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abstract. Most temporal logics, particularly interval temporal logics, are

not expressive enough to capture meanings of natural language construc-

tions, and they are not convenient to represent temporal expressions. In

addition, these formal systems exhibit high computational complexity. In

this paper we introduce a decidable event-based interval logic, called EIL.

EIL can express the semantics of some natural language constructions.
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1 Introduction

In a sentence of natural language temporal information is stored in temporal
constructions such as prepositions. In order to understand the semantics of
a sentence in English or in any other language it is very important to capture
temporal meanings. Sentences encoding temporal information usually speak
of events and their temporal relations. A natural question that arises here
is what is the computational complexity of determining logical relationships
between sentences encoding temporal information?

This question is of theoretical interest, because events in sentences with
temporal information are extended in time; and temporal logics which deal
with extended events so-called interval temporal logics, typically exhibit
high computational complexity. Generally speaking, these logics are not ex-
pressive enough to capture the meanings of natural language constructions,
and therefore they are not convenient to represent temporal expressions.

The formal semantics of temporal constructions in English have been
studied by various researchers [4, 7, 1, 6, 11, 10, 8]. In most of the cases the
issues related to computational complexity and expressive power are rarely
investigated. In fact, in many cases, the semantics of temporal constructions
in a natural language are represented in a first-order language having vari-
ables which range over time-intervals and predicates which correspond to
event-types and temporal order-relations. Such a logic can be easily shown
to be undecidable.

The recent interest is using logical fragments of limited computational
complexity, because there are evident practical and theoretical reasons for
presenting the semantics of natural language constructions, using formal
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systems of limited expressive power. In particular, this is important to
achieve the decidability of such systems.

In this paper, we introduce a decidable event-based interval temporal logic,
called EIL. The logic EIL has a limited expressive power; yet it has affinity
with the syntax of temporal constructions in English, and it is convenient
for expressing the semantics of natural language constructions.

In the literature various methods have been proposed to achieve decid-
ability for interval logics. However, most of the methods, such as translat-
ing interval logics into point-based ones, cause some syntactic and semantic
restrictions. A major challenge in this area is thus to genuinely identify
interval-based decidable logics, that is, logics which are not explicitly trans-
lated into point-based logics or other semantic restrictions.

Unlike many other interval logics, we do not translate the logic EIL into a
point-based variant, and we therefore try to minimise semantic restrictions.
Instead, we consider intervals as primitive objects of the model by allowing
quantification over only interval objects. Another important feature of EIL
is that it incorporates the notion of duration, which denotes the length of
the time period at which an event occurs (that is, it starts and finishes).

In this paper we propose a tableau-based decision procedure for EIL, thus
showing that its satisfiability problem is decidable. We, indeed, provide a
complexity bound for satisfiability, showing that this problem can be solved
in 2-NEXPTIME. The tableau method we introduce decides whether the
given formula is satisfiable or not, and generates a model if the formula is
satisfiable.

The plan of this paper is as follows. In Section 2 the syntax and semantics
of EIL will be presented. In Section 3 we will give a depth bound for EIL
models. In Section 4 a tableau system will be proposed for the logic. In
Section 5 we will give some concluding remarks, and discuss some future
work.

2 The logic EIL

In this section we present syntax and semantics of the logic EIL. In the rest
of this paper we take an interval to be a closed, bounded and non-empty
subset of the real line. More formally we say that an interval is a pair
[t1, t2] such that t1, t2 ∈ R and t1 ≤ t2. We denote the set of all intervals
{[t1, t2] : t1 ≤ t2 ∧ t1, t2 ∈ R} by I, and we use letters I, J, ..., as intervals. It
can be simply observed that intervals may be points. Note also the temporal
domain is continuous. EIL formulas are evaluated relative to time-intervals.
As will be seen later, having event-types in the syntax of the language will
allow us to formalize event-based sentences of a natural language. EIL also
incorporates the notion of duration (of an event).

Event types are denoted by the letters e1, e2, e3, .... We interpret an
event e so that it is satisfied by all and only those time intervals over which
e occurs. We will think of 〈e〉 as the occurrence of e over an interval J .
Below we define some functions on I.
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DEFINITION 1. Let J, I ∈ I be the intervals [a, b] and [c, d], respectively,
with a ≤ c ≤ d ≤ b. The terms init(J, I) and fin(J, I) denotes the intervals
[a, c] and [d, b], respectively, where init and fin are partial functions.

In the sequel, let E be a finite set. We refer to elements of E as event
atoms.

DEFINITION 2. Let e ∈ E be an event atom, φ, ψ be EIL formulas, k ∈ R,
and τ ∈ {<,≤,=,≥, >}. The logic EIL is defined by induction as follows:

φ ::= ⊤ | 〈∫ eτk〉φ | [∫ eτk]φ | 〈∫ eτk〉
<
φ | [∫ eτk]

<
φ |〈∫

eτk
〉
>
φ | [∫ eτk]

>
φ | ¬φ | φ ∧ ψ | φ ∨ ψ

The connectives → and ↔ can be defined in usual way. For simplicity,
we will denote

〈∫
e ≥ 0

〉
and

[∫
e ≥ 0

]
as 〈e〉 and [e], respectively.

Before giving the formal semantics of EIL formulas, we will define an EIL
model.

DEFINITION 3. Let I be the set of all bounded, closed and non-empty
intervals of real numbers, and E be a finite set of event atoms. An EIL
modelM is a finite subset of I × E .

As can be seen from the construction an EIL model, intervals are primi-
tive objects of the model.

DEFINITION 4. Let M be an EIL model, |J | denote the length of the
interval J , and I ∈ I. The formal semantics of EIL formulas is then defined
as follows:

• M |=I

〈∫
eτk

〉
φ iff ∃J ⊆ I such that 〈J, e〉 ∈ M and |J | τk and

M |=J φ;

• M |=I

[∫
eτk

]
φ iff ∀J ⊆ I 〈J, e〉 ∈ M and |J | τk imply M |=J φ;

• M |=I

〈∫
eτk

〉
<
φ iff ∃J ⊆ I such that 〈J, e〉 ∈ M and |J | τk and

M |=fin(J,I) φ;

• M |=I

[∫
eτk

]
<
φ iff ∀J ⊆ I 〈J, e〉 ∈ M and |J | τk implyM |=fin(J,I)

φ;

• M |=I

〈∫
eτk

〉
>
φ iff ∃J ⊆ I such that 〈J, e〉 ∈ M and |J | τk and

M |=init(J,I) φ;

• M |=I

[∫
eτk

]
>
φ iff ∀J ⊆ I 〈J, e〉 ∈ M and |J | τk implyM |=init(J,I)

φ;

• M |=I ¬φ iff not M |=I φ;

• M |=I φ ∧ ψ iff M |=I φ and M |=I ψ;

• M |=I φ ∨ ψ iff M |=I φ or M |=I ψ.



180 Savas Konur

One important characteristic of EIL formulas is the ‘quasi-guarded’ nature
of the quantification they feature. Thus, for example, the formula 〈e〉φ
existentially quantifies over intervals satisfying the event e (similarly for
universal formulas). So it does not quantify over all subintervals of the
current interval of evaluation without restriction. However, many modal
logics, such as HS [5] and CDT [12], lack the ‘quasi-guarded’ character of
the quantification that EIL formulas feature. This feature is very important
to guarantee the decidability.

Before ending this section we will show how EIL represents English sen-
tences including the temporal constructions. Consider the following sen-
tences (in a fragment of English):

(2.1) A warning is received during every control period until
the water level becomes normal.

(2.2) After a drop in the water level, a warning is received
during every control period until the water level becomes
normal.

The meaning of (2.1) is that, within the given temporal context I, there
is an interval J over which the water level is normal; over every interval J ′,
which is subsumed by the initial segment of I up to the beginning of I, a
control period occurs; and J ′ subsumes some interval over which a warning
is received. The sentence (2.1) is translated into EIL as follows:

(2.3) 〈normal〉< [control] 〈warning〉⊤.

The sentence (2.2) can be represented by the following EIL formula:

(2.4) 〈drop〉> 〈normal〉< [control] 〈warning〉⊤.

Let’s look at how EIL represents the event-based English sentences in-
cluding duration. Consider the following sentence:

(2.5) John solved a problem in less than ten minutes during
every lunch break.

This sentence can be translated into EIL as follows:

(2.6) [break]
〈∫

solve ≤ 10
〉

3 Finding a depth limit for EIL models

In this section we show that the depth of an EIL model is exponentially
bounded by the length of a given formula ϕ whose satisfiability is checked.

We remark that the condition in Definition 3 that models are finite sub-
sets of I × E is significant. Because there might be some EIL formulas
which cannot be satisfied in a finite model. Consider, for example, the
〈e〉⊤∧ [e] 〈e〉⊤. This formula is not satisfiable in a finite model; because it
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implies that every occurrence of e over an interval J requires another e to
occur over a subinterval of J . Therefore, the formula is unsatisfiable in a
finite model.

Below we will show how to normalize an EIL formula to the desired form.

LEMMA 5. Every EIL formula is logically equivalent to one in which ¬
appears only in subformula of the form ⊥ (= ¬⊤).

Proof. The proof is trivial for ⊥ . In an EIL formula ¬ can be moved
inwards as follows:
¬ 〈∫

eτk
〉
φ ≡ [∫

eτk
]¬φ; ¬ [∫

eτk
]
φ ≡ 〈∫

eτk
〉¬φ;

¬ 〈∫
eτk

〉
<
φ ≡ [∫

eτk
]
<
¬φ; ¬ [∫

eτk
]
<
φ ≡ 〈∫

eτk
〉
<
¬φ;

¬ 〈∫
eτk

〉
>
φ ≡ [∫

eτk
]
>
¬φ; ¬ [∫

eτk
]
>
φ ≡ 〈∫

eτk
〉
>
¬φ. �

By means of Lemma we can normalize the forms of EIL formulas.

DEFINITION 6. Given an EIL formula ϕ and a non-empty modelM, the
depth ofM is the greatest m for which there exist J1 ⊆ ... ⊆ Jm such that
for all i, 1 ≤ i ≤ m and for some e ∈ E , 〈Ji, e〉 ∈ M. The depth of an empty
model is defined to be 0.

LEMMA 7. Let ϕ be an EIL formula. ϕ can be satisfied in a model M
which is exponentially bounded by the length of ϕ.

Proof. Assume ϕ has the form guaranteed by Lemma 5. Let m be the num-
ber of existential subformulas of ϕ (

〈∫
eτk

〉
φ,

〈∫
eτk

〉
<
φ and

〈∫
eτk

〉
>
φ),

and n be the number of universal subformulas of ϕ (
[∫
eτk

]
ψ,

[∫
eτk

]
<
ψ

and
[∫
eτk

]
>
ψ). An existential subformula

〈∫
eτk

〉
φ, similarly

〈∫
eτk

〉
<
φ

and
〈∫

eτk
〉
>
φ, implies that M contains an entry 〈J, e〉 for some interval

J . Since ϕ is satisfiable, by semantics φ must be true at J . From this
we can conclude that J subsumes a chain of intervals which satisfy event
atoms occuring in φ. The length of such a chain is thus bounded by |ϕ|. So,
every existential subformula of ϕ implies a chain of intervals, whose length
is bounded by |ϕ|. In the worst case, these chains are aligned one under the
other, and construct a longer chain, which is bounded by m |ϕ|.

Moreover, a universal subformula of the type
[∫
eτk

]
ψ implies that ψ is

true at each interval J satisfying e. We can therefore conclude that each
J subsumes a chain of intervals which satisfy event atoms occuring in ψ
(
[∫
eτk

]
<
ψ and

[∫
eτk

]
>
ψ can be considered similarly). In the worst case,

the bound on the length of the whole chain increases to m |ϕ|2. If we repeat
the same step for the remaining n−1 universal subformulas we will see that
the bound becomes kn, where k = m |ϕ|. Since m < |ϕ| and n < |ϕ|, we
can conclude that kn < |ϕ|2|ϕ|. It easily follows that the depth bound of
the model M is 2p(|ϕ|), where p is a fixed polynomial. �

We remark that the exponential depth bound that we have found is not
optimal. Here we have based our calculations into the worst case to find an
upper limit, even if this case may be never encountered.
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In the next section we will show that the size of this model is doubly
exponential by the length of ϕ. We will actually derive the model from the
tableau generated by a tableau procedure.

4 A tableau system procedure for EIL

In this section we propose a terminating tableau system for the logic EIL,
thus showing that its satisfiability problem is decidable. Indeed, the sat-
isfiability problem for EIL is in 2-NEXPTIME. This is proved by building
models whose sizes are exponentially bounded.

In the following, we define a tableau-based decision procedure for EIL,
and analyze its computational complexity. Then, we prove its soundness
and completeness. The procedure is based on an expansion strategy. The
expansion strategy involves three rules: the interval relation rule, which
nondeterministically guesses the interval relation among nodes in the graph,
the existential node expansion rule, which expands existential subformulas
in a node and the universal node expansion rule, which expands universal
subformulas in a node. A blocking condition guarantees the termination of
the method.

4.1 Preliminary notions

In the following we introduce some preliminary notions which will be used
throughout the rest of the paper.

DEFINITION 8.
A successor of a node v is a node w such that there is an edge from v

to w. A path is a sequence of nodes v1, ...,vk such that for all 1 ≤ i < k,
vi+1 is a successor of vi. The depth of a node v is the maximum number
of edges of a path from the root node to v.

DEFINITION 9.
A decorated graph G is a graph in which every node has a decoration.

For a node v ∈ G, a decoration λ(v) is a 5-tuple ([bv, ev], ρ(v),K(v),L(v),
L′(v)), where bv (ev) is a constraint variable denoting the beginning (ending)
of the interval represented by the node v, ρ(v) denotes the label of the node
v (where ρ(v) ∈ E), K(v) denotes a formula associated with the node v, and
L(v) and L′(v) denote a set of subformulas associated with the node v.

DEFINITION 10.
A temporal constraint is a relation involving constraint variables which

denote interval endpoints.

For example, the temporal constraint bv ≥ bu, ev ≤ eu shows an interval
relation between [bv, ev] and [bu, eu].

DEFINITION 11.
A tableau for a given formula ϕ is a tuple 〈G, C〉, where G denotes a

decorated graph, and C denotes the set of temporal constraints in the graph
G.
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4.2 Tableau method
Let ϕ be a formula to be checked for satisfiability over an interval I0. The
initial tableau for ϕ is the tuple 〈v0, C0〉, where v0 is the initial graph with the
decoration λ(v0) = ([bv0 , ev0 ],ρ(v0),K(v0), L(v0),L′(v0)) such that ρ(v0) =
root, K(v0) = ϕ, L(v0) = ∅, L′(v0) = ∅, and C0 is the initial set of temporal
constraints such that C0 = {bv0 = start(I0), ev0 = end(I0)}. Assume Q
denotes the queue of nodes in G awaiting processing. Then, the inital value
of Q is {v0}.

A tableau for ϕ is a tuple 〈G, C〉, where C is obtained by expanding the
initial constraint set C0 with temporal constraints in the existing nodes, and
the decorated graph G is obtained by expanding the initial node v0 through
successive applications of the expansion strategy to existing nodes until no
node remains to process. In other words, the expansion strategy is applied
to every node in Q until Q = ∅. When a node is selected, it is removed from
Q.

During the application of the expansion strategy to a node, we need
to solve the temporal constraints in C. Remember that each node of the
graph represents an interval. For our purposes, we model intervals as
pairs of endpoints, which are distinct numbers on the real line. Let T =
{bv1 , ..., bvn

, ev1 , ..., evn
} be a set of constraint variables. The constraints of

a tableau can be represented as a Simple Temporal Problem [3]. Given that
n is the number of variables the complexity of a solution to a STP (if there
is any) can be found in O(n3) time and O(n2) space. If the set of temporal
constraints in C is inconsistent, then a solution will not be found, and we
say C is not satisfiable.

In order to avoid infinite paths, and therefore to have a finite satisfying
model we need to guarantee the termination of the proposed tableau method
below. In the following we give a suitable stopping condition for the tableau
procedure:

DEFINITION 12. A tableau 〈G, C〉 is closed if one of the following condi-
tions hold:

• ⊥ ∈ L(v) for some node v in G,
• C is not satisfiable,

• The depth of the shortest path v0 → ... → v is more than |ϕ|2 for
some node v in G (where v0 is the root node.)

DEFINITION 13. A tableau is open if it is not closed.

Once the tableau procedure terminates, we check whether the tableau
generated is open. For a given formula ϕ if there is an open tableau, then ϕ
is satisfiable, and the satisfying model M is derived from the tableau. We
do this by picking some solution σ, which assigns real values to constraint
variables in C. Let Jv = [σ(bv), σ(ev)] be the interval represented by a node
v of G. We construct a modelM as follows: M ={〈Jv, ρ(v)〉 |for any v ∈ G
s.t. ρ(v) /∈ {root,−}}. If the tableau is closed, then ϕ is unsatisfiable.
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Expansion strategy.
Let 〈G, C〉 be a tableau, v be a node in G with λ(v) = ([bv, ev], ρ(v),K(v),
L(v),L′(v)), and Q be the queue of nodes awaiting processing. We say the
expansion strategy for a node v is defined as follows:

If the tableau is open, apply the following rules:
Rule 1. Set Q := Q \ {v}, and apply the interval relation rule to the
node v.
Rule 2. Let the Disjunctive Normal Form (DNF) of K(v) be ψ1 ∨ ... ∨ ψn
where ψi = ψi1 ∧ ...∧ψini

(n ≥ 1,1 ≤ i ≤ n and ni ≥ 1). Select some i, and
set L′ (v) := {ψi1, ..., ψini

}, L (v) := L (v) ∪ L′ (v) and K(v) := ⊤.
Rule 3. Apply the universal node expansion rule to the node v.
Rule 4. Apply the existential node expansion rule to the node v.

Interval relation rule.
The interval relation rule guesses the interval relation between the given
node and all other nodes in the graph. In [1] Allen introduced well-known
thirteen different binary relations between intervals on a linear ordering,
which are before, meets, overlaps, starts, during, finishes, equals, finished by,
during by, started by, overlapped by, met by and after.

Let 〈G, C〉 be a tableau, and v be a node in G with λ(v) = ([bv, ev], ρ(v),
K(v), L(v),L′(v)). Assume τ ′ is the corresponding inverted operator of
τ (where τ ∈ {<,≤,=,≥, >}). The interval relation rule for a node v is
defined as follows:

For any node u (except v) in G
If there is no edge from u to v, or from v to u, then nondeterministically

guess the interval relation between u and v:
v before u : Set C := C ∪ {ev < bu}.
v meets u : Set C := C ∪ {ev = bu}.
v non-strict-during u : Set C := C ∪ {bv ≥ bu, ev ≤ eu}, and add an edge

from u to v (u→ v).

• if ρ(v) = e and
[∫
eτk

]
ψ ∈ L(u), then set either i) C := C ∪

{(ev − bv)τ ′k}; or ii)C := C ∪ {(ev − bv)τk} and K(v) := K(v) ∧ ψ.

• if ρ(v) = e and
[∫
eτk

]
<
ψ ∈ L(u), then for every

[∫
eτk

]
<
ψ ∈ L(u)

do either i) set C := C∪{(ev − bv)τ ′k}; or ii) set C := C∪{(ev − bv)τk},
add an immediate successor w with ρ(w) = −, K(w) = ψ, L(w) = ∅,
L′(w) = ∅, set C := C ∪ {bw = ev, ew = eu}, add an edge from u to w
and v to w (u→ w,v → w), and set Q := Q ∪ {w}.

• if ρ(v) = e and
[∫
eτk

]
>
ψ ∈ L(u), then follow the step above;

except that rather than setting C := C ∪ {bw = ev, ew = eu}, set
C := C ∪ {bw = bv, ew = bu}.

v overlaps u : Set C := C ∪ {bv < bu < ev < eu}, and add an edge from u
to v (u→ v).
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Given two intervals J1 and J2, we say J1 non-strict-during J2 if J1 is a
non-strict subinterval of J2. Once we guess the interval relation as “non-
strict-during”, we do not need to consider the relations “equals”, “during”,
“starts”, “started-by”, “finishes” and “finished-by”. The cases where v
“after” u, v “met-by” u, v “includes” u and v “overlapped-by” u can be
dealt with similarly. Note that in the interval relation rule, we consider the
possibility that L(u) of an existing node u includes a universal subformula
which might update the decoration of the node v.

Please note that when we denote an interval relation between two nodes,
such as v “during” u, we mean this interval relation holds between the in-
tervals represented by these nodes. For simplicty, we will use this adaption.

Universal node expansion rule.
The universal node expansion rule expands all universal subformulas in
L′(v). Let 〈G, C〉 be a tableau, and v be a node in G with λ(v) = ([bv, ev],
ρ(v),K(v),L(v),L′(v)). Assume τ ′ is the corresponding inverted operator
of τ (where τ ∈ {<,≤, =,≥, >}). The universal node expansion rule for a
node v is defined as follows:

For every ξ∈ L′(v)
if ξ =

[∫
eτk

]
ψ, then for every node u (except v) in G with ρ(u) = e

and u non-strict-during v, set either i) C := C ∪ {(eu − bu)τ ′k}; or ii)
C := C ∪ {(eu − bu)τk}, K(u) := K(u) ∧ ψ and Q := Q ∪ {u}.

if ξ =
[∫
eτk

]
<
ψ, then for every node u (except v) in G with ρ(u) = e

and u non-strict-during v, do either i) set C := C ∪ {(eu − bu)τ ′k}; or ii)
set C := C ∪ {(eu − bu)τk}, add an immediate successor w with ρ(w) = −,
K(w) = ψ, L(w) = ∅, L′(w) = ∅, set C := C ∪ {bw = eu, ew = ev} and set
Q := Q ∪ {w}.

where u “non-strict-during” v is true if bw ≥ bv, ew ≤ ev ∈ C. The case
where ξ =

[∫
eτk

]
>
ψ can be dealt with similarly. As a result of applying

the universal node expansion rule, some of the existing nodes might be re-
visited, which means we re-execute the expansion strategy for these nodes.
In this case, interval relations will not be guessed again; but their decoration
might get updated.

Existential node expansion rule.
The existential node expansion rule expands all existential subformulas
in L′(v). Let 〈G, C〉 be a tableau, and v be a node in G with λ(v) =
([bv, ev],ρ(v),K(v),L(v),L′(v)). Assume τ ′ is the corresponding inverted
operator of τ (where τ ∈ {<,≤,=,≥, >}). The existential node expansion
rule for a node v is defined as follows:

For every ξ∈ L′(v)
if ξ =

〈∫
eτk

〉
ψ, then add an immediate successor w with ρ(w) = e,

K(w) = ψ, L(w) = ∅, L′(w) = ∅, set C := C∪{bw ≥ bv, ew ≤ ev,(ew−bw)τk},
and set Q := Q ∪ {w}.

if ξ =
〈∫

eτk
〉
<
ψ, then add two immediate successors w,w′ with ρ(w) =

e, K(w) = ∅, L(w) = ∅, L′(w) = ∅ and ρ(w′) = −, K(w′) = ψ, L(w′) = ∅,
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L′(w′) = ∅, set C := C ∪ {bw ≥ bv, ew ≤ ev, bw′ = ew, ew′ = ev}, and set
Q := Q ∪ {w,w′}.

The case where ξ =
〈∫

eτk
〉
>
ψ can be dealt with similarly. The existen-

tial node expansion rule creates a new node (or nodes). In the next run, we
apply the expansion strategy to this node, and the decoration of this node
gets updated according to Rule 2.

4.3 Soundness and completeness
The soundness and completeness of the proposed tableau method is proved
below. But we first prove the termination of the method.

THEOREM 14. The tableau method for EIL terminates.

Proof. Let 〈G, C〉 be a tableau constructed by the tableau procedure for
a given a formula ϕ. By the stopping condition in the tableau procedure
every node of G has a finite outgoing degree and every branch of it is of
finite length. Therefore, the tableau method terminates. �

THEOREM 15. Let ϕ be an EIL formula which has the form guaranteed by
Lemma 5. ϕ is satisfiable iff there is an open tableau for ϕ.

Proof. Soundness (⇐) :
Suppose 〈G, C〉 is an open tableau for ϕ. We pick some solution σ : V → R,

which assigns real values to constraint variables in C. Let Jv = [σ(bv), σ(ev)]
be the interval represented by the node v of G. We construct a model M
as follows: M ={〈Jv, ρ(v)〉 |for any v ∈ G s.t. ρ(v) /∈ {root,−}}.

Now we show that M |=I0 ϕ (where I0 is the initial interval). We claim
that for every v in G,M |=Jv

L(v). We show, by structural induction, that
φ ∈ L (v) implies M |=Jv

φ. Note that, by construction of the tableau,
L(v) comprises the formulas are of the forms ⊤, ⊥,

〈∫
eτk

〉
ψ,

〈∫
eτk

〉
<
ψ,〈∫

eτk
〉
>
ψ,

[∫
eτk

]
ψ,

[∫
eτk

]
<
ψ and

[∫
eτk

]
>
ψ.

Base Case:
φ = ⊤ : Trivial
φ = ⊥ : Since 〈G, C〉 is an open tableau, by definition 12 and 13, ⊥ /∈

L (v).

Inductive Case:
φ =

〈∫
eτk

〉
ψ : By the existential node expansion rule, there exists a

node w with ρ(w) = e and K(w) = ψ. In addition, C contains bw ≥ bv, ew ≤
ev and (ew − bw)τk. Let ψ be ψ1 ∨ ... ∨ ψn where ψi = ψi1 ∧ ... ∧ ψini

(n ≥ 1,1 ≤ i ≤ n and ni ≥ 1). By Rule 2, ψi1, .., ψini
∈ L(w) for some i

(1 ≤ i ≤ n). By the inductive hypothesis, M |=Jw
ψi1 ∧ ... ∧M |=Jw

ψini
.

Therefore, M |=Jw
ψ. By construction, we have 〈Jw, e〉 ∈ M with |Jw| τk

and Jw ⊆ Jv. Thus,M |=Jv
φ.

φ =
〈∫

eτk
〉
<
ψ and φ =

〈∫
eτk

〉
>
ψ : Similar to the case φ =

〈∫
eτk

〉
ψ.

φ =
[∫
eτk

]
ψ : By the construction of M, for any J ∈ I if 〈J, e〉 ∈ M,

then there exists a node u in G such that Ju = J . According to the universal
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node expansion rule (or the interval relation rule) if Ju ⊆ Jv, then we do
either: i) set C := C ∪ {(eu − bu)τ ′k} (τ ′ is the corresponding inverted
operator of τ); or ii) set C := C ∪ {(eu − bu)τk} and K(u) := K(u) ∧ ψ.

Assume |Ju| τk is false. Whatever the choice is, it is trivial to see that
〈Ju, e〉 ∈ M, Ju ⊆ Jv and |Ju| τk imply M |=Ju

ψ. Assume |Ju| τk is true.
In this case, option imentioned above cannot have been selected. Otherwise,
C would contain {(eu − bu)τ ′k}, and it would result in an inconsistency. So
option ii has been taken. In this case, we set C := C ∪ {(eu − bu)τk} and
K(u) := K(u) ∧ ψ. Let ψ be ψ1 ∨ ... ∨ ψn where ψi = ψi1 ∧ ... ∧ ψini

(n ≥ 1,1 ≤ i ≤ n and ni ≥ 1). By Rule 2, ψi1, .., ψini
∈ L(u) for some i

(1 ≤ i ≤ n). By the inductive hypothesis, M |=Ju
ψ. By construction, we

have 〈Ju, e〉 ∈ M. We also know that Ju ⊆ Jv and |Ju| τk. Therefore, for
any witness Ju, 〈Ju, e〉 ∈ M, Ju ⊆ Jv and |Ju| τk imply M |=Ju

ψ. Thus,
M |=Ju

φ.
φ =

[∫
eτk

]
<
ψ and φ =

[∫
eτk

]
>
ψ : Similar to the case φ =

[∫
eτk

]
ψ.

We have proved that for every v in G, M |=Jv
L(v). In particular,

M |=I0 L(v0). We know that K(v0) = ϕ. Now assume ϕ = ϕ1 ∨ ... ∨ ϕn,
where ϕi = ϕi1 ∧ ... ∧ ϕini

(n ≥ 1, 1 ≤ i ≤ n and ni ≥ 1). According to
Rule 2, L(v0) = {ϕi1, ..., ϕini

} for some value of i. Therefore, we can easily
conclude that M |=I0 ϕ.

Completeness (⇒) :
Let ϕ be a satisfiable formula, and I0 be an interval. By Lemma 7 ϕ

can be satisfied by a model M, which has a depth bound of 2p(|ϕ|) for a
fixed polynomial p, such thatM |=I0 ϕ. We will show that there is an open
tableau 〈G, C〉 for ϕ.

The initial tableau for ϕ is the tuple 〈v0, C0〉, where v0 is the initial graph
such that K(v0) = ϕ and L(v0) = ∅, and C0 is the initial set of temporal
constraints such that C0 = {bv0 = start(I0), ev0 = end(I0)}. According to
the expansion strategy we apply the interval relation rule to the node v0
as L(v0) is empty. But since there is only one node, K(v0) does not get
updated. Let the disjunctive normal form of K(v0) = ϕ be ϕ1 ∨ ... ∨ ϕn,
where ϕi = ϕi1 ∧ ... ∧ ϕini

(n ≥ 1, 1 ≤ i ≤ n and ni ≥ 1). Since M |=I0 ϕ,
M |=I0 ϕi for at least one value of i. So in Rule 2 we pick this value of i,
so that L(v0) = {ϕi1, ..., ϕini

}.
Now, we claim that for each node v in G, there exists an interval Jv

such that M |=Jv
L(v) (Once we pick a witness Jv, it remains assigned to

the node v until the tableau procedure terminates.) We prove the claim
by induction on the stage in tableau construction at which the node v was
created.

Base case:
Above we have shown that M |=I0 ϕi for some value of i, and L(v0) =

{ϕi1, ..., ϕini
}. So, it is trivial to seeM |=I0 L(v0).

Inductive case:

Case 1: Let w be a node in G such that ρ(w) = e. Then w must have
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been created by the existential node expansion rule applied to a node v of
which w is a successor node. After the node w has been created, we apply
the expansion strategy to the node w. So we first apply the interval relation
rule. Let us consider two cases:
i) Application of the interval relation rule adds no material to L(w):

Assume L(w) = {ψ0} where ψ0 = ψ01 ∧ ... ∧ ψ0n0 (n0 ≥ 1). In this case,
L(v) must contain ξ =

〈∫
eτk

〉
ψ where ψ has the form ψ0∨...∨ψl (l ≥ 0) (If

L(v) contained
〈∫

eτk
〉
<
ψ or

〈∫
eτk

〉
>
ψ, then the existential rule would

set ρ(w) = −. But we already know that ρ(w) = −. So, L(v) can contain
neither

〈∫
eτk

〉
<
ψ nor

〈∫
eτk

〉
>
ψ). By the inductive hypothesis a witness

Jv is defined such thatM |=Jv
L(v). Let Jw be an interval for the node w.

Thus,M |=Jw
ψ.

When the existential rule was applied to v, we set K(w) := ψ and C :=
C ∪ {bw ≥ bv, ew ≤ ev,(ew − bw)τk}. According to Rule 2 we select some of
the disjunct of ψ, and extend L(w) with this disjunct. It is clear that ψ0 is
the subformula which was selected. So,M |=Jw

ψ0. Hence, M |=Jw
L(w).

ii) Application of the interval relation rule adds some material to L(w):
Assume L(w) = {ψ0, ψ1, ..., ψm} where ψi = ψi1 ∧ ...∧ψimi

(0 ≤ i ≤ m and
mi ≥ 1), ψ0 has been added to L(w) by applying the existential rule in v,
and ψ1, ..., ψm have been added to L(w) by applying the interval relation
rule to the node w. Above we have shown thatM |=Jw

ψ0.
According to the interval relation rule we guess the interval relation be-

tween w and any node in G. Assume for any 1 ≤ j ≤ m ψj has been added
to L(w) as a result of guessing the interval relation between w and a node uj .
Since K(w), and therefore L(w), has been updated, this relation must have
been “non-strict-during”. In this case, L(uj) must contain ξ =

[∫
eτk

]
ψ,

where ψ has the form ψj ∨ ...∨ψj+l (l ≥ 0). By the inductive hypothesis we
have picked a witness Juj

such that M |=Juj
L(uj); thus M |=Juj

ξ. We
know that Jw ⊆ Juj

because in the interval rule we have guessed the rela-
tion between Jw and Juj

as “non-strict-during” (As we can see in the interval
rule, C has been updated according to the corresponding non-deterministic
choice of the relation.) We also know that |Jw| τk because we have selected
the option ii in the interval relation rule, and set C := C ∪ {(ew − bw)τk}
(Otherwise, K(w) could not have been updated). Therefore,M |=Jw

ψ.
When the interval rule was applied to w, we set K(w) := K(w) ∧ ψ. It

is clear that ψj was selected when the Rule 2 the expansion strategy was
applied. Thus, for any 1 ≤ j ≤ mM |=Jw

ψj . Hence, M |=Jw
L(w).

So, we have shown that once a node w is created, and the expansion
strategy is applied, it is true that M |=Jw

L(w). However, when new
nodes are added to G, L(w) might get updated through the application of
the universal node expansion rule in these nodes. So, we must show that
whenever new material is added to L(w), M |=Jw

L(w) remains true.
Now, assume L(w) = {ψ0, ..., ψm, ψm+1, ..., ψm+n} where ψi = ψi1 ∧ ...∧

ψini
(0 ≤ i ≤ m + n and ni ≥ 1), and ψm+1, ..., ψm+n have been added

to L(w) by applying the universal node expansion rule to some nodes in G.
Above we have shown that M |=Jw

{ψ0, ..., ψm}. Assume for any m+ 1 ≤
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k ≤ m + n, ψk has been added to L(w) by applying the universal node
expansion rule to a node uk in G. In this case, L(uk) must contain ξ = 〈e〉ψ,
where ψ has the form ψk∨ ...∨ψk+l (l ≥ 0). By the inductive hypothesis we
have picked a witness Juk

such that M |=Juk
L(uk); thus M |=Juk

ξ. We
know that Jw ⊆ Juk

. We also know that |Jw| τk because we have selected
the option ii of the universal rule, and set C := C∪{(ew−bw)τk} (Otherwise,
K(w) could not have been updated.) Therefore,M |=Jw

ψ.
When the universal rule was applied to uk, we set K(w) := K(w) ∧ ψ.

It is clear that ψk was selected when Rule 2 of the expansion strategy was
applied. So, for any m+ 1 ≤ k ≤ m+ nM |=Jw

ψk. Hence,M |=Jw
L(w).

Case 2: Let w be a node in G such that ρ(w) = −. Assume L(w) = {ψ0}
where ψ0 = ψ01 ∧ ... ∧ ψ0n0 (n0 ≥ 1). Then, the dummy node w must
have been created by either the existential node expansion rule, the interval
relation rule, or the universal node expansion rule. If it has been created
by the existential rule, then L(v) of a node v of which w is a successor
node must contain either ξ =

〈∫
eτk

〉
<
ψ or ξ =

〈∫
eτk

〉
>
ψ. Otherwise,

L(u) of a node u at which the interval relation rule or the universal rule
has been applied contains either ξ =

[∫
eτk

]
<
ψ or ξ =

[∫
eτk

]
>
ψ. In each

case, by the inductive hypothesis a witness Jv (Ju) is defined such that
M |=Jv

L(v) (M |=Ju
L(u)). By construction, there exists a node w′ with

ρ(w′) = e. Let Jw′ be an interval for the w′. It is trivial to see that Jw′ ⊆ Jv
(Jw′ ⊆ Ju) and |Jw′ | τk. SinceM |=Jv

ξ,M |=Jw
ψ, where Jw = ~(Jw′ , Jv)

or (Jw = ~(Jw′ , Ju)). Here the partial function ~ is fin if ξ =
〈∫

eτk
〉
<
ψ,

and it is init, otherwise.
When any of these rules (existential rule, universal rule and interval rule)

was applied, we set K(w) := K(w)∧ψ. Suppose ψ have the form ψ0∨ ...∨ψl
(l ≥ 0). Since ψ0 is the selected disjunct of ψ in Rule 2,M |=Jw

ψ0. Hence,
M |=Jw

L(w).
Therefore, we have proved that for each node v in G, there exists an

interval Jv such thatM |=Jv
L(v).

Meanwhile, we know the depth of the modelM is at most of order 2p(|ϕ|)

by the assumption. Since for any node v in G, M |=Jv
L(v), ⊥ cannot

be contained in L(v). As we have a witness Jv for each node v, we must
have a solution for C. Therefore, C must be satisfiable. Because none of the
conditions in Definition 12 holds, it follows that 〈G, C〉 is an open tableau.

�

4.4 Computational complexity

THEOREM 16. The satisfiability problem for EIL is in 2-NEXPTIME.

Proof. In Theorem 14 we show that the proposed method terminates.
Now, we analyse its computational complexity. We now give a bound on
the size of any tableau for ϕ.

The out degree of any node is bounded by |ϕ|. The depth of the longest
path in the tableau is bounded by 2p(|ϕ|) for a fixed polynomial p by Lemma
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7. Therefore, the size of the tableau is bounded by |ϕ|2p(|ϕ|)
= 22p(|ϕ|)log2|ϕ|.

So, the tableau procedure builds a tableau of size 22p′(|ϕ|)
for some fixed

polynomial p′. We can say that if an EIL formula ϕ is satisfiable, then the
tableau procedure construct a graph, from which a satisfying model M is
extracted, which has doubly exponential size by the length of ϕ. �

5 Conclusion

In this paper we introduced an interval temporal logic EIL to represent
meanings of sentences in English. EIL has affinity with the syntax of tem-
poral constructions in English, and which is convenient for expressing the
semantics of natural language constructions. EIL is interpreted over a linear
time flow with only finitely many events able to occur over a bounded-time
interval. EIL also employs the notion of duration.

In order to bound models we showed that the depth of an EIL model is
exponentially bounded by the length of a given formula. We also proposed
a terminating tableau system for the logic EIL, thus showing that its satis-
fiability problem is decidable. Indeed, it was proved that the satisfiability
problem for EIL is in 2-NEXPTIME. This was proved by building models,
which have doubly exponential size by the length of the given formula.

The future research directions include extending EIL with states and state
models to specify real-time system requirements, finding a lower bound for
the complexity of the satisfiability problem, introducing an axiomatization
system to complement the semantic view, and comparing expressive powers
of EIL with the related interval temporal logics.
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