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abstract. This paper presents a survey of topological spatial logics, taking

as its point of departure the interpretation of the modal logic S4 due to

McKinsey and Tarski. We consider the effect of extending this logic with

the means to represent topological connectedness, focusing principally on

the issue of computational complexity. In particular, we draw attention to

the special problems which arise when the logics are interpreted not over

arbitrary topological spaces, but over (low-dimensional) Euclidean spaces.
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1 Introduction: spatial logic and modal logic

In their seminal paper The algebra of topology [40], McKinsey and Tarski
sought to provide ‘an algebraic apparatus adequate for the treatment of
portions of point-set topology.’ In doing so, they created—en passant—a
topological framework for the semantics of the modal logic S4, exploiting the
striking similarity between Gödel’s [24] and Orlov’s [43] axioms for ‘prov-
ability’ logic and Kuratowski’s axioms for topological spaces. In this frame-
work, proposition letters are interpreted as subsets of a topological space,
Boolean connectives as set-theoretic operations on these sets, and the modal
box as the topological interior operator. As McKinsey and Tarski showed,
a modal formula ϕ is an S4-validity if and only if, in any interpretation over
a topological space T , ϕ denotes the whole of T . In fact, they showed more.
Suppose we are interested not in topological spaces in general, but rather
in some specific dense-in-itself, separable metric space—for example R2 or
R3. For any such space T , a modal formula ϕ is an S4-validity if and only
if, in any interpretation over T , ϕ denotes the whole of T . In other words:
S4 is the logic of any dense-in-itself, separable metric space.

This situation invites generalization. By a spatial logic, let us understand
any formal language interpreted over some class of geometrical structures,
taken in the most general sense. That is: the variables of this language
range over collections of figures in the relevant structures; and its non-
logical primitives denote properties and operations defined over those fig-
ures. What makes a spatial logic a logic is that it has a regimented syntax
and formal semantics interpreting it; what makes it spatial is that the op-
erative notion of logical consequence is made to depend on the specifically
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geometrical features of the chosen interpretation. Thus, S4 is a spatial logic
whose (propositional) variables range over arbitrary subsets of a topological
space in some given class.

Spatial logics, thus understood, have a long pedigree, tracing their ori-
gins back to the axiomatic tradition in geometry, which reached its zenith
in Hilbert’s Grundlagen der Geometrie [30]. Strikingly, Hilbert’s axiomati-
zation is couched in (lightly mathematicized) idiomatic German: notwith-
standing its evident rigour, no attempt is made to articulate the implicit
logical syntax or operative inference procedure. This feature prompted a
further stage of formalization in another of Tarski’s most significant pa-
pers: What is elementary geometry? [59]. Tarski’s geometrical axioms are
couched in a first-order language whose variables range over points in the
standard model of Euclidean space, and whose non-logical predicates repre-
sent notions defined in terms of the metric structure of that space. Again,
Tarski showed that the consequences of his axioms coincide with the true
statements of that model. Of course, the real achievement here was not sim-
ply to shoe-horn Hilbert’s perfectly good mathematics into the regimented
syntax of a formal language, but rather, to ask what happens when that
syntax is restricted. For Tarski showed that his elementary geometry is, on
the one hand, decidable—there is an algorithmic procedure for determining
the truth of any of its formulas—and, on the other, sufficiently expressive
that it comes close (in a sense which Tarski was able to make precise) to
fixing the familiar model of the plane as R2. On a practical level, Tarski’s
work has found application in spatial databases (see, e.g., [34]); from a the-
oretical point of view, we have the beginnings of one of the central themes
in computational logic—the trade-off between expressive power and com-
putational complexity. We remark that the precise complexity of Tarski’s
geometry (or Th(R,+,×,≤)) seems to be still unknown, with the current
lower bound being NExpTime [22] and the upper bound ExpSpace [4].

A quite distinct intellectual tradition has also contributed to recent inter-
est in spatial logics, however: Whitehead’s theory of extensive connection,
which appeared in its most complete form in his Process and Reality [65].
Whitehead’s goal was to develop a purely region-based theory of space,
whose sole geometrical primitive was the relation he called connection, but
which is now (to avoid confusion with established terminology) generally
referred to as contact. Roughly: two regions contact each other just in case
they overlap or touch. Whitehead put forward a collection of postulates gov-
erning this relation, and gave reconstructions of various geometrical notions
in terms of it. A similar—and in many ways more satisfactory—region-
based theory of space was proposed at the same time by de Laguna [15]. In
both cases the motivation was essentially metaphysical: to provide a spatial
ontology whose basic entities are closer to the data of spatial experience than
is the standard Cartesian model of space as R3. Paradoxically, perhaps, the
methodology they employed was resolutely empiricist: the proposed system
of postulates and definitions was to be evaluated by its conformity to (pre-
theoretic spatial intuition and) spatial experience. The ensuing lack of any
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formal semantics for the languages in question impeded their mathematical
development, despite sporadic revivals in the following decades [10, 11, 7].

Interest in region-based, qualitative spatial logics of this kind was re-
kindled, however, in the early 1990s, within Artificial Intelligence. (See
the recent handbook chapters [49, 12] for comprehensive surveys.) The
impetus for this development was the conviction that effective reasoning—
geometrical or otherwise—depends on selecting a language with the ap-
propriate representational resources: too little expressive power, and it
cannot represent the information required; too much, and the reasoner is
overwhelmed by the computational complexity of determining entailments
within it. Hence the focus on languages whose variables range over spa-
tial regions: while spatial regions can be modelled as sets of points, and so
quantified over in second-order logic, a first-order logic whose object-level
variables range over regions is, from the point of view of expressive economy,
a preferable alternative. And once a region-based domain of quantification
has been adopted, the focus on qualitative geometrical primitives follows
naturally, since so many salient properties and relations involving regions
are qualitative in character.

First-order qualitative theories of space, however, are generally unde-
cidable or even non-recursively enumerable [28, 18, 13], a result which ex-
tends to some spatial logics based on the two-variable fragment of first-order
logic [39]. Hence, attention has shifted to quantifier-free constraint systems
such as 9-intersections or RCC-8 [20, 46]. Intriguingly, research on such sys-
tems has led to a renewed and systematic investigation of spatial formalisms
within the algebraic framework of Tarski [58, 40]. For spatial relations such
as ‘contact’ or ‘part of’ form a natural subject for relation algebra; see the
surveys [6, 61] and references therein. Furthermore, it turns out that many
spatial constraint systems designed in AI can be regarded as natural frag-
ments of S4 augmented with the universal modality and known as S4u.
Thus, the modal logic S4u finds itself at a crossroads of different traditions
and disciplines related to spatial logics. (See [62, 25] for a broader discussion
of modal logics of space.)

Few practical problems in spatial reasoning are purely topological in char-
acter, of course; and this has recently prompted several extensions of S4u
with metric primitives (e.g., [35, 68, 54]). Yet, even from a topological point
of view, S4 and its near-relation S4u can seem frustratingly inexpressive:
for example, very few theorems from standard textbooks on topology can be
formulated within them! Perhaps the most glaring expressive defect of these
languages is their inability to express the property of connectedness—a con-
cept of central theoretical and practical importance. To date, only sporadic
attempts have been made to interpret S4u over connected spaces, or to aug-
ment it with a primitive predicate expressing the property connectedness
[9, 53, 66, 44].

The present paper has two main aims, therefore. The first is to present a
survey of topological spatial logics, taking S4 as its starting-point. The sec-
ond is to investigate in detail the extension of these logics with the means to
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represent topological connectedness (and related notions), focusing princi-
pally on issues of computational complexity. A surprising discovery here was
how the innocuous-looking connectedness predicate can increase complexity
from NP to PSpace, ExpTime and, if component counting is allowed, to
NExpTime. In particular, we draw the reader’s attention to the special
difficulties that arise when these logics are interpreted not over arbitrary
topological spaces, but over (low-dimensional) Euclidean spaces. We also
point out the sensitivity of such logics to the geometrical entities—polygons,
disc-homeomorphs, etc.—over which their variables are taken to range.

2 S4u over connected topological spaces

We begin by briefly reviewing the topological semantics for S4, due to McK-
insey and Tarski [40]. With a view to the ensuing generalizations, we present
the language in unfamiliar guise. Specifically, we re-write the proposition
letters as individual variables, the propositional connectives ∧ and ¬ as
the function-symbols ∩ and , respectively, and the modal box 2 as the
function-symbol ◦. In this way, familiar modal formulas become terms.
Formally, let V = {vi | i < ω} be a set of variables. Then the S4-terms are
given by

τ ::= vi | τ | τ1 ∩ τ2 | τ◦ .

We abbreviate (τ◦) by τ− , (τ1 ∩ τ2) by τ1 ∪ τ2, v0 ∩ v0 by 0, and 0 by 1.
In the sequel, we assume familiarity with basic general topology. If the

topological space T is clear from context, and X ⊆ T , we denote the com-
plement of X by X, the topological closure of X by X− , and the topological
interior of X by X◦ . (The overloading of symbols here is deliberate.) We
follow common practice in identifying topological spaces with their carrier
sets, taking the topology to be implicit; in addition, we assume that topo-
logical spaces are non-empty. In this context, define a topological frame to
be a pair (T,S), where T is a topological space, and S ⊆ 2T is a non-empty
set of its subsets. A topological model over (T,S) is a triple M = (T,S, ·M),
where ·M is a map from V to S. (The modifier ‘topological’ will generally
be omitted in the sequel.) The extension τM of a term τ in a model M is
defined inductively by the equations:

(τ)M = (τM), (τ1 ∩ τ2)M = τM
1 ∩ τM

2 , (τ◦)M = (τM)◦ .

On the above semantics, variables are constrained to range over certain
subsets of the underlying space, as specified by S. We refer to the elements
of S as regions. There is no formal requirement for S to be closed under the
term-forming operations of our language (in the present case, , ∩ and ◦).
In the special case where every subset of T counts as a region—that is, where
S = 2T—we identify the topological frame with the underlying topological
space, and simply speak of a model M = (T, ·M) over T .

Recall that a topological space is called an Aleksandrov space if arbitrary
(not only finite) intersections of open sets are open. Aleksandrov spaces can
be characterized in terms of pairs the form F = (W,R), where W 6= ∅ and
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R is a transitive and reflexive relation (i.e., a quasi-order) on W . Every
such pair—or Kripke frame—F induces the interior operator ·◦F on W :

X◦
F = {x ∈ X | ∀y ∈W (xRy → y ∈ X)}, for every X ⊆W.

In other words, the open sets of the topological space TF = W induced by
F are the upward closed (or R-closed) subsets of W . It is well-known (see,
e.g., [8]) that TF is an Aleksandrov space and, conversely, every Aleksandrov
space is induced by a quasi-order. Topological models over Aleksandrov
spaces will be called Aleksandrov models.

We are now in a position to characterize the ‘logic’ of the term-language
S4 and its complexity.

THEOREM 1 ([40, 36]). (i) Let τ be an S4-term and T ′ a dense-in-itself
separable space (e.g., T ′ = Rn, for some n ≥ 1). The following conditions
are equivalent :

• τM = T for every model M = (T, ·M);

• τM = T ′ for every model M = (T ′, ·M) over T ′;

• τM = T for every (finite) Aleksandrov model M = (T, ·M).

(ii) The problem of deciding, given an S4-term τ , whether τM = T for all
models M = (T, ·M), is PSpace-complete.

With these resources at our disposal, we present our first topological logic,
known under the name of S4u. (We remark that the original formulation
of S4u in [26], like those of S4 in [43, 37, 24], made no reference to spatial
logic or topology.) The language S4u is the set of formulas given by:

ϕ ::= τ1 = τ2 | ¬ϕ | ϕ1 ∧ ϕ2,

where τ1 and τ2 range over S4-terms. We employ the Boolean connectives
∨ and → as abbreviations in the standard way, additionally writing τ1 ⊆ τ2
for τ1 ∩ τ2 = 0 and τ1 6= τ2 for ¬(τ1 = τ2). A formula will be called an atom
if it involves no Boolean connectives, a literal if it is an atom or a negated
atom, and conjunctive if it is a conjunction of literals. The truth-relation
for S4u is defined by setting:

M |= τ1 = τ2 iff τM
1 = τM

2 ,

and interpreting the Boolean connectives ¬ and ∧ in the standard way. If
(T,S) is a topological frame, then ϕ is satisfiable over (T,S) if M |= ϕ, for
some model M = (T,S, ·M); if F is a class of topological frames, then ϕ is
satisfiable over F if it is satisfiable over some (T,S) ∈ F . Similarly, mutatis
mutandis, for the dual notion of validity. We denote by Sat(S4u,F) the set
of S4u-formulas that are satisfiable over F .

In modal terms, S4u in effect adds a ‘universal modality’ [26] to S4, since
an atom of the form τ = 1 states that the modal formula corresponding to τ
is true everywhere in the relevant space. It is well known (see, e.g., [1]) that
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the language of S4u defined as above is as expressive as the ‘standard’ one
that allows nested applications of universal modalities. In many cases, ad-
dition of the universal modality to a modal logic increases its computational
complexity (e.g., the modal logic K with universal modality is ExpTime-
complete). For S4 this turns out to be not the case. Denote by All the
class of all topological frames and by Alek the class of all Aleksandrov
frames (that is, topological frames based on Aleksandrov spaces).

THEOREM 2 ([53, 2]). Sat(S4u,All) = Sat(S4u,Alek), and this set is
PSpace-complete.

In contrast to Theorem 1, the equality in Theorem 2 cannot be extended
to the set Sat(S4u,F), where F is any class of topological frames over Rn.
Recall that a topological space T is connected just in case it is not the union
of two non-empty, disjoint, open sets; a subset X ⊆ T is connected in T just
in case either it is empty, or the topological space X (with the subspace
topology) is connected. If X ⊆ T , a maximal connected subset of X is
called a component of X. Every set X has at least one component, and a
set is connected just in case it has at most one component. Denote by Con
the class of all frames over connected spaces. The S4u-formula

(v1 6= 0) ∧ (v2 6= 0) ∧ (v1 ∪ v2 = 1) ∧ (v−1 ∩ v2 = 0) ∧ (v1 ∩ v−2 = 0)

is satisfiable in a topological space T iff T is not connected. It follows that
Sat(S4u,All) 6= Sat(S4u,Con). The formula above was used in [53] to
axiomatize the logic (in the standard language of S4u) of connected spaces.

Observe that an Aleksandrov space TF induced by F = (W,R) is con-
nected iff F is connected in the sense that between any two points x, y ∈W
there is a path along the relation R ∪ R−1, where R−1 is the inverse of R.
Denote by ConAlek the class of all connected Aleksandrov frames.

THEOREM 3. Sat(S4u,Con) = Sat(S4u,ConAlek) = Sat(S4u, T ), for
any connected dense-in-itself separable space T (in particular, for T = Rn,
n ≥ 1). This set is PSpace-complete.

The equations in Theorem 3 were proved in [53], and the complexity
result follows from Theorem 5 below. Although of the same complexity as
Sat(S4u,All), Sat(S4u,Con) requires a subtler treatment. We illustrate
this by the following example.

EXAMPLE 4. Denote by Alek≤1 the class of Aleksandrov frames induced
by partial orders F = (W,R) of depth 1, as in Fig. 1; i.e., R is the reflexive
closure of a subset of W1 ×W0, where Wi is the set of points of depth i,
i = 0, 1. Such partial orders will be called quasi-saws.

Sat(S4u,Alek≤1) is NP-complete because formulas in this set enjoy the
polysize model property. More precisely, it is easy to see that every formula
ϕ ∈ Sat(S4u,Alek≤1) is satisfied in a disjoint union of n many m-brooms,
i.e., partial orders of the form ({x} ∪ W0, R), where |W0| = m and R is
the reflexive closure of {x} × W0, and both m and n are bounded by a
linear function in |ϕ|. By contrast, formulas in Sat(S4u,ConAlek≤1) may
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Figure 1. Quasi-saw.

require exponential satisfying models, and this set is PSpace-complete [66].
We show how one can construct such formulas. Using n variables v1, . . . , vn
one can represent (in binary) all natural numbers < 2n. Now we can say
that vn ∩ · · · ∩ v1 (i.e., 0) and vn ∩ · · · ∩ v1 (i.e., 2n − 1) are non-empty:

vn ∩ · · · ∩ v1 6= 0, vn ∩ · · · ∩ v1 6= 0,

and that the closure of the set representing a number m, 0 ≤ m < 2n − 1,
can only share points with the set representing m+ 1:

(vj ∩ vk)− ⊆ vj , (vj ∩ vk)− ⊆ vj , for all n ≥ j > k ≥ 1,

(vk ∩ vk−1 ∩ · · · ∩ v1)− ⊆ (vk ∩ vi) ∪ (vk ∩ vi), for all n ≥ k > i ≥ 1,

and that 2n − 1 is a closed set:

(vn ∩ · · · ∩ v1)− ⊆ vn ∩ · · · ∩ v1.
As the space is connected, there is a path between 0 and 2n − 1, and this
path must contain all the numbers < 2n (see Fig. 2). Using this idea, we
can simulate any polynomial-space-bounded deterministic Turing machine.
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Figure 2. Satisfying the ‘counter formulas’ for n = 3.

Modal definability of separation properties and connectedness in S4u and
related hybrid logics, as well as their complexity, were studied in [57, 60].

3 Topological logics with connectedness

We now extend S4u with an explicit connectedness predicate and denote
the resulting language by S4uc. The S4uc-formulas are defined in the same
way as the S4u-formulas, except that we have the additional clause

ϕ ::= . . . | c(τ) | . . . ,

where τ is an S4-term. Given a topological model M = (T,S, ·M), the
truth-relation for S4uc is defined in the same way as for S4u, except that
we have the additional clause

M |= c(τ) iff τM is connected in T .
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For example, most textbooks on general topology prove the following
simple facts: (i) the union of two intersecting, connected sets is connected;
(ii) any set sandwiched between a connected set and its closure is itself con-
nected. These facts are expressible as S4uc-validities. That is, the formulas

c(v1) ∧ c(v2) ∧ (v1 ∩ v2 6= 0) → c(v1 ∪ v2),(1)

c(v1) ∧ (v1 ⊆ v2) ∧ (v2 ⊆ v−1 ) → c(v2)(2)

are valid in All.
Recalling that S4 is a sub-language of S4uc, Sat(S4uc,All) is certainly

PSpace-hard. But the matching upper bound holds only for the sublan-
guage S4uc1 of S4uc in which at most one subformula of the form c(τ)
occurs with positive polarity.

THEOREM 5 ([31]). Sat(S4uc1,All) is PSpace-complete.

Theorem 5 yields the promised result about S4u interpreted over con-
nected spaces: an S4u-formula ϕ is satisfiable in a connected space iff the
S4uc1-formula ϕ ∧ c(1) is satisfiable in some topological space.

From a complexity-theoretic viewpoint, the main difference between the
languages S4uc and S4uc1 is that when constructing a model for an S4uc1-
formula (using, say, a tableau-based technique) there is only one positive
statement of the form c(τ) saying that points in τ have to be connected. We
have seen above that connecting two points may require an exponentially
long path. Nevertheless, ‘connectivity’ can be checked using a PSpace-
algorithm because it is not necessary to keep in memory all the points on
the path. However, if two statements c(τ1) and c(τ2) have to be satisfied,
then, while connecting two τ1-points using a path, one has to check whether
the τ2-points on that path can be connected by a path, which, in turn, can
contain another τ1-point, and so on. And this situation can indeed happen
if we have two positive occurrences of sub-formulas like c(τ1) and c(τ2).

THEOREM 6 ([31]). Sat(S4uc,All) = Sat(S4uc,Alek); and this set is
ExpTime-complete.

In fact, the lower bound holds already for Alek≤1. It can be proved
by reduction of polynomial-space-bounded alternating Turing machines or
satisfiability in logics like modal K with the universal modality. In either
case, the crucial point in the proof is simulating large binary (non-transitive)
trees. We have already seen how connectedness can help us generate quasi-
saws representing an exponential counter. But now we also need branching.
One idea of simulating both is as follows. We start by representing the root
of the tree as a point v0 (see Fig. 3), which is forced to be connected to an
auxiliary point z by means of some c(τ0). On the connecting path from v0
to z we represent the two successors of the root by v1 and v2, which are
forced to be connected in their turn to z by some other c(τ1). On each of the
two connecting paths, we again take two points representing the successors
of v1 and v2, respectively. We treat these four points in the same way as
v0, reusing c(τ0), and proceed in this way ad infinitum alternating between
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τ0 and τ1 when forcing the paths which generate the required successors.
Of course, in addition, certain information has to be passed from a node to
its two successors (say, if 3ψ holds in the node, then ψ holds in one of its
successors). Such information can be propagated along connected regions.
Note now that all points are connected to z. Thus, to distinguish between
the information we have to pass from distinct nodes of even (respectively,
odd) level to their successors, we have to use two connectedness formulas
of the form c(fi ∪ a), i = 0, 1, in such a way that the fi points form initial
segments of the paths to z and a contains z. The fi-segments are then used
locally to pass information from a node to its successors without conflict.
Note also that the points representing nodes of the tree belong to both f0
and f1 (except the root) and we have to separate them with auxiliary points
in order to ensure proper tree structure (otherwise the ‘tree’ would collapse
into a single node). For details the reader is referred to [31].
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Figure 3. Encoding binary trees in S4uc.

To establish the upper bound for Sat(S4uc,Alek), we adapt the type-
elimination technique first used to prove the ExpTime upper bound for
PDL; see, e.g., [29]. Let a formula ϕ of S4uc be given; but suppose for the
moment that ϕ contains no occurrences of c. One can test the satisfiability
of ϕ over Alek by first computing the set of all ϕ-types (alias Hintikka
sets), where a ϕ-type is a Boolean-saturated set of subterms of ϕ. Then
one recursively eliminates all those ϕ-types t for which there is no witness
type t′ ∋ τ for some τ− ∈ t. It can be shown that ϕ is satisfiable iff this
elimination process terminates with a set of types corresponding to a model
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satisfying ϕ. Now suppose that ϕ involves some occurrences of c. Guess a set
Ξ of subformulas of ϕ of the form c(τ) (those that one assumes to be true),
and for each such c(τ), guess a ϕ-type tτ containing τ . The elimination
process described above can now be executed as before, except that one
also eliminates those types t that contain a τ with c(τ) ∈ Ξ which ‘cannot
be connected’ to tτ (i.e., in the region corresponding to τ , one cannot find
an R ∪R−1-path from t to tτ ).

One can increase the expressive power of the connectedness predicate
c(τ) by introducing the ‘counting’ predicates c≤k(τ) which state that τ
has at most k connected components. We denote the language with such
predicates by S4ucc. The S4ucc-formulas are defined in the same way as
the S4u-formulas, except that we have the additional clause

ϕ ::= . . . | c≤k(τ) | . . . ,

where τ is an S4-term and k a positive integer. Given a topological model
M = (T,S, ·M), the truth-relation for S4ucc is defined in the same way as
for S4u, except that we have the additional clause:

M |= c≤k(τ) iff τM has at most k components in T .

We write ¬c≤k(τ) as c≥k+1(τ) and abbreviate c≤1(τ) by c(τ). Thus, we
may regard S4uc as a sub-language of S4ucc. The numerical superscripts k
in c≤k are assumed to be coded in binary and so to have size ⌊log k⌋+ 1.

The language S4ucc is not essentially more expressive than S4uc. In
particular, the S4ucc-literal c≤k(τ) is true in a model M iff the S4uc-formula(

τ =
⋃

1≤i≤k
vi

) ∧
∧

1≤i≤k
c(vi)

is true in some model M′ differing from M at most in the assignments to
the variables v1, . . . , vk. Thus, the S4ucc-literal c≤k(τ) may be ‘encoded’
by this S4uc-formula. Similarly, the S4ucc-literal c≥k(τ) may be likewise
encoded by the S4uc-formula(

τ =
⋃

1≤i≤k
vi

) ∧
∧

1≤i≤k

(
vi 6= 0

) ∧
∧

1≤i<j≤k

(
τ ∩ v−i ∩ v−j = 0

)
.

Thus, any S4ucc-formula can be transformed into an equi-satisfiable S4uc-
formula. However, this transformation involves a combinatorial explosion:
the above formulas are exponentially larger than the literals they replace.

THEOREM 7 ([44]). Sat(S4ucc,All) = Sat(S4ucc,Alek); and this set is
NExpTime-complete.

The upper complexity bound follows by establishing an exponential model
property of S4ucc. We remark that this exponential model property holds
even though constraints of the form c≥k(τ) can be used to succinctly enforce
regions with many components. The matching lower bound is proved by re-
duction of the 2n×2n tiling problem [64]. As we have seen in the proof sketch
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of Theorem 3, using n variables and a polynomial (in n) number of formulas,
one can create a sequence of points in a model representing all natural num-
bers < 2n, where only points representing m and m+ 1 may be neighbours
(see Fig. 2). By using 2n variables vn, . . . , v1 and un, . . . , u1, one can create
all points of the 2n×2n grid (for additional formulas required see [44]) such
that a point representing (i, j) has neighbours representing (i−1, j), (i+1, j),
(i, j − 1) and (i, j + 1) and only these pairs. However, the constructed grid
may contain ‘defects’ because the ‘counter formulas’ are unable to prevent
numbers repeating as in the sequence . . . ,m,m+ 1,m+ 2,m+ 1,m, . . . . A
key point in the proof is the following. Using the terms

τblack = (v0 ∩ u0) ∪ (v0 ∩ u0) and τwhite = (v0 ∩ u0) ∪ (v0 ∩ u0)

we can ‘colour’ the grid in a chessboard manner. But then the constraints
c≤2n−1

(τblack) and c≤2n−1
(τwhite) will ensure that all points representing a

pair (i, j) are in the same connected component of either τblack or τwhite,
and so we can ‘cover’ all points in this component with the same tile.

Returning to the language S4uc, it is natural to consider what hap-
pens when this language is interpreted over restricted classes of topolog-
ical spaces. Perhaps the most salient such classes in this context are the
singleton classes {Rn}, for various n, as well as their union.

It is very easy to see that Sat(S4uc,R) and Sat(S4uc,R2) are both differ-
ent from Sat(S4uc,Con) (and from each other). For instance, the formula∧

1≤i≤3

c(vi) ∧
∧

1≤i<j≤3

(
vi ∩ vj 6= 0

) ∧ (
v1 ∩ v2 ∩ v3 = 0

)
(3)

is evidently satisfiable in Rn for all n > 1, but not satisfiable in R, since
connected, non-empty sets in R are simply intervals. Likewise, it is straight-
forward to write a formula satisfiable in Rn for all n > 2, but not satisfiable
in R2. Let vi,j , 1 ≤ i < j ≤ 5, be distinct variables other than vi, 1 ≤ i ≤ 5;
and let ϕ be the formula

(4)
∧

i∈{j,k}

(
vi ⊆ (vj,k)◦

) ∧
∧

1≤i≤5

(
vi 6= 0

) ∧∧
{i,j}∩{k,l}=∅

(
vi,j ∩ vk,l = 0

) ∧
∧

1≤i<j≤5

c((vi,j)◦).

Then ϕ is not satisfiable in R2, since otherwise, one could easily embed
the non-planar graph K5 in the plane. On the other hand, it is straight-
forward to satisfy ϕ in, say, R3. Slightly less obviously, it turns out that
Sat(S4uc, {Rn | n > 0}) is different from Sat(S4uc,Con).

FACT 8 ([41], p. 137). If D1 and D2 are non-intersecting closed sets in Rn,
and points x and y are connected in D1 and also in D2, then x and y are
connected in D1 ∩D2.
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Now consider the following formula:

(v1 ∩ v2 = 0) ∧
∧
i=1,2

(
(v−i ⊆ vi) ∧ c(vi)

) ∧ ¬c(v1 ∩ v2).(5)

This formula is is not satisfied over any space Rn, by Fact 8. However, it
is satisfiable in many natural, connected topological spaces: e.g., let T be a
torus, and let v1 and v2 be interpreted as rings in T , arranged as in Fig. 4.

v1

v2

Figure 4. Two non-intersecting connected, closed sets v1 and v2 on a torus:
note that v1 and v2 are connected, but v1 ∩ v2 is not.

Using an encoding of the topological interior and closure operators over R
in standard temporal logic with ‘since’ and ‘until’ over R and Reynolds’ [50]
PSpace-completeness result for this logic, one can prove the following:

THEOREM 9 ([31]). Sat(S4uc,R) and Sat(S4ucc,R) are PSpace-complete.

Over higher-dimensional Euclidean spaces these languages turn out to be
computationally more complex, because the proofs of the lower bounds in
Theorems 6 and 7 can be restricted to such spaces:

THEOREM 10 ([31]). (i) The sets Sat(S4uc,Con), Sat(S4uc, {Rn | n > 2})
and Sat(S4uc,R2) are all distinct ; Sat(S4uc,Con) is ExpTime-complete
and the other two sets are ExpTime-hard.

(ii) Sat(S4ucc,Con), Sat(S4ucc, {Rn | n > 2}) and Sat(S4ucc,R2) are
all distinct ; Sat(S4ucc,Con) is NExpTime-complete and the other two sets
are NExpTime-hard.

We conclude this section by mentioning two relevant research problems.
First, it would be interesting to consider other modal logics with connect-
edness predicate (i.e. operator) c(τ), which is true in a Kripke model if any
two distinct τ -points in the model are connected by a path of τ -points.
For example, as in Theorem 6 one can show that basic modal logic K ex-
tended with the universal modality and connectedness predicate is Exp-
Time-complete. The connectedness predicate can actually be expressed in
the extension of PDL with converse programs and nominals, which is also
ExpTime-complete [14]. Another direction is to investigate the axiomati-
zation problem for logics with connectedness predicate (see, e.g. [61]).

4 Regularized topological languages

So far, we have considered only frames (T,S) in which S is the whole of
2T—that is to say, frames in which every subset of the space counts as a
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region. When reasoning about spatial regions in practical situations, we
may wish our variables to quantify only over ‘sensible’ subsets of space,
corresponding to the regions potentially occupied by physical objects. In
the same spirit, we may further wish to disregard differences between subsets
of the space differing only with respect to boundary points. The following
technical apparatus provides a convenient way to do this.

Let T be a topological space. A subset X ⊆ T is called regular closed if
X = X◦− . We denote the set of regular closed subsets of T by RC(T ). It
is easy to show that the regular closed subsets of T are in fact exactly those
sets of the form X◦− , where X ranges over all subsets of T . The following
fact is well-known (see, for example, [32], pp. 25–27).

FACT 11. Let T be a topological space. Then RC(T ) is a Boolean algebra
with top and bottom elements given by T and ∅, Boolean operations ·,−
given by X · Y = (X ∩ Y )◦− and −X = (X)− , and Boolean order ≤ given
by the relation ⊆.

In the context of R2, the regular closed sets are the closed sets with no
‘filaments’ or ‘isolated points’ (Fig. 5). Thus, we are led to consider logics
interpreted over frames of the form (T,RC(T )). We mention in passing

a) b)

Figure 5. Shaded regions showing: a) a regular-closed subset of R2, and b)
a (closed but) not regular-closed subset of R2.

that a set X is regular open if X = X−◦. The regular open subsets of
T also form a Boolean algebra, RO(T ), defined analogously to RC(T ); in
fact the map X 7→ X− is a Boolean algebra isomorphism from RO(T ) to
RC(T ). In this section, we speak only of regular closed sets; however, the
same material can be presented (with minor changes) using regular open
sets.

As RC(T ) is not closed under complementation and intersection, it is
not very natural to interpret S4-terms over regular frames. This prompts
us to define the term-language B as follows. Let R = {ri | i < ω} be a set
of variables. The set of B-terms is defined by:

τ ::= ri | − τ | τ1 · τ2.

We interpret B-terms by taking variables to range over regular closed sets
of topological spaces. More precisely, we confine attention to topological
frames (T,R), where R is a Boolean sub-algebra of RC(T ). We call any
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such frame regular, and denote the class of regular frames by Reg. The class
of regular frames based on connected topological spaces will be denoted by
ConReg. We may then inductively define the extension τM of a term τ in
a model M over a regular frame by the equations:

(−τ)M = −τM, (τ1 · τ2)M = τM
1 · τM

2 .

Again, we have overloaded the symbols · and −: on the right-hand sides
of these equations, they denote the Boolean algebra operations defined in
Fact 11. We abbreviate −((−τ1) · (−τ2)) by τ1 + τ2, r0 · −r0 by 0, and −0
by 1. The language of B-terms can form the basis of topological logics just
as well as S4. In particular, we can introduce the languages B, Bc and Bcc
by defining their formulas as, respectively,

ϕ ::= τ1 = τ2 | ¬ϕ | ϕ1 ∧ ϕ2;
ϕ ::= τ1 = τ2 | ¬ϕ | ϕ1 ∧ ϕ2 | c(τ1);

ϕ ::= τ1 = τ2 | ¬ϕ | ϕ1 ∧ ϕ2 | c≤k(τ1),

where τ1 and τ2 range over B-terms and k is a positive integer. The seman-
tics of these predicates is exactly as for the languages S4u, S4uc and S4ucc.
We abbreviate τ1 · (−τ2) = 0 by τ1 ≤ τ2 (preferring this to τ1 ⊆ τ2).

Observe that the languages from the B-family can be viewed as a syntactic
restriction of the respective languages from the S4-family, as follows. Let τ
be a B-term. Define the S4-term h(τ) recursively by:

h(ri) = v◦i
−
, h(τ1 · τ2) = (h(τ1) ∩ h(τ2))◦− , h(−τ1) =

(
h(τ1)

)−
;

and if ϕ is a B-formula (Bc- or Bcc-formula), define h(ϕ) to be the result
of replacing each (maximal) B-term τ occurring in ϕ by the corresponding
B-term h(τ). Thus, h(ϕ) is an S4u-formula (S4uc- or S4ucc-formula, re-
spectively). It is easy to check that a Bcc-formula ϕ is satisfiable over a
frame (T,RC(T )) iff h(ϕ) is satisfiable over T .

The minimal logic B is as expressive as the modal logic S5, with τ = 1
playing the role of the S5-box. Topologically, every satisfiable B-formula ϕ
is satisfied in a discrete topological space (= Aleksandrov frame of depth 0)
with ≤ |ϕ| points. Hence, Sat(B,Reg) is NP-complete. It also follows that
B does not distinguish between Reg, ConReg, RC(Rn), n ≥ 1.

The language Bc is less trivial. For example, the smallest Aleksandrov
model satisfying the formula ¬c(r1) ∧ c(1) is shown in Fig. 6. Another

r1

r1 r1

r1
b b b

b bJ
J

J]

J
J

J]






�






�

Figure 6. An Aleksandrov model for ¬c(r1) ∧ c(1).

important example is the formula c(τ1)∧c(τ2)∧¬c(τ1 +τ2), which says that
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both τ1 and τ2 are connected and do not intersect, i.e., τM
1 ∩τM

2 = ∅ in every
model satisfying it. In fact, using formulas of this kind one can simulate
binary trees (as in the proof of Theorem 6) and obtain the following rather
surprising result:

THEOREM 12 ([31]). (i) Sat(Bc,Reg) 6= Sat(Bc,ConReg), with both sets
being ExpTime-complete.

(ii) Sat(Bcc,Reg) 6= Sat(Bcc,ConReg); both are NExpTime-complete.

It is also of interest to note that Bc (and Bcc) can distinguish between
RC(R), RC(R2) and RC(Rn), for n > 2.

Consider now the language Bc◦ defined in the same way as Bc, except
that the predicate c is replaced by the predicate c◦ with the interpretation:

M |= c◦(τ) iff the interior of τM is connected.

It is a simple exercise in general topology to show that the analogues, in Bc
and Bc◦ , of the formula (1), namely,

c(r1) ∧ c(r2) ∧ (r1 · r2 6= 0) → c(r1 + r2)
c◦(r1) ∧ c◦(r2) ∧ (r1 · r2 6= 0) → c◦(r1 + r2)

are both valid over Reg. The language Bc◦ is a natural choice for describing
arrangements in the Euclidean plane, particularly when variables are taken
to range only over well-behaved regions. To understand the issues that arise
in this context, consider the Bc◦ -formula∧

1≤i≤3

c◦(ri) ∧
∧

1≤i<j≤3

(ri · rj = 0) ∧ c◦(
∑

1≤i≤3

ri) ∧
∧
i=2,3

¬c◦(r1 + ri).(6)

Formula (6) ‘says’ that r1, r2 and r3 are interior-connected, pairwise disjoint,
regular closed sets having an interior-connected sum, such that the first
forms an interior-connected sum with neither of the other two. This formula
is satisfiable in RC(R2). For let M be a model over RC(R2) in which

rM
1 = {(x, y) ∈ R2 | −1 ≤ x ≤ 0, −1− x ≤ y ≤ 1 + x},
rM
2 = {(x, y) ∈ R2 | 0 < x ≤ 1, −1− x ≤ y ≤ sin(1/x)} ∪

{(0, y) ∈ R2 | −1 ≤ y ≤ 1},
rM
3 = {(x, y) ∈ R2 | 0 < x ≤ 1, sin(1/x) ≤ y ≤ 1 + x} ∪

{(0, y) ∈ R2 | −1 ≤ y ≤ 1},

as depicted in Fig. 7. It is easy to check that (r1 +r2 +r3)◦ is the interior of
the large triangle, and so is certainly connected, but that neither (r1 + r2)◦

nor (r1 + r3)◦ is connected. However, the regions r2 and r3 in Fig. 7 are
rather ‘wild’: they cannot sensibly be used to represent regions of the plane
occupied (or left unoccupied) by physical objects. The question therefore
arises as to whether (6) is satisfiable if only ‘tame’ regions are allowed.
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r1

r2

r3

Figure 7. Three elements in RC(R2).

Any (n− 1)-dimensional hyper-plane of Rn cuts Rn into two closed sets,
in the obvious way, which we shall call half-spaces. It is easy to see that
these half-spaces are regular closed, with each being the complement of the
other in the Boolean algebra RC(Rn). Hence, we can speak about the sums,
products and complements of half-spaces in RC(Rn).

A basic polytope in Rn is the product, in RC(Rn), of finitely many half-
spaces. A polytope in Rn is the sum, in RC(Rn), of any finite set of basic
polytopes. We denote the set of polytopes in Rn by RCP(Rn); we call the
polytopes in RCP(R2) polygons. Thus, polytopes (in our sense) may be un-
bounded, disconnected, and may have disconnected complements. (In alter-
native parlance, the elements of RCP(Rn) are the regular closed semi-linear
sets.) It is obvious that RCP(Rn) is a Boolean sub-algebra of RC(Rn).
Polytopes are well-behaved in two crucial respects.

Let T be a topological space, and M ⊆ RC(X). We call M finitely
decomposable if, for all R ∈ M , there exist R1, . . . , Rn ∈ M such that
R = R1 + · · ·+Rn. Let T be a topological space, X ⊆ T , and p a point on
the frontier of X. An end-cut to p in X is a Jordan arc g in T such that
g(1) = p and g([0, 1[) ⊆ X. We say that S has curve-selection if, for any
point p in the frontier of X, there exists an end-cut in X to p. A set of
subsets of T has has curve-selection if each of its members does.

LEMMA 13. RCP(Rn) is finitely decomposable, and has curve-selection.

Indeed, basic polytopes are convex, and so trivially have curve selection.
But if R = R1+· · ·+Rn, then ∂R ⊆ ∂R1∪· · ·∪∂Rn and R◦ ⊇ R◦1∪· · ·∪R◦n,
where ∂X denotes the frontier of X. The significance of these properties is
that they affect the satisfiability of formula (6).

LEMMA 14 ([45], p. 40). Let M be a finitely decomposable Boolean subal-
gebra of RC(R2) forming a closed basis for the usual topology on R2, and
having curve-selection. Then (6) is not satisfiable over the frame (R2,M).
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In particular, formula (6) is unsatisfiable over the frame (R2,RCP(R2));
hence Sat(Bc◦ ,RC(R2)) 6= Sat(Bc◦ ,RCP(R2)). We remark that many
other natural collections of ‘tame’ regions exhibit the property of finite
decomposability and curve-selection—most notably, the regular closed semi-
algebraic sets (see, e.g. [63]).

Unfortunately, little is known about these logics. In particular, it would
be interesting to investigate the complexity of sets like Sat(Bc,RC(R2)),
Sat(Bc,RCP(R2)), Sat(Bc◦ ,RC(R2)), Sat(Bc◦ ,RCP(R2)). The computa-
tional behaviour of Bc◦ over simpler classes of frames such as Reg and
ConReg remains also open for investigation.

5 Boolean contact algebras

By restricting interpretations of variables to regular closed (or open) sets
and, correspondingly, the language of S4u to its fragment B, we considerably
restrict the expressive capabilities of our spatial logics. In particular, White-
head’s ‘extensive connection’ [65] C(τ1, τ2), which has historically played a
prominent role in region-based theories of space, cannot be expressed by
means of B-formulas despite its very simple intended meaning:

M |= C(τ1, τ2) iff (τM
2 )

− ∩ (τM
2 )

− 6= ∅.

In S4u, we clearly have C(τ1, τ2) ≡ (τ−1 ∩ τ−2 6= 0).
So we define the language C by extending B with the binary predicate C,

interpreted as above. Thus the C-terms are precisely the B-terms and the
C-formulas are defined in the same way as the B-formulas, except that we
have the additional clause

ϕ ::= . . . | C(τ1, τ2) | . . . ,

where τ1 and τ2 are C-terms. Since Whitehead’s term ‘extensive connection’
risks confusion with the standard topological notion of connectedness, we
follow more recent usage and read C(τ1, τ2) as ‘τ1 contacts τ2.’

It turns out that C is adequate for the reconstruction of topology within
a ‘region-based’ ontology, in the following sense. A closed mereotopology is
a topological frame (T,M), such that M is (i) a Boolean sub-algebra of
RC(T ); and (ii) M is a closed basis for the topology on T . It is easy to
verify that, over any mereotopology, the following C-formulas are valid:

¬C(r,0),(7)
(r 6= 0)→ C(r, r),(8)
C(r, s)→ C(s, r),(9)
C(r, s) ∧ (s ≤ t)→ C(r, t),(10)
C(r, s+ t)→ C(r, s) ∨ C(r, t).(11)

Structures (in the first-order sense) satisfying the usual axioms of Boolean
algebras together with the universal closures of (7)–(11) are known as
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DC(r, s) ¬C(r, s) r and s are disconnected
EC(r, s) (r · s = 0) ∧ C(r, s)

r and s are externally connected
EQ(r, s) r = s r and s are equal
PO(r, s) (r · s 6= 0) ∧ ((−r) · s 6= 0) ∧ (r · (−s) 6= 0)

r and s partially overlap
TPP(r, s) (r · (−s) = 0) ∧ C(r,−s)

r is a tangential proper part of s
NTPP(r, s) ¬C(r,−s) r is a non-tangential proper part of s
TPP−1(r, s) (s · (−r) = 0) ∧ C(s,−r)

s is a tangential proper part of r
NTPP−1(r, s) ¬C(s,−r) s is a non-tangential proper part of r

Table 1. The RCC-8 relations in the language C.

Boolean contact algebras. Thus, any mereotopology is a Boolean contact
algebra. In fact we have a converse: every Boolean contact algebra is iso-
morphic to some mereotopology (T,M), where T is a semiregular and com-
pact T0-space [16, 17]. Axiom sets corresponding to closed mereotopolo-
gies over spaces satisfying certain separation properties have also been ob-
tained [16, 17, 19, 51]; see also [56].

The complexity of reasoning in C was studied in [66], where this logic
was introduced under the name BRCC-8 in recognition of the fact that it
is able to express the eight relationships in Table 1, which have played an
important role in the recent development of spatial logics.

THEOREM 15 ([66]). Sat(C,Reg) is NP-complete.

This result follows from the fact that every satisfiable C-formula ϕ can
be satisfied in a frame belonging to Alek≤1 which is a disjoint union of
linearly many (in the length of ϕ) forks; see Fig. 8.
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Figure 8. Satisfying (τ0 6= 0) ∧ C(τ1, τ2) in a disjoint union of forks.

THEOREM 16 ([66]). Sat(C,ConReg) = Sat(C,RC(Rn)); and this set is
PSpace-complete.

To show that the two sets coincide, one can use two observations: (i) ev-
ery C-formula satisfiable in a frame from ConReg is satisfiable in a finite
saw Aleksandrov model, i.e., a model induced by a partial order R on
{x0, z1, x1, z2, x2, . . . , zn, xn} such that ziRxi−1 and ziRxi, for 1 ≤ i ≤ n;
and (ii) every saw Aleksandrov model can be embedded into Rn. The first
observation follows from the fact that every formula in Sat(C,ConReg) is
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satisfiable in a connected quasi-saw Aleksandrov model, which can be trans-
formed (by duplicating points) into a saw model. The proof of (ii) for n = 1
is illustrated in Fig. 9 (points of depth 0 correspond to closed intervals and
points of depth 1 to the end-points of those intervals).
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Figure 9. Embedding a saw model in R.

The complexity result is proved similarly to Theorem 5; a full proof can
be found in [31]. In fact, it turns out that C is powerful enough to model
binary counters (as in Section 3).

We also mention here two results from [3, Section 9]: (i) axioms (7)–(11)
together with the axioms for Boolean algebras axiomatize the validities of
C over Reg; and (ii) the extra axiom

(r 6= 0) ∧ (r 6= 1) → C(r,−r)

is required to axiomatize C-validities over ConReg.
As with the languages S4u and B, it is of interest to consider the exten-

sions Cc and Ccc of C with the predicates c and c≤k. Surprisingly enough,
these languages are of the same complexity as their S4u counterparts:

THEOREM 17 ([31]). (i) Sat(Cc,Reg) and Sat(Cc,ConReg) are distinct
and ExpTime-complete; Sat(Cc,RC(Rn)), for n ≥ 2, is ExpTime-hard.

(ii) Sat(Ccc,Reg) and Sat(Ccc,ConReg) are distinct and NExpTime-
complete; Sat(Ccc,RC(Rn)), for n ≥ 2, is NExpTime-hard.

Another surprising result is that the satisfiability problem for Cc (and
Ccc) is reducible to the satisfiability problem for Bc (Bcc, respectively).
Clearly, two connected closed sets are in contact iff their union is connected;
that is to say, the formula c(τ1) ∧ c(τ2) →

(
C(τ1, τ2) ↔ c(τ1 + τ2)

)
is a

Ccc-validity. However, this ‘reduction’ of C to c assumes the arguments
of C(τ1, τ2) to be connected, which is not in general the case. Roughly,
the idea behind the reduction is as follows. If M |= C(τ1, τ2) then there
are connected components Xi of τM

i such that X1 ∩ X2 6= ∅. So we can
introduce fresh variables ti for Xi, for which M |= c(t1 + t2) ∧ c(t1) ∧ c(t2).
On the other hand, if M |= ¬C(τ1, τ2) then we can extend the Aleksandrov
space T underlying M with two extra points u1 and u2 that ‘connect’ all
the points of τ1 and τ2, respectively, and consider the new connected sets
Xi = τM

i ∪ {ui}. By introducing fresh variables ti for Xi, we then have
M |= ¬c(t1 + t2) ∧ c(t1) ∧ c(t2). For more details consult [31].
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6 RCC-8
In Sections 2 and 3, we considered topological logics based on the term-
language S4. In Section 4, we investigated the result of (in effect) restricting
this term-language to those terms that denote regular closed sets. In this
section, we consider topological languages in which terms have no structure
at all: they are simply variables.

What topological primitives might we employ over such an impoverished
term-language? The possibilities are almost endless; historically, however,
one particular collection of primitives has held centre-stage. Define the
language RCC-8 as follows. The RCC-8-terms are simply the variables. The
RCC-8-formulas, ϕ, are given by

ϕ ::= r DC s | r EC s | r EQ s | r PO s | r TPP s |
r NTPP s | r TPP−1 s | r NTPP−1 s | ¬ϕ | ϕ1 ∧ ϕ2,

where r and s are variables (i.e. RCC-8-terms). The semantics of RCC-8 is
defined according to Table 1, under the restriction that RCC-8-terms are
interpreted by non-empty, regular closed sets of topological spaces. RCC-8
and similar formalisms were originally introduced in the area of knowledge
representation and reasoning in AI, in particular, geographical information
systems; see [20, 21, 55, 46]. The fact that it is actually a simple fragment
of S4u was first observed by Bennett [5]; see also [48, 42] (in fact, RCC-8
can be embedded in S5 [67]).
RCC-8 is rather inexpressive. As was observed by Renz [47], we have:

THEOREM 18 ([47]). Sat(RCC-8,Reg) = Sat(RCC-8,ConReg) =
Sat(RCC-8,RC(Rn)), for any n ≥ 1; this set is NP-complete.

NP-completeness follows from the fact that—similarly to C—every sat-
isfiable RCC-8-formula ϕ is satisfied in a disjoint union of linearly many (in
the length of ϕ) forks. Tractable fragments of RCC-8 were analyzed in [48].

Actually, the NP-hardness result here arises entirely from the Boolean
combinations available in formulas. Indeed, the following holds:

THEOREM 19 ([27]). The problem of determining whether a conjunctive
RCC-8-formula is satisfiable in Reg is NLogSpace-complete.

RCC-8’s lack of expressiveness at the level of the term-language opens up
additional possibilities for restrictions on the topological frames considered,
for it is perfectly natural to interpret RCC-8 over topological frames (T,M)
in which M is a subset (not necessarily a subalgebra) of RC(T ). For
instance, let C(T ) be the set of non-empty, connected, regular closed subsets
of the space T . It is easy to see that, for n ≥ 3, Sat(RCC-8,C(Rn)) =
Sat(RCC-8,RC(Rn)) [47]. However, this is not true for n = 1 or n = 2. For
the latter case, we consider an example similar to (4). Let ri,j , 1 ≤ i < j ≤ 5,
be distinct variables other than ri, 1 ≤ i ≤ 5; and let ϕ be the formula∧

i∈{j,k}
NTPP(ri, rj,k) ∧

∧
{i,j}∩{k,l}=∅

DC(ri,j , rk,l).
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Clearly, ϕ is not satisfiable over C(R2), again, because, if it were, one could
construct a plane drawing of K5.

Another salient frame over which to interpret RCC-8 is the collection D
of subsets of R2 homeomorphic to the closed unit disc. This interpretation is
noteworthy for the following reason. Fix some topological frame (T,S), and
let R1, . . . , R8 be the relations over S expressed by the RCC-8-primitives,
as specified in Table 1. It is routine to show that R1, . . . , R8 are mutually
exclusive and jointly exhaustive: any ordered pair of elements of S belongs
to exactly one of these relations. But now consider the various relative prod-
ucts Ri ◦Rj . If each of these relative products is the union of some subset
of {R1, . . . , Rn}, then these relations generate a finite relation algebra.

THEOREM 20 ([38]). The relations expressed by the RCC-8-predicates, in-
terpreted over the set D of disc-homeomorphs in R2, are the atoms of a
relation algebra.

Schaefer et al. [52] analyse the relationship between Sat(RCC-8, (R2,D))
and the problem of determining the weak realizability of topological graphs.
Let G = (V,E) be a graph and R a set of (unordered) pairs of elements
of E. We say that (G,R) is weakly realizable if there is a drawing of G
such that only the pairs of edges allowed to cross are those occurring in
R. Schaefer et al. show that the problem of determining weak realizability
of graphs is in NP. This is a remarkable result, as it is known that some
weakly realizable topological graphs require drawings in which the number
of crossing points is bounded below by an exponential function of the size
of the graph [33]. Using the close relationship between weak realizability
of topological graphs and satisfiability of RCC-8-formulas by closed discs,
Schaefer et al. obtain:

THEOREM 21 ([52]). The problem Sat(RCC-8, (R2,D)) is NP-complete.

7 n-ary contact relation

As formulas in RCC-8 and C are built from B-terms using the binary pred-
icates τ1 = τ2 and C(τ1, τ2), they are not capable of expressing certain
relations involving three or more regions. An obvious way of extending the
expressive power of C in this direction is to generalize the contact predicate
and consider the extension Cm of B with arbitrary n-ary contact relations
C(τ1, . . . , τn), for n > 1: the Cm-formulas are defined in the same way as
B-formulas, except that we have the additional clause

ϕ ::= . . . | C(τ1, . . . , τn) | . . . .

The definition of the truth-relation is extended as follows:

M |= C(τ1, . . . , τn) iff (τM
1 )− ∩ · · · ∩ (τM

n )− 6= ∅.

Clearly, Cm can also be regarded as a fragment of S4u; indeed, the n-ary
contact relation is definable in S4u as C(τ1, . . . , τn) ≡ (τ−1 ∩ · · · ∩ τ−n 6= 0).
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The extra expressive power of Cm as compared to RCC-8 and C can be
illustrated by the following formula

C(r1, r2, r3) ∧
∧

1≤i<j≤3

(ri · rj = 0)(12)

which says that boundaries of three regular closed sets r1, r2 and r3 meet
somewhere but the three sets have no common interior points. In particular,
in order to satisfy it in Aleksandrov spaces, one requires a partial order of
width 3 (see Fig. 10 a)) unlike for C, where partial orders of width 2 (disjoint
unions of forks) were enough. A model over RC(R2) satisfying (12) is
depicted in Fig. 10 b): it interprets each ri as a third of the disc; then the
centre of the disc is the point in r1∩ r2∩ r3 (i.e., a witness for C(r1, r2, r3)).

a)

r1, r2, r3

r1 r2 r3b b b
b
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Figure 10. A 3-broom satisfying (12) and a satisfying model over RC(R2).

Despite the extra expressiveness, Cm is of the same complexity as C:
THEOREM 22 ([23]). Sat(Cm,Reg) is NP-complete.

This follows from the fact that every satisfiable Cm-formula ϕ can be
satisfied in an Aleksandrov model that is a disjoint union of linearly many
(in |ϕ|) n-brooms, where n is the maximum arity of contact predicate in ϕ
(each n-broom is a partial order ({z, x1, . . . , xn}, R) with zRxi, for all i).

It is also of interest to note that, unlike C, Cm distinguishes between R
and R2: formula (12) is clearly satisfiable in R2 but not in R (cf. Theo-
rem 16).

THEOREM 23. For n > 1, Sat(Cm,RC(R)) 6= Sat(Cm,RC(Rn)) and
Sat(Cm,RC(Rn)) = Sat(Cm,ConReg). All these sets are PSpace-complete.

The following complexity results for the extensions Cmc and Cmcc of Cm
are immediate consequences of the results considered earlier in the paper:

COROLLARY 24. Sat(Cmc,Reg), Sat(Cmc,ConReg) are ExpTime-com-
plete; Sat(Cmcc,Reg), Sat(Cmcc,ConReg) are NExpTime-complete.

Finally, we note that every satisfiable Cmcc-formula can be satisfied in
an Aleksandrov model based on a frame of depth 1:

THEOREM 25. For every finite Aleksandrov model M induced by a quasi-
order (W,R), there is an Alek≤1 model M′ induced by (W,R′), R′ ⊆ R,
such that, for each B-term τ ,

• τM = τM′
;

• τM and τM′
have the same number of connected components.

It follows that if M |= ϕ then M′ |= ϕ, for every Cmcc-formula ϕ.
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8 Conclusion

We conclude the paper with a table summarizing the complexity results
considered above as well as the open problems. Merged cells in the table
mean that the corresponding logics coincide, Exp stands for ExpTime, and
NExp stands for NExpTime.

Reg ConReg RC(Rn) RC(R2) RC(R)
n > 2

RCC-8
RCC-8c NP

Thm. 18
? ≤PSpace,≥NP

RCC-8cc ? ≤PSpace,≥NP

B NP
Bc Exp Exp ? ? ≤PSpace,≥NP

Bcc NExp NExp ? ? ≤PSpace,≥NP

C NP
Thm. 15

PSpace
Thm. 16

Cc Exp
Thm. 17

Exp
Thm. 17

≥Exp
Thm. 17

≥Exp
Thm. 17

PSpace

Ccc NExp
Thm. 17

NExp
Thm. 17

≥NExp
Thm. 17

≥NExp
Thm. 17

PSpace

Cm NP
Thm. 22

PSpace
Thm. 23

PSpace
Thm. 23

PSpace

Cmc Exp Exp ≥Exp ≥Exp PSpace
Cmcc NExp NExp ≥NExp ≥NExp PSpace

All Con Rn, n > 2 R2 R
S4u PSpace

Thm. 2
PSpace
Thm. 3

S4uc Exp
Thm. 6

Exp
Thm. 10

≥Exp ≥Exp PSpace

S4ucc NExp
Thm. 7

NExp
Thm. 10

≥NExp ≥NExp PSpace
Thm. 9
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Computer and System Sciences, 67:365–380, 2003.

[53] V. Shehtman. “Everywhere” and “Here”. J. of Applied Non-Classical Logics, 9, 1999.

[54] M. Sheremet, D. Tishkovsky, F. Wolter, and M. Zakharyaschev. From topology to

metric: modal logic and quantification in metric spaces. In G. Governatori, I. Hod-

kinson, and Y. Venema, editors, Advances in Modal Logic 6, pages 429–448, 2006.

[55] T. Smith and K. Park. An algebraic approach to spatial reasoning. International J. of

Geographical Information Systems, 6:177–192, 1992.

[56] J. Stell. Boolean connection algebras: A new approach to the Region Connection

Calculus. Artificial Intelligence, 122:111–136, 2000.

[57] D. Sustretov. Topological semantics and decidability. arXiv:math/0703106v3 [math.LO],

February 2008.

[58] A. Tarski. On the calculus of relations. J. of Symbolic Logic, 6(3):73–89, 1941.

[59] A. Tarski. What is Elementary Geometry? In The Axiomatic Method, with Special

Reference to Geometry and Physics, pages 16–29. North-Holland, 1959.

[60] B. ten Cate, D. Gabelaia, and D. Sustretov. Modal languages for topology: expres-
sivity and definability. arXiv:math/0610357v2 [math.LO], October 2006.

[61] D. Vakarelov. Region-based theory of space: algebras of regions, representation the-

ory, and logics. In D. M. Gabbay, S. Goncharov, and M. Zakharyaschev, editors,

Mathematical Problems from Applied Logic II, pages 267–348. Springer, 2007.

[62] J. van Benthem and G. Bezhanishvili. Modal logics of space. In M. Aiello, I. Pratt-

Hartmann, and J. van Benthem, editors, Handbook of Spatial Logics, pages 217–298.

Springer, 2007.



176 R. Kontchakov, I. Pratt-Hartmann, F. Wolter and M. Zakharyaschev

[63] L. van den Dries. Tame Topology and O-Minimal Structures, volume 248 of London

Mathematical Society Lecture Note Series. Cambridge, 1998.

[64] P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Complexity, Logic

and Recursion Theory, volume 187 of Lecture Notes in Pure and Applied Mathematics,

pages 331–363. Marcel Dekker Inc., 1997.

[65] A. N. Whitehead. Process and Reality. New York: The MacMillan Company, 1929.

[66] F. Wolter and M. Zakharyaschev. Spatial reasoning in RCC-8 with Boolean region

terms. In W. Horn, editor, Proceedings of ECAI, pages 244–248. IOS Press, 2000.

[67] F. Wolter and M. Zakharyaschev. Qualitative spatio-temporal representation and

reasoning: a computational perspective. In G. Lakemeyer and B. Nebel, editors,

Exploring AI in the New Millenium, pages 175–216. Morgan Kaufmann, 2002.

[68] F. Wolter and M. Zakharyaschev. A logic for metric and topology. J. of Symbolic

Logic, 70:795–828, 2005.

Roman Kontchakov
School of Computer Science and Information Systems
Birkbeck College
London WC1E 7HX
UK
roman@dcs.bbk.ac.uk

Ian Pratt-Hartmann
Department of Computer Science
Manchester University
Manchester M13 9PL
UK
ipratt@cs.man.ac.uk

Frank Wolter
Department of Computer Science
University of Liverpool
Liverpool L69 3BX
UK
frank@csc.liv.ac.uk

Michael Zakharyaschev
School of Computer Science and Information Systems
Birkbeck College
London WC1E 7HX
UK
michael@dcs.bbk.ac.uk


