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abstract. In this paper we define a many-valued semantics for hybrid
logic and we give a sound and complete tableau system which is proof-

theoretically well-behaved, in particular, it gives rise to a decision proce-

dure for the logic. This shows that many-valued hybrid logics is a natural

enterprise and opens up the way for future applications.
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1 Introduction

Classical hybrid logic is obtained by adding to ordinary, classical modal
logic further expressive power in the form of a second sort of propositional
symbols called nominals, and moreover, by adding so-called satisfaction
operators. A nominal is assumed to be true at exactly one world, so a
nominal can be considered the name of a world. Thus, in hybrid logic a name
is a particular sort of propositional symbol whereas in first-order logic it is
an argument to a predicate. If i is a nominal and φ is an arbitrary formula,
then a new formula @iφ called a satisfaction statement can be formed. The
part @i of @iφ is called a satisfaction operator. The satisfaction statement
@iφ expresses that the formula φ is true at one particular world, namely the
world at which the nominal i is true. Hybrid logic is proof-theoretically well-
behaved, which is documented in the forthcoming book [7]. Hybrid-logical
proof-theory includes a long line of work on tableau systems for hybrid logic,
see [1, 2, 6, 4, 15, 3].

Now, classical hybrid logic can be viewed as a combination of two logics,
namely classical, two-valued logic (where the standard propositional connec-
tives are interpreted in terms of the truth-values true and false) and hybrid
modal logic (where modal operators, nominals, and satisfaction operators
are interpreted in terms of a set of possible worlds equipped with an accessi-
bility relation). The present paper concerns many-valued hybrid logic, that
is, hybrid logic where the two-valued logic basis has been generalized to a
many-valued logic basis. To be more precise, we shall define a many-valued
semantics for hybrid logic, and we shall give a tableau system that is sound
and complete with respect to the semantics. Not only is the many-valued
semantics a generalization of the two-valued semantics, but if we chose a
two-valued version of the many-valued tableau system, then modulo mi-
nor reformulations and the deletion of superfluous rules, the tableau system
obtained is identical to an already known tableau systems for hybrid logic.
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Our many-valued semantics is a hybridized version of a many-valued seman-
tics for modal logic given in the papers [11, 12, 13]. A notable feature of
this semantics is that it allows the accessibility relation as well as formulas
to take on many truth-values (in other many-valued modal logics it is only
formulas that can take on many truth-values).

A leading idea behind our work is that we distinguish between the way
of reasoning and what the reasoning is about, and in accordance with this
idea, we generalize the way of reasoning from two-valued logic to many-
valued logic such that we reason in a many-valued way about time, space,
knowledge, states in a computer, or whatever the subject-matter is. Given
our distinction between the way of reasoning and what the reasoning is
about, we take it that the concerns of hybrid logic basically are orthogonal
to as whether the logic basis is two-valued or many-valued. Thus, it is
expectable that the already known proof-theoretically well-behaved tableau
systems for two-valued hybrid logic can be generalized to proof-theoretically
well-behaved tableau systems for many-valued hybrid logic. Accordingly, if
we define a many-valued hybrid logic and give a tableau system that satisfies
standard proof-theoretic requirements (it is cut-free, it satisfies a version of
the subformula property, and it gives rise to a decision procedure), then we
learn more about hybrid logic and we provide more evidence that hybrid
logic and hybrid-logical proof-theory is a natural enterprise.

This paper is structured as follows. In the second section of the paper
we define the many-valued semantics for hybrid logic and we make some
remarks on the relation to intuitionistic hybrid logic. In the third section
we introduce a tableau system, in the fourth section we prove termination,
and in the fifth section we prove completeness.

2 A many-valued hybrid logic language

In this section a Many-Valued Hybrid Logic language (denoted by MVHL)
is presented and a semantics for the language is given. We have included
global modalities, one reason being that they are used in our motivation
for our choice of semantics for the nominals, but our termination and com-
pleteness proofs later in the paper do not include global modalities. In the
following let T denote a fixed finite Heyting algebra. That is, T is a finite
lattice such that for all a and b in T there is a greatest element x of T
satisfying a∧x ≤ b. The element x is called the relative pseudo-complement
of a with respect to b (denoted a ⇒ b). To avoid notational ambiguity in
relation to the syntax of our hybrid logic, we will in the following use the
symbol ⇒ for relative pseudo-complement, and ⊔ and ⊓ for meet and join,
respectively. The largest and smallest elements of T are denoted ⊤ and ⊥,
respectively. The elements of the Heyting algebra T are going to be used
as truth values for our many-valued logic. Thus, in the following, we will
often refer to the elements of T as truth values.1

1In order to give reasonable semantics for ∧ and ∨ a Lattice structure is needed. A
complete Lattice would be enough if the accessibility relation was only allowed to have
two values, but since we also allows for the accessibility relation to take values in T , the
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2.1 Syntax for MVHL
Let a countable infinite set of propositional variables PROP and a countable
infinite set of nominals NOM be given. In addition to the usual connectives
of propositional model logic, we include the global modalities E and A, and
for every i ∈ NOM, a satisfaction operator @i.

DEFINITION 1 (MVHL-formulas). The set of MVHL-formulas is given
by the following grammar:

ϕ ::= p | a | i | (ψ1 ∧ψ2) | (ψ1 ∨ψ2) | (ψ1 → ψ2) | 2ψ | 3ψ | @iψ | Eψ | Aψ,

where p ∈ PROP, a ∈ T , and i ∈ NOM.

In general we will use i, j, k and so on for nominals and a, b, c for elements
of T .

2.2 Semantics for MVHL
The semantics for MVHL is a Kripke semantics in which the accessibility
relation is allowed to take values in T . This is inspired by [13]. A modelM
is a tupleM = 〈W,R,n, ν〉, where W is the set of worlds, and R a mapping
R : W×W → T called the accessibility relation. n is a function interpreting
the nominals, i.e. n : NOM→W . Finally the valuation ν : W ×PROP→ T
assigns truth values to the propositional variables at each world.

Now given a model M = 〈W,R,n, ν〉, we can extend the valuation ν to
all formulas in the following inductive way, where w ∈W :

ν(w, a) := a for a ∈ T
ν(w, i) :=

{ ⊤ , if n(i) = w
⊥ , else

ν(w,ϕ ∧ ψ) := ν(w,ϕ) ⊓ ν(w,ψ)
ν(w,ϕ ∨ ψ) := ν(w,ϕ) ⊔ ν(w,ψ)
ν(w,ϕ→ ψ) := ν(w,ϕ)⇒ ν(w,ψ)

ν(w,2ϕ) :=
l
{R(w, v)⇒ ν(v, ϕ) | v ∈W}

ν(w,3ϕ) :=
⊔
{R(w, v) ⊓ ν(v, ϕ) | v ∈W}

ν(w,@iϕ) := ν(n(i), ϕ)

ν(w,Aϕ) :=
l
{ν(v, ϕ) | v ∈W}

ν(w,Eϕ) :=
⊔
{ν(v, ϕ) | v ∈W}

The semantics chosen for the hybrid logical constructions is discussed in
the following. The semantics for @iϕ is obvious, its truth value is simply
the truth value of ϕ at the world i denotes. The semantics chosen for the

structure of a Heyting algebra is needed. For further discussions of the choice of a finite
Heyting algebra as the set of truth values see [12, 13].
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global modalities A and E reflect the fact that these modalities are simply
the global versions of the modalities 2 and 3. The choice of semantics
for nominals is less obvious. In this paper we have chosen to assign each
nominal i the value ⊤ in exactly one world, and ⊥ in all other worlds. This
is in agreement with the the standard semantics for hybrid logic in which
a nominal “points to a unique world”. It would probably also be possible
to allow nominals to take values outside the set {⊤,⊥}, but at least a
nominal should receive the value ⊤ in one and only one world in order for
the semantics to be in accordance with classical, two-valued, hybrid logic
(and for nominals to be semantically different from ordinary propositional
symbols). Our decision of making the semantics of nominals two-valued
rests primarily on the fact that it allows us to preserve the following well-
known logical equivalence from classical, two-valued, hybrid logic:

@iϕ↔ E(i ∧ ϕ)
@iϕ↔ A(i→ ϕ)

With the chosen semantics, these equivalences also hold in MVHL:

ν(w,@iϕ) = ν(n(i), ϕ) =
⊔
{ν(v, i) ⊓ ν(v, ϕ) | v ∈W} = ν(w,E(i ∧ ϕ))

ν(w,@iϕ) = ν(n(i), ϕ) =
l
{ν(v, i)⇒ ν(v, ϕ) | v ∈W} = ν(w,A(i→ ϕ)).

Here we have been using that the following holds in a Heyting algebra:
⊤ ⊓ a = a, ⊥ ⊓ a = ⊥, a ⊔ ⊥ = a, ⊤ ⇒ a = a and ⊥ ⇒ a = ⊤. Another
pleasant property resulting from the choice of semantics for nominals is the
following:

ν(w,@i3j) = ν(n(i),3j) =
⊔
{R(n(i), v) ⊓ ν(v, j) | v ∈W} = R(n(i),n(j)).

This identity expresses that the reachability of the world denoted by j from
the world denoted by i is described by the formula @i3j. This property also
holds in classical hybrid logic. Identity between worlds denoted by nominals
can also be expressed as usual, since we have:

ν(w,@ij) = ⊤ iff n(i) = n(j).

2.3 The relation to intuitionistic hybrid logic
As pointed out in the paper [12], there is a close relation between the many-
valued modal logic given in that paper and intuitionistic modal logic. We
shall in this subsection consider the relation between many-valued hybrid
logic and a variant of the intuitionistic hybrid logic given in the paper [9]
(which in turn is a hybridization of an intuitionistic modal logic introduced
in a tense-logical version in [10]). In the present subsection we do not assume
that a finite Heyting algebra has been fixed in advance, so the only atomic
formulas we consider are ordinary propositional symbols, nominals, and the
symbol ⊥. We first define an appropriate notion of an intuitionistic model,
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which can be seen as a restricted variant of the notion of a model given in
[9]2.

DEFINITION 2. A restricted model for intuitionistic hybrid logic is a tuple

(W,≤,D, {Rw}w∈W , {νw}w∈W )

where

1. W is a non-empty finite set partially ordered by ≤;

2. D is a non-empty set;

3. for each w, Rw is a binary relation on D such that w ≤ v implies
Rw ⊆ Rv; and

4. for each w, νw is a function that to each ordinary propositional symbol
p assigns a subset of D such that w ≤ v implies νw(p) ⊆ νv(p).

The elements of the set W are states of knowledge and for any such state
w, the relation Rw is the set of known relationships between possible worlds
and the set νw(p) is the set of possible worlds at which p is known to be
true. Note that the definition requires that the epistemic partial order ≤
preserves these kinds of knowledge, that is, if an advance to a greater state
of knowledge is made, then what is known is preserved.

Given a restricted model M = (W,≤,D, {Rw}w∈W , {νw}w∈W ), an as-
signment is a function n that to each nominal assigns an element of D. The
relation M,n, w, d |= φ is defined by induction, where w is an element of
W , n is an assignment, d is an element of D, and φ is a formula.

M,n, w, d |= p iff d ∈ νw(p)
M,n, w, d |= i iff d = n(i)

M,n, w, d |= φ ∧ ψ iff M,n, w, d |= φ and M,n, w, d |= ψ
M,n, w, d |= φ ∨ ψ iff M,n, w, d |= φ or M,n, w, d |= ψ

M,n, w, d |= φ→ ψ iff for all v ≥ w,
M,n, v, d |= φ implies M,n, v, d |= ψ

M,n, w, d |= ⊥ iff falsum
M,n, w, d |= �φ iff for all v ≥ w, for all e ∈ D,

dRve implies M,n, v, e |= φ
M,n, w, d |= ♦φ iff for some e ∈ D, dRwe and M,n, w, e |= φ

M,n, w, d |= @iφ iff M,n, w,n(i) |= φ
M,n, w, d |= Aφ iff for all v ≥ w, for all e ∈ D, M,n, v, e |= φ
M,n, w, d |= Eφ iff for some e ∈ D, M,n, w, e |= φ

2Compare to Definition 2, p. 237, of the paper [9]. The differences are the following:
i) In [9] the set W need not be finite. ii) Instead of D there is a family {Dw}w∈W of
non-empty sets such that w ≤ v implies Dw ⊆ Dv , Rw is a binary relation on Dw, and
νw(p) is a subset of Dw. iii) There is a family {∼w}w∈W where ∼w is an equivalence
relation on Dw such that w ≤ v implies ∼w⊆∼v and such that if d ∼w d′, e ∼w e′,
and dRwe, then d′Rwe′, and similarly, if d ∼w d′ and d ∈ νw(p), then d′ ∈ νw(p).
The equivalence relations are used for the interpretation of nominals. Such a model for
intuitionistic hybrid logic corresponds to a standard model for intuitionistic first-order
logic with equality where equality is interpreted using the equivalence relations, cf. [16].
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This semantics can be looked upon in two different ways: As indicated
above, it can be seen as a restricted variant of the semantics given in [9],
but it can also be seen as a hybridized version of a semantics given in the
paper [12]. In the latter paper, the epistemic worlds of the semantics are
thought of as experts and the epistemic partial order is thought of as a
relation of dominance between experts: One expert dominates another one
if whatever the first expert says is true is also said to be true by the second
expert.

As pointed out in [12], the intuitionistic semantics for modal logic is in a
certain sense equivalent to the many-valued semantics. This also holds in the
hybrid-logical case. In what follows, we outline this equivalence. It can be
shown that given a restricted model M = (W,≤,D, {Rw}w∈W , {νw}w∈W ),
cf. Definition 2, and an assignment n, the ≤-closed subsets of W ordered by
⊆ constitute a finite Heyting algebra, and moreover, a many-valued model
(D,R∗,n, ν∗) can be defined by letting

• R∗(d, e) = {w ∈W | dRwe} and

• ν∗(d, p) = {w ∈W | d ∈ νw(p)}.
By a straightforward extension of the corresponding proof in [12], it can
be proved that for any formula φ, it is the case that ν∗(d, φ) = {w ∈ W |
M,n, w, d |= φ}. Conversely, given a finite Heyting algebra T and a many-
valued model (D,R,n, ν), a restricted model M = (W,⊆,D, {R∗w}w∈W ,
{ν∗w}w∈W ) can be defined by letting

• W = {w | w is a proper prime filter in T },
• dR∗we if and only if R(d, e) ∈ w, and

• d ∈ ν∗w(p) if and only if ν(d, p) ∈ w.

Details can be found in the paper [12]. Again, by a straightforward extension
of the corresponding proof in that paper, it can be proved that for any
formula φ, it is the case that M,n, w, d |= φ if and only if ν(d, φ) ∈ w.

Thus, in the above sense the intuitionistic semantics for hybrid logic is
equivalent to the many-valued semantics for hybrid logic. It is an interest-
ing question whether there is such an equivalence if instead of the restricted
models of Definition 2 one considers the more general models for intuition-
istic hybrid logic given in the paper [9]3. We shall leave this to further
work.

3 A tableau calculus for MVHL

In the following we will present a tableau calculus for MVHL. The basic
notions for tableaux are defined as usual (see e.g. [14]). The formulas

3As indicated in the previous footnote, in the intuitionistic semantics of [9], nominals
are interpreted using a family {∼w}w∈W of equivalence relations, not identity. This
seems to imply that in an equivalent many-valued semantics, nominals should be allowed
to take on arbitrary truth-values, not just top and bottom.
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occurring in our tableaux will all be of the form @i(a → ϕ) or @i(ϕ → a)
prefixed either a T or an F , where i ∈ NOM and a ∈ T . That is, the formulas
occurring in our tableaux will be signed formulas of hybrid logic. A signed
formula of the form T@i(a→ ϕ) is used to express that the formula a→ ϕ
is true at i, that is, receives the value ⊤ at i. If ν(n(i), a → ϕ) = ⊤ then,
by definition of ν, a ⇒ ν(n(i), ϕ) = ⊤. By definition of relative pseudo-
complement we then get that ⊤ is the greatest element of T satisfying
a ∧ ⊤ ≤ ν(n(i), ϕ). In other words, we simply have a ≤ ν(n(i), ϕ). Thus
what is expressed by a formula T@i(a → ϕ) is that the truth value of ϕ
at i is greater than or equal to a. Symmetrically, a signed formula of the
formula T@i(ϕ→ a) expresses that the truth value of ϕ at i is less than or
equal to a. Dually, a signed formula of the form F@i(a→ ϕ) (F@i(ϕ→ a))
expresses that the truth value of ϕ at i is not greater than or equal to (less
than or equal to) a.

The tableau rules are divided into four classes; Branch Closing Rules,
Non-modal Rules, Modal Rules and Hybrid Rules. The Branch Closing
Rules and Propositional Rules are direct translations of Fitting’s corre-
sponding rules for the pure modal case [13].

Branch closing rules:
A tableau branch Θ is said to be closed if one of the following holds:

1. T@i(a→ b) ∈ Θ, for some a, b with a � b.

2. F@i(a→ b) ∈ Θ, for some a, b with a ≤ b, a 6= ⊥, and b 6= ⊤.

3. F@i(⊥ → ϕ) ∈ Θ, for some formula ϕ.

4. F@i(ϕ→ ⊤) ∈ Θ, for some formula ϕ.

5. T@i(b→ ϕ), F@i(a→ ϕ) ∈ Θ, for some a, b with a ≤ b.
6. T@j(a→ i), F@i(b→ j) ∈ Θ, for some a, b 6= ⊥.

7. T@i(i→ a) ∈ Θ, for some nominal i and truth value a with a 6= ⊤.

The two last conditions, 6 and 7, have no counterpart in Fitting’s system,
but are required in ours to deal with the semantics chosen for nominals.
Note that if a formula F@i(a→ i) with a 6= ⊤ occurs on a branch then the
branch can also be closed: In case a = ⊥, condition 3 immediately implies
closure. If a 6= ⊥ then using the reversal rule (F ≥) (see below), we can
add a formula T@i(i → b) to the branch, where b is one of the maximal
members of T not above a. Because b is not above a, b cannot be ⊤. Thus
condition 7 implies closure.

Non-modal rules:
The tableau rules for the propositional connectives and the rules capturing
the properties of the Heyting algebra are given in Figure 1 and Figure 2,
respectively. The rules of Figure 2 are called reversal rules, as in [13]. The
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T@i(a→ (ϕ ∧ ψ))
(T∧)1

T@i(a→ ϕ)
T@i(a→ ψ)

F@i(a→ (ϕ ∧ ψ))
(F∧)1

F@i(a→ ϕ) F@i(a→ ψ)

T@i((ϕ ∨ ψ)→ a)
(T∨)2

T@i(ϕ→ a)
T@i(ψ → a)

F@i((ϕ ∨ ψ)→ a)
(F∨)2

F@i(ϕ→ a) F@i(ψ → a)

F@i(a→ (ϕ→ ψ))
(F→)3

T@i(b1 → ϕ) · · · T@i(bn → ϕ)
F@i(b1 → ψ) · · · F@i(bn → ψ)

T@i(a→ (ϕ→ ψ))
(T→)4

F@i(b→ ϕ) T@i(b→ ψ)

1 Where a 6= ⊥.
2 Where a 6= ⊤.
3 Where a 6= ⊥ and b1, ..., bn are all the members of T with bi ≤ a except ⊥.
4 Where a 6= ⊥ and b is any member of T with b ≤ a except ⊥.

Figure 1. Propositional Rules for MVHL.

reversal rules together with the closure rules ensure that no formula can be
assigned more than one truth value (relative to a given world and a given
branch).

Modal rules:

These modal rules, presented in Figure 3, differ from the ones of Fitting and
heavily employs the hybrid logic machinery. Note that the tableau rules
contain formulas of the form T@i(a↔ 3j). Such formulas are simply used
as shorthand notation for the occurrence of both the formulas T@i(a→ 3j)
and T@i(3j → a). In each of the rules of our calculus, the leftmost premise
is called the principal premise. If α is a signed formula on one of the forms
T@i(a→ ϕ), T@i(ϕ→ a), F@i(a→ ϕ) or F@i(ϕ→ a), we call ϕ the body
of α and i its prefix. If α and β are two signed formulas such that the body
of α is a subformula of the body of β, then α is said to be a quasi-subformula
of β.

Hybrid rules:

These hybrid rules, presented in Figure 4, are inspired by the standard rules
from classical hybrid logic (see [1, 6, 4]). Note that for the (NOM) rule,
two versions are needed. Furthermore a new rule is needed due to the fact
that we are in a many-valued setting, this is the rule (NOM EQ), which
ensures our semantic definition of nominals as being ⊤ in exactly one world.

A tableau proof of a formula φ is a closed tableau with root F@i(⊤ → φ),
where i is an arbitrary nominal not occurring in φ. The intuition here is
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F@i(a→ ϕ)
(F≥)1,2

T@i(ϕ→ b1) · · · T@i(ϕ→ bn)

T@i(a→ ϕ)
(T≥)1,3

F@i(ϕ→ b)

F@i(ϕ→ a)
(F≤)1,4

T@i(b1 → ϕ) · · · T@i(bn → ϕ)

T@i(ϕ→ a)
(T≤)1,5

F@i(b→ ϕ)

1 ϕ is a formula other than a propositional constant from T .
2 Where b1, ..., bn are all maximal members of T with a � bi and a 6= ⊥.
3 Where b is any maximal member of T with a � b and a 6= ⊥.
4 Where b1, ..., bn are all minimal members of T with bi � a and a 6= ⊤.
5 Where b is any minimal member of T with b � a and a 6= ⊤.

Figure 2. Reversal Rules for MVHL.

F@i(a→ 2ϕ)
(F2)1

T@i(b1 ↔ 3j) · · · T@i(bn ↔ 3j)
F@j((a ⊓ b1)→ ϕ) · · · F@j((a ⊓ bn)→ ϕ)

T@i(a→ 2ϕ) T@i(b→ 3j)
(T2)

T@j((a ⊓ b)→ ϕ)

F@i(3ϕ→ a)
(F3)1,2

T@i(b1 ↔ 3j) · · · T@i(bn ↔ 3j)
F@j(ϕ→ (b1 ⇒ a)) · · · F@j(ϕ→ (bn ⇒ a))

T@i(3ϕ→ a) T@i(b→ 3j)
(T3)2

T@j(ϕ→ (b⇒ a))

F@i(Eϕ→ a)
(FE)3

F@j(ϕ→ a)

T@i(Eϕ→ a)
(TE)4

T@j(ϕ→ a)

T@i(a→ Aϕ)
(TA)4

T@j(a→ ϕ)

F@i(a→ Aϕ)
(FA)3

F@j(a→ ϕ)

1 Where T = {b1, ..., bn} and j is a nominal new to the branch.
2 Where the principal premise is a quasi-subformula of the root formula.
3 Where j is a nominal new to the branch.
4 Where j is a nominal already occurring on the branch.

Figure 3. Modal Rules for MVHL.
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T@i(@jϕ→ a)
(@L)

T@j(ϕ→ a)

T@i(a→ @jϕ)
(@R)

T@j(a→ ϕ)

F@iϕ T@i(a→ j)
(F-NOM)1,2

F@jϕ

T@iϕ T@i(a→ j)
(T-NOM)1,2

T@jϕ

T@k(3i→ b) T@i(a→ j)
(BRIDGEL)1

T@k(3j → b)

T@k(b→ 3i) T@i(a→ j)
(BRIDGER)1

T@k(b→ 3j)

T@i(⊤ → j) T@j(⊤ → k)
(TRANS)

T@i(⊤ → k)

T@i(a→ j)
(NOM EQ)1

T@i(⊤ → j)

1 Where a 6= ⊥.
2 Where the principal premise is a quasi-subformula of the root formula.

Figure 4. Hybrid Rules for MVHL.

that the root formula F@i(⊤ → φ) asserts that φ does not have the value
⊤, and if the tableau closes, this assertion is refuted. If i is a nominal
occurring in the root formula of a tableau then i is called a root nominal of
the tableau. Other nominals occurring on the tableau are called non-root
nominals.

4 Termination

The tableau calculus presented above is not terminating. This is due to the
rules (TA) and (FA) for the global modality A. If the rules for the global
modalities—(FE), (TE), (TA) and (FA)—are all removed, we obtain a
tableau calculus for the many-valued hybrid logic with these modalities
removed. We will refer to this calculus as the basic calculus, and refer to
its tableaux as basic tableaux. In the following we will prove that the basic
calculus terminates. The proof closely follows the method introduced in [4].

If α and β are signed formulas on a tableau branch, then β is said to
be produced by α if β is one of the conclusions of a rule application with
principal premise α. The signed formula β is said to be indirectly produced
by α if there exists a sequence of signed formulas α, α1, α2, . . . , αn, β in which
each formula is produced by its predecessor. We now have the following
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result.

LEMMA 3 (Quasi-subformula Property). Let T be a basic tableau. For
any signed formula α occurring on T , one of the following holds:

1. α is a quasi-subformula of the root formula of T .

2. α is a formula of one of the forms T@i(a → 3j), T@i(3j → a),
F@i(a→ 3j) or F@i(3j → a), for which one of the following holds:

(a) j is a root nominal.

(b) α is indirectly produced by (F2) or (F3) by a number of appli-
cations of the reversal rules.

Proof. The proof goes by induction on the construction of T . In the basic
case α is just the root formula, which of course is of type 1. Now assume
that α have been introduced by one of the propositional rules. These rules
does not take premises of type 2 and thus by induction they must be of
type 1. But then the conclusions produced by these rules must also be of
type 1, thus α must be of type 1. If α have been produced by once of the
reversal rules by a formula of type 1, then α will also by of type 1 and if
α is produced by a formula of type 2, α is also of type 2. Now the modal
rules. If α have been produced by the rule (T2) then the principal premise
can not be a formula of type 2 and thus by induction it must be of type 1.
But then so is α. Similar for the rule (T3) where the side condition insures
that the principal premise is of type 1. If α is introduced by on of the rules
(F2) or (F3) again the premise must be of type 1. These rules produce two
formulas, the first one is by definition of type 2b and the second must be of
type 1 since the premise is. Thus in this case α is either of type 1 or type 2b.
Finally for the hybrid rules. In the rules (TRANS), (NOM EQ), (@L) or
(@R) the premises can not be of type 2 and thus by induction they must be
of type 1. But then the conclusions will also be of type 1. Now if the rule
used is (T-NOM) or (F-NOM) then the side condition insures that the
principal premise are of type 1. But then the conclusion will also be of type
1. Now assume that one of the rules (BRIDGEL) or (BRIDGER) have
been applied to produce α. Then the non-principal premise can not be of
type 1 and thus must be of type 2, which implies that j is a root nominal.
Thus the conclusion α must be of type 2a. This completes the proof. �

Note that in the basic calculus the only rules that can introduce new nom-
inals to a tableau are (F2) and (F3).

DEFINITION 4. Let Θ be a branch of a basic tableau. If a nominal j has
been introduced to the branch by applying either (F2) or (F3) to a premise
with prefix i then we say that j is generated by i on Θ, and we write i ≺Θ j.

LEMMA 5. Let Θ be a branch of a basic tableau. The graph G = (NΘ,≺Θ),
where NΘ is the set of nominals occurring on Θ, is a finite set of well-
founded, finitely branching trees.
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Proof. That G is wellfounded follows from the observation that if i ≺Θ j,
then the first occurrence of i on Θ is before the first occurrence of j. That G
is finitely branching is shown as follows. For any given nominal i the number
of nominals j satisfying i ≺Θ j is bounded by the number of applications of
(F2) and (F3) to premises of the form F@i(a→ 2ϕ) and F@i(3ϕ→ a).
So to prove that G is finitely branching, we only need to prove that for
any given i the number of such premises is finite. However, this follows
immediately from the fact that all such premises must be quasi-subformulas
of the root formula (cf. Lemma 3 and the condition on applications of (F3)).
What is left is to prove that G is a finite set of trees. This follows from
the fact that each nominal in NΘ can be generated by at most one other
nominal, and the fact that each nominal in NΘ must have one of the finitely
many root nominals of Θ as an ancestor. �

LEMMA 6. Let Θ be a branch of a basic tableau. Then Θ is infinite if and
only if there exists an infinite chain of nominals

i1 ≺Θ i2 ≺Θ i3 ≺Θ · · · .

Proof. The ‘if’ direction is trivial. To prove the ‘only if’ direction, let
Θ be any infinite tableau branch. Θ must contain infinitely many distinct
nominals, since it follows immediately from Lemma 3 that a tableau with
finitely many nominals can only contain finitely many distinct formulas.
This implies that the graph G = (NΘ,≺Θ) defined as in Lemma 5 must
be infinite. Since by Lemma 5, G is a finite set of wellfounded, finitely
branching trees, G must then contain an infinite path (i1, i2, i3, . . . ). Thus
we get an infinite chain i1 ≺Θ i2 ≺Θ i3 ≺Θ · · · . �

DEFINITION 7. Let Θ be a branch of a basic tableau, and let i be a
nominal occurring on Θ. We define mΘ(i) to be the maximal length of any
formula with prefix i occurring on Θ.

LEMMA 8 (Decreasing length). Let Θ be a branch of a basic tableau.
If i ≺Θ j then mΘ(i) > mΘ(j).

Proof. For any signed formula α, we will use |α| to denote the length of
α. Assume i ≺Θ j. Let α be a signed formula satisfying: 1) α has max-
imal length among the formulas on Θ with prefix j; 2) α is the earliest
occurring formula on Θ with this property. We need to prove mΘ(i) > |α|.
The formula α can not have been introduced on Θ by applying any of the
propositional rules (Figure 1), since this would contradict maximality of α.
It can not have been directly produced by any of the reversal rules (Fig-
ure 2) either, since this would contradict the choice of α as the earliest
possible on Θ of maximal length with prefix j. By the same argument,
α can not have been directly produced by any of the rules (BRIDGEL),
(BRIDGER), (TRANS) or (NOM EQ). Assume now α has been intro-
duced by applying (@L) or (@R) to a premise of the form T@k(@jϕ → a)
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or T@k(a → @jϕ). By Lemma 3, the premise must be a quasi-subformula
of the root formula. Thus j must be a root nominal. However, this is a
contradiction, since by assumption j is generated by i, and can thus not
be a root nominal. Thus neither (@L) nor (@R) can have been the rule
producing α. Now assume that α has been produced by an application of
either (F-NOM) or (T-NOM). Since α has index j, the non-principal
premise used in this rule application must have the form T@i(a → j). By
Lemma 3, this premise must be a quasi-subformula of the root formula, and
thus j is again a root nominal, which is a contradiction. Thus α can not
have been produced by (F-NOM) or (T-NOM) either. Thus α must have
been introduced by one of the rules (F2), (T2), (F3) or (T3). Consider
first the case of the (F2) and (F3) rules. If an instance of one of these
produced α, then this instance must have been applied to a premise β with
prefix i, since we have assumed i ≺Θ j and by Lemma 5 there cannot be
an i′ 6= i satisfying i′ ≺Θ j. (Note that if α is of the form T@j(b → 3k)
or T@j(3k → b) produced by a formula F@j(a → 2ϕ) or F@j(3ϕ → a),
this would lead to a contradiction with the assumption that α has maximal
length with prefix j and is the earliest occurring formula with this property.)
Since the rules in question always produce conclusions that are shorter than
their premises, β must be longer than α. Since β is a formula with prefix i
we then get:

(1) mΘ(i) ≥ |β| > |α| ,
as required. Now consider finally the case where α has been produced by
either (T2) or (T3). Then α has been produced by a rule instance with
non-principal premise of the form T@k(b → 3j). Since j is not a root
nominal, this premise can not be a quasi-subformula of the root formula.
Neither can it be of the tybe (2a) mentioned in lemma 3. It must thus be
of type (2b), that is, it must be indirectly produced by formulas of the form
T@k(bm → 3j′) or T@k(3j′ → bm) obtained as conclusion by applications
of (F2) or (F3). Since only reversal rules have been applied in the indirect
production from these conclusions, we must have j = j′ and thus k ≺Θ j.
Since we already have i ≺Θ j we get k = i, using Lemma 5. We can conclude
that the non-principal premise of the rule instance producing α must have
the form T@i(b → 3j), and thus the principal premise must be a formula
β with index i. Since the rules in question always produce conclusions that
are shorter than their premises, β must be longer than α. Since β is a
formula with prefix i we then again get the sequence of inequalities (1), as
required. �
We can now finally prove termination of the basic calculus.

THEOREM 9 (Termination of the basic calculus). Any tableau in the
basic calculus is finite.

Proof. Assume there exists an infinite basic tableau. Then it must have
an infinite branch Θ. By Lemma 6, there exists an infinite chain

i1 ≺Θ i2 ≺Θ i3 ≺Θ · · · .
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Now by Lemma 8 we have

mΘ(i1) > mΘ(i2) > mΘ(i3) > · · ·
which is a contradiction, since mΘ(i) is a non-negative number for any
nominal i. �

5 Completeness of the basic calculus

In this section we prove completeness of the basic calculus, that is, the
calculus without the global modalities. In this connection we remark that
we have proved completeness for a calculus including the global modalities
similar to the calculus of the present paper. Let Θ be an open saturated
branch in the tableau calculus. We will use this branch to construct a model
MΘ = 〈WΘ, RΘ,nΘ, νΘ〉. The set of worlds, WΘ is simply defined to be
the set of nominals occurring on Θ. The definition of the other elements of
the model requires a bit more work. First we define the mapping nΘ.

Fix a choice function σ that for any given set of nominals on Θ returns
one of these nominals. We now define the mapping nΘ in the following way:

nΘ(i) =

{
σ{j | T@i(⊤ → j) ∈ Θ} if {j | T@i(⊤ → j) ∈ Θ} 6= ∅
i otherwise.

A nominal i is called an urfather on Θ if i = nΘ(j) for some nominal j.

LEMMA 10. Let Θ be a saturated tableau branch. Then we have the fol-
lowing properties:

1. If T@iϕ ∈ Θ is a quasi-subformula of the root formula then T@nΘ(i)ϕ
∈ Θ. Similarly, if F@iϕ ∈ Θ is a quasi-subformula of the root formula
then F@nΘ(i)ϕ ∈ Θ.

2. If T@i(⊤ → j) ∈ Θ then nΘ(i) = nΘ(j).

3. If i is an urfather on Θ then nΘ(i) = i.

Proof. First we prove (i). Assume T@iϕ ∈ Θ is a quasi-subformula of
the root formula. If nΘ(i) = i then there is nothing to prove. So assume
nΘ(i) = σ{j | T@i(⊤ → j) ∈ Θ}. Then T@i(⊤ → nΘ(i)) ∈ Θ, and
by applying (T-NOM) to premises T@iϕ and T@i(⊤ → nΘ(i)) we get
T@nΘ(i)ϕ, as needed. The case of F@iϕ ∈ Θ is proved similarly, using
(F-NOM) instead of (T-NOM). We now prove (ii). Assume T@i(⊤ →
j) ∈ Θ. To prove nΘ(i) = nΘ(j) it suffices to prove that for all nominals k,
T@i(⊤ → k) ∈ Θ ⇔ T@j(⊤ → k) ∈ Θ. So let k be an arbitrary nominal.
If T@i(⊤ → k) ∈ Θ then we can apply (T-NOM) (since T@i(⊤ → k) is a
quasi-subformula of the root formula by Lemma 3) to premises T@i(⊤ → k)
and T@i(⊤ → j) to obtain the conclusion T@j(⊤ → k), as required. If
conversely T@j(⊤ → k) ∈ Θ then we can apply (TRANS) to premises
T@i(⊤ → j) and T@j(⊤ → k) to obtain the conclusion T@i(⊤ → k), as
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required. We finally prove (iii). Assume i is an urfather. Then i = nΘ(j)
for some j. If j = i we are done. Otherwise we have i = nΘ(j) = σ{k |
T@j(⊤ → k) ∈ Θ} and thus T@j(⊤ → i) ∈ Θ. This implies i = nΘ(j) =
nΘ(i), using item (ii). �

We now turn to the definition of νΘ. As in [13] we will not define a
particular valuation ν of the propositional variables occuring on the branch,
but only show that any valuation assigning values between a certain lower
and upper bound (both given by the branch Θ) will do. Let us first define
these bounds.

DEFINITION 11. For a formula ϕ in the language of MVHL and a nominal
i, define:

boundΘ,i(ϕ) =
l
{a | T@i(ϕ→ a) ∈ Θ}

boundΘ,i(ϕ) =
⊔
{a | T@i(a→ ϕ) ∈ Θ}

The intuition is that boundΘ,i(ϕ) is an upper bound for the truth value
of ϕ at the world i decided by the branch Θ and boundΘ,i(ϕ) is a lower
bound for this truth value.

The following lemma corresponds to Lemma 6.4 of [13] and can be proved
in the same way. It ensures that we can actually always chose a value
between the lower and the upper bounds.

LEMMA 12. For all i on Θ and all formulas ϕ of MVHL

boundΘ,i(ϕ) ≤ boundΘ,i(ϕ).

Later we will show that any valuation assigning a value to p between
boundΘ,i(p) and boundΘ,i(p) at the world nΘ(i) will do for the truth value
of p at this world.

The following lemma corresponds to Proposition 6.5 in [13] and is proven
in the same way.

LEMMA 13. Let ϕ be any formula in the MVHL language other than a
propositional constant from T , and let a ∈ T , then:

• (i) If T@i(a→ ϕ) ∈ Θ, then a ≤ boundΘ,i(ϕ).

• (ii) If T@i(ϕ→ a) ∈ Θ, then boundΘ,i(ϕ) ≤ a.
• (iii) If F@i(a→ ϕ) ∈ Θ, then a � boundΘ,i(ϕ).

• (iv) If F@i(ϕ→ a) ∈ Θ, then boundΘ,i(ϕ) � a.

The accessibility relation RΘ is defined as follows:

RΘ(i, j) =
⊔
{b | T@i(b→ 3k) ∈ Θ,nΘ(k) = j}.
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We have the following result, which we are going to use in proving com-
pleteness.

LEMMA 14. If T@i(c↔ 3j) ∈ Θ then RΘ(i,nΘ(j)) = c.

Proof. We will prove RΘ(i,nΘ(j)) ≥ c and RΘ(i,nΘ(j)) ≤ c. First we
prove RΘ(i,nΘ(j)) ≥ c. Since T@i(c ↔ 3j) ∈ Θ we have T@i(c → 3j) ∈
Θ, and thus

RΘ(i,nΘ(j)) =
⊔
{b | T@i(b→ 3k) ∈ Θ,nΘ(k) = nΘ(j)}

≥
⊔
{b | T@i(b→ 3j) ∈ Θ}

≥ c.

We now prove RΘ(i,nΘ(j)) ≤ c. By definition of nΘ we have either nΘ(j) =
j or T@j(⊤ → nΘ(j)) ∈ Θ. If T@j(⊤ → nΘ(j)) ∈ Θ then since T@i(3j →
c) ∈ Θ we get T@i(3nΘ(j) → c) ∈ Θ, using (BRIDGEL). If nΘ(j) = j
we obviously also have T@i(3nΘ(j)→ c) ∈ Θ. Applying Lemma 13 (ii) we
then get boundΘ,i(3nΘ(j)) ≤ c. Thus

RΘ(i,nΘ(j)) =
⊔
{b | T@i(b→ 3k) ∈ Θ,nΘ(k) = nΘ(j)}

≤
⊔
{b | T@i(b→ 3nΘ(j)) ∈ Θ} (using (BRIDGER))

= boundΘ,i(3nΘ(j))
≤ boundΘ,i(3nΘ(j)) (using Lemma 12)
≤ c,

as required. �
The theorem we need for completeness now may be stated in the following

way:

THEOREM 15. Let ν be a valuation such that for all propositional variables
p and all urfather nominals i

boundΘ,i(p) ≤ ν(i, p) ≤ boundΘ,i(p).

Then for all subformulas ϕ of the body of root formula of Θ

boundΘ,i(ϕ) ≤ ν(i, ϕ) ≤ boundΘ,i(ϕ).

Proof. By induction on ϕ. The base cases are where ϕ is a propositional
variable p, a value c ∈ T or a nominal j. The case where ϕ is p follows
directly by the assumption. The case where ϕ is c is easy: First note that
for any truth values a, b, if T@i(a → b) ∈ Θ then a ≤ b. This follows from
closure rule 1 presented in Section 3. Thus we get:

boundΘ,i(c) =
⊔
{a | T@i(a→ c) ∈ Θ}

≤ c

≤
l
{a | T@i(c→ a) ∈ Θ}

= boundΘ,i(c).



Many-valued hybrid logic 127

Now assume ϕ is a nominal j. By definition of ν, ν(i, j) is ⊤ if nΘ(j) = i and
⊥ otherwise. Assume first nΘ(j) = i. Then ν(i, j) is ⊤, so trivially we have
boundΘ,i(j) ≤ ν(i, j). We thus only need to prove ν(i, j) ≤ boundΘ,i(j),
that is, we need to prove ⊤ = boundΘ,i(j) =

d{a | T@i(j → a) ∈ Θ}.
This amounts to showing that, for all a ∈ T , T@i(j → a) ∈ Θ implies
a = ⊤. Assume towards a contradiction that, for some a, T@i(j → a) ∈ Θ
and a 6= ⊤. Since we have assumed nΘ(j) = i, by definition of nΘ we
get that either j = i or T@j(⊤ → i) ∈ Θ. If j = i then we have that Θ
contains a formula of the form T@i(i→ a) where a 6= ⊤. This immediately
contradicts closure rule 7. Assume instead T@j(⊤ → i) ∈ Θ. Since we also
have T@i(j → a) ∈ Θ where a 6= ⊤, we can apply (T ≤) to conclude that
that Θ must contain a formula of the form F@i(t → j) where t is some
truth value different from ⊥. Since Θ then contains both T@j(⊤ → i) and
F@i(t→ j) where t 6= ⊥, we get a contradiction by closure rule 6. Assume
now nΘ(j) 6= i. Then ν(i, j) = ⊥, and the inequality ν(i, j) ≤ boundΘ,i(j)
thus holds trivially. To prove the other inequality, boundΘ,i(j) ≤ ν(i, j),
we need to show that if T@i(a → j) ∈ Θ then a = ⊥. Thus assume
toward a contradiction that T@i(a → j) ∈ Θ and a 6= ⊥. Then rule
(NOM EQ) implies T@i(⊤ → j) ∈ Θ. Thus, by item 2 of Lemma 10,
we get nΘ(i) = nΘ(j). Since i is assumed to be an urfather, item 3 of
Lemma 10 implies nΘ(i) = i. Thus we get nΘ(j) = nΘ(i) = i, contradiction
the assumption.

Now for the induction step. First the case where ϕ is @jψ: Note that
ν(i,@jψ) = ν(nΘ(j), ψ) and by induction hypothesis, since nΘ(j) is an
urfather,

boundΘ,nΘ(j)(ψ) ≤ ν(nΘ(j), ψ) ≤ boundΘ,nΘ(j)(ψ).

Now by the rule (@R), if T@i(a → @jψ) ∈ Θ then T@j(a → ψ) ∈ Θ, for
all a ∈ T . Thus we get that

boundΘ,i(@jψ) =
⊔
{a | T@i(a→ @jψ) ∈ Θ}

≤
⊔
{a | T@j(a→ ψ) ∈ Θ}

≤
⊔
{a | T@nΘ(j)(a→ ψ) ∈ Θ} (using 1 of Lemma 10)

= boundΘ,nΘ(j)(ψ)
≤ ν(nΘ(j), ψ)
= ν(i,@jψ).

Similar by the (@L) rule, T@i(@jψ → a) ∈ Θ implies that T@j(ψ → a) ∈
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Θ, for all a ∈ T . Hence

ν(i,@jψ) = ν(nΘ(j), ψ)

≤ boundΘ,nΘ(j)(ψ)

=
l
{a | T@nΘ(j)(ψ → a) ∈ Θ}

≤
l
{a | T@j(ψ → a) ∈ Θ} (using 1 of Lemma 10)

≤
l
{a | T@i(@jψ → a) ∈ Θ}

= boundΘ,i(@jψ),

and the @-case is done.
In case ϕ is 3ψ, we need to prove that

boundΘ,i(3ψ) ≤ ν(i,3ψ) ≤ boundΘ,i(3ψ),

which by definition amounts to showing that⊔
{a | T@i(a→ 3ψ) ∈ Θ} ≤

⊔
{RΘ(i, j) ⊓ ν(j, ψ) | j ∈ Θ}

≤
l
{a | T@i(3ψ → a) ∈ Θ}.

Proving the first inequality amounts to showing that if T@i(a → 3ψ) ∈ Θ
then

a ≤
⊔
{RΘ(i, j) ⊓ ν(j, ψ) | j ∈ Θ}.

To prove this assume toward a contradiction that

T@i(a→ 3ψ) ∈ Θ and a �
⊔
{RΘ(i, j) ⊓ ν(j, ψ) | j ∈ Θ},

for an a ∈ T . Then choose a b ∈ T such that b ≥ ⊔{RΘ(i, j)⊓ ν(j, ψ) | j ∈
Θ} and b is a maximal member of T with a � b. Then by the reversal rule
(T≥), F@i(3ψ → b) ∈ Θ. Then using the (F3) rule there is a c ∈ T
and a j ∈ Θ such that T@i(c ↔ 3j) ∈ Θ and F@j(ϕ → (c ⇒ b)) ∈ Θ.
Since T@i(c ↔ 3j) ∈ Θ, Lemma 14 implies RΘ(i,nΘ(j)) = c. Applying 1
of Lemma 10 to the formula F@j(ϕ → (c ⇒ b)) ∈ Θ we get F@nΘ(j)(ϕ →
(c ⇒ b)) ∈ Θ. Now (iv) of Lemma 13 implies boundΘ,nΘ(j)(ψ) � c ⇒ b.
This further implies that (boundΘ,nΘ(j)(ψ) ⊓ c) � b. But by the induction
hypothesis boundΘ,nΘ(j)(ψ) ≤ ν(nΘ(j), ψ) and thus

boundΘ,nΘ(j)(ψ) ⊓ c = boundΘ,nΘ(j)(ψ) ⊓RΘ(i,nΘ(j))
≤ ν(nΘ(j), ψ) ⊓RΘ(i,nΘ(j))

≤
⊔
{RΘ(i,nΘ(j)) ⊓ ν(nΘ(j), ψ) | j ∈ Θ}

≤
⊔
{RΘ(i, j) ⊓ ν(j, ψ) | j ∈ Θ} ≤ b,

which of course is a contradiction.
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In order to prove that⊔
{RΘ(i, j) ⊓ ν(j, ψ) | j ∈ Θ} ≤

l
{a | T@i(3ψ → a) ∈ Θ},

we must show that if T@i(3ψ → a) ∈ Θ, then RΘ(i, j) ⊓ ν(j, ψ) ≤ a for all
j ∈ Θ. Thus assume that T@i(3ψ → a) ∈ Θ and that RΘ(i, j) 6= ⊥ (or else
it’s trivial) for an arbitrary j ∈ Θ. Since RΘ(i, j) 6= ⊥, the definition of R
implies that j must be an urfather. Furthermore,

RΘ(i, j) =
⊔
{b | T@i(b→ 3k) ∈ Θ,nΘ(k) = j}.

Let b and k be chosen arbitrarily such that T@i(b→ 3k) ∈ Θ and nΘ(k) =
j. Then by the (T3) rule, T@k(ψ → (b ⇒ a)) ∈ Θ. Using 1 of Lemma 10
we get T@nΘ(k)(ψ → (b⇒ a)) ∈ Θ, that is, T@j(ψ → (b⇒ a)) ∈ Θ. Now,
by induction hypothesis, since j is an urfather,

ν(j, ψ) ≤ boundΘ,j(ψ) ≤ b⇒ a.

Since k and b were chosen arbitrarily with T@i(b→ 3k) ∈ Θ and nΘ(k) = j,
we get

ν(j, ψ) ≤
l
{b⇒ a | T@i(b→ 3k) ∈ Θ,nΘ(k) = j}.

We now get

RΘ(i, j) ⊓ ν(j, ψ) ≤
⊔
{b | T@i(b→ 3k) ∈ Θ,nΘ(k) = j}

⊓
l
{b⇒ a | T@i(b→ 3k) ∈ Θ,nΘ(k) = j}

≤
⊔
{b ⊓ (b⇒ a) | T@i(b→ 3k) ∈ Θ,nΘ(k) = j}

≤
⊔
{a | T@i(b→ 3k) ∈ Θ,nΘ(k) = j}

≤ a.

Because j ∈ Θ was arbitrary it follows that it holds for all j ∈ Θ and the
proof of this case is completed.

In case ϕ is 2ψ, we need to prove that⊔
{a | T@i(a→ 2ψ) ∈ Θ} ≤

l
{RΘ(i, j)⇒ ν(j, ψ) | j ∈ Θ}

≤
l
{a | T@i(2ψ → a) ∈ Θ}.

To prove the first inequality we need to prove that if j ∈ Θ, then

a ≤ RΘ(i, j)⇒ ν(j, ψ),(2)

for all a ∈ T with T@i(a → 2ψ) ∈ Θ. So let a ∈ T be given arbitrarily
such that T@i(a→ 2ψ) ∈ Θ. Note that (2) is equivalent to

a ⊓RΘ(i, j) ≤ ν(j, ψ).
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By definition of RΘ we have

RΘ(i, j) =
⊔
{b | T@i(b→ 3k) ∈ Θ,nΘ(k) = j}.

Let b and k be chosen arbitrarily such that T@i(b→ 3k) ∈ Θ and nΘ(k) =
j. Then by the (T2)-rule it follows that T@k((a ⊓ b) → ψ) ∈ Θ. By 1 of
Lemma 10 this implies T@j((a ⊓ b)→ ψ) ∈ Θ. Thus we get boundΘ,j(ψ) ≥
(a ⊓ b). Since b and k were chosen arbitrarily with the properties T@i(b→
3k) ∈ Θ and nΘ(k) = j we then get

boundΘ,j(ψ) ≥
⊔
{a ⊓ b | T@i(b→ 3k) ∈ Θ,nΘ(k) = j}.

Using this inequality and the induction hypothesis we now get

a ⊓RΘ(i, j) = a ⊓
⊔
{b | T@i(b→ 3k) ∈ Θ,nΘ(k) = j}

= {a ⊓ b | T@i(b→ 3k) ∈ Θ,nΘ(k) = j}
≤ boundΘ,j(ψ) ≤ ν(j, ψ).

Since a was arbitrary this holds for all a ∈ T and the inequality have been
proven.

To show the other inequality we need to show that

if T@i(2ψ → a) ∈ Θ then
l
{RΘ(i, j)⇒ ν(j, ψ) | j ∈ Θ} ≤ a.

If a = ⊤ then this is trivial. Thus assume towards a contradiction that there
is an a 6= ⊤ with T@i(2ψ → a) ∈ Θ and

d{RΘ(i, j)⇒ ν(j, ψ) | j ∈ Θ} � a.
Now let b ≤ d{RΘ(i, j) ⇒ ν(j, ψ) | j ∈ Θ} be a minimal member of T
such that b � a. Then by the reversal rule (T≤), F@i(b → 2ψ) ∈ Θ.
Hence by the (F2)-rule there is a nominal k ∈ Θ and a c ∈ T such that
T@i(c ↔ 3k) ∈ Θ and F@k((b ⊓ c) → ψ) ∈ Θ. From the first it follows
that RΘ(i,nΘ(k)) = c, using Lemma 14. From the second it follows that
F@nΘ(k)((b ⊓ c) → ψ) ∈ Θ, using 1 of Lemma 10, and thus, by (iii) of
Lemma 13, b⊓c � boundΘ,nΘ(k)(ψ). But then from the induction hypothesis
it follows that

b ⊓ c � ν(nΘ(k), ψ) ≤ boundΘ,nΘ(k)(ψ).

Hence

b � c⇒ ν(nΘ(k), ψ) = RΘ(i,nΘ(k))⇒ ν(nΘ(k), ψ).

But by the assumption on b we also have that

b ≤
l
{RΘ(i, j)⇒ ν(j, ψ) | j ∈ Θ} ≤ RΘ(i,nΘ(k))⇒ ν(nΘ(k), ψ),

and a contradiction have been reached. This concludes the 2 case and thus
the entire proof of the theorem. �
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Now completeness can easily be proven, in the following sense.

THEOREM 16. If there is no tableau proof of the formula ϕ, then there is
a model M = 〈W,R,n, ν〉 and a w ∈W such that ν(w,ϕ) 6= ⊤.

Proof. Assume that there is no tableau proof of the formula ϕ. Then there
is an saturated tableau with a open branch Θ starting with the formula
F@i(⊤ → ϕ) for a nominal i not in ϕ. By item 1 of Lemma 10 it follows
that also F@nΘ(i)(⊤ → ϕ) ∈ Θ.

The model MΘ = 〈WΘ, RΘ,nΘ, νΘ〉 can now be constructed such that
νΘ satisfies the assumption of Theorem 15. Since F@nΘ(i)(⊤ → ϕ) ∈ Θ it
follows by Lemma 13 that ⊤ � boundΘ,nΘ(i)(ϕ). But by Theorem 15, since
ϕ is a subformula of the root formula and nΘ(i) is an urfather, we know that
νΘ(nΘ(i), ϕ) ≤ boundΘ,nΘ(i)(ϕ) and it thus follows that ⊤ � νΘ(nΘ(i), ϕ)
and the proof is completed. �
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[9] T. Braüner and V. de Paiva. Intuitionistic hybrid logic. Journal of Applied Logic,

4:231–255, 2006. Revised and extended version of [8].

[10] W. B. Ewald. Intuitionistic tense and modal logic. Journal of Symbolic Logic, 51:166–

179, 1986.

[11] M. Fitting. Many-valued modal logics. Fundamenta Informaticae, 15:235–254, 1992.

[12] M. Fitting. Many-valued modal logics, II. Fundamenta Informaticae, 17:55–73, 1992.

[13] M. Fitting. Tableaus for many-valued modal logic. Studia Logica, 55:63–87, 1995.

[14] M. Fitting. Proof methods for modal and intuitionistic logics, volume 169 of Synthese

Library. D. Reidel Publishing Co., Dordrecht, 1983.



132 Jens Hansen, Thomas Bolander and Torben Braüner
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