘contradiction in nature,’ which he

1For a different formal semantics based on von Wright’s relevant logical ideas, see Dalla
Chiara [3]; the logic she formulates is many-valued, actually a variant of  Lukasiewicz logic.
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relates to the analysis of the notion of change. But what is a contradiction in
nature? And how is von Wright led to recognize that type of contradiction?

Von Wright considers different cases arising from accepting some axioms
and rejecting the others. He takes (A3) to state of an occasion that it can be
divided into parts during each of which either p or else ∼p holds throughout.
He notes that hence not-(A3) is true of an occasion any partition of which
has at least one member in which both p and ∼p occur. Such an occasion
is said to incorporate a real contradiction or a contradiction in nature —
an idea that has, as von Wright notes, a rather Hegelian flavor. What
is at stake, however, is not a logical contradiction, but the impossibility
of an analysis of change without at least one of the building blocks of the
analysis carrying logically contradictory but non-simultaneous constituents.
Yet if ontological priority is given to extended occasions, occasions o making
not-(A3) true deserve to be called contradictory in a sense: any analysis of
o into sub-occasions has a component in which both p and ∼p are present.

When discussing occasions not satisfying (A3), von Wright goes on to say
that they positively satisfy ∼�(p ∨ ∼p), from which he further deduces that
they satisfy �(p ∧ ∼p). This reasoning is mistaken and illustrates problems
to which one may be led when not being explicit about the semantics of the
expressions involved. Negating (A3) cannot mean affirming ∼�(p ∨ ∼p)
(unless the force of ∼ depends on its syntactic position vis-à-vis �). Namely,
von Wright takes ∼p to state at occasion o that not-p holds throughout o,
whence ∼�(p ∨ ∼p) must mean that �(p ∨ ∼p) fails throughout o, while
not-(A3) just says that �(p ∨ ∼ p) fails at o. The temporal ontology of
time intervals calls for a distinction between two negations:2 ¬ψ states at
an occasion o that ψ fails at o, while ∼ψ states that ψ fails at each time
point in o. With this distinction at our disposal, it is seen that occasions
incorporating a ‘contradiction in nature’ — i.e., occasions at which (A3) fails
— satisfy ¬�(p ∨ ∼p). By the formal semantics to be given in the present
paper, this formula is merely equivalent to �(¬∼p∧¬p), not to �(p ∧ ∼p).
(The formula ¬∼p is true at o iff p holds at least once during o, and ¬p is true
at o iff p fails at least once during o.) By contrast, �(p∧ ∼p) is logically
contradictory (w.r.t. all occasions consisting of at least two instants). Von
Wright overlooked the need for making the distinction between the two
negations.3 Also, he paid no attention to nested modal operators; and he
did not note that the axioms may hold for atomic substitution instances of
p and q without holding for arbitrary substitution instances.
Basic definitions. Let T be a set and R ⊆ T 2. R is reflexive (irreflexive)
if R(t, t) holds for all (no) t in T ; antisymmetric if R(s, t) and R(t, s) implies
s = t; transitive if R(s, t) and R(t, u) implies R(s, u); dichotomous if R(s, t)
or R(t, s) holds for every s, t; trichotomous if R(s, t) or R(t, s) or s = t holds
for every s, t; linear order if it is irreflexive, transitive and trichotomous. All

2Dalla Chiara [3] does not distinguish between two negations, but in a sense allows
violations of the law of non-contradiction.

3Neither Prior [30] nor Smith [35] nor Mortensen [25] realizes that von Wright attaches
two incompatible meanings to one and the same negation sign.
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linear orders are antisymmetric and fail to be dichotomous. Somewhat con-
fusingly, some authors use ‘linear’ as a synonym for ‘trichotomous’ [28]. By
‘linear order’ some authors mean antisymmetric, transitive and dichotomous
— therefore reflexive — binary relation [22] (reflexive linear orders), while
others mean what was above termed linear order [23]. When quoting other
people’s results, one must be careful about what they actually proved. A
linear order < is dense if s < t implies the existence of u with s < u < t.
Given a linear order <, write ≤ for its reflexive closure. It is assumed that
the reader is familiar with propositional logic (PL), first-order logic (FO),
basic modal logic (ML) and basic tense logic (TL) (see, e.g., [7, 1, 9]). The
symbol ⊤ (⊥) denotes a propositional atom by stipulation true (false) under
all valuations. The quantifier rank of an FO-formula is its maximum num-
ber of nested quantifiers. For the technique of using Ehrenfeucht-Fräıssé
games to prove the elementary equivalence of two structures up to a given
quantifier rank, see [6]. Recall that the future tense operators of TL are F
and G. The reader is reminded of the logic US of Until and Since intro-
duced by Kamp [19]. (For US, see [9].) Weak monadic second-order logic
(Lmon

w ) [7, 21, 24] is obtained from FO by allowing atomic formulas X(t)
and complex formulas ∃Xφ, where X is a unary relation variable and t is a
term. Crucially, the unary relation variables range over finite subsets of the
domain. Allowing quantification over arbitrary subsets leads to monadic
second-order logic (Lmon). Lmon

w is decidable over reflexive linear orders
[22]. This implies the decidability of Lmon

w over linear orders, because the
latter are (first-order) definable from the former.

We write φ ∈ L to indicate that φ is a formula of a logic L: we do
not notationally distinguish a logic from its set of formulas. Henceforth,
‘iff’ abbreviates ‘if and only if.’ If S is a set of formulas, Cl∧,∨(S) is its
closure under ∧ and ∨: the set of formulas obtained from S by finitely many
applications of ∧ and ∨. Given a logic L, its satisfiability (validity) problem
is denoted by L-SAT (L-VAL). If for every φ ∈ L there is neg(φ) ∈ L true
precisely when φ is not true, and if neg(φ) is computed from φ in PTIME,
L-SAT is decidable using an algorithm from complexity class C iff L-VAL is;
for such L we may speak of decidability without specifying whether we mean
L-SAT or L-VAL. 3-CNF denotes the NP-complete problem of deciding
whether a PL-formula in conjunctive normal form is satisfiable, given that
each conjunct consists of just 3 disjuncts (each of which is a literal). In
complexity results, time bounds are measured relative to the length of the
input: its number of symbol tokens. If pi is an atom (i < ω), its length is
1 + b(i), where b(i) is the number of digits of the numeral representing i in
binary. If L,L′ are (modal or abstract) logics defined over the same class
of structures K, a syntactic map t : L → L′ is a translation of L into L′ if
for all φ ∈ L and M ∈ K: φ is true in M iff t(φ) is true therein. L ≤ L′

means: a translation of L into L′ exists; and L < L′ means: L ≤ L′ but not
L′ ≤ L. If f : A → B is a map, its image Im(f) is the set {f(a) : a ∈ A}.
Basic knowledge of order types and ordinals is assumed [8, 18, 34]. ω is the
order type of natural numbers, ω∗ is the dual of ω (having the order of ω
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reversed), and η is the order type of the set of rational numbers (non-empty
countable dense linear orders without end-points).
Plan of the paper. Section 2 introduces the logic of time division (LTD).
Its expressive power is discussed in Section 3. Three fragments of LTD are
studied in some detail in Sections 4, 5 and 6. Section 7 concludes the paper
by pointing out related work and questions for future research.

2 Logic of time division

Syntax. Let prop be a set of propositional atoms containing ⊤ and ⊥.
The syntax of the logic of time division (or LTD) is given by the grammar
φ ::= p | ¬φ | ∼φ | (φ∨φ) | (φ∧φ) | �φ | �φ, with p ∈ prop. Syntactically,
LTD is ML with an additional unary operator (∼). � and � are modal
operators. The modal depth md(φ) of φ is the maximum number of nested
modal operators in φ. Formulas of the forms p,¬p,∼p,¬∼p (p ∈ prop) are
termed literals. The notion of subformula is defined in the expected way.
Semantics. Only linear flows of time will be considered.4 Von Wright [37]
takes ‘occasions’ or intervals to be primary in relation to extensionless time
points. These latter he views as ‘idealizations’. The former he characterizes
in the strict sense as ‘bits’ or ‘stretches’ of time during which no change takes
place, but allows for a generalized sense in which an occasion is any interval
offering a medium within which changes may occur. In the subsequent
formal development this view on time results in letting a domain T consist
of instants, but making evaluation, primarily, relative to extended intervals.
(So the domain, as it is given, is a result of idealization, but the primary
mode of evaluation reflects the conceptual priority of intervals over instants.)
However, since we do not wish to outright exclude idealizations, evaluation
relative to instants (or, singleton intervals) is admitted as well.

Frames are pairs (T,<), where T 6= ∅ and < is a linear order on T .
For later purposes, we assume that for each frame an element t∗ ∈ T has
been fixed. Models are triples M = (T,<, V ) with (T,<) a frame and
V : prop → P(T ) a valuation. Always V (⊤) = T and V (⊥) = ∅. Models
are, then, modal structures with a linear accessibility relation. However,
formulas are evaluated relative to certain kinds of subsets of the domain (in
ML all evaluation is relative to single elements of the domain). We define
an occasion o in a frame (T,<) to be a subset of T which either is of the
form ]s, t] = {x : s < x ≤ t} for some s, t ∈ T or of the form {t} for some
t ∈ T . Occasions of the former kind are occasions proper; {t} is an idealized
occasion if t has no immediate predecessor in T (while if t has one, t′, then
{t} = ]t′, t] is an occasion proper). The empty interval ∅ is an occasion
proper: if s ≥ t, then ]s, t] = ∅.5 The cardinality of o is denoted by |o|.
If o = ]s, t] is non-empty, s is the left bound of o, denoted l(o), and t its
right bound, denoted r(o). If o is empty, by stipulation l(o) = t∗ = r(o).

4This restriction reflects von Wright’s interest in experienced time; certain time-related
phenomena are better studied by reference to tree-like flows of time.

5We prefer not to preclude empty intervals at the outset. It will turn out that the
emptiness and non-emptiness of an interval are properties definable in LTD .
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(A stipulation is needed: we may have ]s, t] = ∅ = ]s′, t′] while s 6= s′ or
t 6= t′.) Finally, l({t}) = t = r({t}). If M is a model and o is an occasion
in its frame, the pair (M, o) is an anchored model.

We are led by aesthetic considerations when opting for intervals of the
form ]s, t] and refraining to accommodate, e.g., intervals {x : s ≤ x ≤ t}
as well. The semantics of the modal operators � and � will be in
terms of divisions of the current occasion. If for some n > 0 there are
points t0 /∈ o and t1, . . . , tn+1 ∈ o such that t0 < t1 < . . . < tn+1 and
(]t0, t1], . . . , ]tn, tn+1]) is a partition of the occasion o, this partition is termed
the division of o by the points t1, . . . , tn and denoted Do(t1, . . . , tn). (Note
that necessarily t0 = l(o) and tn+1 = r(o).) It follows that an occasion o
has a division iff |o| ≥ 2. The members of a division are called its cells.
If o = ]s, t] is finite and |o| = n + 1, then o has 2n − 1 different divisions.
While all divisions of an interval determine its partition, not all partitions
are divisions; e.g., (]1, 2]∪]3, 4], ]2, 3]) is a partition of the real interval ]1, 4],
but not its division. Among the desiderata guiding the definition of division
is that all members of the appropriate partition will be non-empty and
that whenever a division exists, it will be possible to choose the number of
divisors so as to make the members of the partition to have pairwise the
same cardinality. For these reasons it is convenient that the members of the
partition are occasions of the same form as the occasion divided.

Given a modelM = (T,<, V ), define a binary relationM, o |= ψ among
occasions o in T and formulas ψ of LTD as the smallest set such that:

• M, o |= p if: t ∈ V (p) for all t ∈ o
• M, o |= ∼ψ if: M, {t} 6|= ψ for all t ∈ o
• M, o |= ¬ψ if: M, o 6|= ψ

• M, o |= (ψ ∧ χ) if: M, o |= ψ and M, o |= χ

• M, o |= (ψ ∨ χ) if: M, o |= ψ or M,o |= χ

• M, o |= �ψ if: for some positive integer n there are t1, . . . , tn with
l(o) < t1 < . . . < tn < r(o) such that for each cell o′ of the division
Do(t1, . . . , tn), we have M, o′ |= ψ

• M, o |= �ψ if: for all positive integers n and all t1, . . . , tn with
l(o) < t1 < . . . < tn < r(o), there is a cell o′ of the division
Do(t1, . . . , tn) such that M, o′ |= ψ.

It can be shown that all implications in the above definition can be reversed,
i.e., that the relation {(o, ψ) : M, o |= ψ} is a fixed point of the inductive
truth definition. IfM, o |= ψ, ψ is true in M at o; else false inM at o.

The symbols � and � have here a meaning very different from their
meanings in ML. Seen as a generalized quantifier, � ( �) involves second-
order existential (universal) and first-order universal (existential) quantifi-
cation. �ψ serves to assert at o that for all cells of some division of o, ψ
holds. Dually, �ψ asserts at o that for any division of o, some of its cells
makes ψ true. � is a kind of chop-star operator;6 � is its dual w.r.t. ¬ (the

6For a discussion on the relation of � to chop-star as used in other logics, see Sect. 7.
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literature seems not to have settled on any name for the dual of chop-star).
Disjunction (∨) and conjunction (∧) have their usual meanings and they
are each other’s duals w.r.t. ¬. While ¬ is the plain contradictory negation
acting on occasions, ∼ acts on single points (technically, singleton intervals).
¬ψ holds at o iff ψ does not hold at o, whereas ∼ψ holds at o iff ψ fails
separately at each point t ∈ o. In particular ¬p holds at o if the atom p
fails at some t ∈ o, while in order for ∼p to hold at o, p must fail at each
of its points. ¬ is termed the contradictory negation and ∼ the universal
negation.7 When speaking simply of negation, we mean ¬. The formula
¬∼p using both negations states that positively, p holds at some t ∈ o.
Note: Instead of ∼, we might consider the positive operator ⊕ with the
following semantics: ⊕ψ is true at o iff for every t ∈ o, ψ is true at {t}.8
Employing ⊕, ∼ψ would be definable as ⊕¬ψ. (In the scope of ⊕, like in the
scope of ∼, the difference between ∼ and ¬ vanishes.) Note that conversely,
⊕ψ is definable as ∼∼ψ, or, equivalently, as ∼¬ψ. Using ⊕ could improve
readability; e.g. the truth condition of ∼ (∼ p ∧ ∼ q) may well be more
accessible when referred to via ⊕(p∨q). For technical development it might
be advisable to adopt the modified set of primitives. Yet von Wright’s
argument discussed in Section 1 seems to be best elucidated in terms of
the two negations. To retain the connection to the proposed analysis of his
argument, the syntax with ¬ and ∼ is kept in the present paper. ⊣

Let K be a class of anchored models and let φ, ψ ∈ LTD . φ is satisfiable
(valid) over K if M, o |= φ for some (all) anchored models (M, o) in K. A
finite set of formulas is satisfiable (valid) if their conjunction is satisfiable
(valid). ψ is a logical consequence of φ over K, denoted φ⇒K ψ, if (¬φ∨ψ)
is valid over K. Let K0 be the class of all anchored models. We write ⇒
for the relation ⇒K0 . Formulas ψ and φ are logically equivalent, denoted
ψ ≡ φ, if φ⇒ ψ and ψ ⇒ φ. The formula φ characterizes a property P on a
class K if for all (M, o) ∈ K: M, o |= φ iff o satisfies P . E.g., φ characterizes
infinity on K0 if φ holds at all and only infinite occasions.

2.1 Some features of the semantics
Clearly all formulas of the forms p, ⊤, ∼ ψ, �ψ are true at the empty
occasion, while no formula of the form �ψ or ⊥ is. Note that M, o |= ∼⊤
iff o = ∅ and thence M, o |= ¬∼⊤ iff o 6= ∅. So emptiness and non-
emptiness of an occasion are definable in LTD . The formula ( �⊥ ∧ ¬∼⊤)
is true at o iff (o 6= ∅ but o has no division) iff |o| = 1.

Considering � and � applied to literals, in 4 out of the total of 8 cases
the resulting formula is definable in simpler terms. If θ ∈ {p,∼p}, �¬θ ≡
(¬θ ∨ �⊥) and �θ ≡ (θ ∧ �⊤). On the other hand, �p says of o that p
fails at most once during it, while �∼p states that p holds at most once.
�¬p says that p fails at least twice and �¬∼p that p holds at least twice.
Interestingly, ��¬p asserts — of intervals of size at least 2 — that p fails
infinitely often (any division has a cell that is further divisible into at least

7Relative to atoms, but not generally, ¬ could be termed the existential negation.
8I owe to an anonymous referee the suggestion to take ⊕ rather than ∼ as a primitive.
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two cells so that in each p fails); while � �p says that p fails only finitely
many times (there is a division such that in each of its cells p fails at most
once). Replacing in these examples p by an arbitrary formula does not, in
general, serve to express an analogous property; e.g., ��¬p does not assert
that �¬p fails at most once (actually, �¬p fails at each point). We may
observe that there is a formula satisfiable exactly on occasions of even size:
|o| is even iff there is V such that (T,<, V ), o |= �(¬∼p∧ �∼p∧¬p∧ �p).

2.2 Negation normal form
Some peculiarities in the behavior of the universal negation (∼) are worth
noting. First, ∼ and ¬∼ both distribute over ∨: ∼(φ ∨ ψ) ≡ (∼φ∧ ∼ψ)
and ¬∼(φ ∨ ψ) ≡ (¬∼φ ∨ ¬∼ψ) for any φ, ψ ∈ LTD . However, neither
distributes over ∧. E.g., ∼ (∼p ∧ ∼q) is true at a real interval o = ]s, t]
whose every irrational point makes p true (but q false) and every rational
point makes q true (but p false), while (p ∨ q) of course fails at o. Second,
while ∼∼p ≡ p for any atom p, in general ∼∼φ is not equivalent to φ. E.g.,
∼∼(p ∨ q) ≡ ∼(∼p ∧ ∼q) 6≡ (p ∨ q). Third, while ∼¬φ ≡∼∼φ for any
φ ∈ LTD (cf. the proof of Prop. 1), ¬∼φ asserts of o that φ is true at some
singleton interval {t} ⊆ o; it is equivalent neither to φ nor to ∼∼φ.

It will be convenient to deal with LTD by reference to a normal form,
where negation symbols ¬ are driven as deep as they go. Let the grammar

ψ ::= p | ∼p | (ψ ∨ ψ) | (ψ ∧ ψ)

define the class of formulas Lzero , and let the grammar

χ ::= p | ∼p | ¬p | ¬∼p | ∼(a ∧ a) | ¬∼(a ∧ a)

define the class of formulas Lbase , where p ∈ prop and a ∈ Lzero . The
four tuples of negation signs (empty, ¬, ∼, ¬∼) serve to represent the four
basic modes of syllogistic assertions applied to time points in an interval: p
is universal affirmative, ∼p universal negative, ¬∼p particular affirmative
and ¬p particular negative. Lzero equals Cl∧,∨(prop ∪ {∼p : p ∈ prop});
and Lbase is obtained from prop ∪ {¬p : p ∈ prop} by adding to it the
universal negations of all Lzero-formulas (except disjunctions), and the con-
tradictory negations of the universal negations of all Lzero-formulas (except
disjunctions). Let Lnnf be the class of formulas produced by the grammar

θ ::= b | (θ ∨ θ) | (θ ∧ θ) | �θ | �θ,
where b ∈ Lbase . There is a truth-preserving map of type LTD → Lnnf .

PROPOSITION 1. There is a map t : LTD → Lnnf such that for all
φ ∈ LTD and anchored models (M, o): M, o |= φ iff M, o |= t(φ).

Proof. Think of formulas ∼ψ first. If ψ′ is the result of replacing ¬ by
∼ in ψ, then ∼ψ ≡ ∼ψ′: in the scope of ∼ all evaluation is w.r.t. single
points, and M, {t} |= ¬φ iff M, {t} |= ∼φ. Moreover, if ψ′′ results from
replacing in ψ′ subformulas �φ by ⊥ and �φ by ⊤, then ∼ψ′ ≡ ∼ψ′′. (�φ
cannot hold at {t}: there is no s with t < s < t; dually, �φ is trivially true
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at {t}.) These observations motivate defining the following maps [ ]∼ and
[ ]zero , to be used when translating a formula of LTD containing occurrences
of ∼. First, if ψ ∈ LTD , let [ψ]∼ be the result of replacing all occurrences
of ¬ in ψ by ∼, and putting the resulting formula in negation normal form
(like in ML). So [ψ]∼ ∈ LTD , [ψ]∼ contains no occurrences of ¬, and ∼
occurs in [ψ]∼ only prefixed to an atom. Second, define a map [ ]zero on the
set {[ψ]∼ : ψ ∈ LTD} as follows: [p]zero = p, [∼p]zero = ∼p, [ �θ]zero = ⊤,
[�θ]zero = ⊥, [(θ1 ◦ θ2)]zero = ([θ1]zero ◦ [θ2]zero) for ◦ ∈ {∧,∨}. Note that
Im([ ]zero) ⊆ Lzero . The idea behind the maps [ ]∼ and [ ]zero is that if ψ
appears in ψ′ in the scope of ∼ (the maps will be applied in such cases), ψ
can be replaced by [[ψ]∼]zero salva veritate. Let [ ]∗ be the composite map
([ ]zero ◦ [ ]∼) : LTD → Lzero . Define a map [ ]nnf : LTD → Lnnf as follows:

[θ]nnf = θ for θ ∈ {p,¬p}
[¬¬φ]nnf = [φ]nnf

[∼(φ1 ∧ φ2)]nnf = ∼[(φ1 ∧ φ2)]∗

[¬∼(φ1 ∧ φ2)]nnf = ¬∼[(φ1 ∧ φ2)]∗

[©φ]nnf = ©[φnnf ] for © ∈ { �,�}
[(φ1 ◦ φ2)]nnf = ([φ1]nnf ◦ [φ2]nnf ) for ◦ ∈ {∨,∧}

[⇁(φ1 ∨ φ2)]nnf = ([⇁φ1]nnf ∧ [⇁φ2]nnf ) for ⇁ ∈ {∼,¬}
[¬∼(φ1 ∨ φ2)]nnf = ([¬∼φ1]nnf ∨ [¬∼φ2]nnf )

[¬(φ1 ∧ φ2)]nnf = ([¬φ1]nnf ∨ [¬φ2]nnf )
[¬ �φ]nnf = �[¬φ]nnf

[¬�φ]nnf = �[¬φ]nnf

Any φ ∈ LTD can be thought of as being built from components of the
forms p,∼ψ by applying ¬,∨,∧,�, �. (A formula ψ prefixed by ∼ can be
assumed to be an atom or a conjunction of Lzero-formulas.) Relative to such
‘atoms’, [ ]nnf acts like a transformation producing negation normal form in
ML (w.r.t. ¬). As the component formulas ∼ψ have their inner structure,
they will be processed further using the map [ ]∗ (applied to formulas of the
forms ∼φ, ¬∼φ). Doing so gets rid of all occurrences of ¬ in ψ, and drives
the resulting formula in negation normal form (w.r.t. ∼). It is easy to show
that [ ]∗ and [ ]nnf are truth-preserving. So we may take t = [ ]nnf . �

If φ ∈ LTD , the negation normal form of φ is by definition the formula
[φ]nnf , where [ ]nnf is the map defined in the proof of Proposition 1.

3 Expressive power

It turns out that LTD is a very powerful logic.

EXAMPLE 2. M, o |= (�⊤∧ ��⊤) iff |o| is infinite. First assumeM, o |=
(�⊤∧ ��⊤), supposing for contradiction that |o| < ℵ0. Since �⊤ holds at
o, |o| ≥ 2. Consider a division of o whose all cells are singletons. Then �⊤
holds at one of these cells: a contradiction. For the converse, suppose |o| is
infinite. Then �⊤ holds trivially at o. Choose any finite number n > 0 of
points t1 < . . . < tn < r(o) in o, and consider the division Do(t1, . . . , tn).
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At least one of its cells is infinite. At that cell, then, the formula �⊤ holds.
By what just established,M, o |= ( �⊥ ∨� �⊥) iff |o| is finite. ⊣

A subset S ⊆ T is dense in T if for all x, y ∈ T with x < y, there is z ∈ S
such that x < z < y. The following fact will be used subsequently:

FACT 3. Let (T,≺) be of order type η + 1. There is a subset S of T such
that both S and its complement T \ S are dense in T .

Proof. W.l.o.g. consider the interval T := ]0, 1] ∩Q. Put S := {m2n : n ≥ 1
and m < 2n and m is odd}. Then both S and T \ S are dense in T . �

EXAMPLE 4. Consider the conjunction χ := (¬∼p ∧ ¬p), with p ∈ prop.
Clearly χ can only be true at an occasion of size at least two. Then the
formula (�⊤∧ �χ) is satisfiable, but not true at any finite occasion. To see
that there is an infinite occasion at which (�⊤∧ �χ) holds, let o = ]0, 1]∩Q.
By Fact 3 there is a subset S of o such that both S and its complement
are dense in o. Define a model M = (T,<, V ) with T = [0, 1] ∩ Q by
letting < be the order of rationals in T by magnitude and V (p) = S. Now
M, o |= (�⊤ ∧ �χ). For, take any division of T by points t1 < . . . < tn.
Then the formula χ holds actually at any cell (while one would suffice). ⊣

The formulas calling for infinite models discussed in Examples 2 and 4
have extremely low modal depth: 2 resp. 1. Let us look at further examples
that give some measure of the power of nesting modal operators.

EXAMPLE 5. If © ∈ {�, �}, write ©n for the string consisting of n
tokens of ©. Let n,m be positive integers.

(i) M, o |= �n⊤ iff |o| ≥ 2n.

(i′) M, o |= �n⊥ iff |o| ≤ 2n − 1.

(ii) M, o |= �n �m⊥ iff 2n ≤ |o| < ℵ0.

(ii′) M, o |= �n�m⊤ iff 2n < |o| or |o| ≥ ℵ0.

(i′) and (ii′) are immediate from (i) resp. (ii). For (i), the estimate on |o|
is computed as 1 +

∑n−1
k=0 2k = 2n; it is the smallest number of time points

allowing n iterated evaluations of � in each minimal sub-occasion triggered
by the previous evaluation step. For (ii), suppose first that |o| is finite but
at least 2n. So we are sure to be able to evaluate �n. Moreover, since |o|
is finite, we may choose the divisors of o so that the cells of the resulting
division are all singletons. But then, by (i′), �m⊥ is true at all those cells.
Further, the value of the parameter m > 0 is irrelevant. Conversely, if the
formula holds at o, it is possible to evaluate �n, whence |o| ≥ 2n. Suppose
for contradiction that |o| is infinite. Then any division chosen to witness �
will have at least one infinite cell; at that cell, then, �m⊥ cannot hold. ⊣
EXAMPLE 6. Let O = (ω + 1, <, V ), where V satisfies α ∈ V (p) iff α < ω
and α is odd. Let o = ]0, κ] with κ ≤ ω. Then O, o |= �(p ∨ ∼p) iff κ 6= ω,
but O, o |= �(p ∨ ¬p). If κ = ω, �(p ∨ ∼ p) fails at o, since whichever
finite set of divisors is chosen to witness �, the rightmost of the cells of the
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corresponding division is infinite, and thus neither p nor ∼p holds at it. On
the other hand, �(p ∨¬p) indeed holds irrespective of the value of κ: if o′ is
a sub-occasion of o which does not satisfy p, there is at least one point in o′

at which p does not hold; but then ¬p is true at o′. For a further example,
let N = (ω,<, V ), with V defined as follows: n ∈ V (p) iff n ≡ 1 (mod 3);
n ∈ V (q) iff n ≡ 2 (mod 3); and n ∈ V (r) iff n ≡ 0 (mod 3). Let o = ]2, k]
with k < ω. Then N , o |= �(¬∼p ∧ ¬∼q ∧ ¬∼r ∧ � �⊥) iff |o| is divisible
by 3. The formula χ := (¬∼p ∧ ¬∼q ∧ ¬∼r ∧ � �⊥) states of an occasion
o′ that its size is at most 3 (cf. Ex. 5) and that each of the atoms p, q, r is
true at o′ at least once. Given the definition of the model, this only leaves
open the possibility that |o′| = 3. But then, the formula �χ can only be
true in N at an occasion whose size is divisible by 3. ⊣
EXAMPLE 7. Consider the model Q = (Q, <, V ) and the rational interval
o = ]1, 2], given that V (p) = {t : t2 < 2}. (Hence ∅ 6= V (p) ∩ o 6= o.) Then
Q, o |= ¬�(p ∨ ∼p). To see this, let Do(t1, . . . , tn) be any division of o.
Then the divisors satisfy 12 < (t1)2 < . . . < (tn)2 < 22. Evidently, (p ∨ ∼p)
can only be true at all cells of the division if for some 1 ≤ i ≤ n, we have
(ti)2 = 2. But this is impossible, as the ti are rational. By contrast, if we
move on to look at the model R = (R, <, V ) and the real interval o = ]1, 2],
letting V (p) = {t : t2 < 2}, we indeed have: R, o |= �(p ∨ ∼p). There is
exactly one witnessing division, namely Do(

√
2). ⊣

EXAMPLE 8. In Example 7, the truth of �(p ∨ ∼p) failed in a model based
on rational numbers due to a gap — the non-existence of the supremum of
the set of points making p true. This formula can fail in a model Q∗ =
(Q, <, V ∗) also for a different reason. By Fact 3 there is a subset S of the
rational interval o = ]1, 2] such that both S and ]1, 2] \S are dense in ]1, 2].
Put V ∗(p) := S. Then Q∗, o |= ¬�(p ∨ ∼p). ⊣
Basic negative properties of LTD . Directly by Example 2, we have:

FACT 9. LTD lacks the finite model property. �
By contrast, ML has (strong) finite model property over the class of all
pointed models [1, Thm. 2.34, Cor. 6.8]. Thinking of evaluation, in ML we
climb up a tree (or more generally, a directed graph), while in LTD we dig
deeper into a given occasion. In view of the above examples, modal depth
is a very bad measure of the structural requirements that an LTD -formula
can impose on an occasion. A formula of modal depth 2 can characterize
infinity (Ex. 2) and there are formulas of modal depth 1 true only at infinite
occasions (Ex. 4). A simple formula such as �n⊤ forces its verifying occasion
to be at least of size 2n, while the same string of symbols, as a formula of
ML, only requires of a pointed modal structure that its height be n. A
property central to a great variety of modal languages L is having a notion
of finite degree [1, Def. 7.58]: the existence of a function f : L → ω such
that if φ is true in a pointed model at all, it is true in the result of removing
from that pointed model everything that transcends the height f(φ). For
ML we may take f(φ) = md(φ). (Not all modal languages have a notion
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of finite degree, a much-studied case in point is modal mu-calculus.) LTD

fails to have a notion of finite degree, if by ‘degree’ of a formula of LTD we
understand a measure of the size of an occasion required to verify it.

If prop = {pi : i < ω} and M = (T,<, V ) is a model, let τ = {≺} ∪
{Pi : i < ω} and define M to be the τ -structure (T,≺M, 〈PM

i 〉i<ω), where
≺M = < and PM

i = V (pi). (M will be termed the abstract structure induced
by M.) If L is an abstract logic, say FO or Lmon

w , LTD is translatable into
L if the following two conditions hold: (a) for every φ ∈ LTD there is a
formula ψ1

φ(x) ∈ L[τ ] of one free variable such that for all M and t ∈ T :
M, {t} |= φ iff 〈M, t〉 |= ψ1

φ(x); and (b) for every φ ∈ LTD there is a formula
ψ2
φ(x, y) ∈ L[τ ] of two free variables such that for all M and all occasions

proper o = ]s, t] ⊆ T : M, ]s, t] |= φ iff 〈M, s, t〉 |= ψ2
φ(x, y). The formula ψiφ

will be called a translation of φ of kind i (i := 1, 2).

THEOREM 10. LTD is not translatable into FO.

Proof. Let τ = {<}. Given n ∈ N, let Mn be the τ -structure (Mn, <
Mn ,∅)

with Mn = {0, . . . , 2n} and <Mn the order of 0, . . . , 2n by magnitude. Write
≺ for the order of integers by magnitude. Let M = Z and define a τ -
structure M = (M,<M,∅) by setting z <M z′ iff 0 � z ≺ z′ or z ≺ z′ ≺ 0
or (z ≻ 0 and z′ ≺ 0). So <M has the order type ω + ω∗. Note that
min(<M) = 0 and max(<M) = −1. An easy Ehrenfeucht-Fräıssé game ar-
gument shows that for any n ∈ N, the structures 〈M, 0,−1〉 and 〈Mn, 0, 2n〉
agree on all FO[τ ]-formulas of two free variables with quantifier rank at
most n. Consider, then, the LTD -formula φinf := (�⊤∧ ��⊤), true inM
at o iff |o| ≥ ℵ0. For contradiction, suppose φinf has a translation χ(x, y)
of kind 2 into FO[τ ]. Write q for the quantifier rank of χ. By what just
observed, the structures 〈M, 0,−1〉 and 〈Mq, 0, 2q〉 are indistinguishable by
χ(x, y). Note that the τ -structures Mn and M are, formally, also models
for LTD . Now Mq, ]0, 2q] 6|= φinf and M, ]0,−1] |= φinf . Since χ(x, y) is a
translation of φinf , 〈Mq, 0, 2q〉 6|= χ(x, y) and 〈M, 0,−1〉 |= χ(x, y), so after
all χ(x, y) distinguishes the two structures: a contradiction. �

Basic positive properties of LTD . As is immediate from the seman-
tics, LTD ≤ Lmon

w . Write STx,y for a translation (of kind 2) of LTD into
Lmon

w . Note that FO 6≤ LTD ; clearly e.g. the simple (TL-definable) formula
∃z∃v(x < z < v ≤ y ∧ P (z) ∧Q(v)) has no translation into LTD .

PROPOSITION 11. LTD < Lmon
w . �

COROLLARY 12. LTD has downwards Löwenheim-Skolem property: any
satisfiable formula of LTD is true in a countable anchored model.

Proof. Let φ ∈ LTD . Suppose M, o |= φ, where o = ]s, t] and s < t. (If o
is empty or a singleton there is nothing to prove.) Let φlin be an FO[{<}]-
formula stating that the interpretation of < is linear; then the sentence
χ := (∃x∃y(x < y ∧ STx,y(φ)) ∧ φlin) of Lmon

w is true in the structure M
induced by M. By the downwards Löwenheim-Skolem property of Lmon

w

[24], there is a countable 〈M′, s′, t′〉 such that 〈M′, s′, t′〉 |= STx,y(φ), the



374 Tero Tulenheimo

relation <M′
is linear, and s′ <M′

t′. Let M′ be the model inducing M′.
ThenM′, ]s′, t′] |= φ. �

COROLLARY 13. LTD is decidable.

Proof. Given φ ∈ LTD , apply an algorithm solving Lmon
w -SAT over linear

orders [22] to the sentence ∃x∃ySTx,y(φ). (Note that φ is true at a singleton
iff STx,y(φ) is satisfied in some 〈M, t, t′〉, where ]t, t′] is a singleton.) �

Further observations. Write φinf for the formula (�⊤∧ ��⊤) that was
seen to hold at o iff |o| ≥ ℵ0 (Ex. 2). Using φinf we can build further formulas
which will serve to capture classes of ordinals. (For any successor ordinal
α = β+1 = [0, β], the interval ]0, β] is an occasion proper in the class of all
ordinals. However, we may consider α itself as an occasion proper.) E.g.,
�φinf is true at an ordinal β + 1 iff β ≥ ω · 2, while (�⊤ ∧ ��φinf) is true
at β + 1 iff β ≥ ω2. To see that the latter holds, suppose for contradiction
that β + 1 |= (�φinf ∧ ��φinf) for some β < ω2. So β = ω · n+ k for some
n, k < ω. Consider a division of β by divisors ω, ω · 2, . . . , ω ·n. Each cell of
this division is of order type γi ∈ {k, ω} and yet one of them satisfies �φinf .
This is impossible. More generally, we may define recursively formulas φωn

by putting φω1 := (�⊤∧ ��φinf) and φωn+1 := (�⊤∧ ��φωn). Then we
have for an ordinal β that β + 1 |= φωn iff β ≥ ωn. An ordinal β + 1 makes
true all formulas of the set {φωn : n < ω} iff β ≥ ωω.

Formula χ of LTD is idempotent if �χ⇒ χ: any occasion that can be cut
into finitely many pieces so that each piece satisfies χ, itself satisfies χ. Not
all formulas are idempotent. E.g., neither (p∨q) nor (p ∨ ∼p) nor �⊥ is. By
contrast, all formulas p, ¬p, ¬∼p, ∼φ, �φ, (p∨¬p) are idempotent. Formula
χ is hyperconsistent if �χ⇒ �χ, i.e., if the truth of �χ excludes the truth of
�¬χ. In other words, χ is hyperconsistent iff ( �χ∨ �¬χ) is valid. Dually,
formula χ is a hypoantilogy if (�χ ∧ �¬χ) is satisfiable. Hypoantilogies χ
have the property that at least one occasion can be divided, in two ways, into
at least two cells so that all cells of one division make χ true while all cells
of the other division make ¬χ true. Hypoantilogies are formulas which can,
by multiplication so to say, be fitted into one and the same interval together
with their contradictories. A formula is hyperconsistent (hypoantilogy) iff
its negation is. Directly by definitions, if a formula χ and its negation both
are idempotent, χ is hyperconsistent. Hyperconsistency is a very restrictive
condition. E.g., (p ∨ q) is not hyperconsistent, as witnessed by a rational
interval ]1, 4] where q holds throughout ]1, 2] and ]3, 4], p holds throughout
]2, 3], and p fails at 11

2 and 31
2 while q fails at 21

4 and 23
4 . Then �(p∨q) holds

at ]1, 4] as witnessed by the division D]1,4](2, 3). Yet also �¬(p ∨ q) holds
at ]1, 4]. This is witnessed by the division D]1,4](2 1

2 ). In both cells ]1, 2 1
2 ]

and ]21
2 , 4], both literals ¬p and ¬q hold. Other examples of hypoantilogies

are (r∨ (q∧ s)), �⊥ and �⊤. E.g., in order for �⊥ to be hyperconsistent,
the formula ( � �⊥∨ �¬ �⊥) must be valid; however, this formula is false
at all finite occasions of size at least 4. The existence of hypoantilogies
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shows immediately that the distribution laws (�χ ∧ �θ) ≡ �(χ ∧ θ) and
( �χ ∨ �θ) ≡ �(χ ∨ θ) fail in LTD .

Write φ → ψ for (¬φ ∨ ψ). All of the following modal-logical axiom
schemata fail in LTD : 4 or �θ → ��θ, T or �θ → θ, B or θ → � �θ,
D or �θ → �θ, .3 or ( �θ ∧ �χ)→ �(θ ∧ �χ)∨ �(θ ∧ χ)∨ �(χ∧ �θ),
L or �( �¬p∨ p)→ �p and K or �(¬θ∨χ)→ ( �¬θ∨�χ). The failure of
D follows from the existence of hypoantilogies: it fails in LTD for a rather
‘substantial’ reason. (In ML an instance of this schema can only fail at a
state having no successor states.) The schema .3 holds for atomic θ, χ — in
particular ( �p∧ �q)⇒ �(p∧ �q) — but fails already for negated atomic
formulas. On the positive side, the axiom schema that in basic modal logic
corresponds to the density of the accessibility relation, viz. ��θ → �θ,
actually holds for LTD . Here it has nothing to do with density, but is a
simple consequence of the semantics of �. Since K fails in LTD , nominally
LTD is not a normal modal logic. Whether it would do justice to LTD to
call it a non-normal modal logic, or a modal logic at all, is debatable; what
is clear is that LTD is some sort of modal-like temporal logic.

4 Prenex formulas

A reasonable way to get to grips with characteristic features of LTD is to
distinguish its fragments and study them in isolation. What is learned from
such case studies can, then, hopefully shed light on the general features
of the logic. In this section we take up the study of ‘prenex formulas’; in
Sections 5 and 6 the ‘propositional fragment’ resp. the ‘simple fragment’
are considered. Already attempts to reach an overview of such relatively
straightforward fragments of LTD lead to rather involved considerations;
there would be no realistic hope of understanding the details of the semantic
behavior of LTD from scratch. E.g., should anyone wish to design a deci-
sion algorithm specifically for LTD , such a detailed understanding would be
needed. From this perspective, the question whether the chosen fragments
are ‘natural’ in a more global setting is immaterial. (The ‘propositional
fragment’ actually turns out to be a natural fragment of TL.)

A prenex formula is any LTD -formula of one of the forms

(� �)nℓ, ( ��)nℓ, �(� �)nℓ and �( ��)nℓ,

with n < ω and ℓ a literal. Prenex formulas with ℓ in their matrix are
ℓ-formulas. E.g. � ��p, ��¬∼p and ∼p are prenex formulas; the first is
p-formula, the second ¬∼p-formula and the third ∼p-formula. Write LPR

for the class of all prenex formulas, and let LBPR := Cl∧,∨(LPR). E.g.,
(� �p∨( �∼q∧¬r)) is in LBPR but �(p∨ �q) is not. Note that semantically,
LBPR is closed under ¬. We will study LBPR-SAT w.r.t. the class D of all
anchored models whose linear order is dense and whose occasion is proper.
By Corollary 13 it is already known that this problem is decidable (density
is first-order definable), but here a more fine-grained analysis is attempted.
Dropping the assumption of density would complicate the details of the
proofs; we leave the study of the more general case for future research.
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Over D, we have the equivalences �¬p ≡ ¬p, �¬∼p ≡ ¬∼p, �p ≡ p and
�∼p ≡∼p. (For these it suffices to exclude occasions o with 0 6= |o| 6= 1,
cf. Subsect. 2.1.) So we may, w.l.o.g., restrict attention to prenex formulas
of the forms (� �)np, (� �)n∼p, �(� �)np, �(� �)n∼p and ( ��)n¬p,
( ��)n¬∼p, �( ��)n¬p, �( ��)n¬∼p. Recall that M, o |= � �p iff ¬p
occurs only finitely often in o; and M, o |= ��¬p iff ¬p occurs infinitely
often in o. Similarly, � �∼p asserts of an occasion that p holds only finitely
often in it and ��¬∼p that p holds infinitely often in it. We prove some
auxiliary results and then show that LBPR-SAT over D is NP-complete. If
θ ∈ LPR, write |θ| for the number of modal operator tokens in its prefix.

LEMMA 14. (a) If θ1 and θ2 are p-formulas (∼p-formulas) with |θ1| ≤ |θ2|,
then θ1 ⇒D θ2. (b) If θ1 and θ2 are ¬p-formulas (¬∼ p-formulas) with
|θ1| ≤ |θ2|, then θ2 ⇒D θ1.

Proof. For (a), consider how the complement of V (p) looks like in anchored
models 〈(T,<, V ), o〉 ∈ D satisfying a given p-formula. It is not difficult to
see that the situation is as summarized by Table 1. Note that if θ1 and θ2
are p-formulas with |θ1| ≤ |θ2|, any occasion satisfying θ1 is a special case
of an occasion satisfying θ2. Therefore θ1 ⇒D θ2. The case of ∼p-formulas
is analogous. Item (b) is immediate from (a). Namely, if χ1 and χ2 are
¬p-formulas with |χ1| ≤ |χ2|, then ¬χi is logically equivalent to a p-formula
θi (i := 1, 2) such that |χi| = |θi|. Therefore by (a), θ1 ⇒D θ2. But this
means that χ2 ⇒D χ1. The case of ¬∼p-formulas is analogous. �

Formula Order type of
T \ V (p) in o

�p ≤ 1

� �p n0

�� �p α1

� �� �p α1 · n1

�� �� �p α1 · n1 · α2

� �� �� �p α1 · n1 · α2 · n2
· · · · · ·
(� �)mp

Qm
i=1 α1 · ni

�(� �)mp
Qm

i=1 α1 · ni · αm+1
· · · · · ·

Formula Order type of
T \ V (p) in o

�¬p α0

��¬p ∞1

� ��¬p ∞1 · α1

�� ��¬p ∞1 · α1 · ∞2

� �� ��¬p ∞1 · α1 · ∞2 · α2

�� �� ��¬p ∞1 · α1 · ∞2 · α2 · ∞3
· · · · · ·
( ��)m¬p (

Qm−1
i=1 ∞i · αi) · ∞m

�( ��)m¬p Qm
i=1∞i · αi

· · · · · ·
1 < ni < ω; αi finite or αi ∈ {ω, ω∗} 0 6= αi 6= 1; ∞i is infinite

Table 1 Table 2

Table 2 shows how the complement of V (p) looks like in occasions satisfying
a given ¬p-formula. Indeed if χ1 and χ2 are ¬p-formulas with |χ1| ≤ |χ2|,
any occasion satisfying χ2 is a special case of an occasion satisfying χ1.

LEMMA 15. (a) Suppose 〈(T,<, V ), o〉 ∈ D and (T,<, V ), o |= θ. If θ is
p-formula, the set V (p) ∩ o is dense but the set o \ V (p) is not. Similarly,
if θ is ∼p-formula, the set o \ V (p) is and the set V (p) ∩ o is not dense.
(b) If θ is p-formula and χ is ∼p-formula, (θ ∧ χ) is not satisfiable over
D. (c) If θ is p-formula (∼p-formula) and χ is ¬p-formula (¬∼p-formula),
(θ ∧ χ) is satisfiable iff |θ| > |χ|. (d) If θ is p-formula (∼p-formula) and Σ
is the set of all ¬∼p-formulas (all ¬p-formulas), θ ⇒D ψ for all ψ ∈ Σ.
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Proof. (a) is immediate from Table 1. For (b), suppose for contradiction
that (T,<, V ), o |= (θ ∧ χ), with < dense and o proper. By (a), the set
V (p) ∩ o is and is not dense. Item (c) is immediate from Tables 1 and 2.
For (d), suppose θ is p-formula and M, o |= θ with (M, o) ∈ D. From
Table 1 it is seen that o can be partitioned into ω cells in each of which p
occurs infinitely often, whence all ¬∼p-formulas hold at o. �

THEOREM 16. Let Σ(p) be any set of p-formulas, Σ(¬p) any set of ¬p-
formulas, Σ(∼p) be any set of ∼p-formulas and Σ(¬∼p) any set of ¬∼p-
formulas. The union Σ(p)∪Σ(¬p)∪Σ(∼p)∪Σ(¬∼p) is satisfiable iff one of
the following two conditions holds: (i) Σ(∼p) = ∅ and Σ(¬p) is finite and
max{|θ| : θ ∈ Σ(¬p)} < min{|χ| : χ ∈ Σ(p)}, (ii) Σ(p) = ∅ and Σ(¬∼p) is
finite and max{|θ| : θ ∈ Σ(¬∼p)} < min{|χ| : χ ∈ Σ(∼p)}.

Proof. By Lemma 14(a), the set Σ(p) alone is satisfiable. By Lemmas 14
and 15(c), Σ(p) ∪ Σ(¬p) is satisfiable iff Σ(¬p) is finite and max{|θ| : θ ∈
Σ(¬p)} < min{|χ| : χ ∈ Σ(p)}. By Lemma 15(d), again, Σ(p) ∪ Σ(¬p)
is satisfiable iff Σ(p) ∪ Σ(¬p) ∪ Σ(¬∼p) is satisfiable. So if Σ(∼p) = ∅,
the union Σ(p) ∪ Σ(¬p) ∪ Σ(∼p) ∪ Σ(¬∼p) is satisfiable iff condition (i)
holds. Suppose, then, Σ(∼p) 6= ∅. By Lemma 15(b), no occasion satisfying
Σ(∼ p) can satisfy Σ(p) unless Σ(p) = ∅. Dually to what noted above,
Σ(∼p)∪Σ(¬∼p)∪Σ(¬p) is satisfiable iff Σ(¬∼p) is finite and max{|θ| : θ ∈
Σ(¬∼p)} < min{|χ| : χ ∈ Σ(∼p)}. That is, if Σ(∼p) 6= ∅, Σ(p) ∪ Σ(¬p) ∪
Σ(∼p) ∪ Σ(¬∼p) is satisfiable iff condition (ii) holds. �

THEOREM 17. Over D, LBPR-SAT (LBPR-VAL) is NP-complete.

Proof. It suffices to consider satisfiability (LBPR is semantically closed un-
der ¬ and a formula expressing the negation of a given formula is computed
in constant time). Inclusion: Given θ ∈ LBPR \LPR, non-deterministically
guess a map d : ∪i≤n{0, 1}i → {0, 1}, with n + 1 the maximum number of
nested disjunctions and conjunctions in θ; the map d can be used to deter-
mine for every disjunctive subformula of θ one of the disjuncts in an obvious
way. Starting with S0 := {θ}, generate a set Sn ⊆ LPR by letting Si+1 con-
tain Si ∩LPR, both conjuncts of every conjunction in Si, for every disjunc-
tion in Si, the disjunct determined by d, and no other formulas. (If θ ∈ LPR,
proceed with S0 := {θ}.) Using Theorem 16, we determine whether Sn is
satisfiable over D: first see if Sn contains both a p-formula and a∼p-formula.
If so, Sn is not satisfiable over D. Else, if Sn contains no ∼p-formula, check
if Sn contains a ¬p-formula whose prefix is not shorter than the prefixes of
all p-formulas in Sn; if it does, Sn is not satisfiable over D, otherwise it is.
If, again, Sn contains no p-formulas, similarly check if Sn contains a ¬∼p-
formula whose prefix is not shorter than the prefixes of all ∼p-formulas in
Sn; if so, Sn is not satisfiable over D, else it is. The induced algorithm runs
in NP: the non-deterministically guessed map d was employed to generate
in constant time the set Sn, whose satisfiability over D was then checked in
polynomial time. Hardness: The NP-complete problem 3-CNF can be
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simulated in LBPR w.r.t. D: the PL-formula
∧
i<n(ℓi1 ∨ ℓi2 ∨ ℓi3) is satisfi-

able iff the formula (
∧
i<n(ℓi1 ∨ ℓi2 ∨ ℓi3)) ∧ ¬∼⊤ of LPR is satisfiable over

D, given that each ℓij equals p or ¬p for some atom p. (The conjunct ¬∼⊤
serves to exclude the empty occasion). �

5 Propositional fragment

Define the propositional fragment Lprop of LTD to be Cl∧,∨(Lbase). Now
Lprop has genuine tense-logical content — despite its ‘propositional’ nature.
Use ∼ as the negation symbol in TL; let SLF or simple logic of future be
the fragment of TL whose syntax is generated thus:

γ ::= Fp | F∼p | Gp | G∼p | F (β ∧ β) | G(β ∨ β) | (γ ∧ γ) | (γ ∨ γ),
with p ∈ prop and β ∈ Lzero . (Syntactically, Lzero ⊂ TL.) Semantically,
SLF coincides with the fragment of TL whose formulas have modal depth
at most one and make no use of the past tense operators. Lprop and SLF
are intertranslatable, in the sense expressed by Fact 18. If M = (T,<, V )
is a model, t, t′ ∈ T and t < t′, let Mt,t′ be the model ([t, t′], <t,t′ , Vt,t′),
where <t,t′ (Vt,t′) is the restriction of < (resp. V ) to the interval [t, t′].

FACT 18. There are PTIME-computable functions T : Lprop → SLF and
S : SLF → Lprop such that for all χ ∈ Lprop , models M = (T,<, V ) and
non-empty ]t, t′] ⊆ T , we have: M, ]t, t′] |= χ iffMt,t′ , t |= T [χ]. Conversely,
for all θ ∈ SLF, models N = (N,<, V ) and non-empty ]t, t′] ⊆ N , we have:
Nt,t′ , t |= θ iff N , ]t, t′] |= S[θ].

Proof. If ψ ∈ LTD , let [ψ]nnf be its negation normal form. Define a map
T : Lprop → SLF as follows: T [p] = Gp, T [∼p] = G∼p, T [¬p] = F ∼p,
T [¬∼ p] = Fp, T [α] = α, T [∼ (α ∧ α′)] = G(T [[∼α]nnf ]∨ T [[∼α′]nnf ]),
T [¬ ∼ (α ∧ α′)] = F (T [α] ∧ T [α′]) and T [(χ ◦ χ′)] = (T [χ] ◦ T [χ′]) for
◦ ∈ {∧,∨}, where α, α′ ∈ Lzero and χ, χ′ ∈ Lprop . Conversely, define a map
S : SLF → Lprop by putting S[Fp] = ¬∼p, S[F ∼p] = ¬p, S[Gp] = p,
S[G∼p] = ∼p, S[β] = β, S[F (β ∧ β′)] = ¬∼(S[β] ∧ S[β′]), S[G(β ∨ β′)] =
∼([S[∼β]]nnf ∧ [S[∼β′]]nnf ) and S[(γ ◦ γ′)] = (S[γ] ◦ S[γ′]) for ◦ ∈ {∧,∨},
where β, β′ ∈ Lzero and γ, γ′ ∈ SLF. Clearly T and S are PTIME-
computable and translations in the sense required. �

TL-SAT over linear orders is NP-complete. (In [28] TL-SAT was proven
NP-complete over transitive trichotomous orders; this settles also the case
of linear orders: a transitive trichotomous order can be turned by ‘bull-
dozing’ into an irreflexive transitive trichotomous order, cf. [1, Thm. 4.56].)
By Fact 18, then, Lprop-SAT is in NP. However, let us look at the situation
in detail. Let C0 = {(M, o) :M is a model and o is non-empty and proper}.
LEMMA 19. The satisfiability and validity problems of Lprop are NP-
complete, both over C0 and over D0 = {(M, o) ∈ D : o 6= ∅}.
Proof. We show that the satisfiability problem of SLF is NP-complete
over all (dense) models Mt,t′ with t < t′. The claims about Lprop fol-
low due to Fact 18. Inclusion: Any γ ∈ SLF is obtained from formulas
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of the forms Fβ or Gβ (for suitable β ∈ Lzero) by finitely many applica-
tions of ∧ and ∨. Non-deterministically guess a map choosing a disjunct
for each disjunctive subformula of γ, and use it to produce a set X of
formulas of the forms F and G such that γ is satisfiable iff the set X
is. There are, then, formulas αi, βj ∈ Lzero and numbers x, y such that
X = {Gα1, . . . , Gαx, Fβ1, . . . , Fβy}. Evidently X is satisfiable iff all sets
{α1, . . . , αx, βj} are satisfiable (j := 1, . . . , y). This, again, is the case iff
for a non-deterministically chosen number l, the set X l := {α1, . . . , αx, βl}
is satisfiable. To decide whether it is, non-deterministically resolve the dis-
junctions in the formulas α1, . . . , αx, βl and obtain a set Al1∪ . . .∪Alx∪Bl of
literals. If this set contains an atom and its negation, X l is not satisfiable,
otherwise it is. The algorithm runs in NcoP = NP. If it accepts the input
γ, the induced modelMt,t′ satisfies: |{z : t ≤ z ≤ t′}| = y+1, where y is the
number of formulas of the form F in the non-deterministically guessed set
X. Mt,t′ can then be turned into a modelM′

t,t′ with a dense linear order,
e.g. by adding an isomorphic copy of the rational interval ]0, 1[ between each
point in the domain ofMt,t′ and making all αi with Gαi ∈ X true through-
out those intervals. So Lprop-SAT is NP-decidable also overD0. Hardness:
3-CNF can be simulated in SLF: the PL-formula

∧
i<n(ℓi1 ∨ ℓi2 ∨ ℓi3) is

satisfiable iff the formula (
∧
i<n(ℓ

′
i1 ∨ ℓ′i2 ∨ ℓ′i3)) of SLF is satisfiable over

arbitrary (resp. dense) modelsMt,t′ , given that each ℓij equals p or ¬p for
some atom p, and ℓ′ij = Gp if ℓij = p and ℓ′ij = F∼p if ℓij = ¬p. �

6 Simple fragment

The syntax of the simple fragment L1
TD of LTD is generated by the grammar

χ ::= b | �b | �b | (χ ∧ χ) | (χ ∨ χ),

with b ∈ Lprop . The syntax excludes nested modal operators; semantically
L1

TD equals {φ ∈ LTD : md(φ) ≤ 1}. We observe some facts about L1
TD .

Diamond formulas. Let us call L1
TD -formulas of the form �θ diamond

formulas. They can impose quite strong requirements. E.g., �(¬p ∧ ¬∼p)
has only infinite models. Restricting attention to anchored models from D,
consider the kinds of statements that can be made using formulas �θ.

Fix some auxiliary notation. If the χi are Lbase -formulas, letM, ]s, s′] |=
low(χ1, . . . , χn) state that for any given t ∈ ]s, s′] and any i, there is t′i ∈ ]s, t[
such that χi holds at t′i. Similarly, high(χ1, . . . , χn) states that above any
given point each χi is true. Let M, o |= close(χ1, . . . , χn) mean that there
is t ∈ o such that either every χi is true arbitrarily close to t above t or
every χi is true arbitrarily close to t below t. If ψ ∈ Lprop , let ]s, s′[ |= ψ be
otherwise the same statement as ]s, s′] |= ψ except that the metalanguage
first-order quantifiers are not allowed to range over the right bound s′ of
the occasion ]s, s′]. Then if ψ, χ, φ ∈ Lprop , let ♯(ψ, χ, φ) state at ]t, t′] that
there is a point s ∈ ]t, t′[ such that ]t, s[ |= ψ and {s} |= χ and ]s, t′] |= φ.
Finally, define §(ψ) to be true at ]t, t′] if there is s such that ]t, s] |= ψ
or ]s, t′] |= ψ. The abbreviated statements are not themselves definable in
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LTD ; they will be used in analyzing what can be stated in terms of diamond
formulas relative to D. (Incidentally, all statements are US-definable.)

EXAMPLE 20. The following equivalences are relative to D; they are
straightforward consequences of the semantics of �.

(a) �(p ∨ q) iff ♯(p ∨ q,⊤, p ∨ q).
(b) �(¬p ∨ ¬q) iff (¬p ∨ ¬q).
(c) �(p ∧ q) iff ♯(p ∧ q,⊤, p ∧ q).
(d) �(¬p ∧ ¬q) iff close(¬p,¬q) ∨ low(¬p,¬q) ∨ high(¬p,¬q).
(e) �(p ∨ ¬q) iff �p ∨ �¬q iff �p ∨ ¬q.
(f) �(p ∨ [¬q ∧ ¬r]) iff �p ∨ �(¬q ∧ ¬r) ∨ §(p ∧ ¬q ∧ ¬r).
(g) �(p ∨ ¬q ∨ ¬r) iff �p ∨ �(¬q ∧ ¬r) ∨ §(p ∧ [¬q ∨ ¬r]).
(h) �(p ∧ ¬q) iff (p ∧ ¬q) or [♯(p,¬p, p) ∧ low(¬q) ∧ high(¬q)].
(i) �[(p ∧ ¬q) ∨ (r ∧ ¬s)] iff �(p ∧ ¬q) or �(r ∧ ¬s) or

[♯(p,¬p, r) ∧ low(¬q) ∧ high(¬s)] or [♯(r,¬r, p) ∧ low(¬s) ∧ high(¬q)].
(j) �[(p ∧ ¬q) ∨ (r ∧ ¬s) ∨ (t ∧ ¬u)] iff �[(p ∧ ¬q) ∨ (r ∧ ¬s)] ∨

�[(p ∧ ¬q) ∨ (t ∧ ¬u)] ∨ �[(r ∧ ¬s) ∨ (t ∧ ¬u)]. ⊣

An Lbase -formula is universal if it is of the form p, ∼ p or ∼ (χ ∧ χ′),
and existential if of the form ¬p, ¬∼p or ¬∼(χ ∧ χ′). By their semantics,
universal formulas make a universal statement about an occasion, while
existential formulas are witnessed by a single point in an occasion.

LEMMA 21. Let the ui (resp. ei) range over universal (existential) formulas
of Lbase . The following equivalences hold relative to D.

(a) �(
∨
i ui ∨

∨
j ej) iff

∨
j ej ∨ ♯(

∨
i ui,⊤,

∨
i ui).

(b) Suppose that n ≥ 1 and that there are i, j with ei 6= ej. Then
�(

∧
i<n+1 ei) iff close(e0, . . . , en)∨low(e0, . . . , en)∨high(e0, . . . , en).

(c) �[
∧
i ui ∧

∧
j ej ] iff

∧
i ui ∧

∧
j ej ∨ [♯(

∧
i ui,⊤,

∧
i ui) ∧

low(e0, . . . , en) ∧ high(e0, . . . , en)].

(d) �(
∧
i ui ∨

∧
j ej) iff �(

∧
i ui) ∨ �(

∧
j ej) ∨ §(

∧
i ui ∧

∧
j ej).

(e) �
(
[
∧
i ui ∧

∧
j ej ] ∨ [

∧
k u

′
k ∧

∧
l e
′
l]
)

iff

�[
∧
i ui ∧

∧
j ej ] ∨ �[

∧
k u

′
k ∧

∧
l e
′
l]∨

[♯(
∧
i ui,⊤,

∧
k u

′
k) ∧ low(e0, . . . , en) ∧ high(e′0, . . . , e

′
m)]∨

[♯(
∧
k u

′
k,⊤,

∧
i ui) ∧ low(e′0, . . . , e

′
m) ∧ high(e0, . . . , en)].

(f) �
( ∧

i1
θ1i1 ∨ . . . ∨

∧
in
θnin

)
iff

∨
(k,l)∈{1,...,n}2 �

( ∧
ik
θkik ∨

∧
il
θlil

)
.

Proof. Generalizing the observations incorporated in Example 20. �
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Formula θ of Lprop is in disjunctive normal form (DNF) if θ =
∨
i

∧
j θij ,

where the θij are literals. Formula �θ of L1
TD is in DNF if θ is; and

�θ is non-degenerate if it is in DNF and each disjunct of θ is of the form
(
∧
i ui ∧

∧
j ej) for positive i, j. Observe the following decidability result.

THEOREM 22. The satisfiability (and validity) of finite sets of non-degen-
erate diamond formulas over D is decidable in NP.

Proof. Let Θ := { �θi : 1 ≤ i ≤ n} with the �θi non-degenerate. By
Lemma 21(f), Θ is satisfiable iff for every θi there are disjuncts θ1i and θ2i
(having both universal and existential conjuncts) such that the set Θ′ :=
{ �(θ1i ∨θ2i ) : 1 ≤ i ≤ n} is satisfiable. By Lemma 21(c, e), �([

∧
i ui∧

∧
j ej ]

∨ [
∧
k u

′
k ∧

∧
l e
′
l]) holds at a dense occasion o iff one of the following six

conditions holds at o:
(1)

∧
i ui ∧

∧
j ej ;

(2)
∧
k u

′
k ∧

∧
l e
′
l;

(3) [♯(
∧
i ui,⊤,

∧
i ui) ∧ low(e0, . . . , en) ∧ high(e0, . . . , en)];

(4) [♯(
∧
k u

′
k,⊤,

∧
k u

′
k) ∧ low(e′0, . . . , e

′
m) ∧ high(e′0, . . . , e

′
m)];

(5) [♯(
∧
i ui,⊤,

∧
k u

′
k) ∧ low(e0, . . . , en) ∧ high(e′0, . . . , e

′
m)];

(6) [♯(
∧
k u

′
k,⊤,

∧
i ui) ∧ low(e′0, . . . , e

′
m) ∧ high(e0, . . . , en)].

Enumerate these options as 1, . . . , 6 in the above order and guess an assign-
ment f : {1, . . . , n} → {1, . . . , 6}. If it so happens that {1, 2} ∩ Im(f) = ∅,
it is easy to decide whether Θ′ is satisfiable. Let Lu (Ru) be the set of all
universal formulas that appear as conjuncts in the first (third) argument of
the metalanguage connective ♯ in a condition f(x) for some 1 ≤ x ≤ n. Let
Le (Re) be the set of all existential formulas that appear as arguments of
the metalanguage connective low (high) in a condition f(x) with 1 ≤ x ≤ n.
Then check, applying the NP-algorithm provided by the proof of Lemma 19,
whether for all ǫ ∈ Le and all ǫ′ ∈ Re, both sets {ǫ} ∪Lu and {ǫ′} ∪Ru are
satisfiable. If they are, then so is Θ′, otherwise Θ′ is not satisfiable.

Under the assumption {1, 2} ∩ Im(f) = ∅, all existential formulas from
Le (Re) must be compatible with all universal formulas from Lu (Ru). By
contrast, there is some more room in accommodating

∧
i ui∧

∧
j ej with for-

mulas of the forms 3, 4, 5, 6. Perhaps an occasion has two points of division
z and v, and A,B,C,D are conjunctions of universal formulas such that A
(C) holds to the left of z (v) and B (D) to the right of z (v). Then for
satisfying

∧
j ej simultaneously with A it is perfectly sufficient that some

conjuncts are compatible with C and the rest with D — provided that A
and D are mutually compatible. For the general case, let 1 ≤ x ≤ n. If
1 ≤ f(x) ≤ 2, let Lxu = Rx

u contain all universal conjuncts of f(x), otherwise
let Lxu (Rx

u) be the set of all universal formulas that appear as conjuncts
in the first (third) argument of the metalanguage connective ♯ in the con-
dition f(x). Similarly, if 1 ≤ f(x) ≤ 2, let Lxe = Rx

e contain all existential
conjuncts of f(x), otherwise let Lxe (Rx

e ) be the set of all existential formu-
las that appear as arguments of the metalanguage connective low (high) in
the condition f(x). Using the NP-algorithm employed to prove Lemma 19,
check if for every ǫ ∈ ⋃

f(x)/∈{1,2} Lxe and every ǫ′ ∈ ⋃
f(x)/∈{1,2} Rx

e , the sets
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{ǫ} ∪ ⋃
x Lxu and {ǫ′} ∪ ⋃

x Rx
u are satisfiable. If not, Θ′ is not satisfiable.

Otherwise proceed to check if the existential formulas brought in by formu-
las f(x) ∈ {1, 2} can be accommodated in a model. To this end, think of
each formula f(x) as inducing a point dividing an attempted model into a
left side and a right side. Distinct formulas may but need not induce the
same division point. Let 1 ≤ k ≤ n and let g : {1, . . . , n} → {1, . . . , k} be
a surjection. Intuitively, g determines a linear order for the division points
corresponding to the formulas f(x), allowing the identity of points induced
by several formulas. Introduce sets Sy (1 ≤ y ≤ k + 1) as follows: Sy
includes those Lxu for which y ≤ g(x) and those Rx

u for which y > g(x);
further, for every x guess a partition of Lxe , including each member of the
partition into one of the sets Sy with y ≤ g(x), and guess a partition of
Rx
e , including each member of the partition into one of the sets Sy with

y > g(x). Do not include any other elements into the Sy. Then decide
using the NP-algorithm of Lemma 19 whether all sets Sy are satisfiable. If
they are, then so is Θ′, otherwise Θ′ is not satisfiable. �

Theorem 22 is clearly generalizable to finite sets of arbitrary diamond
formulas in DNF; however, a proof of this fact is left to another occasion.

Box formulas. Any L1
TD -formula �θ is a box formula. We content our-

selves with a couple of observations concerning finite sets of box formulas. A
box formula �θ is in DNF if the Lprop-formula θ is; and it is purely universal
if it contains no existential Lbase -formulas as components.

FACT 23. Let θ1, . . . , θn be purely universal Lprop-formulas in DNF. The
set {�θ1, . . . ,�θn} is satisfiable iff there are formulas χi (i := 1, . . . , n) such
that χi is a disjunct of θi and (χ1 ∧ . . . ∧ χn) is satisfiable.

Proof. Right to left: If (χ1∧ . . .∧χn) is satisfiable, so is (θ1∧ . . .∧θn). Thus
�(θ1 ∧ . . .∧ θn) is satisfiable and, a fortiori, so is (�θ1 ∧ . . .∧�θn). Left to
right: Write θi =

∨
j<ni

∧
l<mji

θijl. Suppose
∧

1≤i≤n �(
∨
j<ni

∧
l<mji

θijl)
is true in M at o for some (M, o). Each conjunct �(

∨
j<ni

∧
l<mji

θijl)
determines a finite division Di of o into Ni ≥ 1 cells such that each cell
makes true one of the formulas

∧
l<mji

θijl (j < ni). Jointly the conjuncts
determine, therefore, a partition of o into (

∑n
i=1(Ni − 1)) + 1 sets. Each

member S′r of this partition is an intersection S1 ∩ . . . ∩ Sn, where Si is a
cell of the division Di; hence S′r is an occasion and satisfies a conjunction
Cr := (χr1 ∧ . . . ∧ χrn), where χri is a disjunct of θi true at Si. �

The case of arbitrary box formulas is considerably more involved. Let
{�θ1, . . . ,�θn} be any set of box formulas in DNF. To check if it is satisfi-
able, we should be able to operate with the formulas θi as follows. Let Θi be
the set whose members are the sets of conjuncts of the disjuncts of θi. Sup-
pose the attempted model we are constructing has a sub-occasion satisfying
Sij ∈ Θi. At the moment we introduce Sij , we will have to check, separately
for every existential formula e ∈ Sij , that from each of the remaining sets
Θl with l 6= i we can find a member Slkl

such that {e}∪⋃
l ∀(Slkl

)∪∀(Sij) is
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satisfiable. (If S ⊆ Lbase , ∀(S) denotes the set of universal formulas of S.)
Checking this for just one existential formula e ∈ Sij , we get committed to
checking the analogous condition for the total number of existential formu-
las in the sets Slkl

. In order for this process to terminate, we must, evidently,
be able to exhibit finite numbers N1, . . . , Nn such that {�θ1, . . . ,�θn} is
satisfiable iff it is satisfiable when attention is restricted to divisions trig-
gered by �θi into at most Ni cells. Without such bounds, we can only show
that the set X of finite satisfiable sets of box formulas is recursively enumer-
able. By Corollary 13, we know that actually X is recursive. We leave it as
an open question how to determine the numbers N1, . . . , Nn (depending on
the sizes of the input formulas). Note that it can indeed happen that the
model-seeking process described above in general terms never terminates
while the relevant set of box formulas is not satisfiable.

EXAMPLE 24. Let θ1 := [p ∧ (¬r ∧ ¬s)] ∨ [q ∧ (¬r ∧ ¬s)] and θ2 := [r ∧
(¬p∧¬q)]∨ [s∧(¬p∧¬q)]. It is easy to see that {�θ1,�θ2} is not satisfiable.
Yet there is (M, o) such that o has a division into ω cells each of which
satisfies θ1 and another division into ω cells each of which satisfies θ2. ⊣

7 Concluding remarks

Related work. In the literature various temporal logics using intervals in
their semantics have been formulated; see [14] for a discussion. (On the
whole, interval-based logics remain, however, less studied than point-based
ones.) Among different modal logics of intervals, LTD bears the closest re-
semblance to the propositional interval temporal logic or PITL [13, 26, 27]
and (the propositional fragment of) the duration calculus with iteration or
DC∗ [5, 10, 15]. These logics have a strong motivation deriving from com-
puter science, with applications e.g. to hardware description and verifica-
tion. It is of some interest to note that von Wright’s philosophically driven
considerations dating from 1968 led largely to the same logical conceptual-
izations as those that some 15 years later emerged in PITL — which, again,
has an unmistakable connection to regular expressions, the formulation of
which goes back to Kleene’s work [20] around 15 years before von Wright’s
paper. On finite intervals, the operators chop and chop-star of PITL are
related to catenation resp. catenation closure (Kleene star). (Regular ex-
pressions as such have, though, nothing to do with temporal logic.)

PITL uses natural numbers to model time, while DC∗ employs real
numbers. Formulas of PITL are evaluated relative to finite or infinite maps
σ : I → 2prop (I ⊆ N) called intervals. For each i ∈ I, the object σ(i) is
termed a state; hence states are truth-value distributions over a fixed set
prop of atoms. An atom p holds at σ iff σ(min)(p) = 1, where min is the
smallest element in dom(σ). Disjunction (∨), negation (¬) and verum (⊤)
have their expectable semantics. The modal operators eventually ( �) and
next (©) satisfy: σ |= �χ iff σ′ |= χ for some suffix σ′ of σ; and σ |=©χ iff
σ′ |= χ, given that σ = σ(min)⌢σ′. The dual of � is denoted by �. Char-
acteristic of PITL are the binary operator chop (written ;) for sequential
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composition and the unary operator chop-star (written ∗) for the closure
of sequential composition. If σ is finite, by definition σ |= ψ;χ iff there is
k ∈ dom(σ) such that σ(min) . . . σ(k) |= ψ and σ(k) . . . σ(max) |= χ. And
σ |= ψ∗ iff there are m < ω and k0, . . . , km ∈ dom(σ) such that k0 = min
and km = max and σ(ki) . . . σ(ki+1) |= ψ for all 0 ≤ i < m. The clauses for
chop and chop-star are similar in DC∗; the evaluation in DC∗ is relative to
closed real intervals.9 The semantics of chop-star is obviously very close to
the semantics of the operator � of LTD . The main difference is that when
the latter is evaluated, the relevant interval is divided into finitely many dis-
joint pieces, while when evaluating chop-star, adjacent subintervals have ex-
actly one state in common. So it is � rather than chop-star that has a really
straightforward connection to regular expressions: if the ‘extension’ of ψ is
denoted by a regular expression r, the ‘extension’ of �ψ is denoted by rrr∗.
(Recall that �ψ is only true of intervals divisible into at least two cells satis-
fying ψ.) On finite intervals, the following map t translates Lnnf into PITL,
whereas by Proposition 1, LTD ≤ Lnnf . Define a map s : Lzero → PITL
by stipulating that s(ψ) is the result of replacing all occurrences of ∼ in
ψ by ¬. Then put: t(p) = �p, t(∼φ) = �¬s(φ), t(¬φ) = ¬t(φ),
t(φ ◦ χ) = t(φ) ◦ t(χ) for ◦ ∈ {∨,∧}, t(�φ) = t(φ);©t(φ); [©t(φ)]∗,
t( �φ) = ¬(¬t(φ);©¬t(φ); [©¬t(φ)]∗). It is not immediately clear whether
LTD ≤ DC∗; relative to real intervals the next operator is not available to
help expressing the semantics of �. Both PITL and DC∗ have been exten-
sively studied from the proof-theoretic viewpoint. PITL is known to admit
of a complete proof system both over finite and over infinite time; see the
bibliography of [27]. A complete proof system for DC∗ relative to so-called
abstract-time semantics has likewise been presented [10]. For more informa-
tion about duration calculus, see [15, 16]. Unlike PITL and DC∗, LTD is
not for its semantics restricted to any particular class of linear orders. On
the other hand, relative to the appropriate classes of linear orders, LTD is
less expressive than either PITL or DC∗: in particular the operator chop
is neither syntactically given nor definable in LTD .

Questions for future research. The present paper leaves it for future
research to estimate the complexity of an optimal algorithm solving LTD -
SAT. Läuchli’s proof [22] does not yield an explicit upper bound on the
time complexity of Lmon

w -SAT, while Rabin’s proof [31] provides a non-
elementary upper bound (i.e., the time complexity is not bounded by any
stack of exponentials of a fixed height). Another obvious task is to provide a
complete proof system for LTD . One might also attempt relating fragments
of LTD to independently interesting fragments of Lmon

w .
The study of LTD can be pursued in different directions. One option is

to study its finite models; technically, these are word models. By Büchi’s
theorem, cf. [6], Lmon can define over word models precisely the denotations
of regular expressions. (Over finite models, of course Lmon

w = Lmon.) One
can ask in which precise way LTD falls short of capturing regular languages;

9For chop as a modal operator employing a ternary accessibility relation, see [36].
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cf. [17] for related research. The question of whether LTD has 0-1 law
could also be studied. (Evenness is, apparently, not definable.) It might be
possible to link LTD to certain logics of trees with a yield operator [4].10

LTD could be modified by adding an operator �′ otherwise like � but
involving a division into a fixed finite number of cells, say 2; this might be
further strengthened into a binary chop modality: φ holds first and then
ψ. The semantics of � itself can also be varied. We might, e.g., allow the
number of divisors in the semantic clause for � to be countably infinite or
arbitrary. Without further restrictions, however, the resulting logic would
be very expressive indeed and the whole idea of division would take a some-
what unintended form: e.g. a rational interval would have a division into
singleton cells. A more interesting variant is obtained by imposing a condi-
tion on the induced order of the divisors. We might, say, restrict attention
to sets of divisors whose induced order is of type ω. Actually von Wright
did not forbid infinite divisions but still took occasions to be always divided
into discrete ‘bits’ or ‘stretches’ [37, p. 127]. If C is a class of discrete order
types, we might study the logic LCTD with � strengthened so as to allow any
sets of divisors the induced order of which has a type α ∈ C. The semantics
of � in LTD results from letting C consist of all finite order types n ≥ 1. On
arbitrary linear orders, LCTD can merely be translated into Lmon if C admits
of infinite order types; more specifically, into the fragment Lmon

C of Lmon

whose second-order quantifiers range over subsets meeting the appropriate
order type requirement. There is no immediate way of settling whether
LCTD is decidable: Lmon is undecidable over arbitrary linear orders —
notably over the real line [33, 12]. Over some classes of linear orders Lmon is
decidable, however, e.g., countable linear orders [31], {ω1} and {α : α < ω2}
[2]. As to {ω2}, ZFC does not determine which sentences of Lmon are true
of ω2 [11, 33]. Evidently LCTD < Lmon

C < Lmon; it might happen that LCTD

is decidable over arbitrary linear orders.
Finally, one might experiment with studying LTD relative to a larger

class of models, say tree structures. This would require finding a suitable
interpretation to the idea of division relative to trees. Conceivably divisor
points might be replaced by bars (i.e., sets B such that every branch of
the tree intersects B exactly once). Or by non-comparable nodes such that
every maximal branch belongs to the ‘neighborhood’ determined by one of
the nodes. Or the cells of divisions might be taken to be subtrees of a tree.
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[2] J. R. Büchi. The monadic second-order theory of ω1. In Lecture Notes in Mathematics

Vol. 328, 1–127, Springer, 1973.

[3] M. L. Dalla Chiara. Von Wright on time, change, and contradiction. In [32], 637–45.

[4] H. Comon et al. Tree Automata Techniques and Applications. Available at

http://tata.gforge.inria.fr/, released October 12, 2007.

[5] H. Dang Van & J. Wang. On the design of hybrid control systems using automata

models. In LNCS 1180, Springer, 415–38, 1996.

[6] H.-D. Ebbinghaus & J. Flum. Finite Model Theory. Springer, 1999.

[7] H.-D. Ebbinghaus, J. Flum & W. Thomas. Mathematical Logic. Springer, 1984.

[8] A. Fraenkel. Abstract Set Theory. North-Holland, 1961.

[9] D. M. Gabbay, I. Hodkinson & M. Reynolds. Temporal Logic, Vol. 1. OUP, 1994.

[10] D. P. Guelev & H. Dang Van. On the completeness and decidability of duration

calculus with iteration. Theor. Comp. Science 337, 278–304, 2005.

[11] Y. Gurevich, M. Magidor & S. Shelah. The monadic theory of ω2. J. Symb. Log.

48(2), 387–98, 1983.

[12] Y. Gurevich & S. Shelah. Monadic theory of order and topology in ZFC. Annals of

Math. Logic 23, 179–98, 1982.

[13] J. Y. Halpern, Z. Manna & B. Moszkowski. A hardware semantics based on temporal

intervals. In LNCS 154, Springer, 278–91, 1983.

[14] J. Y. Halpern & Y. Shoham. A propositional modal logic of time intervals. J. ACM

38(4), 935–62, 1991.

[15] M. R. Hansen & H. Dang Van. A theory of duration calculus with application. In

LNCS 4710, Springer, 119–76, 2007.

[16] M. R. Hansen & C. Zhou. Duration calculus: logical foundations. Formal Aspects of

Computing 9, 283–330, 1997.

[17] L. Hella & T. Tulenheimo. On the existence of a modal-logical basis for monadic

second-order logic. Unpublished manuscript, 2008.

[18] K. Hrbacek & T. Jech. Introduction to Set Theory. Marcel Dekker AG, 1999.

[19] H. Kamp. Tense Logic and the Theory of Linear Order, Ph.D. thesis, UCLA, 1968.

[20] S. C. Kleene. Representation of events in nerve nets and finite automata. In C. E.
Shannon & J. McCarthy (eds.): Automata Studies, 3–42, Princeton UP, 1956. (First

published as RAND research memorandum RM-704, 15 December 1951, 101 pages.)

[21] D. Leivant. Higher order logic. In Handbook of Logic in Artificial Intelligence and

Logic Programming, 229–321, OUP, 1994.
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