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abstract. In 1983, Valentini presented a syntactic proof of cut-elimination

for a sequent calculus GLSV for the provability logic GL where we have

added the subscript V for “Valentini”. The sequents in GLSV were built

from sets, as opposed to multisets, thus avoiding an explicit contraction

rule. From a syntactic point of view, it is more satisfying and formal to

explicitly identify the applications of the contraction rule that are ‘hidden’

in these set-based proofs of cut-elimination. There is often an underly-

ing assumption that the move to a proof of cut-elimination for sequents

built from multisets is easy. Recently, however, it has been claimed that

Valentini’s arguments to eliminate cut do not terminate when applied to

a multiset formulation of GLSV with an explicit rule of contraction. The

claim has led to much confusion and various authors have sought new proofs

of cut-elimination for GL in a multiset setting.

Here we refute this claim by placing Valentini’s arguments in a formal

setting and proving cut-elimination for sequents built from multisets. The

formal setting is particularly important for sequents built from multisets,

in order to accurately account for the interplay between the weakening and

contraction rules. Furthermore, Valentini’s original proof relies on a novel

induction parameter called “width” which is computed ‘globally’. It is diffi-

cult to verify the correctness of his induction argument based on “width”. In

our formulation however, verification of the induction argument is straight-
forward. Finally, the multiset setting also introduces a new complication

in the the case of contractions above cut when the cut-formula is boxed.

We deal with this using a new transformation based on Valentini’s original

arguments.

Finally, we show that the algorithm purporting to show the non-termi-

nation of Valentini’s arguments is not a faithful representation of the original

arguments, but is instead a transformation already known to be insufficient.

Keywords: cut elimination, provability logic, Gödel-Löb logic

1 Introduction

The provability logic GL is obtained by adding Löb’s axiom 2(2A ⊃ A) ⊃
2A to the standard Hilbert calculus for propositional normal modal logic
K [11]. Interpreting the modal operator 2A as the provability predicate
“A is provable in Peano arithmetic”, it can be shown that GL is complete
with respect to the formal provability interpretation in Peano arithmetic
(see [14]). For an introduction to provability logic see [13].

In 1981, Leivant [5] proposed a syntactic proof of cut-elimination for a
sequent calculus for GL. Valentini [16] soon described a counter-example
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to this proof, proposing a more complicated proof for the sequent calcu-
lus GLSV for GL. The calculus GLSV is a sequent calculus for classical
propositional logic together with a single modal rule GLR. Valentini’s proof
appears to be the first proof of cut-elimination for a sequent calculus for GL
and relies on a complicated transformation justified by a Gentzen-style in-
duction on the degree of the cut-formula and the cut-height, as well as a new
induction parameter — the width of a cut-formula. Roughly speaking, the
width of a cut-instance is the number of GLR rule instances above that cut
which contain a parametric ancestor of the cut-formula in their conclusion.
However, Valentini’s proof is very brief, informal and difficult to check. For
example, he only considers a cut-instance where the cut-formula is left and
right principal by the GLR rule (the Sambin Normal Form), noting that
“the presence of the new parameter [width] does not affect the [remainder of
the standard cut-elimination proof]” [16]. While it is true that the standard
transformations appropriately reduce the degree and/or cut-height, he fails
to observe that these transformations can sometimes increase the width of
lower cuts, casting doubt on the validity of the induction. A careful study
of the proposed transformation is required to confirm that the proof is not
affected (see Remark 21).

Several other solutions for cut-elimination have been proposed. Borga [2]
presented one solution, while Sasaki [12] described a proof for a sequent
calculus very similar to GLSV , relying on cut-elimination for K4. Note that
only Leivant and Valentini used traditional Gentzen-style methods involving
an induction over the degree of the cut-formula and the cut-height.

All four authors used sequents X ⇒ Y where X and Y are sets, so these
calculi did not require a rule of contraction as there is no notion of a set
containing an element multiple times (unlike a multiset where the number
of occurrences is important). Thus the following instance of the L∧ rule is
legal in GLSV even though it ‘hides’ a contraction on P ∧Q:

P ∧Q,P ⇒ R
L∧

P ∧Q⇒ R

From a syntactic viewpoint, it is more satisfying and formal to explic-
itly identify the contractions that are ‘hidden’ in these set-based proofs of
cut-elimination. The appropriate formalisation to understand the reliance
on contraction is to use multisets. But then the contraction rules often
pose new problems that require attention. For example, Gentzen [4] in
his original proof of the Hauptsatz for the classical sequent calculus LK,
introduced a ‘multicut’ rule to deal with a complication in the case of con-
tractions above cut. Nevertheless, even that proof is not purely syntactic
in the following sense: since multicut is not a rule of the original calculus,
the proof has to detour via a conservative extension. Proofs of purely syn-
tactic cut-elimination for LK have subsequently appeared in the literature
(see [10],[3],[1] for example). In the case of GL, it turns out that addi-
tional complications also arise when formulating Valentini’s arguments in a



Valentini’s cut-elimination for provability logic resolved 69

multiset setting, for example, due to the interplay between weakening and
contraction rules (see Remark 16).

Thus the move to a proof of cut-elimination for sequents built from multi-
sets is not straightforward. Moen [7] attempted to lift Valentini’s set-based
arguments to obtain a proof for sequents built from multisets before conclud-
ing that this was not possible. Specifically, he presents a concrete derivation
ǫ containing cut, and claims that a multiset formulation of Valentini’s ar-
gument does not terminate when applied to ǫ. Not surprisingly, this claim
has ignited the search for new proofs of purely syntactic cut-elimination in
a Gentzen-style multiset setting for GL.

In response, Negri [8] and Mints [6] proposed two different solutions.
Negri uses a non-standard multiset sequent calculus in which sequents are
built from multisets of labelled formulae of the form x : A, where A is
a traditional formula and x is an explicit name for a Kripke world. She
shows that contraction is height-preserving admissible in this calculus and
uses this to handle contractions above cut in her cut-elimination argument.
In our view, the use of semantic information in the calculus deviates from
a purely proof theoretic approach. Mints [6] solves the problem using a
sequent calculus similar to the multiset-formulation of GLSV , but does not
state how to handle contractions above cut.

So there are two issues to consider:

1. formalise “width” more precisely to clarify Valentini’s original defini-
tion, and check whether it is a suitable induction measure, and

2. determine whether Valentini’s arguments can be used to obtain a
purely syntactic proof of cut-elimination in a multiset setting.

Our contribution is as follows: we have successfully translated Valentini’s
set-based arguments for cut-elimination to a sequent calculus built from
multisets. To this end, we have formalised the notion of parametric ances-
tor and width to correspond intuitively with Valentini’s original definition.
With this formalisation we show that Valentini’s arguments can be applied
in the multiset setting, noting that although certain transformations may
increase the width of lower cuts, this does not affect the proof. In the case
where the last rule in either premise derivation of the cut-rule is a contrac-
tion on the cut-formula, we avoid the multicut rule by using von Plato’s
arguments [10] when the cut-formula is not boxed, and a new argument for
the case when the cut-formula is boxed. Thus we obtain a purely syntactic
proof of cut-elimination in a multiset setting. We also believe that we have
identified a mistake in Moen’s claim that Valentini’s arguments (in a multi-
set setting) do not terminate. It appears that Moen has not used a faithful
representation of Valentini’s arguments for the inductive case, but instead
a transformation he titles Val-II(core) that is already known to be insuffi-
cient [11]. We discuss this further in Section 5. Of course, the incorrectness
of Moen’s claim does not imply the correctness of Valentini’s arguments in
a multiset setting. Indeed the whole point is that complications do arise in
the multiset setting, and that these have to be dealt with carefully.
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Initial sequents: A⇒ A for each formula A

Logical rules:
X ⇒ Y,A

L¬
X,¬A⇒ Y

A,X ⇒ Y
R¬

X ⇒ Y,¬A
Ai,X ⇒ Y

L∧
A1 ∧A2,X ⇒ Y

X ⇒ Y,A1 X ⇒ Y,A2
R∧

X ⇒ Y,A1 ∧A2

A1,X ⇒ Y A2,X ⇒ Y
L∨

A1 ∨A2,X ⇒ Y

X ⇒ Y,Ai
R∨

X ⇒ Y,A1 ∨A2

X ⇒ Y,A B,X ⇒ Y
L⊃

A ⊃ B,X ⇒ Y

A,X ⇒ Y,B
R⊃

X ⇒ Y,A ⊃ B
Modal rule:

2X,X,2B ⇒ B
GLR

2X ⇒ 2B

Structural rules:
X ⇒ Y

LW
A,X ⇒ Y

X ⇒ Y
RW

X ⇒ Y,A
A,A,X ⇒ Y

LC
A,X ⇒ Y

X ⇒ Y,A,A
RC

X ⇒ Y,A

Cut-rule:
X ⇒ Y,D D,U ⇒W

cut
X,U ⇒ Y,W

Table 1. The sequent calculus GLS

Finally, we remind the reader that it is trivial to show that the cut-rule
is redundant for both set and multiset sequent calculus formulations for GL
by proving that the calculus without the cut-rule is sound and complete
for the Kripke semantics of GL. However, our purpose here is to resolve
the claim about the failure of syntactic cut-elimination based on Valentini’s
arguments for a sequent calculus built with multisets.

2 Preliminaries

We use the letters P,Q, . . . to denote propositional variables. Formulae
are defined in the usual way in terms of propositional variables, the logical
constant ⊥ and the logical connectives ∧ (conjunction), ∨ (disjunction), ⊃
(implication) and 2 (necessity, or in this context, provability). Formulae are
denoted by A,B, . . .. Multisets of formulae are denoted by X,Y,U, V,W,G
and also as a list of comma-separated formula enclosed in “〈” and “〉”. A
formula A is said to be boxed if it is of the form 2B for some formula B and
is not boxed otherwise. The relation ‘≡’ is used to denote syntactic equality.
Let X be the multiset 〈A1, . . . , An〉. Then we define the multiset 2X to be
〈2A1, . . . ,2An〉. Furthermore B ∈ X iff B ≡ Ai for some 1 ≤ i ≤ n. The
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negation of B ∈ X is denoted by B /∈ X. The notation (A)m or Am denotes
m comma-separated occurrence of A.

A sequent is a tuple (X,Y ) of multisets X and Y of formulae and is
written X ⇒ Y . We sometimes use S or S ′ to denote a sequent. The
multiset X (Y ) is called the antecedent (succedent). The multiset sequent
calculus we use here is called GLS (Table 1). For the logical and structural
rules inGLS, the multisetsX and Y are called the context. In the conclusion
of each of these rules, the formula occurrence not in the context is called the
principal formula. This follows standard practice (see [15]). For the GLR
rule, each formula in 2X,X,2B,B is called a principal formula. The 2B
in the succedent of the conclusion of the GLR rule is called the diagonal
formula (and is of course boxed). In the cut-rule, the formula D is the cut-
formula. A rule with one premise (two premises) is called a unary (binary)
rule.

A binary rule where the context in both premises is required to be iden-
tical is called an additive binary rule (eg: L∨, R∧). A binary rule where
the context in each premise need not be identical is called a multiplicative
binary rule (eg: cut). The term context-sharing (context-independent) is
also used to refer to an additive (multiplicative) rule (see [15]).

Note, we have deleted the initial sequent ⊥ ⇒ ⊥ and the ⊥-rule that
appears in GLSV . As [13] observes, it is not necessary to include ⊥ although
its presence can be convenient from a semantic viewpoint. As our concerns
here are proof theoretic we shall not require it. We have also replaced
the multiplicative L⊃ in GLSV with an additive version. As all the other
logical rules in GLS are additive, it seems appropriate to use an additive
L⊃. We observe that the definitions and proofs in this paper apply, with
slight amendment, to a sequent calculus built from multisets that is obtained
directly from GLSV .

A derivation (in GLS) is defined recursively with reference to Table 1 as:

(i) an initial sequent A⇒ A for any formula A is a derivation, and

(ii) an application of a logical, modal, structural or cut-rule to derivations
concluding its premise(s) is a derivation.

This is the standard definition. Viewing a derivation as a tree, we call
the root of the tree the end-sequent of the derivation. If there is a derivation
with end-sequent X ⇒ Y we say that X ⇒ Y is derivable in GLS. Let

∧
X

(
∨
Y ) denote the conjunction (disjunction) of all formula occurrences in X

(Y ). Interpreting the sequent X ⇒ Y as the formula
∧
X⊃∨

Y , from [11]
we see that derivability in GLS is sound and complete wrt GL.

We write {π}r1/ρX ⇒ Y to denote the derivation

π1 . . . πr ρ
X ⇒ Y

where ρ is an instance of a rule with r premises. We refer to π1, . . . , πr as
the premise derivations of ρ. If ρ is unary (binary) then r = 1 (r = 2).
Rather than {π}11 and {π}21, we write, respectively, “π1” and “π1 π2”.
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Let ρ be some rule-occurrence in a derivation τ . Then ρ(A) indicates that
the principal formula is A; ρ∗(X) denotes some number (≥ 0) of applications
of ρ that make each formula occurrence (including multiple formula occur-
rences) in the multiset X a principal formula. To identify a rule-occurrence
in the text we occasionally use subscripts, eg: GLR1, cut0.

A derivation τ is cut-free if τ contains no instances of the cut-rule. A
cut-instance is said to be topmost if its premise derivations are cut-free.

DEFINITION 1 (n-ary GLR rule). Given a derivation τ , an instance ρ of
the GLR rule appearing in τ is n-ary if there are exactly n − 1 GLR rule
instances on the path between ρ and the end-sequent of τ .

LetGLR(n, τ) denote the number of n-ary GLR rules in τ . Next we define
the height, cut-height, and degree of a formula in the standard manner.

DEFINITION 2 (height, cut-height, degree). The height s(τ) of a derivation
τ is the greatest number of successive applications of rules in it plus one.
The cut-height h of an instance of the cut-rule with premise derivations τ1
and τ2 is s(τ1) + s(τ2). The degree deg(A) of a formula A is defined as the
number of symbol occurrences in A from {2,¬,∧,∨,⊃} plus one.

3 Generalising the notion of derivation

To formalise the notion of width we need a more general structure than a
derivation. The structure we have in mind can be obtained from a derivation
τ by deleting a proper subderivation τ ′ in τ . We call this structure a stub-
derivation. To emphasise the point of deletion we use the annotation stub.

Formally a stub-derivation (in GLS) is defined recursively with reference
to Table 1 as follows:

(i) an initial sequent A⇒ A for any formula A is a stub-derivation, and

(ii) for any sequent S and stub-derivation π, each of

(a) stub/S (b) stub π/S (c) π stub/S

is a stub-derivation, and

(iii) an application of a logical, modal, structural or cut-rule to stub-
derivations concluding its premise(s) is a stub-derivation.

Viewing a stub-derivation τ as a tree, we call the root of the tree the end-
sequent of the stub-derivation (denoted ES(τ)). The leaves of the tree are
called the top-sequents. Clearly a derivation is a stub-derivation in which
every top-sequent is an initial sequent. Thus a stub-derivation generalises
the notion of a derivation.

We use the term ‘stub-instance’ to refer to an occurrence of either stub/S
or stub π/S or π stub/S. An sstub-derivation (read: single stub-deriva-
tion) is a stub-derivation containing exactly one stub-instance. We write
d[stub] instead of d, to remind the reader that the structure contains exactly
one stub-instance.
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Let d′ be a derivation with end-sequent S ′, let d[stub] be an sstub-
derivation with an occurrence of one of the following:

stub/S stub π/S π stub/S

and suppose that

S ′/ρS S ′ ES(π)/S ES(π) S ′/S

respectively is a legal instance of some logical or structural rule ρ. We say
that d[stub] and d′ are compatible and write d[stub]← [ d′ to denote

d′ ρS
d′ π ρS

π d′ ρS
respectively, obtained by “attaching” the tree d′ to the tree d[stub] at the
node stub under rule ρ. We refer to ρ as a binding rule for d[stub] and d′.

By permitting formula occurrences in a (stub-)derivation to contain ∗ or
◦ decorations, we define an annotated (stub-)derivation. The forgetful map
⌊·⌋ maps an annotated stub-derivation to the stub-derivation obtained by
erasing all ∗ and ◦ decorations. Clearly ⌊·⌋ maps an annotated derivation
to a derivation. A transformed (stub-)derivation τ ′ is a (stub-)derivation
that is obtained from some existing (stub-)derivation τ by syntactic trans-
formation. We write A◦n or A∗n to mean n occurrences of the formula A◦

or A∗ respectively.
Formally a stub-derivation and an annotated stub-derivation are different

structures. Because these structures are very similar, for economy of space
we will introduce definitions and prove results for stub-derivations alone and
note, whenever applicable, that the definitions and results can be extended
to annotated stub-derivations.

EXAMPLE 3. Let us denote the sstub-derivation at below left by d[stub]
and the derivation at below right by d′:

stub
B ⇒ A ⊃ B A ⊃ B ⇒ A ⊃ B

L∨
B ∨ (A ⊃ B)⇒ A ⊃ B

B ⇒ B
LW

A,B ⇒ B

Observe that d[stub] has a stub-instance of type stub/S, with S ≡ B ⇒
A ⊃ B, and d′ has endsequent S ′ ≡ A,B ⇒ B. Because S ′/S is an instance
of R⊃, d[stub] and d′ are compatible. The derivation d[stub]← [ d′ is:

B ⇒ B
LW

A,B ⇒ B
R⊃

B ⇒ A ⊃ B A ⊃ B ⇒ A ⊃ B
L∨

B ∨ (A ⊃ B)⇒ A ⊃ B
and the binding rule is R⊃.
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EXAMPLE 4. Let us denote the sstub-derivation at below left by d[stub]
and the derivation at below right by d′:

stub A ⊃ B ⇒ A ⊃ B
B ∨ (A ⊃ B)⇒ A ⊃ B

B ⇒ B
LW

A,B ⇒ B
R⊃

B ⇒ A ⊃ B
Observe that d[stub] has a stub-instance of type stub τ/S, with S ≡ B ∨
(A ⊃ B)⇒ A ⊃ B, and d′ has endsequent S ′ ≡ B ⇒ A ⊃ B.

Since S ′ A ⊃ B ⇒ A ⊃ B/S is an instance of L∨, d[stub] and d′ are
compatible. The derivation d[stub] ← [ d′ is identical to that obtained in
Example 3, although here the binding rule is L∨.

DEFINITION 5. Let τ be a stub-derivation and G a formula multiset. The
antecedent operator ⊕ : stub-derivation × formula multiset 7→ stub-deriva-
tion is defined as follows:

Case G = 〈〉: let τ ⊕G = τ
Case G 6= 〈〉: define τ ⊕G recursively on τ as follows

1. initial sequent: (A⇒ A)⊕G = (A⇒ A/LW
∗(G)A,G⇒ A)

2. stub-instance:

(a) (stub/X ⇒ Y )⊕G = (stub/X,G⇒ Y )

(b) (stub π/X ⇒ Y )⊕G = (stub π ⊕G/X,G⇒ Y )

(c) (π stub/X ⇒ Y )⊕G = (π ⊕G stub/X,G⇒ Y )

3. unary non-GLR rule: (π/X ⇒ Y )⊕G = (π ⊕G/X,G⇒ Y )

4. GLR rule: (π/GLRX ⇒ Y )⊕G = (π/GLRX ⇒ Y )/LW
∗(G)X,G⇒ Y

5. binary additive rule: (π1 π2/X ⇒ Y )⊕G = (π1⊕G π2⊕G/X,G⇒ Y )

6. cut-rule: (π1 π2/
cutX ⇒ Y )⊕G = (π1 ⊕G π2/

cutX,G⇒ Y ).

That ⊕ maps into the set of stub-derivations follows by inspection of the
definition. Notice that the recursion terminates at an initial sequent, stub-
instance or a GLR rule. The operator ⊕ will bind stronger that ← [.
LEMMA 6. If d is a stub-derivation and G is a formula multiset, then d⊕G
is a stub-derivation. Furthermore, if d is in fact an sstub-derivation d[stub],
then d[stub]⊕G is an sstub-derivation.

Proof. The result follows immediately from Definition 5. �

EXAMPLE 7. Refer to the sstub-derivation d[stub] in Example 3. If G is
a non-empty formula multiset, then d[stub]⊕G is the stub-derivation:

stub
B,G⇒ A ⊃ B

A ⊃ B ⇒ A ⊃ B
LW ∗(G)

A ⊃ B,G⇒ A ⊃ B
L∨

B ∨ (A ⊃ B), G⇒ A ⊃ B
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Form of annotated derivation δ Φ2B [δ]

(2B)∗ ⇒ 2B (2B)◦ ⇒ 2B

{π}r1
G, (2B)n−1 ⇒ H

LW (2B)
G, (2B)∗n ⇒ H

Φ2B

h {π}r
1

G,(2B)∗n−1⇒H

i
LW (2B)

G, (2B)◦, (2B)∗n−1 ⇒ H

{π}r1
G, (2B)n+1 ⇒ H

LC(2B)
G, (2B)∗n ⇒ H

Φ2B

h {π}r
1

G,(2B)∗n+1⇒H

i
LC(2B)

G, (2B)∗n ⇒ H

{π}r1
G′, (2B)n ⇒ H′

ρ 6= GLR
G, (2B)∗n ⇒ H

Φ2B

h {π}r
1

G′,(2B)∗n⇒H′
i
ρ

G, (2B)∗n ⇒ H

{π}r1
2G,G, (2B)n, Bn,2A⇒ A

GLR
2G, (2B)∗n ⇒ 2A

{π}r
1

2G,G,(2B)n,Bn,2A⇒A
GLR

2G, (2B)◦n ⇒ 2A

{π}r1
G′, (2B)n ⇒ H′

{π′}s1
G′′, (2B)n ⇒ H′′

ρ 6= cut
G, (2B)∗n ⇒ H

Φ2B

h {π}r
1

G′,(2B)∗n⇒H′
i

Φ2B

h {π′}s
1

G′′,(2B)∗n⇒H′′
i
ρ

G, (2B)∗n ⇒ H

antecedent of ES(δ) does not
contain a (2B)∗ formula

occurrence
δ

Table 2. Definition of Φ2B . Multisets G and 2G contain no occurrences
of annotated formulae. The function is defined on the class of cut-free
annotated derivations.

By observation, we can confirm that d[stub]⊕G is a sstub-derivation as
predicted by Lemma 6. Notice that d[stub]⊕G and d′ (from Example 3) are
not compatible, because there is no logical or structural inference rule that
can take us from the premise sequent A,B ⇒ B to the conclusion sequent
B,G⇒ A ⊃ B.

Definition 5 can be extended in the obvious way to apply to annotated
stub-derivations. Then it is easily verified that Lemma 6 holds under the
substitution of “annotated (s)stub-derivation” for “(s)stub-derivation” in
the statement of the lemma.

Cut-elimination often involves tracing the “parametric ancestors” of the
cut-formula. The following definition uses the symbols ◦ and ∗ as annota-
tions to help trace the parametric ancestors.
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DEFINITION 8. (fC [·]: annotated derivation wrt C).
Let τ be a cut-free derivation with endsequent X ⇒ Y , and C a formula.

1. if C is not boxed then let fC [τ ] = τ .

2. if C is boxed (C ≡ 2B) and 2B /∈ X then let f2B [τ ] = τ .

3. if C is boxed (C ≡ 2B) and 2B ∈ X. Then τ must be a derivation
of the form 2B ⇒ 2B or {π}r1/X ′,2B ⇒ Y .

Set f2B[τ ] as Φ2B [(2B)∗ ⇒ 2B)] or Φ2B [{π}r1/X ′, (2B)∗ ⇒ Y ]
respectively, where Φ2B is defined on the class of cut-free annotated
derivations as shown in Table 2.

Observe that the annotation operator fC [·] is a total function mapping
derivations to annotated derivations.

REMARK 9. Let τ be a derivation with endsequent X ⇒ Y . If 2B ∈ X
then the formula occurrences (2B)◦ and (2B)∗ in f2B [τ ] are each called a
parametric ancestor of the formula occurrence 2B ∈ X in the endsequent.
Intuitively, the annotation ◦ denotes the final parametric ancestor when
tracing ancestors upwards. That is, the 2B is introduced at that point.

DEFINITION 10. Define ∂◦(B, τ) for a formula B and an annotated deriva-
tion τ , as the number of instances of the GLR rule in τ whose conclusion
contains an occurrence of the annotated formula B◦ in the antecedent.

LEMMA 11. Let d[stub] be an annotated sstub-derivation and G a formula
multiset. Then

(a) ∂◦(B, d[stub]⊕G) = ∂◦(B, d[stub])

(b) Let d′ be a derivation such that d[stub] and d′ are compatible. Then
∂◦(B, d[stub]← [ d′) = ∂◦(B, d[stub]) + ∂◦(B, d′).

Proof.

(a) Because ∂◦(B, ·) counts the number of instances of the GLR rule with
conclusion sequents containing the formula occurrence B◦, the result
is an immediate consequence of the fact that ⊕ does not introduce
formulae into the conclusion sequent of an instance of the GLR rule
(see Definition 5(4)).

(b) By the definition of compatibility, the binding rule for d[stub] and d′

cannot be GLR. Thus if an instance ρ of the GLR rule appears in
d[stub] ← [ d′, then ρ must appear in one of d[stub] or d′. Also, if an
instance ρ of the GLR rule appears in either d[stub] or d′, then ρ must
appear in d[stub]← [ d′. The result follows immediately.

�
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REMARK 12. Lemma 11(a) holds even if G contains decorated formulae.

DEFINITION 13 (width). Let cut0 be a topmost cut as shown below:

{π}r1 ρ
X ⇒ Y,B

{σ}s1
B,U ⇒W

cut0
X,U ⇒ Y,W

Then, the width of cut0 is defined as:

width(cut0) =

{
∂◦(B, fB [π1]) if ρ = GLR (so {π}r1 = π1)
GLR(2, {π}r1/X ⇒ Y,B) otherwise

REMARK 14.

(i) The width has been defined only for a topmost cut as this context is
sufficient for our purposes.

(ii) width(cut0) is independent of the right premise derivation of cut0.

EXAMPLE 15. Let us calculate width(cut0) in the following:

{π}r
1

2C,C,22B,2B,2B ⇒ B
GLR

2C,22B ⇒ 2B

{σ}s
1

2D ⇒ 2B
LW

2D,22B ⇒ 2B
L∨

2C ∨ 2D,22B ⇒ 2B
LW

2(2C ∨ 2D),2C ∨ 2D,22B ⇒ 2B
GLR

2(2C ∨ 2D) ⇒ 22B 22B,U ⇒ W
cut0

2(2C ∨ 2D), U ⇒ W

Writing the left premise derivation of cut0 as µ/2(2C ∨ 2D) ⇒ 22B,
we get width(cut0) = ∂◦(22B, f22B [µ]) where f22B [µ] is

{π}r
1

2C,C,22B,2B,2B ⇒ B
GLR

2C, (22B)◦ ⇒ 2B

{σ}s
1

2D ⇒ 2B
LW

2D, (22B)◦ ⇒ 2B
L∨

2C ∨ 2D, (22B)∗ ⇒ 2B
LW

2(2C ∨ 2D),2C ∨ 2D, (22B)∗ ⇒ 2B

Because f22B [µ] contains only one GLR rule whose conclusion contains
the formula occurrence (22B)◦ in its antecedent, we have width(cut0) = 1.

REMARK 16. Let µ be the left premise derivation of cut0 from Defini-
tion 13. Valentini [16, pg 473] defines the width as the cardinality ofGLR(2),
where GLR(2) in our notation is the set of all instances ρ of GLR such that:

(a) ρ is a 2-ary GLR rule in µ, and

(b) B is the diagonal formula of every 1-ary GLR rule in µ below ρ, and

(c) B is not introduced by weakening below ρ.
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Applying Valentini’s original definition to the following derivation in GLS

{π}r1
22X,2X,2X,X,22C,2C,2C ⇒ C

GLR
22X,2X,22C ⇒ 2C

LW (22C)
22X,2X,22C,22C ⇒ 2C

LC(22C)
22X,2X,22C ⇒ 2C

GLR
22X ⇒ 22C 22C,U ⇒W

cut0
22X,U ⇒W

we compute the width of cut0 as 0 (due to condition (c)). Using the
definition in this paper we have width(cut0) = 1. Our definition considers
the interplay of the weakening and contraction rules, and is required to
obtain the cut-elimination result for GLS. In GLSV however, there are no
contraction rules so Valentini’s original definition suffices.

Thus Moen is certainly justified in asking whether Valentini’s arguments
can be lifted to multiset-based sequents. However, we will see that Moen’s
claims about failure of cut-elimination in the new setting are incorrect.

4 Cut-elimination for GLS

We have the following decomposition lemma.

LEMMA 17. Let τ be a cut-free derivation of the form {π}r1/ρX,2B ⇒ Y
and suppose that ∂◦(2B, f2B [τ ]) > 0. If

(i) ρ = GLR then f2B [τ ] = {π}r1/GLRX, (2B)◦ ⇒ Y .

(ii) ρ 6= GLR then we can write the annotated derivation f2B [τ ] in the
form d[stub]← [ d′ such that

∂◦(2B, d[stub]← [ d′) = ∂◦(2B, d[stub]) + ∂◦(2B, d′).

Furthermore, denote the endsequent of d′ as U ⇒ W . Then for any
multiset M , and any derivation d′′ with endsequent U,M ⇒ W , we
have that d[stub]⊕M and d′′ are compatible.

Proof. If ρ = GLR then it follows immediately from Definition 8 that
f2B [τ ] = {π}r1/GLRX, (2B)◦ ⇒ Y .

Now suppose that ρ 6= GLR. Because ∂◦(2B, f2B [τ ]) > 0, we can write
f2B [τ ] in the form below, where n ≥ 1, and 2G contains no annotated
formulae, and η/X, (2B)∗ ⇒ Y is an annotated sstub-derivation possibly
containing branches:

{π′}s1
2G,G, (2B)n, Bn,2A⇒ A

GLR1
2G, (2B)◦n ⇒ 2A

η

X, (2B)∗ ⇒ Y
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We can identify the annotated derivation f2B [τ ] with d[stub]← [ d′ where
d′ (below left) is an annotated derivation and d[stub] (below right) is an
annotated sstub-derivation.

{π′}s1
2G,G, (2B)n, Bn,2A⇒ A

GLR
2G, (2B)◦n ⇒ 2A

stub
η

X, (2B)∗ ⇒ Y

From Lemma 11(b) we have

∂◦(2B, f2B [τ ]) = ∂◦(2B, d[stub]← [ d′) = ∂◦(2B, d[stub]) + ∂◦(2B, d′).

Write the endsequent of d′ as U ⇒W . Observe that GLR1 must be a 1-ary
GLR rule in f2B [τ ]. If this were not the case, the antecedent of the conclu-
sion of GLR1 could not contain occurrences of B◦. Thus the path (through
η) between the leaf stub in d[stub] and the endsequent X, (2B)∗ ⇒ Y of
d[stub] contains no GLR rule instances. From Definition 5 and the com-
patibility of d[stub] and d′, for any multiset M and any derivation d′′ with
endsequent U,M ⇒ W , it follows that d[stub]⊕M and d′′ are compatible.

�

DEFINITION 18 (rank of a cut). For a topmost cut cut0 the rank rk(cut0)
is the triple (d, n, h) where d is the degree of the cut-formula, n is the width
of cut0, and h is the cut-height of cut0.

LEMMA 19. Let τ be the following derivation where cut0 is a topmost cut:

{π}r1
2X,X,2B ⇒ B

GLR
2X ⇒ 2B

{σ}s1
2B,U ⇒W

cut0
2X,U ⇒W

and suppose (⋆): for any derivation δ, every topmost cut in δ with rank <
rk(cut0) is eliminable.

Then there is a transformed cut-free derivation τ ′ of X,2X ⇒ B.

Proof. Let µ denote the subderivation {π}r1/2X,X,2B ⇒ B of τ .
Case width(cut0) = 0 : Hence ∂◦(2B, f2B [µ]) = 0. Then the anno-

tated derivation f2B(µ) must have final parametric ancestors of the form
(2B)◦ ⇒ 2B or X ′ ⇒ Y ′/LW (2B)X ′, (2B)◦ ⇒ Y ′ only.

Let 2B(∗|◦) stand for an annotated occurrence of 2B where the anno-
tation is not known. Consider the substitution (f2B [µ]){2B(∗|◦) := 2X}
obtained by replacing every occurrence

1. of (2B)∗ with 2X, and

2. of (2B)◦ ⇒ 2B with a derivation of 2X ⇒ 2B (the left premise
derivation of cut0), and

3. of X ′ ⇒ Y ′ LW (2B)
X ′, (2B)◦ ⇒ Y ′

with X ′ ⇒ Y ′ LW ∗(2X)
X ′,2X ⇒ Y ′
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As the endsequent of f2B [µ] was 2X,X, (2B)∗ ⇒ B we have that
(f2B [µ]){2B(∗|◦) := 2X} is a cut-free derivation of 2X,X,2X ⇒ B. Ap-
plying repeated left contraction gives a cut-free derivation of 2X,X ⇒ B.

Case width(cut0) > 0 : Hence ∂◦(2B, f2B [µ]) > 0. First suppose that
the last rule in µ is GLR. Then µ must be of the form:

{π′}s1
22X′,2X′,2X′, X′,22A,2A,2A⇒ A

GLR
22X′,2X′,22A⇒ 2A

where X = 2X ′ and B ≡ 2A.
Then the following is a derivation of 2X,X ⇒ B, with deg(cut1) =

deg(cut0) and width(cut1) = 0 < width(cut0):

2A⇒ 2A
LW ∗(A,22A)

2A,A,22A⇒ 2A
GLR

2A⇒ 22A

{π′}s1
22X′,2X′,2X′, X′,22A,2A,2A⇒ A

cut1
2A,22X′,2X′,2X′, X′,2A,2A⇒ A

LC∗(2A)
22X′,2X′,2X′, X′,2A⇒ A

GLR
22X′,2X′ ⇒ 2A

The required derivation is obtained by using (⋆) to eliminate cut1.
If the last rule in µ is not GLR, by Lemma 17 we can write f2B [µ] as

d[stub]← [ d′, where d′ and d[stub] are respectively:

{π′}t1
2G,G, (2B)n, Bn,2A⇒ A

GLR
2G, (2B)◦n ⇒ 2A

stub
η

2X,X, (2B)∗ ⇒ B

where n ≥ 1, and 2G does not contain annotated formulae, and

∂◦(2B, d[stub]← [ d′) = ∂◦(2B, d[stub]) + ∂◦(2B, d′).

Let d′′ be the annotated derivation

2A⇒ 2A
LW ∗(A,2G, (2B)n)

A,2A,2G, (2B)◦n ⇒ 2A

Then d[stub] ⊕ 〈A,2A〉 and d′′ are compatible (Lemma 17). Note that
∂◦(2B, d′) = 1 and ∂◦(2B, d′′) = 0. Let Λ11 be the derivation:

⌊d[stub]⊕ 〈A,2A〉 ←[ d′′⌋
GLR

2A,2X ⇒ 2B

{π}r1
2X,X,2B ⇒ B

cut1
2A,2X,2X,X ⇒ B

LC∗
2A,2X,X ⇒ B

and Λ12 the derivation

⌊d[stub]⊕ 〈A,2A〉 ←[ d′′⌋
GLR

2A,2X ⇒ 2B

{π′}t1
2G,G, (2B)n, Bn,2A⇒ A

cut2
2A,2A,2X,2G,G, (2B)n−1, Bn ⇒ A

LC
2A,2X,2G,G, (2B)n−1, Bn ⇒ A
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Consider the derivation Λ1:

Λ11 Λ12
cut3

2A,2X,X,2A,2X,2G,G, (2B)n−1, Bn−1 ⇒ A
LC∗

2A,2X,X,2G,G, (2B)n−1, Bn−1 ⇒ A
GLR

2X,2G, (2B)n−1 ⇒ 2A

For i ∈ {1, 2}, observe that deg(cuti) = deg(cut0). Furthermore,

width(cuti) = ∂◦(2B, f2B(⌊d[stub]⊕ 〈A,2A〉 ←[ d′′⌋)) Def. of width
= ∂◦(2B, d[stub]⊕ 〈A,2A〉 ←[ d′′) By inspection
= ∂◦(2B, d⊕ 〈A,2A〉[stub]) + ∂◦(2B, d′′) Lemma 11(b)
< ∂◦(2B, d⊕ 〈A,2A〉[stub]) + ∂◦(2B, d′)
= ∂◦(2B, d[stub]) + ∂◦(2B, d′) Lemma 11(a)
= ∂◦(2B, d[stub]← [ d′) Lemma 11(b)
= width(cut0)

Because deg(cuti) = deg(cut0) and the premises of both cut1 and cut2 are
cut-free, by appealing twice to (⋆) we can in turn eliminate cut1 and cut2. In
the resulting derivation, since deg(cut3) < deg(cut0) we can eliminate cut3
by (⋆). We thus obtain a cut-free derivation Λ2 of 2X,2G, (2B)n−1 ⇒ 2A.

Let Λ3 be the annotated derivation

Λ2
LW (2B)

2X,2G, (2B)n ⇒ 2A

Clearly ∂◦(2B,Λ3) = 0. Furthermore, by Lemma 17, d[stub] ⊕ 2X and
Λ3 are compatible. Recall that ⌊·⌋ is the forgetful map. The endsequent
of ⌊(d[stub] ⊕ X) ← [ Λ3⌋ is thus 2X,2X,X,2B ⇒ B. Now consider the
derivation

⌊(d[stub]⊕ 2X)←[ Λ3⌋
LC∗(2X)

2B,2X,X ⇒ B
GLR

2X ⇒ 2B

{π}r1
2X,X,2B ⇒ B

cut4(2B)
X,2X,2X ⇒ B

LC∗(2X)
X,2X ⇒ B

By a similar calculation to the above we obtain width(cut4) < width(cut0).
Because deg(cut4) = deg(cut0) and the premises of cut4 are cut-free, ap-
pealing to (⋆) we can eliminate cut4. We thus obtain a cut-free derivation
of X,2X ⇒ B as required. �

Without loss of generality it suffices to consider a derivation concluded
by a cut-rule with cut-free premise derivations.

THEOREM 20 (Cut-elimination). Let τ be a derivation concluded by an
instance cut0 of the cut-rule with cut-free premise derivations. Then there
is a transformed cut-free derivation τ ′ with identical endsequent.
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Proof. Induction on the rank (d, n, h) of cut0 under the standard lex-
icographic ordering. We say that the cut-formula is left principal if an
occurrence of the cut-formula in the succedent of the left premise is a prin-
cipal formula. The term right principal is defined analogously. This follows
standard practice.
1 Cut with an initial sequent as premise. This is the base case. The
transformations are standard (see [9],[15]).
2 Cut with neither premise an initial sequent.

(a) Cut-formula is left and right principal.
First suppose that the cut-formula is boxed. There are five possibilities:
(i) the cut-formula is left and right principal by the GLR rule. The

derivation must then be in SNF:

{π}r1
2X,X,2B ⇒ B

GLR
2X ⇒ 2B

{σ}s1
2B,2U,B,U,2C ⇒ C

GLR
2B,2U ⇒ 2C

cut0
2X,2U ⇒ 2C

The induction hypothesis implies that for any derivation δ, any topmost
cut in δ with rank < rank(cut0) is eliminable. This is precisely condition
(⋆) in Lemma 19. Hence we can obtain a cut-free derivation of 2X,X ⇒ B.
Consider the derivation

2X,X ⇒ B

{π}r1
2X,X,2B ⇒ B

GLR
2X ⇒ 2B

{σ}s1
2B,2U,B,U,2C ⇒ C

cut1
2X,2U,B,U,2C ⇒ C

cut2
2X,X,2X,2U,U,2C ⇒ C

GLR
2X,2U ⇒ 2C

Observe that rk(cut1) = (d, n, h−1). By the induction hypothesis we can
eliminate cut1. In the resulting derivation, since deg(cut2) < d, the result
follows from another application of the induction hypothesis.

(ii) the cut-formula 2B is left principal by the GLR rule and right prin-
cipal by LC(2B).

Then τ is as below where both premises of cut0 are cut-free and m ≥ 0:

{π}r1
2X,X,2B ⇒ B

GLR
2X ⇒ 2B

{σ}s1 ρ
(2B)m+2, U ⇒W

LCm+1(2B)
2B,U ⇒W

cut0
2X,U ⇒W

In general ρ need not be the GLR rule. However if ρ 6= GLR then either
(1) ρ = LW (2B) and we delete ρ and the LC(2B) rule that follows, or
(2) 2B is not principal by ρ.

In the former case the result is immediate. In the latter case the result
is obtained by applying ρ after cut0 and invoking the induction hypothesis.
Observe that this is possible even if ρ is a binary rule.
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If ρ = GLR it follows that U ≡ 2V andW ≡ 2C for some multiset V and
formula C, and s = 1 and σ1 ≡ {σ′}s′1 /(2B)m+2, Bm+2,2V, V,2C ⇒ C.
Thus τ must be of the form

{π}r
1

2X,X,2B ⇒ B
GLR

2X ⇒ 2B

{σ′}s′
1

(2B)m+2, Bm+2,2V, V,2C ⇒ C
ρ = GLR

(2B)m+2,2V ⇒ 2C
LCm+1(2B)

2B,2V ⇒ 2C
cut0

2X,2V ⇒ 2C

A derivation of 2X,X ⇒ B is obtained as in (i) using Lemma 19. Con-
sider the derivation:

2X,X ⇒ B

2X ⇒ 2B

{σ′}s′
1

(2B)m+2, Bm+2,2V, V,2C ⇒ C
LCm+1(2B)

2B,Bm+2,2V, V,2C ⇒ C
cut1

2X,Bm+2,2V, V,2C ⇒ C
LCm+1(B)

2X,B,2V, V,2C ⇒ C
cut2

2X,X,2X,2V, V,2C ⇒ C
LC∗

2X,X,2V, V,2C ⇒ C
GLR

2X,2V ⇒ 2C

Now cut1 has identical degree and width compared to cut0, and smaller
cut-height. Hence, we can eliminate cut1 using the induction hypothesis.
In the resulting derivation deg(cut2) < d so the result follows from the
induction hypothesis.

(iii) the cut-formula 2B is left principal by RC(2B) and right principal
by the GLR rule.

Then τ has the following form where both premises of cut0 are cut-free:

{π}r1
X ⇒ Y,2B,2B

RC1
X ⇒ Y,2B

σ
GLR

2B,2U ⇒ 2C
cut0

X,2U ⇒ Y,2C

Because the conclusion of (any) GLR rule has a exactly one formula in
the succedent, it follows that at least one of the 2B formula occurrences
in the succedent of the premise of RC1 can be traced upwards in {π}r1
to RW (2B) rule application(s). In particular, when tracing upwards, it
is impossible to encounter a GLR rule application before encountering a
RW (2B) rule application. Deleting these RW (2B) rule applications and
the RC1 contraction rule certainly preserves the derivation structure be-
cause all the binary rules excluding the cut-rule are additive. This new
derivation contains a single instance of cut with identical degree of cut-
formula and reduced cut-height compared to cut0. Furthermore, observe
that it must be the case that the width is ≤ n. The result follows from the
induction hypothesis.

If the calculus uses multiplicative binary rules instead, the result still
holds, although the transformations are slightly more complicated.
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In each instance, the proof can be formalised using an annotation function
similar in structure to f2B . We omit the details.

(iv) the cut-formula 2B is left and right principal by RC(2B) and
LC(2B) respectively.

A combination of the strategies in (ii) and (iii) suffice.
(v) the cut-formula 2B is either left or right principal by RW (2B) or

LW (2B) respectively.
Trivial.
When the cut-formula is not boxed and the cut-formula is left and right

principal by the respective left and right introduction rule the transforma-
tions are standard (see [9],[15] for example) — derivation τ is transformed
to a derivation τ ′ containing cuts {cuti}i≥1 on strictly smaller cut-formulae
(i.e. deg(cuti) < d for i ≥ 1).

If the cut-formula is right principal by LC(B) then τ has the form below
where B is principal by ρ:

{π}r1 ρ
X ⇒ Y,B

{σ}s1
B,B,U ⇒W

LC(B)
B,U ⇒W

cut0
X,U ⇒ Y,W

We must have ρ 6= GLR. This is the well-known case of contractions
above cut that occurs in cut-elimination for LK.

There are several proofs of cut-elimination avoiding Gentzen’s multicut
rule, for classical sequent calculi, appearing in the literature (for example,
see [10],[3],[1]). We adapt the transformations proposed by von Plato [10]
for the classical calculus G0c. Although all the binary rules in G0c are mul-
tiplicative, and all the binary rules in GLS are additive, the same argument
can be lifted here.

That argument in [10] relies on invertibility of all logical rules in G0c.
Invertibility is not required to be height-preserving. A similar result holds
for GLS too. We omit the details.

The cases corresponding to (iii)-(v) can be dealt with similarly.
(b) Cut-formula is left principal only.
(c) Cut-formula neither left nor right principal.
We analyse the last inference rule in the right (left) premise derivation of

cut0. The standard transformations suffice here (see [9],[15] for example).
In particular, observe that for any instance cut1 of the cut-rule appearing
in a transformed derivation, it must be the case that width(cut1) ≤ n. �

REMARK 21. In general, it is possible for the width of lower cuts to in-
crease under the cut-elimination transformations. For example, consider
some transformation which reduces some topmost cut instance cutb (for
“before”) to the derivation below containing the cut instance cuta (for “af-
ter”) where {π}r1 and {σ}s1 need not be cut-free:

{π}r1 {σ}s1
cuta

G⇒ H
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The cut-elimination transformations which ultimately turn cuta into a
topmost cut may produce a derivation where width(cuta) > width(cutb).
However, we have seen in the proof of Lemma 19 that width(cut4) does not
increase despite any reductions above it. This is because the cut4 in that
proof is ‘shielded’ by the GLR instance concluding Λ1. This shielding is
crucial for the success of the proof.

5 Moen’s Val-II(core) is not Valentini’s reduction

We have carefully examined Moen’s slides titled “The proposed algorithms
for eliminating cuts in the provability calculus GLS do not terminate” [7].

Moen sets out to reduce a cut in SNF using the transformation he titles
Val-II(core). Moen claims that Val-II(core) is the “. . . core of Valentini’s
reduction” [7]. Yet Val-II(core) does not appear in [16]. However it appears
in [11, page 322] with the comment “this reduction is not sufficient”.

Thus Moen is incorrect in claiming that he has demonstrated that Valen-
tini’s algorithm does not terminate — Moen is using the wrong algorithm.
In fact, for his concrete derivation ǫ, the width of the cut-formula is 1 so
the reduction is immediate. Applying the base case transformations, and
then the classical transformations, we obtained a cut-free derivation of the
end-sequent of ǫ.

6 Conclusion

We have resolved the issue surrounding the use of Valentini’s arguments for
cut-elimination in a multiset setting for GL. In order to formally define
the measure width, we formalised the notion of ‘tracing up’ a derivation
(i.e. identifying the parametric ancestors) via a constructive function. This
constructive function can be used to aid the formalisation of various other
notions in proof theory.
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[13] V. Švejdar. On Provability Logic. Nordic Journal of Philosophical Logic, 4:95–116,

2000.

[14] R.M. Solovay. Provability Interpretations of Modal Logic. Israel Journal of Mathe-

matics, 25:287–304, 1976.

[15] A.S. Troesltra and H. Schwichtenberg. Basic Proof Theory. CUP, 2000.

[16] S. Valentini. The Modal Logic of Provability: Cut-elimination. Journal of Philosoph-

ical Logic, 12:471–476, 1983.

Rajeev Goré
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