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abstract. We provide proof-theoretic results about deliberative STIT
logic. First we present STIT logic for individual agents without time, where

the problem of satisfiability has recently been shown to be NEXPTIME-

complete in the general case. Then we study STIT logic for groups of agents.

We prove that satisfiability of STIT formulas involving groups of agents is

undecidable by reducing the problem of satisfiability of a formula of the

product logic S5n to group STIT satisfiability problem. We also prove that

group STIT is not finitely axiomatizable.
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1 Introduction

While logics of programs and actions such as PDL allow to reason about
the relation between an action and its effects, so-called logics of agency are
about the relation between an agent and the effects of his actions. The latter
are relevant in game theory, theoretical computer science and philosophy of
action.

In game theory, Pauly’s coalition logic (CL) allows to reason about the ca-
pabilities of coalitions [14]. It provides for expressions of the kind “coalition
J can make φ true at the next time point”.

In theoretical computer science, Alternating-time Temporal Logics ATL
and ATL∗ were introduced by Henzinger et al. in order to reason about dis-
tributed processes [2]. The formula 〈〈J〉〉φ reads “coalition J has a strategy
such that φ holds”, where φ is a formula of linear temporal logic (that has
to satisfy some restrictions in the case of ATL). Goranko showed that CL is
nothing but a fragment of ATL (which in turn is a fragment of ATL∗), by
identifying the CL formula [J ]φ with the ATL formula 〈〈J〉〉Xφ [9], where
X is the temporal ‘next’ operator.

In philosophy of action constructions of the form [i stit : φ] were intro-
duced by Belnap et col. [4], read “agent i sees to it that φ” or “i brings it
about that φ”. In this paper, we focus on the basic version that is called
Chellas STIT [6] (thus baptized by [10]), noted [i cstit : φ] in the literature.
(The original operator defined by Chellas is nevertheless notably different
since it does not come with the principle of independence of agents that
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plays a central role in STIT theory.) The Chellas STIT was extended to
group agency in [4, Section 10.C] and [11, Section 2.4]. For a set of agents
J , the formula [J cstit : φ] reads “group J sees to it that φ”. We here write
[J ]φ instead of [J stit : φ]. These logics moreover have a modal operator
of historical necessity 2. Recently Broersen et al. showed that ATL can be
embedded into the logic of the Chellas STIT, by identifying 〈〈J〉〉Xφ with
¬2¬[J ]Xφ [5]. This highlights that the modal operators of CL and ATL
are nothing but fusions of three modal operators. STIT-logics are therefore
the most general formal framework for agency, allowing not only to reason
about what agents can do, but also about what they do.

While it is known that the satisfiability problem is PSPACE-complete for
coalition logic CL [14], EXPTIME-complete for ATL [19], and 2EXPTIME-
complete for ATL∗ [15], only little is known about the mathematical prop-
erties of STIT logic. Up to now the only known results were restricted to
the individual case: Wölfl gave an axiomatization [21], and Xu established
axiomatization and decidability in [22] and [4, Chapter 17]. Wansing gave a
complete tableaux calculus, but didn’t prove termination [20]. In previous
work we showed NEXPTIME completeness of the satisfiability problem [3].

The present paper investigates decidability and axiomatizability results
for STIT logic without temporal operators. It is organized as follows. In
Section 2 we recall the known results about individual STIT. In Section
3 we recall the definition of group STIT, providing also for an alternative
semantics and a normal form which is built by rewriting all groups that are
different from the ‘grand coalition’ (alias the set of all agents), to what we
call ‘anti-individuals’ (alias complements of singleton groups). Building on
results about the product Logic S5n that we recall in Section 4, we show in
Section 5 that group STIT is undecidable, and in Section 6 that there is no
finite axiomatization for it.

2 Individual STIT
In this section, we present the logic of agentive sentences of the form ‘indi-
vidual i sees to it that φ’.

The language LSTITn
of STITn logic is built from a countably infinite set

of atomic propositions ATM and a finite set of agents AGT = {1, . . . , n}.
It is defined by the following BNF:

φ ::= p | ¬φ | (φ ∧ φ) | [i]φ | 2φ
where p ranges over ATM and i ranges over AGT . [i]φ is read “agent i
sees to it that φ (whatever the other agents do)”, and 2φ is read “φ is
historically necessary”, or “φ holds whatever all the agents choose to do”.

We use the usual dual operators: 3φ abbreviates ¬2¬φ, and 〈i〉φ abbre-
viates [i]φ.

REMARK 1. In the STIT literature the formula [i]φ is usually written
[i cstit : φ], where ‘cstit’ stands for ‘Chellas STIT’. The formula 2φ is
sometimes written Sett φ, where ‘Sett’ stands for ‘settled’.
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REMARK 2. Other STIT operators exist: the so-called deliberative STIT
operator [i dstit : φ] can be defined as an abbreviation of [i]φ ∧ ¬2φ; the
so-called achievement STIT operator [i astit : φ] is more complex and will
not be considered here.

2.1 Semantics of STITn

We present two semantics for LSTITn
. The first one is the original one in

terms of Belnap’s branching-time models [4], while the second one does not
mention time and is closer to standard presentations of Kripke models.

BT+AC models
Semantics is given to formulas of LSTITn

in terms of a branching-time (BT)
structure augmented by an agent choice (AC) function.

DEFINITION 3 (BT structure). A BT structure is of the form 〈M,<〉,
where M is a nonempty set of moments, and < is a partial order on M
(transitive and anti-symmetric) that is tree-like: for any m1, m2 and m3

in M , if m1 < m3 and m2 < m3, then either m1 = m2 or m1 < m2 or
m2 < m1.

A maximal set of linearly ordered moments from M is a history. When
m ∈ h we say that moment m is on the history h. Hist is the set of all
histories.

Hm = {h | h ∈ Hist,m ∈ h}
is the set of histories passing through m. A moment-history pair is a couple
m/h, consisting of a moment m and a history h from Hm (i.e., a history
and a moment in that history).

BT+AC models are BT structures augmented by agents’ choices (AC)
and a valuation.

DEFINITION 4 (BT+AC model). A BT+AC model is a tupleM = 〈M,<
,Choice, V 〉, where:

• 〈M,<〉 is a BT structure;

• Choice : AGT ×M → 22Hist

is a function mapping each agent and
each moment m into a partition of Hm such that for all m and all
mappings sm : AGT −→ 2Hm such that sm(i) ∈ Choice(i,m), we
have

⋂
i∈AGT sm(i) 6= ∅;

• V is valuation function V : ATM → 2M×Hist.

In terms of game theory, each mapping sm : AGT → 2Hm such that
sm(i) ∈ Choice(i,m) for all i is a strategy profile at m. We write Choicemi
instead of Choice(i,m). Each equivalence class belonging to Choicemi can
be thought of as a choice that is available to agent i at m: when h, h′ ∈
Choicemi then agent i’s current choice at the moment-history pair m/h
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cannot distinguish between h and h′. Given a moment m, we can view
Choicemi as a mapping from Hm to 2Hm by defining:

Choicemi (h) = {h′ ∈ Hm | there is Q ∈ Choicemi and h, h′ ∈ Q}

Thus Choicemi (h) returns the particular choice from Choicemi containing
h, or in other words, the particular action performed by i at the moment-
history pair m/h: i’s current choice at m/h forces the possible histories to
be among Choicemi (h).

We call the constraint of nonempty intersection of all possible simultane-
ous choices of agents at m the independence constraint.1

A formula is evaluated with respect to a model and a moment-history
pair:

M,m/h |= p iff m/h ∈ V (p), p ∈ ATM
M,m/h |= ¬φ iff M,m/h 6|= φ
M,m/h |= φ ∧ ψ iff M,m/h |= φ and M,m/h |= ψ
M,m/h |= 2φ iff M,m/h′ |= φ for all h′ ∈ Hm

M,m/h |= [i]φ iff M,m/h′ |= φ for all h′ ∈ Choicemi (h)

Validity in BT+AC models is defined as truth at every moment-history pair
of every BT+AC model. A formula φ is satisfiable in BT+AC models if ¬φ
is not valid in BT+AC models.

Kripke models
We now present an alternative semantics for LSTITn -formulas that is closer
to that of standard modal logics, and was proposed in [13].

DEFINITION 5 (Kripke model). A Kripke model for the logic STITn is a
tuple W = 〈W,R, V 〉 where:

• W is a nonempty set;

• R is a mapping associating to every i ∈ AGT an equivalence relation
Ri on W such that for all (w1, . . . , wn) ∈Wn,

⋂
i∈AGT Ri(wi) 6= ∅;

• V is a valuation function V : ATM → 2W .

Intuitively, Ri is nothing more than the equivalence relation correspond-
ing to the partition Choicemi . The condition on R corresponds to the inde-
pendence constraint of BT+AC models.

REMARK 6. Our Kripke models here correspond to the class of point-
generated models of the semantics proposed in [3]. There, the independence
constraint is formulated in a slightly different way (just because the models
might not be point-generated).

A formula is evaluated as usual with respect to a model and a point.
1There are other constraints relating the BT structure and the choice function, such

as “no choice between undivided histories”. They are not relevant here because we do
not have temporal operators in our language, and we therefore omit them.
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W, w |= p iff w ∈ V (p), for p ∈ ATM
W, w |= ¬φ iff W, w 6|= φ
W, w |= φ ∧ ψ iff W, w |= φ and W, w |= ψ
W, w |= 2φ iff W, w′ |= φ for all w′ ∈W
W, w |= [i]φ iff W, w′ |= φ for all w′ ∈ Ri(h)

Validity and satisfiability in Kripke models are defined as usual.

THEOREM 7. A STITn-formula is satisfiable in BT+AC models iff it is
satisfiable in Kripke models.

Proof. The proof is done by transforming a given BT+AC model into a
Kripke model and vice versa. It is a particular case of the proof of Theorem
11 in Section 3.1. �

2.2 Axiomatization, decidability and complexity of STITn

Xu gave the following axioms:

S5(2) the axiom schemas of S5 for 2;

S5(i) the axiom schemas of S5 for every [i], for every i ∈ AGT ;

(2→i) 2φ→ [i]φ, for every i ∈ AGT ;

(AIAn) (3[1]φ1 ∧ . . . ∧3[n]φn)→ 3([1]φ1 ∧ . . . ∧ [n]φn).

(AIAn) is called the axiom schema for independence of agents. Xu’s
axiomatics has the standard inference rules of modus ponens and necessita-
tion for 2. From the latter necessitation rules for every [i] follow by axiom
(2→i).

From Xu’s completeness theorem [4, Chapter 4] and Theorem 7 we get:

THEOREM 8. [4, Chapter 17] A formula φ of LSTITn
is valid in Kripke

models iff φ is provable from the schemas S5(2), S5(i), (2→i), and (AIAn)
by the rules of modus ponens and 2-necessitation.

REMARK 9. An alternative axiomatization is given in [3], where (AIAn) is
replaced by the simpler axiom schema 3φ→ 〈k〉∧{〈l〉φ | 1 ≤ l ≤ n and l 6=
k}.

It is also shown there that 3φ can be viewed as an abbreviation of 〈i〉〈j〉φ,
for some arbitrary i and j.

The complexity of the satisfiability problem for STITn-formulas depends
of the number of agents.

THEOREM 10. [3] The problem of deciding satisfiability of a formula of
LSTITn

is NP-complete if n = 1, and it is NEXPTIME-complete if n ≥ 2.
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3 Group STIT

In this section, we extend the individual STIT to group STIT: we study the
logic of agentive sentences of the form ‘group J sees to it that φ’. Now
modal operators have as arguments coalitions J ⊆ AGT .

Just as in the individual case, the language LSTITG
n

of STITGn logic is built
from a countable set of atomic propositions ATM and a finite set of agents
AGT = {1, . . . , n}. But now the modal operators have sets of agents as
arguments, and LSTITG

n
is defined by the following BNF:

φ ::= p | ¬φ | (φ ∧ φ) | [J ]φ

where p ranges over ATM and J ranges over 2AGT .
The language of individual STIT becomes a fragment of that of group

STIT if we identify [{i}] with [i]. The semantics of group STIT will guarantee
that the LSTITG

n
formula [∅]φ has the same interpretation as the LSTITn

formula 2φ.

3.1 Semantics of STITGn
Again, we present the semantics both in terms of branching-time models as
defined by Horty and Belnap [10] and Belnap and Perloff [4, Chapter 10],
and in terms of Kripke models [13]. We prove that both classes of models
have the same logic. The latter will be useful to establish the relationship
with product logics.

BT+AC models
Models for STITGn are the same those of the logic STITn, i.e. BT+AC models
satisfying the independence constraint. The only thing we have to do is to
extend the definition of Choice in order to interpret group agency.

Horty defines in [11] the notion of collective choice. He first introduces
action selection functions sm from AGT into 2Hm such that for each m ∈M
and a ∈ AGT , sm(a) ∈ Choicema . So a selection function sm selects a
particular action for each agent at m. Then for a given m,

Selectm = {sm : AGT → 2Hm | sm(a) ∈ Choicema , for all a ∈ AGT}

is the set of all such selection functions. This allows to extend the definition
of Choice. A collective choice for a nonempty group of agents ∅ ( J ⊆ AGT
at moment m is defined as:

ChoicemJ = {
⋂
j∈J

sm(j) | sm ∈ Selectm}

For J = ∅ we define Choicem∅ = {Hm}. We can check that every ChoicemJ
is a partition of Hm.

As before,

ChoicemJ (h) = {h′ ∈ Hm | there is Q ∈ ChoicemJ and h, h′ ∈ Q}
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is the particular choice from ChoicemJ containing h, or in other words, the
particular joint action performed by coalition J at the moment-history pair
m/h. And as before, formulas are interpreted with respect to a model and
a moment-history pair:

M,m/h |= [J ]φ iff M,m/h′ |= φ for all h′ ∈ ChoicemJ (h).

Observe that the LSTITG
n
-formula [∅]φ is true at m/h if and only if the

LSTITn
-formula 2φ is true at m/h.

Validity and satisfiability are defined as before.

Kripke models
Kripke models for STITGn are the same as for STITn. Just as we defined
ChoicemJ from Choicemi in the last section, we here define RJ from the Ris.

Let W = 〈W,R, V 〉 be a Kripke model for STITn. For all nonempty
J ⊆ AGT , we define

RJ =
⋂
i∈J

Ri

and R∅ = W ×W .
A formula is evaluated as usual with respect to a model and a world:

W, w |= [J ]φ iff W, w′ |= φ for all w′ ∈ RJ(w)

THEOREM 11. A STITGn -formula is satisfiable in BT+AC models iff it is
satisfiable in Kripke models.

Proof. ⇒ Let M′ = 〈M ′, <,Choice, V ′〉 be a BT+AC model such that
M′,m0/h0 |= φ for some a moment-history pair m0/h0. We define the tuple
W = 〈W,R, V 〉 as follows:

• W = Hm0 ;

• Ri = {(h, h′) | there exists Q ∈ Choicem0
i such that h, h′ ∈ Q};

• V (p) is the set of histories h ∈ Hm0 such that m0/h ∈ V ′(p).
We can check that W is a Kripke model. We can prove by induction on ψ
that for all formulas ψ and for all h ∈ Hm0 , W, h |= ψ iff M′,m0/h |= ψ.
Hence, W, h0 |= φ.
⇐ Let W = 〈W,R, V 〉 be a Kripke model such that W, w0 |= φ for some

world w0 ∈W . We define the BT+AC model M′ = 〈M ′, <,Choice, V ′〉 as
follows:

• M ′ = {m0} ∪W for some m0 6∈W ;

• < = {m0} ×W (and thus Hist = Hm0 = {{m0, w} | w ∈W});
• Choicem0

i = {{{m0} ×Ri(w)} | w ∈W}, and
Choicewi = {{h}, h ∈ Hw} for every w ∈W ;
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• V ′(p) is the set of moment-history pairs m0/{m0, w} such that w ∈
V (p).

We can check thatM′ is a BT+AC model. We can also prove by induction
on ψ that for all STITn formulas ψ and worlds w ∈W ,M′,m0/{m0, w} |= ψ
iff W, w |= ψ. Hence M′,m0/{m0, w0} |= φ. �

3.2 Normal form for STITGn formulas
We now show that every formula of LSTITG

n
is equivalent to a formula where

only the ‘grand coalition’ AGT and ‘anti-individuals’ occur, where the latter
are complements of singleton groups.

LEMMA 12. Let W = 〈W,R, V 〉 be a Kripke model. For all (w1, . . . , wk) ∈
W k and J1, . . . , Jk ∈ 2AGT such that j 6= l implies Jj ∩ Jl = ∅ we have:⋂
j∈{1...k}RJj

(wj) 6= ∅.
Proof. This follows from the independence constraint, which says that⋂

i∈AGT Ri(wi) 6= ∅ for all (w1, . . . , wn) ∈Wn.
�

The following theorem holds for any J1 and J2 (that are not necessarily
disjoint).

THEOREM 13. Let J1, J2 ⊆ AGT. We have:

|=STITG
n

[J1 ∩ J2]φ↔ [J1][J2]φ

Proof. LetM = 〈W,R, V 〉 be a Kripke model. We are going to prove that
RJ1∩J2 = RJ1 ◦RJ2 .
⊇ As J1 ∩ J2 ⊆ J1, we have RJ1 ⊆ RJ1∩J2 by definition of the relation
RJ . Likewise, RJ2 ⊆ RJ1∩J2 . As RJ1∩J2 is transitive, we have RJ1 ◦RJ2 ⊆
RJ1∩J2 .
⊆ Let w,w′ ∈ W such that (w,w′) ∈ RJ1∩J2 . We are going to prove that
RJ1(w)∩RJ1(w

′) 6= ∅, i.e. that W contains a point u such that (w, u) ∈ RJ1

and (u,w′) ∈ RJ2 (from which it immediately follows that RJ1∩J2 ⊆ RJ1 ◦
RJ2).

First, we have
RJ1(w) ∩RJ1(w

′) = RJ1∩J2(w) ∩RJ1\J1∩J2(w) ∩RJ1∩J2(w
′) ∩RJ2\J1∩J2(w

′)
by the above Lemma 12. Then, as RJ1∩J2(w) = RJ1∩J2(w

′), we have
RJ1(w) ∩RJ1(w

′) = RJ1∩J2(w) ∩RJ1\J1∩J2(w) ∩RJ2\J1∩J2(w
′).

As J1 ∩ J2, J1 \ J1 ∩ J2, and J2 \ J1 ∩ J2 are pairwise disjoint, we have
RJ1(w) ∩RJ1(w

′) 6= ∅ again by the above Lemma 12. �

THEOREM 14. Let J ( AGT such that AGT \ J = {j1, . . . , jr}, and let
j̄i = AGT \ {ji}. Then

|=STITG
n

[J ]φ↔ [j̄1] . . . [j̄r]φ
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Proof. By induction on r, with base case r = 1 and using Theorem 13 for
the induction step. �

It follows that every STITGn -formula can be written only using the grand
coalition [AGT ] and anti-individuals [̄i]s. From now on, we consider that a
STITGn -formula contains only such operators.

4 The product logic S5n

In this part, we briefly recall the product logic S5n. The reader is referred
to [7] for more details.

Just as LSTITn
, the language of S5n logic is built from a countably infinite

set of atomic propositions ATM and a set of parameters {1, . . . , n}. It is
defined by the following BNF:

φ ::= p | ¬φ | (φ ∧ φ) | 2iφ

where p ranges over ATM and i ranges over {1, . . . , n}.

4.1 Semantics of S5n

A Kripke model for S5n is a cartesian product.

DEFINITION 15 (S5n model). A S5n model is a tuple X = (X,R, V )
where:

• X = X1 × . . .×Xn for some nonempty sets X1, . . . ,Xn;

• R is a mapping associating to every i ∈ {1, . . . , n} the equivalence
relation

Ri = {〈(x1, . . . , xn), (y1, . . . , yn)〉 ∈ X2 | xj = yj for all j 6= i}

• V : ATM → 2X .

Note that the usual S5n models are more generally products of equiva-
lence relations. Our S5n models here are the subclass of point-generated
models (that suffice for the characterization of S5n).

Definitions of truth conditions, validity and satisfiability are as usual.

4.2 A nonstandard axiomatics for S5n

We first recall the definition of finite axiomatizability of [7, Chapter 1].

DEFINITION 16 (finite axiomatizability). A logic L is finitely axiomatiz-
able if there is a finite set Ax of formula schemas such that φ ∈ L iff there
is a sequence (φ1, . . . , φk) of formulas such that for 1 ≤ i ≤ k, one of the
following holds:

• φi is a tautology of classical proposition logic or an instance of an
axiom in Ax;
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• φi is obtained by necessitation from φj , where j < i;

• φi is obtained by modus ponens from φj and φk, where j, k < i;

• φk = φ.

THEOREM 17. [7, Theorem 8.2] The logic S5n is not finitely axiomatizable
for n ≥ 3.

While S5n can thus not be axiomatized in the standard way, there exists
an axiomatization by means of a nonstandard rule.

THEOREM 18. [18] S5n is axiomatized by the following axiom schemas:

• S5(2i): the axiom schemas for S5, for every modal operator 2i

• ⊢ 2i2jφ↔ 2j2iφ

• Modus Ponens rule:
⊢ φ ⊢ φ→ ψ

⊢ ψ

• Necessitation rule:
⊢ φ
⊢ 2iφ

• Rectangle Rule:

⊢ (p ∧ τ(¬φ ∧ p))→ φ

⊢ φ if p does not occur in φ

where τ(χ) = 21 . . .2n[(
∧
i∈{1,...,n} 31 . . .3i−13i+1 . . .3nχ)→ χ].

It is the Rectangle Rule which is nonstandard.

REMARK 19. The axiomatics in [18] does not have all the axioms of
S5(2i). These are nevertheless valid in S5n models and we have chosen
to add them explicitly.

4.3 Undecidability of the satisfiability problem for S5n-formulas

While satisfiability of a formula of S5n is decidable for n = 2, things get
worse beyond.

THEOREM 20. [18, Theorem 8.6] The problem of satisfiability of a formula
of S5n is undecidable for n ≥ 3.
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5 Group STIT satisfiability is undecidable

We are going to map the problem of satisfiability in S5n to the problem of
satisfiability in STITGn . The range of our mapping is the fragment of LSTITG

n

formulas where only the ‘grand coalition’ and ‘anti-individuals’ occur, i.e.
the set of groups J such that either J = AGT , or J = AGT \ {i} for some
i ∈ AGT . We note ī such sets. As satisfiability is undecidable for S5n,
satisfiability in STITGn cannot be decidable either.

The LS5n formula 2iφ will be mapped to the LSTITG
n

formula [̄i]φ. For
the ease of exposition, we identify these two kinds of formulas from now on,
and suppose that formulas 2iφ are part of the STITGn language.

Let atm(φ) be the set of all atomic propositions occurring in φ.

THEOREM 21. For any φ ∈ LS5n , the following are equivalent:

1. φ is S5n-satisfiable;

2. φ is satisfiable in a STITGn model where RAGT = idW ;

3. [∅](∧p∈atm(φ)[AGT ]p↔ p) ∧ φ is STITGn -satisfiable.2

Proof. 1.⇒ 2. Let X = 〈X,R, V 〉 be an S5n model and let x0 ∈ X be a
point such that X , x0 |= φ. We define a triple W ′ = 〈W ′, R′, V ′〉 as follows:

• W ′ = X;

• R′ is a mapping associating to every i ∈ AGT the equivalence relation

R′i = {〈(x1, . . . , xn), (y1, . . . , yn)〉 ∈W ′2 | xi = yi};
• V ′ = V .

We can check that for all (w1, . . . , wn) ∈W ′n,
⋂
i∈AGT Ri(wi) 6= ∅. Thus,

W ′ is a STITGn -Kripke model as defined in Section 3.1. We can see that
R′̄
i

=
⋂
j∈īR

′
j (by definition, cf. Section 3.1)

=
⋂
j∈ī{〈(x1, . . . , xn), (y1, . . . , yn)〉 ∈W ′2 | xj = yj}

= {〈(x1, . . . , xn), (y1, . . . , yn)〉 ∈W ′2 | xj = yj for all j 6= i}
= Ri

and that
R′AGT =

⋂
j∈AGT R′j (by definition, cf. Section 3.1)

=
⋂
j∈AGT{〈(x1, . . . , xn), (y1, . . . , yn)〉 ∈W ′2 | xj = yj}

= {〈(x1, . . . , xn), (x1, . . . , xn)〉 ∈W ′2}
= idW ′

We can check by induction on φ that X , z |= φ iff W ′, z |= φ for all
z ∈W .

2.⇒ 3. Let W = 〈W,R, V 〉 be a STITGn Kripke model such that RAGT =
idW , and let w0 ∈W be a world s.t. W, w0 |= φ. As RAGT = idW , we have
W, w0 |= [∅](∧p∈atm(φ)[AGT ]p ↔ p). Thus W, w0 |= [∅](∧p∈atm(φ)[AGT ]p
↔ p) ∧ φ.

2Remember that [∅] abbreviates [1̄] . . . [n̄].
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3.⇒ 2. Let W ′ = 〈W ′, R′, V ′〉 be a STITGn Kripke model and let w′0 ∈W ′

be a world such that W ′, w′0 |= [∅](∧p∈atm(φ)[AGT ]p ↔ p) ∧ φ. We prove
that there exists a STITGn Kripke model W = 〈W,R, V 〉 with RAGT = idW
and a point w0 ∈W such that W, w0 |= φ. Let W = 〈W,R, V 〉 where:

• W = {R′AGT (x) | x ∈W ′};
• Ri = {(R′AGT (x), R′AGT (y)) | (x, y) ∈ R′i};
• V (p) = {U ∈W | U ⊆ V ′(p)}.

Notice that RJ = {(R′AGT (x), R′AGT (y)) | (x, y) ∈ R′J}, and that RAGT

= idW . We can prove by structural induction that for all w ∈ W ′ and for
all subformulas ψ of φ:

W ′, w |= ψ iff W, R′AGT (w) |= ψ

Indeed:

W ′, w |= p iff W ′, w |= [AGT ]p
(because W ′, w |= [∅](∧p∈atm(φ)[AGT ]p↔ p))

iff W ′, w′ |= p for all y ∈ R′AGT (z)
iff w′ ∈ V ′(p) for all w′ ∈ R′AGT (w)
iff R′AGT (w) ⊆ V ′(p)
iff R′AGT (w) ∈ V (p)
iff W, R′AGT (w) |= p

W ′, w |= [̄i]ψ iff W ′, w′ |= ψ for all w′ ∈ R′̄
i
(w)

iff W, R′AGT (w′) |= ψ for all w′ ∈ R′̄
i
(w)

iff W, R′AGT (w′) |= ψ
for all R′AGT (w′) ∈ Rī(R′AGT (w))

iff W, R′AGT (w) |= [̄i]ψ

2.⇒ 1. Let W = 〈W,R, V 〉 be a STITGn Kripke model with RAGT = idW ,

and let w0 ∈W be a world such that W, w0 |= φ. From W we define a S5n

model X ′ = 〈X ′, R′, V ′〉 as follows:

• X ′ = X1 × . . .×Xn where for all i ∈ AGT , Xi = {Ri(w) | w ∈W};
• R′ is a mapping associating to every i ∈ AGT the equivalence relation

R′i = {((x1, . . . , xn), (y1, . . . , yn)) ∈ X ′2 | xj = yj for all j 6= i};

• V ′(p) = {(x1, . . . , xn) |
⋂
i∈AGT xi ∈ V (p)} (identifying

⋂
i∈AGT xi =

{y} and y).

We can check that

X ′, (R1(w), . . . , Rn(w)) |= φ iff W, w |= φ
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for all w ∈W . Indeed:

X ′, (R1(w), . . . , Rn(w)) |= p iff (R1(w), . . . , Rn(w)) ∈ V ′(p)
iff

⋂
i∈AGT Ri(w) ∈ V (p)

iff w ∈ V (p)
(notice that

⋂
i∈AGT Ri(w) = {w})

iff W, w |= p

and
X ′, (R1(w), . . . , Rn(w)) |= [̄i]ψ

iff X ′, (R1(w), . . . , Ri−1(w), Ri(w′), Ri+1(w), . . . Rn(w)) |= ψ
for all w′ ∈W

iff X ′, (R1(w′′), . . . , Ri(w′′), . . . Rn(w′′)) |= ψ
where R1(w) ∩ . . . ∩Ri(w′) ∩ . . . ∩Rn(w) = {w′′} for all w′ ∈W

iff X ′, (R1(w′′), . . . , Ri(w′′), . . . Rn(w′′)) |= ψ for all w′′ ∈ Rī(w)

iff W, w′′ |= ψ for all w′′ ∈ Rī(w)

iff W, w |= [̄i]ψ

�

THEOREM 22. The problem of satisfiability of a formula of STITGn is un-
decidable for n ≥ 3.

Proof. By Theorem 20 and 21. �

6 Group STIT is not finitely axiomatizable

THEOREM 23. There is no finite axiomatization of logic STITGn if n ≥ 3.

Proof. Suppose for a contradiction that STITGn is finitely axiomatizable,
i.e. that there exists a finite set of axioms Ax such that for every STITGn -
formula φ, we have |=STITG

n
φiff there is a deduction of φ from (instances

of) Ax using Modus Ponens and Necessitation. Let us define an axiomatics
Ax′ obtained from Ax by removing all [AGT ] operators. We are going to
prove that for all formulas φ ∈ LS5n , |=n

S5 φ iff there is a deduction of φ
from (instances of) Ax using Modus Ponens and Necessitation. Hence, S5n

would be finitely axiomatizable and there is a contradiction.

Let us prove first that ⊢Ax′ φ implies |=n
S5 φ. We do so by proving that

each instance of Ax′ is valid in S5n. Let us consider an instance ψ′ of an
axiom of Ax′. ψ′ is obtained from an instance ψ of Ax by removing all
[AGT ] operators. We have |=STITG

n
ψ. Therefore, ψ is valid in the class
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of STITGn -models where RAGT = idW . Hence, ψ′ is valid in the class of
STITGn -models where RAGT = idW . It follows that |=n

S5 φ.

Here is an outline of the ⇐ -sense of the proof. First, for all S5n-formulas
φ,
|=n

S5 φ iff |=STITG
n

[∅](∧p∈atm(φ)[AGT ]p↔ p)→ φ

iff ⊢Ax [∅](∧p∈atm(φ)[AGT ]p↔ p)→ φ

implies (1) ⊢Ax,[AGT ]ψ↔ψ φ
implies (2) ⊢Ax′ φ

It remains to prove (1) and (2).

As to (1), it suffices to prove the following:

⊢Ax [∅](
∧

p∈atm(φ)

[AGT ]p↔ p)→ φ implies ⊢Ax,[AGT ]ψ↔ψ φ

This can be established using necessitation and principles of classical propo-
sitional logic. Basically the proof goes as follows:

. . . (necessitation and principles of classical propositional logic)

⊢Ax,[AGT ]ψ↔ψ [∅](∧p∈atm(φ)[AGT ]p↔ p)
(by hypothesis)

⊢Ax,[AGT ]ψ↔ψ [∅](∧p∈atm(φ)[AGT ]p↔ p)→ φ

⊢Ax,[AGT ]ψ↔ψ φ

As to (2), suppose Ax + ψ ↔ [AGT ]ψ is the axiom system obtained
from Ax by adding the schema ψ ↔ [AGT ]ψ. Then we can prove that
⊢Ax + ψ↔[AGT ]ψ φ implies ⊢Ax′ φ.

The proof of that goes as follows. Assume that ⊢Ax,[AGT ]ψ↔ψ φ. There
exists a proof of φ, that is to say a sequence (φ1, . . . , φk) such that for
1 ≤ i ≤ k, one of the following holds:

• φi is a tautology, an instance of an axiom in Ax or an instance of
[AGT ]ψ ↔ ψ;

• φi is obtained by necessitation from φj where j < i;

• φi is obtained by modus ponens from φj and φk where j, k < i;

• φk = φ.

Now, we construct (φ′1, . . . , φ
′
n) where φ′i is φi in which we have removed

all [AGT ] operators. The reader can check that (φ′1, . . . , φ
′
n) is a proof of φ.

This concludes the proof. �
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7 Discussion

Now, we are going to propose a generalization of these results, and try to
classify some more fragments of STITGn . First, for a given a family C ⊆ 2AGT

of subsets of 2AGT we define the language LSTIT[C] by the following BNF:

φ ::= p | ¬φ | (φ ∧ φ) | [J ]φ

where p ranges over ATM and J ranges over the set of coalitions C.
Let us call STIT[C] the fragment of STITGn where formulas are in LSTIT[C].

Thus, STITGn = STIT[22AGT

] and STITn = STIT[{∅, {1}, . . . , {n}}].
We have the following result:

PROPOSITION 24. Let C ⊆ 2AGT . If C has a linear structure, then the
problem of satisfiability of a formula in STIT[C] is NP-complete.

Proof. We can prove that if a formula is satisfiable, then it is so in a
polynomial-sized model. The proof is based on a selection-of-points argu-
ment. More details can be found in [16]. �

We conjecture the following result (which would cover Theorems 10 and
22).

CONJECTURE 25. Given C ⊆ 2AGT , the problem of satisfiability of a
formula in STIT[C] is:

1. undecidable if there are J1, J2, J3 ∈ C such that J1, J2, J3, J1 ∩J2 and
J2 ∩ J3, J1 ∩ J3 are distinct;

2. NEXPTIME-complete if there is no J1, J2, J3 ∈ C such that J1, J2,
J3, J1∩J2, J2∩J3 and J1∩J3 are distinct, but there exists J1, J2 ∈ C
such that J1, J2, J1 ∩ J2 are distinct;

We therefore conjecture, e.g., that: the problem of satisfiability of a
formula in STIT[C] is undecidable if C = {{1, 3, 4}, {1, 3, 5}, {4, 5}}, that
it is NEXPTIME-complete if C = {{1, 3, 4}, {1, 3, 5}, {1}}, and that it is
NP-complete if C = {∅, {1}, {1, 2}, . . . , {1, 2, . . . , n}}.

Finally, we also conjecture that a nonstandard axiomatization of STITGn
can be obtained from that of S5n.

8 Conclusion

The paper contains mathematical results for deliberative STIT logic, both
in its individual and group version: while the fragment STITn allowing
to reason only about individual agency is decidable in nondeterministic
exponential time (NEXPTIME), the entire logic STITGn (allowing for joint
agency) is undecidable and cannot be finitely axiomatized. The result for
STITn was established in [3], while the general result for STITGn is new.
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The results for STITGn apply a fortiori to extensions of STITGn with the
temporal ‘next’ operator. Given these rather negative results, it is interest-
ing to look for decidable fragments of STITGn and its temporal extensions.
One of these fragments is Pauly’s coalition logic, whose satisfiability prob-
lem is decidable in polynomial space (PSPACE-complete). As we said in
the introduction, the CL and ATL formula 〈〈J〉〉Xφ corresponds to STITGn ’s
¬2¬[J ]Xφ: in CL, the three modal operators 2, [J ] and X are fused into a
single operator. The latter is non-normal: it does not satisfy the K-axiom
of standard modal logics. In recent work we have investigated a non-normal
modal logic between coalition logic and STITGn where 2 and [J ] are fused,
while X is the standard temporal ‘next’ [8]. We called the resulting logic
CL∗ because it extends CL in the same way as ATL∗ extends ATL. We have
shown that contrarily to ATL∗, the extension CL∗ provides is for free: CL∗

has the same complexity as CL. We have also argued that the epistemic
extension of CL∗ is more powerful than that of CL: contrarily to the latter,
CL∗ allows to reason about the agents’ power, i.e. about agents’ knowledge
of the right action to choose in order to achieve something. In other words,
in the epistemic extension of CL∗ we can say that an agent ‘knows how to
play’. Logics having such expressive power have attracted a lot of attention
recently [17, 12, 1].
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