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abstract. We establish that the quantifier alternation hierarchy of for-

mulae of Second-Order Propositional Modal Logic (SOPML) induces an

infinite corresponding semantic hierarchy over the class of finite directed

graphs. This is a response to an open problem posed in [4] and [8]. We
also provide modal characterizations of the expressive power of Monadic

Second-Order Logic (MSO) and address a number of points that should

promote the potential advantages of viewing MSO and its fragments from

the modal perspective.
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1 Introduction

In this paper we investigate the expressive power of Second-Order Proposi-
tional Modal Logic (SOPML), which is a modal logic extended with propo-
sitional quantifiers ranging over sets of possible worlds. Modal logics with
propositional quantifiers have been investigated by a variety of researchers,
see [7, 8, 9, 10, 11, 12, 13, 14, 22, 23] for example.

Johan van Benthem [4] and Balder ten Cate [8] raise the question whether
the quantifier alternation hierarchy of SOPML-formulae induces an ascend-
ing corresponding hierarchy of definable classes of Kripke frames. This is
an interesting question, especially as ten Cate shows in [8] that formulae
of SOPML admit a prenex normal form representation. In this paper we
prove that the semantic counterpart of the quantifier alternation hierarchy
of SOPML-formulae is infinite over the class of finite directed graphs. This
automatically implies that the semantic hierarchy is infinite over arbitrary
Kripke frames.

Alternation hierarchies have received a lot of attention in finite model
theory, see [16, 18, 19, 20, 21, 24] for example. As SOPML is a semantically
natural fragment of MSO (see Theorem 6 in [8]), we feel that our result is
also relatively interesting from the point of view of finite model theory.

Our main tool in answering the the question of van Benthem and ten Cate
is a theorem of Schweikardt [21] which states that the alternation hierarchy
of Monadic Second-Order Logic is strict over the class of grids. Inspired by
the approach of Matz and Thomas in [19], we employ an approach based on
strong first-order reductions in order to transfer the result of Schweikardt to
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a special class of finite directed graphs we define. Over this class the expres-
sive power of SOPML coincides with that of MSO , whence we easily obtain
the desired result that the alternation hierarchy of SOPML is infinite over
finite directed graphs. The precise definition of strong first-order reductions
(found in [18]) is of no particular importance for the present paper, as we
give a virtually self-contained exposition of all our results.

As a by-product of our investigations we obtain a simple, effective pro-
cedure (inspired by the approach of ten Cate [8]) that translates MSO-
sentences to equivalent formulae of Second-Order Propositional Modal Logic
with Universal Modality (SOPML(E )). This implies that the expressive
power of SOPML(E ) on finite/arbitrary relational structures coincides with
that of MSO , and a trivial adaptation of our argument shows that replac-
ing universal modality E with difference modality D does not change the
picture. Such modal perspectives on MSO could turn out interesting from
the point of view of finite model theory.

The paper is structured as follows: In Section 2 we fix the notation
and discuss a number of preliminary issues. In Section 3 we show that
MSO = SOPML(E ) with regard to expressive power. Using an approach
analogous to that in Section 3, we then define in Section 4 a special class of
directed graphs over which MSO and SOPML coincide in expressive power.
In Section 5 we first work with MSO , transferring the result of Schweikardt
to our special class of directed graphs. Then, using the connection created
in Section 4, it is easy to establish that the SOPML alternation hierarchy
is infinite over directed graphs.

2 Preliminary considerations

In this section we introduce technical notions that occupy a central role in
the rest of the discourse.

2.1 Syntax and semantics

With a model we mean a model of predicate logic. We only consider models
associated with a relational vocabulary. With a relational vocabulary we
mean a vocabulary with relation symbols and constant symbols only.

We fix countable sets VARFO and VARSO of first-order and second-
order variables, respectively. Naturally we assume that the sets are disjoint.
We let VAR = VARFO ∪ VARSO. We let lower-case symbols x, y, z de-
note first-order variables. Upper-case symbols X,Y,Z denote second-order
variables. A union f of two functions fFO : VARFO −→ Dom(M) and
fSO : VARSO −→ P(Dom(M)), where M is a model and Dom(M) its do-
main, is called an assignment. Monadic Second-Order Logic is interpreted
in terms of models and assignments in the usual way: We write M,f |= ϕ
when model M satisfies MSO-formula ϕ under assignment f .

Let PROP denote a countable set of proposition variables. We let symbols
px, py, pz, pX , pY , pZ denote proposition variables. Let S = S0∪S1∪S2∪S3

be a relational vocabulary with set S0 of constant symbols and sets S1

and S2 of unary and binary relation symbols respectively; set S3 contains
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the relation symbols of higher arities. The language L(S) of Second-Order
Propositional Modal Logic associated with vocabulary S is determined by
the following recursive definition:

ϕ ::= ci | px | pj | ¬ϕ | ϕ1 ∧ ϕ2 | 3kϕ | △l(ϕ1, ..., ϕn−1) | ∃px ϕ

such that ci ∈ S0, px ∈ PROP , Pj ∈ S1, Rk ∈ S2, and Rl ∈ S3 is an n-ary
relation symbol.

In order to interpret formulae of Second-Order Propositional Modal Logic,
we need the notion of a pointed model :

DEFINITION 1. A pointed model is a pair (M,w), where M is a model
and w ∈ Dom(M).

We also need objects that interpret free occurrences of proposition vari-
ables px ∈ PROP : Any mapping V : PROP −→ P(Dom(M)), where M is
a model, is called a valuation.

Let S be a vocabulary and M an S-model with w ∈ Dom(M) = W . Let
V be a related valuation. We let  denote the modal truth relation, which
we define in the following way:

(M,w), V  ci ⇔ w = cMi
(M,w), V  pj ⇔ w ∈ PMj
(M,w), V  px ⇔ w ∈ V (px)
(M,w), V  ¬ϕ ⇔ (M,w), V 6 ϕ
(M,w), V  ϕ ∧ ψ ⇔ (M,w), V  ϕ and (M,w), V  ψ
(M,w), V  ∃pxϕ ⇔ ∃U ⊆W ((M,w), V [px 7→ U ]  ϕ)
(M,w), V  3k ϕ ⇔ ∃u ∈W (wRku and (M,u)  ϕ)
(M,w), V  △l (ϕ1, ..., ϕn−1) ⇔ ∃u1, ..., un−1 ∈W such that

Rl(w, u1, ..., un−1) and
∀i < n((M,ui), V  ϕi)

If a formula ϕ does not contain free occurrences of proposition variables,
we may drop valuation V and write (M,w)  ϕ. An SOPML-formula
without free proposition variables is an SOPML-sentence. We extend the
definition of relation  to models in the following way:

M  ϕ ⇔ for all w ∈W, (M,w)  ϕ

We also extend the truth relation of predicate logic to cover pointed models.
We define

(M,w) |= ϕ(x) ⇔ M, [x 7→ w] |= ϕ(x),

where ϕ(x) is a formula with exactly one free variable, x.
Let Hp be a class of pointed models. We say that SOPML-sentence ϕ

defines class C of pointed models with respect to Hp if C = {(M,w) ∈
Hp | (M,w)  ϕ}. We write MODHp

(ϕ) = C. Similarly, we say that
MSO-formula ψ(x) defines class C of pointed models with respect to Hp if
C = {(M,w) ∈ Hp | (M,w) |= ψ(x)}. Formula ψ(x) is required to contain
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exactly one free first-order variable and no free second-order variables. We
write MODHp

(ψ(x)) = C.
Let H be a class of models. We say that SOPML-sentence ϕ defines class

C of models with respect to H if C = {M ∈ H | M  ϕ}. This corresponds
to the notion of global definability. We write MODH(ϕ) = C. Similarly,
we say that MSO-sentence ψ defines class C of models with respect to H if
C = {M ∈ H | M |= ψ}. We write MODH(ψ) = C.

When we informally leave out parentheses when writing formulae, the
order of preference of logical connectives is such that unary connectives
have the highest priority and then come ∧,∨,→,↔ in the given order.

When a subindex of a symbol (ci, pi, Ri,3i etc.) is irrelevant or under-
stood from the context, we may leave it unwritten.

2.2 Grids and graphs

Two classes of structures have a central role in the considerations that follow:

DEFINITION 2. Let m,n ∈ N≥1 and let Dn
m = {1, 2, ...,m} × {1, 2, ..., n}.

Define binary relations SGr1 and SGr2 such that SGr1 contains exactly the
pairs of type ((i, j), (i + 1, j)) ∈ Dn

m × Dn
m and SGr2 exactly the pairs of

type ((i, j), (i, j + 1)) ∈ Dn
m × Dn

m. A structure Gr = (Dn
m, S

Gr
1 , SGr2 ),

where m,n ∈ N≥1, is called a grid. Grid Gr = (Dn
m, S

Gr
1 , SGr2 ) is said to

correspond to an m× n-matrix. Element (1, 1) is referred to as the top left
element. We let GRID denote the class of grids. Note that this class is not
closed under isomorphism.

The other class of structures we shall consider is that of (non-empty)
directed graphs. We define a directed graph to be a structure of type (W,R),
where W 6= ∅ is a finite set and R ⊆ W ×W a binary relation. When we
refer to a graph we always mean a finite directed graph. We let GRAPH
denote the class of finite directed graphs.

2.3 Alternation hierarchies

Intuitively, the levels of the monadic second-order quantifier alternation
hierarchy measure the number of alternations of existential and univer-
sal second-order quantifiers of MSO-formulae in prenex normal form. (An
MSO-formula in prenex normal form consists of a vector of second-order
quantifiers, followed by a first order part.) It is natural to classify SOPML-
formulae in an analogous way.

Below, we give formal definitions of alternation hierarchies. We only
define levels containing formulae that begin with an existential quantifier,
as this suffices for the purposes of this article.

Let LFO(S ∪ VARSO) denote the first-order language associated with
relational vocabulary S ∪ VARSO. We define Σ0(S) = LFO(S ∪ VARSO)
and let

Σn+1(S) = {∃X1, ...,∃Xk¬ϕ | k ∈ N and ϕ ∈ Σn(S)}.

Sets Σn(S) are levels of the syntactic alternation hierarchy of MSO .
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We write Σn instead of Σn(S) when the vocabulary is clear from the
context. With [Σn] we refer to the equivalence closure of Σn. In other
words, ϕ ∈ [Σn] iff ϕ is equivalent to some formula ϕ′ ∈ Σn.

Levels of the syntactic alternation hierarchy are associated with natural
semantic counterparts: Let H be a subclass of S-structures. We define

Σn(H) = {C ∈ P(H) | MODH(ϕ) = C for some sentence ϕ ∈ Σn(S)}.
Similarly, we let

Σn(Hp)
= {C ∈ P(Hp) | MODHp

(ϕ(x)) = C for some formula ϕ(x) ∈ Σn(S)},
where Hp is a class of pointed S-models.

We then deal with the quantifier alternation hierarchies of SOPML. The
zeroeth level of the syntactic hierarchy of SOPML contains all quantifier
free SOPML-formulae, and any formula ∃px1 , ...,∃pxk

¬ϕ belongs to level
n+ 1 iff ϕ belongs to the n-th level. We let ΣML

n (S) denote the n-th level
of this hierarchy. On the semantic side we define

ΣML
n (H)
= {C ∈ P(H) | MODH(ϕ) = C for some sentence ϕ ∈ ΣML

n (S)},
where H is a subclass of the class of S-models. Similarly, we define

ΣML
n (Hp)
= {C ∈ P(Hp) | MODHp

(ϕ) = C for some sentence ϕ ∈ ΣML
n (S)},

where Hp is a class of pointed S-models.
If for all n ∈ N there exists a k ∈ N such that Σn(K) 6= Σk(K), we say

that the alternation hierarchy of MSO is infinite on K. We define infinity
of SOPML alternation hierarchies analogously.

3 SOPML(E) = MSO

In this section we show that Second-Order Propositional Modal Logic with
Universal Modality (SOPML(E )) has the same expressive power as MSO .
This result is closely related to the fact that hybrid logic H(↓, E) is expres-
sively complete for first-order logic (see [3] and the references therein). In
fact, in the light of the results in [1, 2, 8], the result is not surprising.

In order to establish that SOPML(E ) is expressively complete for MSO ,
we define a simple translation from the set of MSO-formulae to the set
of SOPML(E )-formulae. The translation was inspired by a very similar
translation defined in [8].

We begin with a formal definition of logic SOPML(E ) (cf. SOEPDL
in [22]): Let S be a relational vocabulary and let L(S) denote the related
second-order propositional modal language. We extend language L(S) to a
new language LE(S) in the following way:

ϕ ∈ L(S) ⇒ ϕ ∈ LE(S)
ϕ ∈ LE(S) ⇒ 〈E〉ϕ ∈ LE(S)
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The truth definition of SOPML is extended by setting

(M,w), V  〈E〉ϕ ⇔ ∃u ∈ Dom(M)((M,u), V  ϕ).

Next we prepare ourselves for an important auxiliary result (Lemma 3),
which we then prove.

Let M be a model and f : VAR −→ Dom(M) ∪ P(Dom(M)) a related
assignment. Define PROP = {px | x ∈ VARFO}∪{pX | X ∈ VARSO}. We
let Vf denote the valuation mapping from PROP to P(Dom(M)) such that
Vf (px) = {f(x)} and Vf (pX) = f(X) for all px, pX ∈ PROP .

Consider the following formula:

uniq(px) = 〈E〉px ∧ ∀py(〈E〉(py ∧ px)→ [E](px → py)),

where [E] stands for ¬〈E〉¬. The formula states that proposition px is
satisfied by exactly one point of the model.

We define the following translation TR from the set of MSO-formulae to
the set of SOPML(E )-formulae:

TR(P (y)) = 〈E〉(p ∧ py)
TR(Y (z)) = 〈E〉(pY ∧ pz)
TR(Ri(y, z)) = 〈E〉(py ∧3ipz)
TR(Rj(x1, ..., xn)) = 〈E〉(px1 ∧△j(px2 , ..., pxn

))
TR(y = z) = 〈E〉(py ∧ pz)
TR(c = y) = 〈E〉(c ∧ py)
TR(y = c) = 〈E〉(py ∧ c)
TR(ci1 = ci2) = 〈E〉(ci1 ∧ ci2)
TR(¬ψ) = ¬TR(ψ)
TR(ψ ∧ ϕ) = TR(ψ) ∧ TR(ϕ)
TR(∃z(ψ)) = ∃pz(uniq(pz) ∧ TR(ψ))
TR(∃Z(ψ)) = ∃pZ(TR(ψ))

LEMMA 3. For all MSO-formulae ϕ,

M,f [x 7→ w] |= ϕ ⇔ (M,w), Vf [px 7→ {w}]  TR(ϕ)

for all models M = (W,R), all points w ∈ W and all assignments f :
VAR −→W ∪ P(W ).

Proof. We prove the claim by induction on the structure of formula ϕ. The
basis of the induction is established by a straightforward argument. The
case where ϕ = ¬ψ for some formula ψ is trivial, as is the case where ϕ has
a conjunction as its main connective. Therefore we may proceed directly to
the case where ϕ = ∃z(ψ).

Assume first that M,f [x 7→ w] |= ∃z(ψ) (we assume w.l.o.g. that
z 6= x). Thus M,f [z 7→ u, x 7→ w] |= ψ for some u ∈ W . Therefore
(M,w), Vf [pz 7→ {u}, px 7→ {w}]  TR(ψ) by the induction hypothesis.
Thus (M,w), Vf [px 7→ {w}]  ∃pz(uniq(pz) ∧ TR(ψ)), as required.
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Assume then that (M,w), Vf [px 7→ {w}]  ∃pz(uniq(pz)∧TR(ψ)). There-
fore (M,w), Vf [pz 7→ U, px 7→ {w}]  uniq(pz) ∧ TR(ψ) for some set
U ⊆ W . As (M,w), Vf [pz 7→ U, px 7→ {w}]  uniq(pz), we have U = {u}
for some u ∈ W . Therefore (M,w), Vf [pz 7→ {u}, px 7→ {w}]  TR(ψ).
Thus M,f [z 7→ u, x 7→ w] |= ψ by the induction hypothesis, and therefore
M,f [x 7→ w] |= ∃z(ψ), as required.

Finally, the argument for the case where formula ϕ is of type ∃Z(ψ), for
some formula ψ, is straightforward. �

We are now ready for the main results of this section:

THEOREM 4. A subclass K of a class C of pointed models is definable
w.r.t. C by an MSO-formula if and only if K is definable w.r.t. C by an
SOPML(E )-sentence.

Proof. Let ϕ(x) be an arbitrary MSO-formula with exactly one free vari-
able. LetM = (W,R, ...) be an arbitrary model and f : VAR −→W∪P(W )
an arbitrary assignment. We have the following equivalence by Lemma 3:

M,f [x 7→ w] |= ϕ ⇔ (M,w), Vf [px 7→ {w}]  TR(ϕ)

We also have the following equivalence:

(M,w), Vf [px 7→ {w}]  TR(ϕ)
⇔

(M,w)  ∃px(px ∧ uniq(px) ∧ TR(ϕ))

By the two equivalences, it is clear that ∃px(px ∧ uniq(px) ∧ TR(ϕ)) is the
desired SOPML(E )-sentence equivalent to ϕ.

For the converse, if ϕ is an SOPML(E )-sentence, the desired MSO-
formula is Stx(ϕ), where Stx denotes the required trivial generalization
of the standard translation operator (see [5] for the definition of standard
translation). �
THEOREM 5. A subclass K of a class C of models is definable w.r.t. C by
an MSO-sentence if and only if K is definable w.r.t. C by an SOPML(E )-
sentence.

Proof. Let ϕ be an arbitrary MSO-sentence. Notice that TR(ϕ) does not
contain any free proposition variables. We have the following equivalences:

M |= ϕ ⇔ M,f [x 7→ w] |= ϕ for all w ∈W
⇔ (M,w), Vf [px 7→ {w}]  TR(ϕ) for all w ∈W
⇔ (M,w)  TR(ϕ) for all w ∈W
⇔ M  TR(ϕ)

where the second equivalence follows from Lemma 3.
For the converse, ∀xStx(ψ) is the desired MSO-sentence equivalent to

SOPML(E )-sentence ψ. �
A trivial adaptation of the approach in this section leads to the realization

that with regard to expressive power, SOPML(D) = MSO , where D is the
difference modality.
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4 Simulating globality

The local nature of SOPML (cf. Proposition 4 of [8]) limits its expressive
power. In this section we define a class of structures over which this is not
the case. The key point is to insist that each structure contains a point
which connects to every point of the structure:

DEFINITION 6. Let S = (W,R, ...) be a structure with a binary relation
R. Assume there is a point w ∈ W such that wRu for all u ∈ W . We call
such a point u a localizer. Structures with a localizer are called localized.
If (M,w) is a pointed model where w is a localizer, we say that (M,w) is
l-pointed.

The notions of a localizer and a localized model resemble the notions of
a spypoint and a spypoint model applied in the hybrid logic literature (see
[2, 6]).

We then prepare ourselves for the next result (Lemma 7) by defining local
analogues of formula uniq(px) and translation TR defined in Section 3.

Let uniq′(px) be the following formula:

3px ∧ ∀py(3(py ∧ px)→ 2(px → py)),

where 2 stands for ¬3¬. It is easy to see that if (W,R) is a directed graph
with a localizer w ∈ W , then ((W,R), w), [px 7→ U ]  uniq′(px) if and only
if U = {u} for some u ∈W .

Consider translation TR defined in Section 3. Replace the occurrences
of the universal diamond 〈E〉 by 3, and also replace uniq(pz) by uniq′(pz).
Denote this new translation by LTR.

The following lemma is a local analogue of Lemma 3:

LEMMA 7. For all MSO-formulae ϕ,

M,f [x 7→ w] |= ϕ ⇔ (M,w), Vf [px 7→ {w}]  LTR(ϕ)

for all localized models M = (W,R), all localizers w ∈ W and all assign-
ments f : VAR −→W ∪ P(W ).

Proof. The proof is essentially the same as that of Lemma 3. �

The following lemma is a local analogue of Theorem 4:

LEMMA 8. Let C be a class of l-pointed models. A class K ⊆ C of l-
pointed models is definable w.r.t. C by an MSO-formula if and only if K is
definable w.r.t. C by an SOPML-sentence.

Proof. Let MSO-formula ϕ defineK w.r.t. C. Formula ∃px(px∧uniq′(px)∧
LTR(ϕ)) is the desired SOPML-sentence equivalent to ϕ. The proof is
essentially the same as that of Theorem 4. Instead of using Lemma 3,
however, we apply the analogous lemma that fits the framework without
universal modality, i.e., Lemma 7. �
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Let C be a class of localized models. Let ϕ be an SOPML-sentence such
that for each model M ∈ C there exists at least one point w ∈ Dom(M)
that satisfies ϕ, and moreover, every point w that satisfies ϕ is a localizer.
We say that ϕ fixes localizers on C.

The following lemma is a local analogue of Theorem 5:

LEMMA 9. Let C be a class of localized models and assume there exists
some SOPML-sentence ϕ that fixes localizers on C. A class K ⊆ C of
localized models is definable w.r.t C by an MSO-sentence if and only if K
is definable w.r.t. C by an SOPML-sentence.

Proof. Let ψ be an MSO-sentence that defines K w.r.t. C. Let M ∈ C and
let U ⊆ Dom(M) be the set of points w ∈ Dom(M) such that (M,w)  ϕ.
We have the following equivalences:

M |= ψ ⇔ ∀w ∈ U(M,f [x 7→ w] |= ψ)
⇔ ∀w ∈ U((M,w), Vf [px 7→ {w}]  LTR(ψ))
⇔ ∀w ∈ U((M,w)  LTR(ψ))
⇔ ∀w ∈ U((M,w)  ϕ→ LTR(ψ))
⇔ M  ϕ→ LTR(ψ),

where the second equivalence follows from Lemma 7.
For the converse, ∀xStx(π) is the desired MSO-sentence equivalent to

SOPML-sentence π. �

5 Alternation hierarchy of SOPML is infinite

In this section we prove that the SOPML alternation hierarchy is infinite
over the class of finite directed graphs. The following theorem from [21] is
the most important tool we shall use in the elaborations below:

THEOREM 10. For all n ∈ N≥1 we have Σn(GRID) 6= Σn+1(GRID).

While a similar result holds for directed graphs1, on words and labelled
trees, for example, the alternation hierarchy of MSO is known to collapse
to level Σ1 (see [17] for a recent survey of related results). This explains
why we use grids in the elaborations below.

In Subsection 5.1 we show how to encode grids as localized grid graphs
(see Definition 11). In Subsection 5.2 we then transfer the result of Theo-
rem 10 to localized grid graphs (Proposition 16) and l-pointed localized grid
graphs (Proposition 17). The transferred results will be needed in Subsec-
tion 5.3, where we show that the alternation hierarchy of SOPML is infinite
over pointed directed graphs (Theorem 18) and ordinary directed graphs
(Theorem 19).

1See [18, 19]. In [18], the result for directed graphs is established via a reduction
from the class of grids to a certain subclass of directed graphs. Let us call this class C.
While we could prove Proposition 16 via a reduction from class C, we instead prove it
via a direct reduction from the class of grids. The two alternative approaches are very
similar, but the approach via a direct reduction from the class of grids has presentational
advantages over the approach via a reduction from class C.
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S1

S2

7→

localizer

Figure 1. The figure shows a grid and its encoding. The localizer connects
to each point of the graph; for the sake of clarity, most arrows originating
from the localizer have not been drawn.

5.1 Encoding grids as localized grid graphs
In this subsection we define a map that encodes grids as localized directed
graphs.

DEFINITION 11. Mapping α : GRID −→ GRAPH transforms grid Gr to
a directed graph (W,R) such thatW = (Dom(Gr)×{0}) ∪ (Dom(Gr)×{1})
and

R = { ((a, 0), (a, 0)) | a ∈ Dom(Gr)}
∪ { ((a, 0), (a, 1)) | a ∈ Dom(Gr)}
∪ { ((a, 0), (b, 0)) | (a, b) ∈ SGr1 }
∪ { ((a, 1), (b, 0)) | (a, b) ∈ SGr2 }
∪ { ((t, 0), (a, i)) | a ∈ Dom(Gr), i ∈ {0, 1} }
∪ { ((t, 1), (t, 0)) },

where t = (1, 1) is the top left element of grid Gr. We call structures in
the isomorphism closure of α(GRID) localized grid graphs. We let LGG
denote this class of structures. We let LGGp denote the corresponding
class of l-pointed grid graphs. See Figure 1 for an example of a grid and
the corresponding localized grid graph.

Point (t, 0) sees every point in graph α(Gr), i.e., it is a localizer. This
property enables us to overcome difficulties resulting from the local nature
of SOPML. We define the following formula:

ψt0(x) = xRx ∧ ∃y(xRy ∧ yRx ∧ x 6= y)

The formula asserts that x = (t, 0). Insisting that (t, 1)R(t, 0) will help us
with a number of technical issues, such as defining formula

ψt1(x) = ¬xRx ∧ ∃y(xRy ∧ yRx),
which asserts that x = (t, 1).
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We then show that encoding α : GRID −→ GRAPH is injective:

LEMMA 12. Encoding α : GRID −→ GRAPH is injective in the following
sense: If α(Gr) and α(Gr′) are isomorphic, then Gr = Gr′.

Proof. Let α(Gr) = (W,R) = G and α(Gr′) = (W ′, R′) = G′ for some
grids Gr and Gr′. Assume f : W −→ W ′ is an isomorphism between the
graphs. Let k be the number of elements w ∈ W with a reflexive loop. It
is clear that Gr corresponds to an m × n-matrix such that m · n = k (cf.
Definition 2). The number of points w′ ∈ W ′ with a reflexive loop must
also be k, as the two graphs are isomorphic. Thus grid Gr′ corresponds to
an m′ × n′-matrix such that m′ · n′ = k. To conclude the proof it suffices
to show that n = n′.

We shall show that for each i ∈ N≥1 there is a first-order formula ϕi
such that for all M ∈ GRID we have α(M) |= ϕi iff M corresponds to
a j × i-matrix for some j. The claim of the lemma follows from this: As
G ∼= G′, they satisfy the same first-order sentences. Thus there is some i
such that both graphs G and G′ satisfy sentence ϕi. Thus n = i = n′.

We then show how to define formulae ϕi. We deal with the case where
i = 1 separately: We let ϕ1 = ∃x(ψt1(x) ∧ ∃=1y(xRy)), where ∃=1y stands
for ”there exists exactly one y”. We then consider the cases where i ≥ 2.
We first define the following formulae:

π2(x) = ∃y∃z(ψt1(y) ∧ yRz ∧ ¬zRy ∧ zRx ∧ ¬xRx)
succ(x, y) = ∃z(xRz ∧ zRy ∧ ¬yRy)

We then define ϕi (where i ≥ 2) in the following way:

ϕi = ∃x2, ..., xi

(
π2(x2) ∧

( ∧
2≤r<i

succ(xr, xr+1)
) ∧ ¬∃y(xiRy))

It is relatively easy to see that formulae ϕi have the desired meaning. �

5.2 MSO alternation hierarchy over localized grid graphs
In this subsection we show that results analogous to Theorem 10 hold for lo-
calized grid graphs (Proposition 16) and l-pointed grid graphs (Proposition
17).

We begin by showing how to transform any grid-formula ϕ1 ∈ Σn into a
graph-formula ϕ2 ∈ Σn that says the same about localized grid graphs as
ϕ1 says about grids:

LEMMA 13. For every grid-formula ϕ1 there exists a graph-formula ϕ2

such that for all grids Gr and all assignments f : VAR → Dom(Gr) ∪
P(Dom(Gr)),

Gr, f |= ϕ1 ⇔ α(Gr), f ′ |= ϕ2,

where valuation f ′ is defined such that for all x,X ∈ VAR, all a ∈ Dom(Gr)
and all A ⊆ Dom(Gr) we have f ′(x) = (a, 0) ⇔ f(x) = a and f ′(X) =
A × {0} ⇔ f(X) = A. Furthermore, for all n ∈ N, if ϕ1 ∈ Σn, then
ϕ2 ∈ Σn.
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Proof. We begin by showing how to define ϕ2 in the case where ϕ1 is
atomic. If ϕ1 is of type x = y or type X(y), we let ϕ2 = ϕ1. If ϕ1 is of type
xS1y, we let ϕ2 be the following formula:

ψt0(x) ∧ ψt0(y)→ ⊥
∧ ψt0(x) ∧ ¬ψt0(y)→ ∀z(zRy → (ψt0(z) ∨ z = y))
∧ ¬ψt0(x) ∧ ψt0(y)→ ⊥
∧ ¬ψt0(x) ∧ ¬ψt0(y)→ xRy ∧ x 6= y

If ϕ1 is of type xS2y, we define ϕ2 to be the following formula:

ψt0(x) ∧ ψt0(y)→ ⊥
∧ ψt0(x) ∧ ¬ψt0(y)→ ∃u(ψt1(u) ∧ uRy)
∧ ¬ψt0(x) ∧ ψt0(y)→ ⊥
∧ ¬ψt0(x) ∧ ¬ψt0(y)→ ∃z(xRz ∧ ¬zRz ∧ zRy)

For the sake of induction, assume ϕ1 = ¬π1. By the induction hypothesis
there exists a graph-formula π2 such that Gr, f |= π1 ⇔ α(Gr), f ′ |= π2

for all grids Gr and related assignments f . Let ϕ2 = ¬π2. Similarly, in
the case where ϕ1 = π1 ∧ π′1, let ϕ2 = π2 ∧ π′2, where graph-formulae
π2, π

′
2 are again chosen by the induction hypothesis. In the case where

ϕ1 = ∃x(π1), let ϕ2 = ∃x(xRx ∧ π2). Finally, in the case ϕ1 = ∃X(π1), let
ϕ2 = ∃X(∀x(X(x)→ xRx) ∧ π2). �

Our next aim is to show that for each graph-sentence ϕ2 ∈ Σn, there
exists a grid-sentence ϕ1 ∈ Σn that says the same about grids as ϕ2 says
about localized grid graphs. In order to establish this, we first need to
address a number of technical issues.

We define a new set of symbols VAR′ = VARFO ∪ (VARSO × {0}) ∪
(VARSO × {1}) ∪ (VARSO × {t0}) ∪ (VARSO × {t1}). Naturally we choose
our symbols such that the above five sets making up VAR′ are disjoint.
We associate each first-order variable with an index such that VARFO =
{x1, x2, ...}. We denote the new second-order variables of type (X, 0), (X, 1),
(X, t0) and (X, t1) by X0, X1, Xt0 and Xt1 respectively.

Let Gr be a grid. We partition the domain of grid graph α(Gr) into four
sets:

Vt0 = { ((1, 1), 0) }
Vt1 = { ((1, 1), 1) }
V0 = { ((x, y), 0) ∈ Dom(α(Gr)) | (x, y) 6= (1, 1)}
V1 = { ((x, y), 1) ∈ Dom(α(Gr)) | (x, y) 6= (1, 1)}

Now let κ : N≥1 −→ {0, 1, t0, t1} be a function. We say that assignment
f : VAR −→ Dom(α(Gr)) ∪ P(Dom(α(Gr))) is of type κ if f(xi) ∈ Vκ(i)
for all i ∈ N≥1. We call function κ an assignment type.

Each assignment f : VAR −→ Dom(α(Gr)) ∪ P(Dom(α(Gr))) is associ-
ated with a related assignment fGr : VAR′ −→ Dom(Gr) ∪ P(Dom(Gr))
defined in the following way:

∀a ∈ Dom(Gr)
(
fGr(x) = a ⇔ (

f(x) = (a, 0) or f(x) = (a, 1)
))
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for first-order variables x ∈ VAR′. For second-order variables X0,X1 ∈
VAR′ we let

fGr(X0) = {a ∈ Dom(Gr) | (a, 0) ∈ f(X)} \ {t}
fGr(X1) = {a ∈ Dom(Gr) | (a, 1) ∈ f(X)} \ {t},

where t = (1, 1) is the top left element of grid Gr. For second-order variables
Xti , where i ∈ {0, 1}, we let

fGr(Xti) =

{
{t} if (t, i) ∈ f(X), where t = (1, 1) ∈ Dom(Gr)
∅ otherwise

We are now ready for the following lemma:

LEMMA 14. For every graph-formula ϕ2 and every assignment type κ there
exists a grid-formula ϕκ1 such that for all grid graphs α(Gr) and assignments
f : VAR → Dom(α(Gr)) ∪ P(Dom(α(Gr))) of type κ,

Gr, fGr |= ϕκ1 ⇔ α(Gr), f |= ϕ2.

Furthermore, for all n ∈ N, if ϕ2 ∈ Σn, then also ϕκ1 ∈ Σn.

Proof. First assume that ϕ2 is atomic. If ϕ2 is xi = xj , then we let

ϕκ1 =

{
xi = xj when κ(i) = κ(j)
⊥ when κ(i) 6= κ(j)

If ϕ2 = xiRxj , we define ϕκ1 according to the following table:

(κ(i), κ(j)) ϕκ1 (κ(i), κ(j)) ϕκ1
(0, 0) xi = xj ∨ xiS1xj (0, t0) ⊥
(0, 1) xi = xj (t0, 0) ⊤
(1, 0) xiS2xj (0, t1) ⊥
(1, 1) ⊥ (t1, 0) ∃z(topleft(z) ∧ zS2xj)

(κ(i), κ(j)) ϕκ1 (κ(i), κ(j)) ϕκ1
(1, t0) ⊥ (t0, t0) ⊤
(t0, 1) ⊤ (t0, t1) ⊤
(1, t1) ⊥ (t1, t0) ⊤
(t1, 1) ⊥ (t1, t1) ⊥

where topleft(z) denotes formula ¬∃x(xS1z∨xS2z). Finally, if ϕ2 = X(xi),
we let ϕκ1 = Xκ(i)(xi). We now have a basis for an argument by induction.

If ϕ2 = ¬π2, we use π2 and the induction hypothesis to find πκ1 . We then
let ϕκ1 = ¬πκ1 . Similarly, if ϕ2 = π2 ∧ χ2, we use the induction hypothesis
to find πκ1 and χκ1 and let ϕκ1 = πκ1 ∧ χκ1 .

In the case where ϕ2 = ∃x(π2) we apply the induction hypothesis to π2

in order to find formulae πκ[x7→i]
1 , where i ∈ {0, 1, t0, t1}, such that

Gr, fGr |= π
κ[x7→i]
1 ⇔ α(Gr), f |= π2
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holds for all grid graphs α(Gr) and valuations f of type κ[x 7→ i]. We then
use these four formulae and define ϕκ1 to be the following formula:

∃x
(
topleft(x) ∧ π

κ[x7→t0]
1

∨ topleft(x) ∧ π
κ[x7→t1]
1

∨ ¬topleft(x) ∧ π
κ[x7→0]
1

∨ ¬topleft(x) ∧ π
κ[x7→1]
1

)
Finally, if ϕ2 = ∃X(π2), we find a grid formula πκ1 corresponding to π2 by

the induction hypothesis and set ϕκ1 = ∃X0∃X1∃Xt0∃Xt1(χ ∧ πκ1 ), where
χ is the conjunction of formulae ∀x(X0(x) ∨ X1(x) → ¬topleft(x)) and
∀x(Xt0(x) ∨Xt1(x)→ topleft(x)). �
COROLLARY 15. For every graph-sentence ϕ2 there exists a grid-sentence
ϕ1 such that for all grid graphs α(Gr),

Gr |= ϕ1 ⇔ α(Gr) |= ϕ2.

Sentence ϕ1 can be chosen such that it is on the same level of the second-
order quantifier alternation hierarchy as ϕ2.

Proof. Choose an arbitrary κ and apply Lemma 14. �
The next two propositions will be needed later on, but they are also

interesting in their own right as they characterize the MSO alternation
hierarchy with respect to localized graphs.

PROPOSITION 16. For all n ∈ N≥1 we have Σn(LGG) 6= Σn+1(LGG).

Proof. Fix an arbitrary positive integer n. By Theorem 10 there is a class
of grids C ∈ Σn+1(GRID) \ Σn(GRID). Let ϕ1 ∈ Σn+1 define C w.r.t.
class GRID. We apply Lemma 13 to find a graph-sentence ϕ2 ∈ Σn+1 such
that Gr |= ϕ1 ⇔ α(Gr) |= ϕ2 for all grids Gr. It is clear that ϕ2 defines,
with respect to the class of localized grid graphs, the isomorphism closure
of class α(C).

We then show that there exists no graph-sentence ψ2 ∈ Σn that defines
the isomorphism closure of class α(C) w.r.t. class LGG. For assume ψ2

exists. Use Corollary 15 to choose the related grid-sentence ψ1. Now, since
α is injective, grid-sentence ψ1 ∈ Σn defines class C w.r.t. the class of grids.
This is a contradiction. �
PROPOSITION 17. For all n ∈ N≥1 we have Σn(LGGp) 6= Σn+1(LGGp).

Proof. Fix an arbitrary n ∈ N≥1. By Proposition 16 there exists some
sentence π ∈ Σn+1 that defines some class C ∈ Σn+1(LGG) \ Σn(LGG)
w.r.t LGG. Thus the l-pointed version Cp of C is definable w.r.t. LGGp by
formula (x = x) ∧ π, which is obviously in [Σn+1].

Assume that Cp is definable w.r.t. LGGp by some formula ϕ(x) ∈ Σn.
Let ϕ(x) = Qψ(x), where Q is a vector of second-order quantifiers and ψ(x)
is a first-order formula. Sentence Q(∃x(ψt0(x) ∧ ψ(x))) ∈ Σn defines class
C w.r.t. LGG. This contradicts our assumption. �



A modal perspective on monadic second-order alternation hierarchies 245

5.3 Alternation hierarchy of SOPML over directed graphs

We now prove that the alternation hierarchy of SOPML is infinite. We first
show this for pointed graphs and then for graphs.

THEOREM 18. The alternation hierarchy of SOPML over pointed directed
graphs is infinite.

Proof. Fix an arbitrary n ∈ N≥1. Then apply Proposition 17 in order to
find some class Hp ∈ Σn+1(LGGp) \ Σn(LGGp) of l-pointed grid graphs.
By Lemma 8 there exists an SOPML-sentence that defines class Hp w.r.t.
class LGGp.

Now, class Hp cannot be definable w.r.t. class LGGp by any SOPML-
sentence on the n-th level of the alternation hierarchy of SOPML. For
assume that ϕ ∈ ΣML

n defines Hp w.r.t LGGp. Now Stx(ϕ) is an MSO-
formula in Σn that defines Hp w.r.t. LGGp. �

THEOREM 19. The alternation hierarchy of SOPML over directed graphs
is infinite.

Proof. Fix an arbitrary n ∈ N. By Proposition 16 there exists a class
H ∈ Σn+3(LGG) \ Σn+2(LGG) of localized grid graphs. We shall first
establish that class H is SOPML-definable w.r.t. LGG.

Consider the following SOPML-sentence:

ψ = ∀px(px → 3px) ∧ ∀px(px → ∃py(¬py ∧3(py ∧3px)))

To see that ψ fixes localizers on LGG, notice that the only point u of a
localized grid graph that satisfies conditions uRu and ∃v(v 6= u∧uRv∧vRu)
is the localizer. As sentence ψ fixes localizers on LGG, Lemma 9 implies
that class H is definable w.r.t LGG by some SOPML-sentence.

Assume then, for contradiction, that H ∈ ΣML
n (LGG). Thus there exists

an SOPML-sentence π ∈ ΣML
n that defines class H w.r.t LGG. It is easy to

see that therefore MSO-sentence ϕ = ∀x(Stx(π)) defines H w.r.t LGG. To
conclude the proof, it now suffices to show that there is an MSO-sentence
in Σn+2 that is equivalent to ϕ.

Let π = ∃py...pv(π′), where ∃py...pv is a vector of proposition quantifiers
and π′ a quantifier-free formula. Consider the following sentence:

∀X∃Py...Pv
(
∀x

(
X(x) ∧ ∀z(X(z)→ x = z)→ Stx(π′)

))
It is easy to see that this sentence is equivalent to ϕ and in Σn+2. �

As the class of Kripke frames is a superclass of the class of finite directed
graphs, we immediately obtain the following corollary:

COROLLARY 20. The alternation hierarchy of SOPML over Kripke frames
is infinite.
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6 Concluding remarks

We have shown that the quantifier alternation hierarchy of SOPML in-
duces an infinite corresponding semantic hierarchy over the class of finite
directed graphs (Theorem 19). While establishing the result, we have de-
fined the notion of a localized structure and characterized the MSO alterna-
tion hierarchy over localized (finite directed) graphs. Theorem 19 answers
a longstanding open problem from [4] (also addressed in [8]). The result is
also relatively interesting from the point of view of finite model theory, as
SOPML is a semantically natural fragment of MSO (cf. Theorem 6 in [8]).

In addition to obtaining the results related to alternation hierarchies, we
have observed that with regard to expressive power, MSO = SOPML(E ) =
SOPML(D). Connections of this kind offer an interesting modal perspective
on MSO . For example, they suggest alternative approaches to MSO-games
(see [15] for the definition).

Finally, our techniques do not directly yield strictness of the hierarchy
of SOPML. The reason for this is that an MSO-formula ϕ ∈ Σn cannot
necessarily be translated to an SOPML-formula in ΣML

n , as in the general
case the first-order quantifiers of ϕ translate to second-order quantifiers.
Therefore, it remains to be investigated whether the SOPML alternation
hierarchy is strict over finite directed graphs.
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