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abstract. We present a complete axiomatization of a logic denoted by

MTML (Mereo-Topological Modal Logic) based on the following set of

mereotopological relations: part-of, overlap, underlap, contact, dual con-

tact and interior part-of. We prove completeness theorems for MTML with

respect to several classes of models including the standard topological mod-

els over the set of regular-closed subsets of arbitrary topological spaces. We

show that MTML possesses fmp with respect to a class of non-standard

models, which implies its decidability. In this way we propose also a solu-

tion of the main open problem, formulated in [17] to find a decidable modal

logic for topological relations.
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Introduction

This paper can be considered as an application of modal logic to mereotopol-
ogy. Mereotopology is an extension of mereology with some relations of
topological nature. Mereology is an ontological discipline which can be
characterized shortly as a theory of “Parts and Wholes” (see [21] for a
general reference to mereology). Typical in mereology are the relations
“part-of”, “overlap” and “underlap”. One of the basic mereological systems
is Lesnewski’s mereology, but as Tarski showed, the mathematical equiv-
alent of mereology are complete Boolean algebras (see [21] for this fact).
In Boolean formulation the part-off relation coincides with the Boolean or-
dering x ≤ y, the overlap relation xOy can be defined by x.y 6= 0 (where
“.” is the Boolean multiplication) and the underlap (dual overlap) xÔy is
defined by xÔy iff x∗.y∗ 6= 0 iff x + y 6= 1 (x∗ is the Boolean complement
of x). Mereology, however, is not capable for describing some relations be-
tween individuals as, for instance, one individual to be in a contact with
another one. Adding to mereology contact-like relations goes back to de
Laguna [8] and Whitehead [26]. The intention of de Laguna and Whitehead
was to use mereology for building of a new, point-free theory of space as
an extension of mereology with the relation of contact (or “connection” in
Whitehead terminology). The primitive objects of the new theory of space
are called regions and it is called “point-free”, because points are not taken
as primitives but are definable by means of regions, contact and some mere-
ological relations. As Tarski showed (see [21]) standard point models of the
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new theory of space are regular closed (or open ) sets of some topological
spaces with a topological definition of the contact relation. This motivates
some authors to call the extension of mereology with the contact relation
(or some of its derivatives) “mereotopology”. Mereotopology is often called
also a “region-based theory of space”, because it is on the base of the White-
hedian approach to the theory of space. Since mereology can be identified in
some sense with the theory of Boolean algebras, mereotopology can be iden-
tified with the theory of contact algebras, which are Boolean algebras with
an additional relation C called contact (see [10]). The reader can find more
about mereotopology, region-based theory of space and the related logics
in the papers [2, 3, 17, 19, 25, 27]. This field of research is closely related
to some applied areas as Qualitative Spatial Reasoning (QSR), Knowledge
Representation (KR) and Geographical Information Systems (GIS). A sur-
vey on the research in QSR and related subareas in KR and GIS can be
find in [6, 7].

The main aim of the present paper is to build a multimodal logic inter-
preted in frames related to mereotopology. The standard frames for such
a logic will be in the form (W,R1, . . . , Rn), where W is a nonempty set of
regular closed sets of a given topological space and the relations Ri are cer-
tain mereotopological relations between regions. Logics of such kind have
been considered for the first time by Lutz and Wolter in [17]. The relations
which Lutz and Wolter considered are the well-known 8 Egenhofer-Franzosa
RCC-8 topological relations between regions [13]. However, all considered
logics in [17] are undecidable and one of the main open problems formu-
lated in [17] was to find decidable modal logics based on a reasonable set of
mereotopological relations. We present such a logic, based on the following
mereotopological relations:

(I) the mereological relations: overlap O, underlap (the dual overalap)
Ô, part-of ≤ and converse part-of ≥,

(II) the mereotopological relations: contact C, dual contact Ĉ, interior
part-of ≪ and its converse ≫.

Frames, based on such kind of relations, are called in this paper mereoto-
pological structures. The modal logic corresponding to the class of all
mereotopological structures is called mereotopological modal logic and is
denoted by MTML. We denote box and diamond modalities of MTML by
[R] and 〈R〉, where R ∈ {O, Ô,≤,≥, C, Ĉ,≪,≫}. Additionally we include
the universal modality [U ].

Motivations to chose mereotopological structures as a semantical basis
of MTML are, among others, the following. The relations from group (I)
are the most typical mereological relations. Moreover the corresponding
modal logic (introduced in [23] under the name modal logic of set relations)
was decidable and our aim was to extend it with some mereotopological
relations, preserving the completeness theorem and decidability. The first
attempt was by adding the contact relation and this was done in Nenov’s
master thesis [18]. Still the obtained logic was complete with respect to its
intended topological semantics and decidable. Then, we decided to extend
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further the language by modalities, corresponding to dual contact Ĉ, inte-
rior part-of≪ and its converse≫. Note that these relations are definable in
contact algebras: xĈy ↔ x∗Cy∗ and x≪ y ↔ xCy∗. This fact shows that
all relations of mereotopological structures are definable in contact algebras,
which makes possible to use the corresponding representation theory devel-
oped in [10, 12]. Let us note that RCC-8 relations - the semantic base of
Lutz-Wolter modal logic ([17] ) (LW-logic for short and for later references),
are definable in our mereotopological structures, while the converse is not
true: for instance, dual overlap is not definable in RCC-8 (this will be dis-
cussed with more details in the main text). This does not imply, however,
that all modalities from LW-logic are definable in MTML. In fact MTML
and LW-logic are incomparable in the sense that neither of the two can be
considered as a part of the other. But LW-logic is much more expressive:
it possesses difference modality, and hence definable nominals. Moreover,
since the relations in RCC-8 are jointly exhaustive and pairwise disjoint
(JEPD), all Boolean combinations of them are expressible by sums of the
basic 8 relations, and hence their corresponding modalities are definable. So
in LZ-logic one can work with quite enough different modalities. In LMTM
we have 9 basic modalities and also we may define new modalities by the
sums and compositions but not by complements and intersections of the base
relations. Maybe just the closure with complements and intersections of the
basic modalities of the LZ-logic is one of the reasons of its undecidability.
We can see later that if we can allow modalities of MTML corresponding to
Boolean combinations of the base modalities, we can interpret LW-logic in
MTML and obtain in this way that the resulting extension is undecidable.

Let us now discuss what kind of reasoning can be expressed in MTML.
Note that MTML and LW-logic are similar as logical formalisms: both
are modal logics over frames which elements are spatial regions. Since the
propositional variables in modal logics are interpreted by subsets of a given
frame, in general, these two logics propose reasoning for sets of regions. For
instance, the formula [U ](p⇒ 〈C〉q) expresses the fact that each region from
the set p is in a contact with some region from the set q. Another example:
the formula [U ](p ⇒ [≥]p) expresses the fact that the set of regions p is
closed with respect to part-of relation: if x ∈ p and y is a part of x, then
y is in p. The frame condition (Con) xOx ∧ yOy → xÔy ∨ xCy is true
in the frame of all closed regions in a topological space iff the space is
connected. This condition is modally definable in MTML by the modal
formula 〈O〉([Ô]p ∧ [C]q) ⇒ [U ]([O](p ∨ q), which distinguished connected
from non-connected topological spaces. This is an example of a property
expressible in MTML but not in the LW-logic.

As it was mentioned in [17], LW-logic is similar to the Halpern and
Shoham’s temporal logic [16], based semantically on the Allen’s 13 rela-
tions between time intervals. The same can be said also for MTML. Allen’s
relations are relations not between time points but between time intervals,
which over the real line are closed regions. The interpretation of RCC-8 and
our mereotopological structures over the real line gives a temporal meaning
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of LW-logic and MTML. Let us mention yet another logic with a similar na-
ture: the hyperboolean modal logics introduced in [15]. The frames of this
logics are arbitrary Boolean algebras and Boolean algebras of sets, which
relates these logics to LW-logic and MTML.

The main aim of this paper is to give a finite normal and complete ax-
iomatization of MTML and to prove its decidability. The axiomatization
goes through several steps. We first give an abstract characterization of the
relations ≤, O, Ô, C, Ĉ,≪ by means of a finite set of first-order sentences,
introducing in this way an abstract, point-free semantics for MTML. We
prove that each abstract mereotopological structure W is representable in a
contact algebra, and then, applying the topological representation theory of
contact algebras developed in [10], we show that W can be isomorphically
embedded into the contact algebra of regular closed subsets of some topo-
logical space. The method of the proof of this characterization is based on a
considerable generalization of the Stone representation theory of distributive
lattices (see [1]). The obtained results for mereotopological structures have
also some independent interest for mereotopology: they can be considered
as a kind of first-order logic for mereotopological relations disregarding the
Boolean structure of regions. The obtained abstract semantics of MTML
cannot give, however, a direct axiomatization of the logic, because one of
its axioms is not modally definable. That is why we introduce a nonstan-
dard semantics of MTML which leads to an easy and complete axiomatiza-
tion. Then, by using the Segerberg’s bulldozer techniques [20], we prove the
equivalence of the standard and nonstandard semantics for MTML. Finally,
applying the method of filtration to the non-standard models of MTML we
prove its decidability. We show, however, that MTML does not possess fmp
with respect to its standard semantics.

We propose as standard reference books: [4, 5, 20] for modal logic, [14]
for topology, and [1] for Stone representation theory.

1 The first-order logic of mereotopological structures

1.1 Contact algebras, topological and relational representation

DEFINITION 1. [10] By a Contact Algebra (CA) we will mean any system
B = (B,C) = (B, 0, 1, .,+, ∗, C), where (B, 0, 1, .,+, ∗) is a non-degenerate
Boolean algebra with a complement denoted by “∗” and C – a binary rela-
tion in B, called contact and satisfying the following axioms:

(C1) xCy → x, y 6= 0, (C2) xCy → yCx,
(C3) xC(y + z)↔ xCy or xCz, (C4) x.y 6= 0→ xCy.

The algebra B is connected if it satisfies the axiom of connectedness
(Con) x 6= 0, y 6= 0 and x+ y = 1→ xCy.

The complement of C is denoted by C.

EXAMPLES 2. Examples of contact algebras.

• (1). Topological example: the CA of regular closed sets. Let
X be an arbitrary topological space. A subset a of X is regular closed if
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a = Cl(Int(a)), where Cl and Int are the standard topological closure and
interior operations in X. The set of all regular closed subsets of X will be
denoted by RC(X). It is a well-known fact that regular closed sets with the
operations

a+ b = a ∪ b, a.b = Cl(Int(a ∩ b)), a∗ = Cl(X \ a), 0 = ∅ and 1 = X

form a Boolean algebra. If we define the contact by aCX b iff a ∩ b 6=
∅, then RC(X) with the above contact is a contact algebra. If X is a
connected space then RC(X) is a connected contact algebra. The following
representation theorem is a special case of Theorem 5.1 from [10].

THEOREM 3. Every (connected) contact algebra B can be isomorphically
embedded into the contact algebra RC(X) over some (connected) topological
space X.

• (2). Non-topological example, related to Kripke semantics of
modal logic. Let (X,R) be a reflexive and symmetric modal frame and
let B(X) be the Boolean algebra of all subsets of X. Define a contact CR
between two subsets a, b ∈ B(X) by aCRb iff (∃x ∈ a)(∃y ∈ b)(xRy). Then
we have that B(X) equipped with the contact CR is a contact algebra, called
the contact algebra over the frame (W,R) [12, 9]. If (W,R) is connected in a
graph sense (every two points are connected by an R-sequence), then B(X)
is a connected contact algebra [12]. Moreover the following representation
theorem is true:

THEOREM 4. [12] Every contact algebra can be isomorphically embedded
into the contact algebra of some reflexive and symmetric frame (W,R).

1.2 Mereotopological structures

DEFINITION 5. Let (B,C) be a contact algebra. We define in B the
following relations:

• part-of a ≤ b iff a.b∗ = 0 (≤ is the standard Boolean ordering) we
denote the converse of ≤ by ≥.

• overlap aOb iff a.b 6= 0,

• underlap (dual overlap) aÔb iff a∗Ob∗ iff a+ b 6= 1,

• dual contact aĈb iff a∗Cb∗,

• interior part-of a≪ b iff aCb∗. The converse of ≪ is denoted by ≫.

The complements of the above relations are denoted by 6≤, 6≥, O, Ô, Ĉ 6≪, 6≫.

The proof of the following lemma is straightforward.

LEMMA 6. The relations ≤, O, Ô, C, Ĉ,≪ satisfy the following first-order
conditions:
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(≤ 0) a ≤ b and b ≤ a→ a = b, (≤ 1) a ≤ a,
(≤ 2) a ≤ b and b ≤ c→ a ≤ c,

(O1) aOb→ bOa, (Ô1) aÔb→ bÔa,

(O2) aOb→ aOa, (Ô2) aÔb→ aÔa,

(O ≤) aOa→ a ≤ b, (Ô ≤), bÔb→ a ≤ b,
(O ≤) aOb and b ≤ c→ aOc, (Ô ≤) c ≤ a and aÔb→ cÔb,

(OÔ) aOa or aÔa, (≤ OÔ) cOa and cÔb→ a ≤ b,

(C) aCb→ bCa, (Ĉ) aĈb→ bĈa,

(CO1) aOb→ aCb, (ĈÔ1) aÔb→ aĈb,

(CO2) aCb→ aOa, (ĈÔ2) aĈb→ aÔa,

(C ≤) aCb and b ≤ c→ aCc, (Ĉ ≤) aĈb and c ≤ b→ aĈc,

(≪≤ 1) a≪ b→ a ≤ b,
(≪≤ 2) a ≤ b and b≪ c→ a≪ c, (≪≤ 3) a≪ b and b ≤ c→ a≪ c,

(≪ O) aOa→ a≪ b, (≪ Ô) bÔb→ a≪ b,

(≪ CO) aCb and b≪ c→ aOc, (≪ ĈÔ) c≪ a and aĈb→ cÔb,

(≪ CÔ) cCa and cÔb→ a≪ b, (≪ ĈO) cOa and cĈb→ a≪ b.

DEFINITION 7. Let W = (W,≤, O, Ô, C, Ĉ,≪), W 6= ∅, be a relational
system. Then W is called a mereotopological structure if it satisfies the
first-order conditions of lemma 6; W is called a standard mereotopological
structure if there exists a contact algebra (B,C) such that W ⊆ B and the
relations ≤, O, Ô, C, Ĉ,≪ coincide with those that are defined in Definition
5; W is called completely standard if the algebra (B,C) is the contact algebra
of regular closed subsets of some topological space; if in addition W =
B, then the (standard, completely standard) mereotopological structure is
called full.

The following lemma is an easy consequence of Theorem 3.

LEMMA 8. A mereotopological structure is standard iff it is completely
standard.

In the next section we will show that each mereotopological structure is
a standard one, and in view of Lemma 8 that it is completely standard.

REMARKS 9. (1) Let us note that the axioms (O ≤), (Ô ≤), (O2) and
(Ô2) follow from the remaining and can be skipped. We preserve them in
the definition, because they are part of an important subset of the axioms
characterizing mereological relations.
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(2) We can establish some duality between the relations in a mereotopo-
logical structure and their axioms. We divide the relations in a dual pairs
as follows: (≤ − ≥), (O − Ô), (C − Ĉ) and (≪ − ≫). Note also that the
set of axioms is closed with respect to this duality and very often we may
skip some proofs which are “dual” to given ones.

(3) We adopt the standard definitions of isomorphism and embedding be-
tween mereotopological structures and two isomorphic structures are treated
as identical. Thus, for instance, a structure which is isomorphic to a stan-
dard structure will be called also a standard structure. We say that a
mereotopological structure W is embeddable into a contact algebra (B,C)
if there exists an isomorphic embedding of W into the full mereotopological
structure over (B,C).

(4) It can be seen that the axiom of connectedness for contact algebras
can be expressed by the following axiom in the language of mereotopological
relations

(Con) aOa ∧ bOb→ aÔb ∨ aCb.
It is natural to call a mereotopological structure connected if it satisfies

the axiom (Con). Note that mereotopological structures over connected
topological spaces are connected. Another non-topological example can
be obtained from connected contact algebras over frames (W,R) with a
reflexive, symmetric and connected relation R (see Examples 2(2)).

The following lemma lists some easy consequences of the axioms of
mereotopological structures which sometimes we will use later on without
explicit reference.

LEMMA 10. (COO) aCb→ aOa and bOb, (ĈÔÔ) aĈb→ aÔa and bÔb,
(≤≤ O) a ≤ a′, b ≤ b′, aOb→ a′Ob′, (≤≤ C) a ≤ a′, b ≤ b′, aCb→ a′Cb′,
(≥≥ Ô) a ≥ a′, b ≥ b′, aÔb→ a′Ôb′, (≥≥ Ĉ) a ≥ a′, b ≥ b′, aĈb→ a′Ĉb′,
(≤≪≤) a ≤ a′, a′ ≪ b′, b′ ≤ b→ a≪ b.

1.3 Representation theory for mereotopological structures
In this section we will develop a representation theory for mereotopological
structures by a generalization of the representation theory for distributive
lattices. First we will do this for a subsystem of mereotopological structures
which we call mereological structures.

Mereological structures and a characterization of mereological
relations ≤, O, Ô.

DEFINITION 11. A system W = (W,≤, O, Ô) is called a mereological
structure if it satisfies the axioms of mereotopological structure containing
only the relations ≤, O and Ô.

Obviously every mereotopological structure is a mereological structure.
Mereological structures was introduced and studied in another context,
name and notations in [22] from which we will use some results.

DEFINITION 12. [22] Let W be a mereological structure and A be a subset
of W .
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• A is called a ≤-set if (∀x, y ∈W )(x ∈ A and x ≤ y → y ∈ A),
• A is called a ≥-set if (∀x, y ∈W )(x ∈ A and x ≥ y → y ∈ A),
• A is a filter if A is a ≤-set and (∀x, y ∈ A)(xOy),
• A is an ideal if A is a ≥-set and (∀x, y ∈ A)(xÔy).
• A is a good filter if A is a filter and (∀x, y 6∈ A)(xÔy),
• A is a good ideal if A is an ideal and (∀x, y 6∈ A)(xOy).
We denote by GF (W ) the set of good filters of W . Similarly GI(W ) will

denote the set of good ideals of W .

The given definitions of a filter, good filter, ideal and a good ideal are
generalizations of the standard notions of a filter, prime filter, ideal and a
prime ideal from the theory of distributive lattices (see [1]).

Note that ∅ and W are both ≤- and ≥-sets. Define for x ∈W :
[x) = {y ∈W : x ≤ y}, (x] = {y ∈W : x ≥ y}.
LEMMA 13. [22] (i) The set [x) ( the set (x]) is the smallest ≤-set
(≥-set ) containing x.

(ii) If A,B are ≤-sets (≥-sets) then A∪B and A∩B are ≤-sets (≥-sets).
If A is a ≤-set (≥-set) then −A = W rA is a ≥-set (≤-set).

(iii) Let A be a ≤-set (≥-set). Then A ∪ [x) (A ∪ (x]) is the smallest
≤-set (≥-set) containing A and x. In particular the set [x) ∪ [y) ( the set
(x] ∪ (y]) is the smallest ≤-set (≥-set) containing x and y.

(iv) The set [x) is a filter iff xOx (The set (x] is an ideal iff xÔx).
(v) Let A be a filter (ideal). Then A ∪ [x) is a filter iff xOx and

(∀y ∈ A)(xOy), (A ∪ (x] is an ideal iff xÔx and (∀y ∈ A)(xÔy)).
Let A 6= ∅ be a filter (ideal). Then A ∪ [x) is a filter iff (∀y ∈ A)(xOy),

(A ∪ (x] is an ideal iff (∀y ∈ A)(xÔy)).
(vi) The set [x) ∪ [y) is a filter iff xOy. The set (x] ∪ (y] is an ideal iff

xÔy.
(vii) Let {Ai : i ∈ I} be a non-empty family of filters (ideals), linearly

ordered by set-inclusion. Then the set A =
⋃
i∈I Ai is a filter (ideal).

(viii) Let A be a filter (ideal). Then A is a good filter (good ideal) iff
−A = W rA is an ideal (filter).

DEFINITION 14. Let W be a mereological structure. A pair Γ = (A,B)
of subsets of W is called a filter-ideal pair, if A is a filter, B is an ideal and
A ∩ B = ∅). Γ is called a good filter-ideal pair if A is a good filter and
B is a good ideal. Γ is called a complete filter-ideal pair if A ∪ B = W .
Obviously every complete pair is a good pair. If Γ denotes a filter-ideal pair,
then Γ1 will denote its filter part and Γ2 will denote its ideal part. If Γ,∆
are filter-ideal pairs, we will define the ordering relation Γ ⊆ ∆ iff Γi ⊆ ∆i

, i = 1, 2.

LEMMA 15. Let (F, I) be a filter-ideal pair. Then for every x ∈ W either
(1) F ∪ [x) is a filter and (F ∪ [x)) ∩ I = ∅ or (2) I ∪ (x] is an ideal and
F ∩ (I ∪ (x]) = ∅.

Proof. Suppose that the assumptions of the lemma are fulfilled and that
neither (1) nor (2) are true, so we have ¬(1) and ¬(2). Note that ¬(1) is



Modal logics for mereotopological relations 257

equivalent to: (a) F ∪ [x) is not a filter or (a’) (F ∪ [x))∩ I 6= ∅. By Lemma
13(v) (a) is equivalent to the disjunction: (a1) xOx or (a2) (∃y ∈ F )(xOy).
It is easy to see that (a’) is equivalent to (a3) x ∈ I.

In a similar way ¬(2) is equivalent to: (b) I ∪ (x] is not an ideal or (b’)
F ∩ (I ∪ (x]) 6= ∅. By Lemma 13(v) (b) is equivalent to the disjunction:

(b1) xÔx or (b2) (∃z ∈ I)(xÔz). Also, it is easy to see that (b’) is equivalent
to: (b3) x ∈ F .

So ¬(1) ↔ (a1) or (a2) or (a3) and ¬(2) ↔ (b1) or (b2) or (b3) and we
have to consider all combinations (ai)(bj) for i 6= j, i, j = 1, 2, 3 and in each
case to obtain a contradiction.

Case (a1)(b1): xOx and xÔx. This contradicts axiom (OÔ).

Case (a1)(b2): xOx and xÔz, z ∈ I. From xOx by (O ≤) we get x ≤ z
and consequently x ∈ I. From x, z ∈ I we obtain xÔz which contradicts
xÔz.

Case (a1)(b3): xOx and x ∈ F , which implies xOx - a contradiction.
The cases (a2)(b1) and (a3)(b1) can be considered in a dual way.

Case (a2)(b2): y ∈ F , xOy, z ∈ I and xÔz. From xOy and xÔz we
get by axiom (≤ OÔ) that y ≤ z. Conditions z ∈ I and y ≤ z imply y ∈ I.
But y ∈ F and y ∈ I imply that F ∩ I 6= ∅ - a contradiction.

Case (a2)(b3): y ∈ F , xOy and x ∈ F . Conditions x ∈ F and y ∈ F
imply xOy, which contradicts xOy.

In a similar (dual) way one can consider the case (a3)(b2).
Case (a3)(b3): x ∈ I, x ∈ F . This case contradicts the condition

F ∩ I = ∅. �

The following lemma generalizes the separation lemma for filters and
ideals from the theory of distributive lattices (see [1]).

LEMMA 16. [22] Separation Lemma. Let (F0, I0) be a filter-ideal pair.
Then there exists a complete (and consequently a good) filter-ideal pair (F, I)
extending the pair (F0, I0).

Proof. Let M = {(F, I) : (F0, I0) ⊆ (F, I)}. It follows by Lemma 13(vii)
that the conditions of the Zorn Lemma for the set M ordered by the relation
⊆ are fulfilled, and henceM has a maximal element (F, I). Applying Lemma
15 to (F, I) we obtain that (F, I) is a complete filter-ideal pair. This implies
that F = −I and I = −F , which by Lemma 13 (viii) implies that F is a
good filter and that I is a good ideal. �

LEMMA 17. [22] Characterization Lemma for the relations ≤, O, Ô.
Let W be a mereological structure. Then for all x, y ∈W we have:

(i) x ≤ y ↔ (∀A ∈ GF (W ))(x ∈ A→ y ∈ A),
(ii) xOy ↔ (∃A ∈ GF (W ))(x ∈ A and y ∈ A),
(iii) xÔy ↔ (∃A ∈ GF (W ))(x 6∈ A and y 6∈ A).

Proof. (i) (→) – obvious.
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(←) We will reason by contraposition. Let x 6≤ y. Then [x)∩(y] = ∅. By

(O ≤), and (Ô ≤) and x 6≤ y we obtain xOx and yÔy. Then by lemma 13
(iv) [x) is a filter and (y] is an ideal. Since [x)∩ (y] = ∅, by the Separation
Lemma there exist a good filter F and a good ideal I such that [x) ⊆ F ,
(y] ⊆ I and F ∩ I = ∅. It follows from these conditions that x ∈ F and
y 6∈ F .

(ii) (←) – obvious.
(→) Suppose xOy. Then by Lemma 13 (vi) the set [x) ∪ [y) is a filter.

Since ∅ is an ideal, then ([x)∪ [y))∩∅ = ∅, and by the Separation Lemma
there exist a good filter F such that [x) ∪ [y) ⊆ F , which implies that
x, y ∈ F .

(iii) (←) is the obvious part.
(→) Suppose xÔy. Then, as in (ii) but reasoning in a dual way, we can

obtain a good ideal I such that x, y ∈ I. Then putting F = −I we find a
good filter F such that x, y 6∈ F . �

A characterization of mereotopological relations C, Ĉ and ≪.

DEFINITION 18. Let W be a mereotopological structure and A,B be sub-
sets of W and R be any of the relations 6≪, C and Ĉ. We define the following
three relations between such subsets:
AρRB iff (∀x ∈ A,∀y ∈ B)(xRy).
We define the following relation ρ in the set of all filter-ideal pairs:
Γρ∆ iff Γ1ρC∆1 and Γ2ρ bC∆2 and Γ1ρ6≪∆2 and ∆1ρ6≪Γ2.

LEMMA 19. (i) In the set of filters of W , ρC is a reflexive and symmetric
relation.

(ii) In the set of ideals of W , ρ bC is a reflexive and a symmetric relation.
(iii) If Γ is a filter-ideal pair, then Γ1ρ6≪Γ2.
(iv) The relation ρ in the set of filter-ideal pairs is a reflexive and a

symmetric relation.
(v) If Γ and ∆ are filters and ΓρC∆, then (Γ,∅)ρ(∆,∅).
(vi) If Γ and ∆ are ideals and Γρ bC∆, then (∅,Γ)ρ(∅,∆).
(vii) If Γ is a filter, ∆ is an ideal and Γρ6≪∆, then (Γ,∅)ρ(∅,∆) and

(∅,∆)ρ(Γ,∅).

Proof. (i) The statement follows from axiom (CO1) and (C).
(ii) The statement follows from axiom (ĈÔ1) and (Ĉ).
(iii) Suppose that Γ is a filter-ideal pair and that for some x ∈ Γ1 and

y ∈ Γ2 we have x ≪ y. Then by axiom (≪≤ 1) we have x ≤ y, which
implies that y ∈ Γ1. This contradicts the fact that Γ1 ∩ Γ2 6= ∅.

(iv) follows from (i),(ii) and (iii).
(v), (vi) and (vii) follow just from the definition of the ρ-relation between

filter-ideal pairs. �

LEMMA 20. (i) If xCy, then there exist filter-ideal pairs Γ,∆ such that
Γρ∆ and x ∈ Γ1 and y ∈ ∆1.
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(ii) If xĈy, then there exist filter-ideal pairs Γ,∆ such that Γρ∆ and
x ∈ Γ2 and y ∈ ∆2.

(iii) If x 6≪ y, then there exists a filter-ideal pairs Γ,∆ such that Γρ∆,
x ∈ Γ1 and y ∈ ∆2.

Proof. (i) Let xCy. Then by Lemma 10 we have xOx and yOy, so by
Lemma 13 [x) and [y) are filters. We shall show that [x)ρC [y). Let x′ ∈ [x)
and y′ ∈ [y). Then x ≤ x′ and y ≤ y′ and by xCy this implies by Lemma
10 that x′Cy′. Now by Lemma 19 we have ([x),∅)ρ([y),∅) which proves
the statement.

(ii) The proof is similar (dual) to that of (i).
(iii) Let x 6≪ y. Then by axioms (≪ O) and (≪ Ô) we obtain xOx and

yÔy and by Lemma 13 [x) is a filter and (y] is an ideal. We will show
that [x)ρ6≪(y]. Let x ≤ x′ and y′ ≤ y. Since x 6≪ y, we have by Lemma
10 that x′ 6≪ y′ which proves [x)ρ6≪(y]. Now by Lemma 19 we obtain
([x),∅)ρ(∅, (y]). �

LEMMA 21. Point extension Lemma for filter-ideal pairs. Let Γ,∆
be a filter-ideal pairs and let Γρ∆. Then for any x ∈W : either (1) ∆1∪[x) is
a filter and Γρ(∆1∪ [x),∆2) or (2) ∆2∪(x] is an ideal and Γρ(∆1,∆2∪(x]).

Proof. Suppose Γρ∆ and that we have ¬(1) and ¬(2). Due to the as-
sumption Γρ∆ we obtain that ¬(1) is equivalent to the disjunction of the
following conditions:
¬(1) ≡ (∆1 ∪ [x) is a not a filter) or (Γ1ρC(∆1 ∪ [x)) or (∆1 ∪ [x))ρ6≪Γ2).
It is easy to see that (Γ1ρC(∆1 ∪ [x)) is equivalent to (∃z1 ∈ Γ1)(z1Cx).
Similarly (∆1 ∪ [x))ρ6≪Γ2) is equivalent to (∃t1 ∈ Γ2)(x≪ t1). Having in

mind these equivalencies and Lemma 13 (v) we obtain that ¬(1) is equivalent
to the following disjunction:
¬(1) ≡ (11) xOx or (12) (∃y1 ∈ ∆1)(xOy1) or (13) (∃z1 ∈ Γ1)(z1Cx) or

(14) (∃t1 ∈ Γ2)(x≪ t1).
In a similar way we can see that ¬(2) is equivalent to the following dis-

junction:
¬(2) ≡ (21) xÔx or (22) (∃y2 ∈ ∆2)(xÔy2) or (23) (∃z2 ∈ Γ1)(z2 ≪ x)

or (24) (∃t2 ∈ Γ2)(t2Ĉx).
We have to combine all conditions (1i) with (2j) for i, j = 1, 2, 3, 4 and in

all 16 cases to obtain a contradiction.
Case (11)(21): xOx and xÔx – this contradicts axiom (OÔ).

Case (11)(22): xOx and (∃y2 ∈ ∆2)(xÔy2). From xOx we get by (O ≤)
that x ≤ y2. From here and y2 ∈ ∆2 we obtain x ∈ ∆2, because ∆2 is an
ideal. Also from x, y2 ∈ ∆2 we obtain xÔy2 – a contradiction.

In a similar way we can treat the cases (11)(23) and (11)(24) and
reasoning by duality – the cases (12)(21), (13)(21), (14)(21).

Case (12)(22): (∃y1 ∈ ∆1)(xOy1), (∃y2 ∈ ∆2)(xÔy2). From xOy1 and

xÔy2 we get by axiom (≤ OÔ) that y1 ≤ y2. From this and y1 ∈ ∆1 we
obtain y2 ∈ ∆1. Since y2 ∈ ∆2 we obtain that ∆1∩∆2 6= ∅ - a contradiction.
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Case (12)(23): (∃y1 ∈ ∆1)(xOy1), (∃z2 ∈ Γ1)(z2 ≪ x). From y1 ∈ ∆1

and z2 ∈ Γ1 we get y1Cz2. From here and z2 ≪ x we obtain xOy1 which
contradicts xOy1.

Case (12)(24) (∃y1 ∈ ∆1)(xOy1), (∃t2 ∈ Γ2)(t2Ĉx). From Γρ∆ we get

∆1ρ6≪Γ2 and from here that y1 6≪ t2. From xOy1 and t2Ĉx, by (Ĉ) and
(≪ ĈO) we obtain y1 ≪ t2 - a contradiction.

Case (13)(22): (∃z1 ∈ Γ1)(z1Cx), (∃y2 ∈ ∆2)(xÔy2). From Γρ∆ we

get Γ1ρ6≪∆2 and from here – z1 6≪ y2. From z1Cx and xÔy2 we obtain
z1 ≪ y2 – a contradiction.

Case (13)(23): (∃z1 ∈ Γ1)(z1Cx), (∃z2 ∈ Γ1)(z2 ≪ x). From z1 ∈ Γ1

and z2 ∈ Γ1 we get z1Oz2. z2 ≪ x implies z2 ≤ x. Conditions z1Oz2 and
z2 ≤ x imply z1Ox which implies z1Cx - a contradiction.

Case (13)(24): (∃z1 ∈ Γ1)(z1Cx), (∃t2 ∈ Γ2)(t2Ĉx). From z1 ∈ Γ1 and

t2 ∈ Γ2 we get by Lemma 19 (iii) that z1 6≪ t2. From z1Cx and t2Ĉx we
obtain by (CO1) and (≪ ĈO) that z1 ≪ t2 – a contradiction.

Case (14)(22) (∃t1 ∈ Γ2)(x ≪ t1), (∃y2 ∈ ∆2)(xÔy2). From t1 ∈ Γ2

and y2 ∈ ∆2 we get t1Ĉy2. This with x≪ t1 implies xÔy2 which contradicts
xÔy2.

Case (14)(23): (∃t1 ∈ Γ2)(x ≪ t1), (∃z2 ∈ Γ1)(z2 ≪ x). From x ≪ t1
and z2 ≪ x we obtain z2 ≤ t1 and consequently – t1 ∈ Γ1. This contradicts
the fact that Γ1 ∩ Γ2 = ∅.

Case (14)(24): (∃t1 ∈ Γ2)(x≪ t1), (∃t2 ∈ Γ2)(t2Ĉx). From t1, t2 ∈ Γ2

we obtain t2Ĉt1. From x≪ t1 and t2Ĉx we obtain t2Ĉt1 - a contradiction. �

LEMMA 22. ρ-extension Lemma. Let Γ0,∆0 be filter-ideal pairs and
let Γ0ρ∆0. Then Γ0 and ∆0 can be extended correspondingly into complete
pairs Γ and ∆ such that Γρ∆.

Proof. Let Γ0ρ∆0. By an application of the Zorn Lemma and Lemma 21 we
can find a complete pair ∆ such that ∆0 ⊆ ∆ and Γ0ρ∆. By the symmetry
of ρ we obtain ∆ρΓ0. Then in the same way we can find a complete pair
Γ such that Γ0 ⊆ Γ and ∆ρΓ. By symmetry of ρ we obtain Γρ∆ and the
proof is finished. �

DEFINITION 23. Let W be a mereotopological structure. We define the
following relation R in the set GF (W ) of good filters:

ΓR∆ iff (Γ,−Γ)ρ(∆,−∆) where −Γ = W r Γ and −∆ = W r ∆.
The relational system (GF (W ), R) will be called the canonical system of

W .

LEMMA 24. If Γ,∆ are complete pairs then Γρ∆ iff Γ1R∆1. R is a reflex-
ive and symmetric relation.

Proof. The proof follows from the definition of R and the fact that for a
complete pair Γ we have Γ2 = −Γ1. �
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LEMMA 25. Good-filter characterization of C, Ĉ and ≪. Let W be
a mereotopological structure and let GF (W ) be the set of good filters of W .
Then for any x, y ∈W we have:

(i) xCy iff (∃Γ,∆ ∈ GF (W ))(ΓR∆, x ∈ Γ and y ∈ ∆).
(ii) xĈy iff (∃Γ,∆ ∈ GF (W ))(ΓR∆, x 6∈ Γ and y 6∈ ∆).
(iii) x 6≪ y iff (∃Γ,∆ ∈ GF (W ))(ΓR∆, x ∈ Γ and y 6∈ ∆).

Proof. (i) (→) Suppose xCy. Then by Lemma 20 (i) there exist filter-ideal
pairs Γ′,∆′ such that Γ′ρ∆′, x ∈ Γ′1 and y ∈ ∆′

1. Then by the ρ-extension
Lemma 22 we can extend Γ′ and ∆′ into complete pairs Γ′′ and ∆′′ such
that Γ′′ρ∆′′. Let Γ = Γ′′1 , ∆ = ∆′′

1 . Then we have x ∈ Γ, y ∈ ∆ and by
Lemma 24 that ΓR∆.

(←) Let ΓR∆, x ∈ Γ and y ∈ ∆. Then by the definition of R we have
(Γ,−Γ)ρ(∆,−∆). From here we obtain ΓρC∆ which implies xCy.

(ii) The proof of (ii) is similar (dual) to that of (i).
(iii) (→) Suppose x 6≪ y. Then by lemma 20 (iii) there exist filter-ideal

pairs Γ′,∆′ such that Γ′ρ∆′, x ∈ Γ′1 and y ∈ ∆′
2. Then by the ρ-extension

Lemma 22 we can extend Γ′ and ∆′ into complete pairs Γ′′ and ∆′′ such
that Γ′′ρ∆′′. Let Γ = Γ′′1 , ∆ = ∆′′

1 . Then we have x ∈ Γ, y 6∈ ∆ (because
y ∈ ∆′′

2 = −∆′′
1 = −∆) and by Lemma 24 that ΓR∆.

(←) The proof is similar to the corresponding proof of (i). �

Now we are ready to prove a representation theorem for mereotopological
structures. To each mereotopological structure W we associate its canon-
ical system (GF (W ), R). Since R is a reflexive and symmetric relation in
GF (W ), then by the construction of non-topological example of contact
algebra in Examples 2 (2) we associate to (GF (W ), R) a contact algebra
consisting of all subsets of GF (W ) with the standard Boolean operations
and a contact CR between any subsets a, b ⊆ GF (W ) defined by: aCRb iff
(∃Γ ∈ a,∃∆ ∈ b)(ΓR∆).

THEOREM 26. Representation Theorem for mereotopological
structures. Let W be a mereotopological structure, (GF (W ), R) be the cor-
responding canonical structure and (B(GF (W )), CR) be the contact algebra
over (GF (W ), R). For x ∈W define h(x) = {Γ ∈ GF (W : x ∈ Γ}. Then h
is an isomorphic embedding of W into the contact algebra (B(GF (W )), CR).

Proof. The proof follows from the following equivalencies.
• x ≤ y iff (by Lemma 17 (i)) (∀Γ ∈ GF (W ))(x ∈ Γ → y ∈ Γ) iff

(∀Γ ∈ GF (W ))(Γ ∈ h(x)→ Γ ∈ h(y)) iff h(x) ⊆ h(y) iff h(x) ≤ h(y).
• xOy iff (by Lemma 17 (ii) (∃Γ ∈ GF (W ))(x ∈ Γ and y ∈ Γ) iff

(∃Γ ∈ GF (W ))(Γ ∈ h(x) and Γ ∈ h(y)) iff h(x) ∩ h(y) 6= ∅ iff h(x)Oh(y).
• xÔy iff (by Lemma 17 (iii) (∃Γ ∈ GF (W ))(x 6∈ Γ and y 6∈ Γ) iff

(∃Γ ∈ GF (W ))(Γ 6∈ h(x) and Γ 6∈ h(y)) iff h(x) ∪ h(y) 6= GF (W ) iff
h(x)Ôh(y).
• xCy iff (by Lemma 25 (i)) (∃Γ,∆ ∈ GF (W ))(ΓR∆, x ∈ Γ and y ∈ ∆)

iff (∃Γ,∆ ∈ GF (W ))(ΓR∆, Γ ∈ h(x) and ∆ ∈ h(y)) iff h(x)CRh(y).
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• xĈy iff (by Lemma 25 (ii)) (∃Γ,∆ ∈ GF (W ))(ΓR∆, x 6∈ Γ) and
y 6∈ ∆ iff (∃Γ,∆ ∈ GF (W ))(ΓR∆, Γ 6∈ h(x) and ∆ 6∈ h(y)) iff
−h(x)CR − h(y) iff h(x)Ĉh(y).
• x 6≪ y iff (by Lemma 25 (iii)) (∃Γ,∆ ∈ GF (W ))(ΓR∆, x ∈ Γ and

y 6∈ ∆) iff (∃Γ,∆ ∈ GF (W ))(ΓR∆, Γ ∈ h(x) and ∆ 6∈ h(y)) iff h(x)CR−h(y)
iff h(x) 6≪ h(y). �

COROLLARY 27. Every mereotopological structure is completely standard.

Proof. By Theorem 26 every mereotopological structure W is a standard
one and by Lemma 8 W is also a completely standard. �

REMARK 28. Note that Theorem 26 generalizes considerably Theorem 4
from [12] and Corollary 27 extends the topological representation theory
of contact algebras by regular closed sets from [10]. If we consider the ax-
iomatic definition of mereotopological structures as their point-free formula-
tion, then the representation process can be considered as the Whiteheadian
process of defining points. The first kind of points are the good filters, but
they are not enough, because they allow only a non-topological representa-
tion in which regions are arbitrary sets and the mereotopological relations
between them are defined by a binary relation between points. The second
kind of points are introduced in the second phase of the representation,
where we apply the topological representation theorem (Theorem 3) to the
obtained discrete contact algebra. The definition and the theory of this
second kind of points (called clans) can be found in [10]. Note also that
the first phase of the representation introduces not only the first kind of
points, but also extends the mereotopological structures with the Boolean
operations between regions, which are necessary for introducing the second
kind of points.

1.4 RCC-8 and mereotopological structures

RCC-8 relations
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One of the most popular systems of topological relations in the commu-
nity of QSR is RCC-8. Probably this was one of the main motivations this
system to be taken by Lutz and Wolter as a semantical base of the modal
logic of topological relations [17]. The system RCC-8 was introduced for
the first time by Egenhofer and Franzosa in [13]. It consists of 8 JEPD
relations between non-empty regular closed subsets of arbitrary topological
space. Having in mind the topological representation of contact algebras,
it was given in [25] an equivalent definition of RCC-8 in the language of
contact algebras:

DEFINITION 29. The system RCC-8.

• disconnected – DC(a, b): aCb,

• external contact – EC(a, b): aCb and aOb,

• partial overlap – PO(a, b): aOb and a 6≤ b and b 6≤ a,
• tangential proper part – TPP(a, b): a ≤ b and a 6≪ b and b 6≤ a,
• tangential proper part−1 – TPP−1(a, b): b ≤ a and b 6≪ a and a 6≤ b,
• nontangential proper part NTPP(a, b): a≪ b and a 6= b,

• nontangential proper part−1 – NTPP−1(a, b): b≪ a and a 6= b,

• equal – EQ(a, b): a = b.

Looking at the above definitions we see that they can be repeated in the
language of mereotopological structures. The following lemma represents
some relationships between RCC-8 and mereotopological structures.

LEMMA 30. Let W = (W,≤, O, Ô, C, Ĉ,≪) be a mereotopological structure
and let W− = {a ∈W : aOa}. Then:

(i) The system of relations in W− given as in Definition 29 represents
an equivalent definition of RCC-8 relations. So RCC-8 is definable in the
system of mereotopological relations.

(ii) The following equivalencies are true in W−:
a ≤ b iff TPP (a, b) ∨NTPP (a, b) ∨ a = b,
aOb iff DC(a, b) ∨ EC(a, b)
aCb iff ¬DC(a, b),

Hence the relations ≤,≥, O and C are definable in RCC-8.
(iii) The relation Ô is not definable in RCC-8. Hence the system of

mereotopological structures is more rich than RCC-8.

Proof. (i) follows from the topological representation of mereotopologi-
cal structures and Definition 29. (ii) follows from (i) and the axioms of
mereotopological relations. (iii) follows from a result in [11] where a sys-
tem, called RCC-10 is introduced as an extension of RCC-8. The definitions
of the new relations in RCC-10 are given by means of the relation Ô. It
follows from this fact that the relation Ô is not definable in RCC-8. �
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2 A modal logic for mereotopological structures

In this section we introduce a poly-modal logic based on mereotopological
structures, denoted by MTML (Mereo-Topological Modal Logic). MTML
has the following modal box operators: [≤], [≥], [≪], [≫], [O], [Ô], [C], [Ĉ],
[U ], where [U ] is the universal modality. The corresponding diamond modal-
ity is denoted by 〈R〉 and defined as ¬[R]¬. We adopt standard notations for
Boolean connectives. The semantics of this language is the Kripke semantic
over mereotopological structures. IfW is a mereotopological structure and v
is a valuation of the propositional variables in W , then the pair M = (W, v)
is called, as usual, a model over W . The fact that a formula A is true (false)
at a point x ∈ W will be denoted by v(x,A) = 1 (v(x,A) = 0). We adopt
the standard semantical definitions of truth of a formula in a model, in
a Kripke structure , etc. Let us note that all conditions of mereotopo-
logical structure except (≤ 0) are modally definable in this language by
Sahlqvist formulas which then can be taken as axioms of the correspond-
ing axiomatic system. So, in order to obtain a complete axiomatization
of MTML we introduce another, non-standard semantics, which consists
of a class of relational structures in which the non-definable axiom (≤ 0)
is replaced by several modally definable consequences. This class admits
an easy and straightforward modal axiomatization by means of generated
canonical models. By using p-morphism techniques, we prove that general-
ized models of MTML are equivalent to the standard ones, which yields the
completeness with respect to the standard semantics of the logic.

Comparing MTML and the modal logic of topological relations intro-
duced by Lutz and Wolter in [17] (LW-logic), we can see that, on the base
of Lemma 30, our modalities [≤], [≥], [O] and [C] are definable in LW-logic
while the modality [Ô] is not definable. Conversely, all basic modalities of
LW-logic are not definable in MTML. If however we extend the language
of MTML including modalities corresponding to Boolean combinations of
the basic relations, then all modalities of LW-logic will be definable in this
extended version of MTML, which will imply its undecidability.

2.1 Generalized mereotopological structures and the bulldozer
construction

DEFINITION 31. A generalized mereotopological structure is a generaliza-
tion of the notion of a mereotopological structure by dropping the axiom
(≤ 0) and by adding the following additional axioms:

(=1) aOa ∧ b ≤ a→ a = b, (=2) aÔa ∧ a ≤ b→ a = b,

(=3) aOc ∧ bÔc ∧ b ≤ a→ a = b.

It can easily be seen that the above three conditions hold in mereotopo-
logical structures, so we have the following lemma.

LEMMA 32. Each mereotopological structure is a generalized mereotopolog-
ical structure.

Now we shall show that each generalized mereotopological structure is
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a p-morphic image of a mereotopological structure. The construction is
similar to the given one in [24] for a similar logic and is an adaptation
of the Segerberg’s bulldozer construction from [20]. To this end we first
introduce in a given generalized mereotopological structure W the following
equivalence relation. For x, y ∈ W , x ≡ y iff x ≤ y and y ≤ x. We denote
by ≡ (x) = {y : x ≡ y} the equivalence class generated by x and call such
sets clusters. If ≡ (x) = {x}, then ≡ (x) is called degenerated cluster. The
following lemma states some easy properties of degenerated clusters.

LEMMA 33. Let W be a generalized mereotopological structure. Then:
(i) If xOx, then ≡ (x) is a degenerated cluster.

(ii) If xÔx, then ≡ (x) is a degenerated cluster.

(iii) If xOz and xÔz, then ≡ (x) is a degenerate cluster.

Proof. We will give a proof of (iii). Let y ∈≡ (x). Then we have x ≤ y and

y ≤ x. From xÔz and x ≤ y we get yÔz. Then xOz, yÔz and y ≤ x imply
by (=3) that x = y, which shows that ≡ (x) is a degenerate cluster. In a
similar way, making use of the conditions (=1) and (=2), one can prove (i)
and (ii). �

DEFINITION 34. LetW = (W,≤, O, Ô,≪, C, Ĉ) be a generalized mereoto-
pological structure. We say that the structure W ′ = (W ′,≤′, O′, Ô′,≪′,
C ′, Ĉ ′) is obtained from the structure W by the bulldozer construction
if the following constructions hold.

Let Z = {. . . ,−2,−1, 0, 1, 2, . . .} be the set of integers and∞ be a symbol
such that ∞ 6∈W ∪ Z. For f ∈ Z and x ∈W define

f(x) =
{

(x,∞) if ≡ (x) is a degenerate cluster
(x, f) otherwise.

Define W ′ = {f(x) : x ∈ W, f ∈ Z}. For R ∈ {O, Ô, C, Ĉ} define
f(x)R′g(y) iff xRy. For ≤′ and ≪′ we have the following definitions:

f(x) ≤′ g(y)↔
{

x ≤ y if x 6≡ y or f(x) = (x,∞)
f < g or (f = g and x = y) otherwise.

f(x) ≥′ g(y) iff g(y) ≤′ f(x), f(x)≪′ g(y) iff x≪ y and f(x) ≤′ g(y), and
f(x)≫′ g(y) iff g(y)≪′ f(x). Define the mapping P : W ′ →W as follows:
P (f(x)) = x, for every f(x) ∈W ′.

LEMMA 35. Bulldozer Lemma. Let W be a generalized mereotopological
structure and let W ′ be obtained from W by the bulldozer construction.
Then:

(i) W ′ is a mereotopological structure.
(ii) The mapping P is a p-morphism from W ′ onto W .

Proof. The proof that P is a p-morphism from W ′ onto W is straightfor-
ward. The proof that W ′ is a mereotopological structure is long because
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requires verification of a great number of axioms. For the most of the ax-
ioms this is a quite easy exercise. We will illustrate this giving several proofs
only for the more difficult axioms. Note that for all relations R we have the
following: if f(x)R′g(y), then xRy, for all x, y ∈ W , and we will use this
without explicit reference.
• Axiom (≤ 0) f(x) ≤′ g(y) and g(y) ≤′ f(x)→ f(x) = g(y).

Suppose f(x) ≤′ g(y). Then x ≤ y and y ≤ x and hence x ≡ y and
≡ (x) =≡ (y).

Case 1: ≡ (x) is a degenerate cluster. Then ≡ (x) = {x}, ≡ (y) = {y}
and consequently x = y. We have in this case f(x) = (x,∞), g(y) = (y,∞)
and hence f(x) = g(y).

Case 2: ≡ (x) is not a degenerate cluster. Then we have f(x) = (x, f)
and g(y) = (y, g) and we are in the second case of the definition of ≤′.
Then we have: (f < g or f = g&x = y) and (g < f or g = f&y = x). This
implies f = g and x = y which again gives f(x) = g(y).
• Axiom (≤ 2): Transitivity of ≤′. Suppose f(x) ≤′ g(y), g(y) ≤′ h(z).
then we have x ≤ y and y ≤ z which implies x ≤ z. We have to show that
f(x) ≤′ h(z).

Case 1: ≡ (x) is a degenerate cluster or x 6≡ z. Since x ≤ z we obtain
f(x) ≤′ h(z).

Case 2: ≡ (x) is a not a degenerate cluster and x ≡ z. Then we obtain
x ≤ z and z ≤ x. Then from z ≤ x and x ≤ y we obtain z ≤ y. From
y ≤ z and z ≤ y we get ≡ (y) =≡ (z), and hence ≡ (x) =≡ (y) =≡ (z).
From here we obtain that ≡ (y) and ≡ (z) are not degenerate clusters. So
for f(x) ≤′ g(y) and g(y) ≤′ h(z) we are in the second case of the definition
of ≤′. This yields: (f < g or f = g&x = y) and (g < h or g = h&y = z).
From here we obtain (f < h or f = h&x = z) which gives f(x) ≤′ h(z).
• Axiom (≤ OÔ): h(z)O′f(x) and h(z)Ô′g(y)→ f(x) ≤′ g(y).

Suppose h(z)O′f(x) and h(z)Ô′g(y) Then we have zOx and zÔy which
implies x ≤ y.

Case 1: x 6≡ y or ≡ (x) is a degenerate cluster. In this case we have (by
x ≤ y) that f(x) ≤′ g(y).

Case 2: x ≡ y and ≡ (x) is not a degenerate cluster. From zÔy and

x ≡ y we obtain zÔx. Then from zOx, zÔx and Lemma 33 (iii) we get that
≡ (x) is a degenerate cluster, which shows that this case is impossible.

• Axiom (≪ CÔ): h(z)C ′f(x) and h(z)Ô′g(y)→ f(x)≪′ g(y).

Suppose h(z)C ′f(x) and h(z)Ô′g(y). This implies zCx and zÔy, which
yield x≪ y. Condition h(z)C ′f(x) implies h(z)O′f(x). This, together with

h(z)Ô′g(y) implies (as we have just proved) f(x) ≤′ g(y). Conditions x≪ y
and f(x) ≤′ g(y) imply f(x)≪′ g(y).
• Axiom (=1) f(x)O′f(x) and g(y) ≤′ f(x)→ f(x) = g(y).

Suppose f(x)O′f(x) and g(y) ≤′ f(x). This implies xOx and y ≤ x.
From xOx we obtain x ≤ y which with y ≤ x implies x ≡ y and hence
≡ (x) =≡ (y). Condition xOx implies by Lemma 33 (i) that ≡ (x) is
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a degenerate cluster. Then also ≡ (y) is a degenerate cluster and hence
≡ (x) = {x} and ≡ (y) = {y} and hence x = y. In this case we have
f(x) = (x,∞) and g(y) = (y,∞). Consequently f(x) = g(y).

We expect that the above examples will show the reader how to verify
the remaining axioms of generalized mereotopological structures. �

2.2 Axiomatization and completeness theorem
We adopt the following system of axiom schemes and rules for MTML. All
axioms are just the Sahlqvist modal equivalents of the axioms of generalized
mereotopological structures.

Axiom Schemes

(Bool) All boolean tautologies
(K) [R](A⇒ B)⇒ ([R]A⇒ [R]B),
(A0) 〈≤〉[≥]A⇒ A, 〈≥〉[≤]A⇒ A, 〈≪〉[≫]A⇒ A, 〈≫〉[≪]A⇒ A,

[U ]A⇒ A, 〈U〉[U ]A⇒ A, [U ]A⇒ [U ][U ]A, [R]A⇒ [U ]A,
(A≤1) [≤]A⇒ A, (A≤2) [≤]A⇒ [≤][≤]A, (AO1) 〈O〉[O]A⇒ A,
(A bO1) 〈Ô〉[Ô]A⇒ A, (AO≤) [O]A⇒ [O][≤]A,
(A bO≤) [Ô]A⇒ [Ô][≥]A, (AO bO) ([O]A⇒ A) ∨ ([Ô]B ⇒ B),

(A≤O bO) [O]A ∧ [Ô]B ∧ 〈U〉([≤]C ∧ ¬A)⇒ [U ](B ∨ C),

(AC) 〈C〉[C]A⇒ A, (A bC) 〈Ĉ〉[Ĉ]A⇒ A,
(ACO1) [C]A⇒ [O]A, (A bC bO1) [Ĉ]A⇒ [Ô]A,
(ACO2) 〈C〉⊤ ∧ [O]A⇒ A, (A bC bO2) 〈Ĉ〉⊤ ∧ [Ô]A⇒ A,
(AC≤) [C]A⇒ [C][≤]A, (A bC≤) [Ĉ]A⇒ [Ĉ][≥]A,
(A≪≤1) [≤]A⇒ [≪]A, (A≪≤2) [≪]A⇒ [≤][≪]A,
(A≪≤3) [≪]A⇒ [≪][≤]A, (A≪O) ¬A ∧ [O]A ∧ [≪]B ⇒ [U ]B,
(A≪ bO) ¬A ∧ [Ô]A ∧ [≫]B ⇒ [U ]B,
(A≪CO) [O]A⇒ [C][≪]A, (A≪ bC bO) [Ô]A⇒ [Ĉ][≫]A,
(A≪C bO) [C]A ∧ [Ô]B ∧ 〈U〉([≪]C ∧ ¬A)⇒ [U ](B ∨ C),
(A≪ bCO) [O]A ∧ [Ĉ]B ∧ 〈U〉([≪]C ∧ ¬A)⇒ [U ](B ∨ C),
(A=1) 〈≤〉([O]A ∧ ¬A ∧B)⇒ B, (A=2) 〈≥〉([Ô]A ∧ ¬A ∧B)⇒ B,
(A=3) 〈U〉(B ∧ ¬C ∧ 〈≤〉(A ∧ C))⇒ 〈O〉A ∨ 〈Ô〉B.

Rules of inference:
Modus Ponens(MP) A,A⇒ B ⊢ B,
Necessitation (N) A ⊢ [R]A for R ∈ {≤,≥,≪,≫, O, Ô, C, Ĉ, U}.

THEOREM 36. Completeness theorem for MTML. The following con-
ditions are equivalent for any formula A of MTML:

(i) A is a theorem of MTML,
(ii) A is true in all generalized mereotopological structures,
(iii) A is true in all mereotopological structures,
(iv) A is true in all standard and completely standard mereotopological

structures.
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Proof. The implications (i) → (ii) → (iii) → (iv) form the soundness
part of the theorem and are straightforward. The implication (iv) → (iii)
follows by Corollary 27. (iii) → (ii) is true by the Bulldozer Lemma 35.
And finally the implication (ii)→ (i) can be proved by using the standard
techniques of generated canonical models (see [4, 5]). �

2.3 Filtration

LEMMA 37. MTML do not possess fmp with respect to its standard seman-
tics.

Proof. It is easy to see that the Grzegorczyk formula

[≤]([≤](p⇒ [≤]p)⇒ p)⇒ p

is true in all finite mereotopological structures (because they are finite par-
tial orderings with respect to ≤) but that it is falsified in the generalized
mereotopological structure W = {a, b} in which the relations ≤, O, Ô, C, Ĉ
and ≪ coincide with W 2, which proves the lemma. �

LEMMA 38. Filtration Lemma for MTML. MTML admits filtration
with respect to its nonstandard semantics and hence is decidable.

Proof. The next definition presents the relevant constructions of the filtra-
tion.

DEFINITION 39. Filtration for MTML. Let M = (W, v) be a model
over a generalized mereotopological structure and A0 be a formula. Let Γ
be the smallest set of formulas closed under sub-formulas, containing A0

and satisfying the following closure conditions:
(Γ1) 〈O〉⊤ and 〈Ô〉⊤ are in Γ,
(Γ2) if [R]A ∈ Γ for some R ∈ {O, Ô,≤,≥,≪,≫, C, Ĉ}, then [R]A ∈ Γ

for all R ∈ {O, Ô,≤,≥,≪,≫, C, Ĉ}.
We define an equivalence relation ∼ in W as follows:
(∀x, y ∈W )(x ∼ y ↔ (∀A ∈ Γ)(v(x,A) = v(y,A))).
Further we define |x| = {y : x ∼ y} and W ′ = {|x| : x ∈W}.
The valuation v′ in W ′ is defined as follows: for |x| ∈W ′ and for propo-

sitional variable p we put v′(|x|, p) = 1 iff v(x, p) = 1.
We define the relational structure W ′ = (W ′, O′, Ô′,≤′,≥′,≪′,≫′, C ′,

Ĉ ′) over W by specifying the relations O′, Ô′,≤′,≥′,≪′,≫′, C ′, Ĉ ′ as fol-
lows. For any |x|, |y| ∈W ′ we define:
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• |x| ≤′ |y| iff (∀[≤]A ∈ Γ) ((v(x, [≤]A) = 1→ v(y, [≤]A) = 1) &
(v(y, [≥]A) = 1→ v(x, [≥]A) = 1) &
(v(x, [≪]A) = 1→ v(y, [≪]A) = 1) &
(v(y, [≫]A) = 1→ v(x, [≫]A) = 1) &
(v(y, [O]A) = 1→ v(x, [O]A) = 1) &
(v(x, [Ô]A) = 1→ v(y, [Ô]A) = 1) &
(v(y, [C]A) = 1→ v(x, [C]A) = 1) &
(v(x, [Ĉ]A) = 1→ v(y, [Ĉ]A) = 1) &
(v(x, 〈O〉⊤) = 1→ v(y, 〈O〉⊤) = 1) &
(v(y, 〈Ô〉⊤) = 1→ v(x, 〈Ô〉⊤) = 1)),

• |x| ≥′ |y| iff |y| ≤ |x|,
• |x| ≪ |y| iff (∀[≪]A ∈ Γ) ((v(x, [≪]A) = 1→ v(y, [≤]A) = 1) &

(v(y, [≫]A) = 1→ v(x, [≥]A) = 1) &
(v(y, [O]A) = 1→ v(x, [C]A) = 1) &
(v(x, [Ô]A) = 1→ v(y, [Ĉ]A) = 1) &
(v(x, 〈O〉⊤) = 1→ v(y, 〈O〉⊤) = 1) &
(v(y, 〈Ô〉⊤) = 1→ v(x, 〈Ô〉⊤) = 1)),

• |x| ≫′ |y| iff |y| ≪′ |x|,
• |x|O′|y| iff (∀[O]A ∈ Γ) ((v(x, [O]A) = 1→ v(y, [≤]A) = 1) &

(v(y, [O]A) = 1→ v(x, [≤]A) = 1) &
(v(x, 〈O〉⊤) = 1 & v(y, 〈O〉⊤) = 1)),

• |x|Ô′|y| iff (∀[Ô]A ∈ Γ) ((v(x, [Ô]A) = 1→ v(y, [≥]A) = 1) &
(v(y, [Ô]A) = 1→ v(x, [≥]A) = 1) &
(v(x, 〈Ô〉⊤) = 1 & v(y, 〈Ô〉⊤) = 1)),

• |x|C ′|y| iff (∀[C]A ∈ Γ) ((v(x, [C]A) = 1→ v(y, [≤]A) = 1) &
(v(y, [C]A) = 1→ v(x, [≤]A) = 1) &
(v(x, [O]A) = 1→ v(y, [≪]A) = 1) &
(v(y, [O]A) = 1→ v(x, [≪]A) = 1) &
(v(x, 〈O〉⊤) = 1 & v(y, 〈O〉⊤) = 1)),

• |x|Ĉ ′|y| iff (∀[Ĉ]A ∈ Γ) ((v(x, [Ĉ]A) = 1→ v(y, [≥]A) = 1) &
(v(y, [Ĉ]A) = 1→ v(x, [≥]A) = 1) &
(v(x, [Ô]A) = 1→ v(y, [≫]A) = 1) &
(v(y, [Ô]A) = 1→ v(x, [≫]A) = 1) &
(v(x, 〈Ô〉⊤) = 1 & v(y, 〈Ô〉⊤) = 1)).

We have to prove two things. First that the new model (W ′, v′) satisfies
the two conditions of filtration for each relation R, namely for all x, y ∈W

(F1) If xRy, then |x|R′|y|, and
(F2) If |x|R′|y|, then (∀[R]A ∈ Γ)(v(x, [R]A) = 1→ v(y,A) = 1).
And second, to show that the new structure W ′ is a finite generalized

mereotopological structure.
The finiteness of W ′ follows by the fact that Γ is a finite set – the closure
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conditions for Γ do not make it infinite.
The most tedious part of the proof is the verification of the conditions

(F1) and (F2) – it is quite long but in each case easy. As an example we
will verify the conditions (F1) and (F2) for the relation O′.

(F1,O) If xOy then |x|O′|y|.
Suppose xOy and let [O]A ∈ Γ. We have to verify the following conditions

corresponding to the clauses of the definition of O′:
(a) v(x, [O]A) = 1→ v(y, [≤]A) = 1,
(b) v(y, [O]A) = 1→ v(x, [≤]A) = 1,
(c) v(x, 〈O〉⊤) = 1,
(d) v(y, 〈O〉⊤) = 1.
Proof of (a). Suppose v(x, [O]A) = 1. To prove v(y, [≤]A) = 1 suppose

y ≤ z. Then xOy and y ≤ z imply xOz and since v(x, [O]A) = 1 we obtain
v(z,A) = 1. In a similar way we prove (b).

Proof of (c). From xOy we get xOx and since v(x,⊤) = 1 we obtain
v(x, 〈O〉⊤) = 1. In the same way we verify (d).

Condition (F2) for O′ can be verified rather easy. Suppose |x|O′|y|,
[O]A ∈ Γ and v(x, [O]A) = 1. By the first line of the definition of O′

we obtain v(y, [≤]A) = 1, Since y ≤ y we get v(y,A) = 1.
We left to the reader the verification of the conditions (F1) and (F2) for

the other relations.
The verification of the axioms of generalized mereotopological structure

is also quite long but in each case it is easy. We will demonstrate proofs
only for some examples.
• Axiom (≤ 1) |x| ≤′ |x|. By (≤ 1) we have x ≤ x. Then by (F1) we
obtain |x| ≤′ |x|.
• Axiom (≤ 2) |x| ≤′ |y| and |y| ≤′ |z| → |x| ≤′ |z|.

Suppose |x| ≤′ |y| and |y| ≤′ |z| and proceed to show |x| ≤′ |z|. We
have to verify the 10 clauses of the definition of ≤′ for |x| ≤′ |z|. Let us
demonstrate the clause for O:
v(z, [O]A) = 1→ v(x, [O]A) = 1.
Suppose v(z, [O]A) = 1. Since |y| ≤′ |z| we get v(y, [O]A) = 1. This and

|x| ≤′ |y| imply v(x, [O]A) = 1.
• Axiom (O1) |x|O′|y| → |y|O′|x|. The axiom follows from the fact that
the definition of O′ is symmetric with respect to its arguments.
• Axiom (O2) |x|O′|y| → |x|O′|x|.

Suppose |x|O′|y| and proceed to verify |x|O′|x|. The first two conditions
of the definition of O′ for |x|O′|x| are equal and easy to proof. The third
condition v(x, 〈O〉⊤) = 1 follows from the assumption |x|O′|y|. The forth
condition is equal to the third one.

Most of the other axioms can be treated in a similar way. Since the
axioms (=1), (=2) and (=3) present some difficulties we will consider one
of them, say (=3) (the other two can be treated similarly).

• Axiom (=3) |x|O′|z|, |y|Ô′|z| and |y| ≤′ |x| → |x| = |y|.
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Suppose |x|O′|z|, |y|Ô′|z| and |y| ≤′ |x|. By (F1) we get xOz and yÔz.
We shall show that x = y which automatically implies |x| = |y|. Suppose

that x 6= y. Then By axiom (=3) (and xOz and yÔz) we obtain y 6≤ x.
Then by axiom (≤ OÔ) we obtain yOz or xÔz. By (F1) we obtain |y|O′|z|
or |x|Ô|z|. We shall show that both alternatives yield a contradiction.

(a) |y|O′|z| and |y| ≤′ |x| imply |x|O′|z| which contradicts |x|O′|z|.
(b) |x|Ô′|z| and |y| ≤′ |x| imply |y|Ô′|z| which contradicts |y|Ô′|z|.

�

3 Concluding remarks

We conclude the paper by formulating some open problems.
The first open problem concerns the completeness theorem of an ex-

tension of MTML over mereotopological structures satisfying the axiom of
connectedness (see Remarks 9 (4)). The standard models of this extension
are over connected topological spaces, for instance, models over Rn. Let us
note that the techniques of the representation theorem for mereotopological
structures, used in this paper, do not hold in the presence of this axiom. So
one has to invent some new techniques. Another reasonable problem is to
look for possible extensions of MTML with some new modalities, preserving
decidability. And the last problem is the complexity of the satisfiability of
MTML.
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