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Abstract

We develop a framework for epistemic logic that combines relevant modal logic with
classical propositional logic. In our framework the agent is modelled as reasoning in
accordance with a relevant modal logic while the propositional fragment of our logics
is classical. In order to achieve this feature, we modify the relational semantics for
relevant modal logics so that validity in a model is defined as satisfaction throughout
a set of designated states that, as far as propositional connectives are concerned,
behave like classical possible worlds. The main technical result of the paper is a
modular completeness theorem parametrized by the relevant modal logic formalizing
the agent’s reasoning.
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1 Introduction

The logical omniscience problem consists in a discrepancy between properties of
modal operators in normal modal epistemic logics on one hand and intuitions
concerning epistemic attitudes of real-life agents on the other hand. More
specifically, if φ1 ∧ . . . ∧ φn → ψ is valid in a normal modal logic, for some
n ≥ 0, then so is 2φ1 ∧ . . . ∧ 2φn → 2ψ, meaning informally that epistemic
attitudes of moderately idealised agents represented by 2 are closed under local
consequence from arbitrary finite (possibly empty) sets of assumptions. As an
assumption about agents with bounded memory, reasoning capacity etc., this
is clearly unrealistic.

A number of alternative approaches to epistemic logic that avoid the logical
omniscience problem have been proposed. One group of approaches, the non
standard states approaches, consists in enriching Kripke models with so-called
non-standard states in which the behaviour of logical connectives may differ
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from their behaviour in standard states (possible worlds). Closure of epistemic
attitudes under logical consequence is avoided by (i) defining consequence in
terms of standard states, but (ii) allowing the epistemic accessibility relation
to connect standard states with non-standard ones. One of the first approaches
of this kind is [13]; see also [21] for a generalization.

In the most general versions of the non-standard states approach, agents’
epistemic attitudes are represented as lacking any kind of logical regimentation.
It seems more realistic to assume closure under consequence of some weak non-
classical logic instead of Scylla of logical anarchism and Charybdis of closure
under normal modal logic. In this vein, Levesque [11] has advocated an epis-
temic logic based on the logic FDE of First Degree Entailment, an implication-
free fragment of the relevant logic E; see also [10] for a version allowing nesting
of modal operators. In this logic, closure of epistemic attitudes under some
problematic principles involving negation is avoided; for instance, agents are
allowed to have inconsistent yet non-trivial beliefs. Validity is defined in terms
of standard possible worlds and so the propositional fragment of Levesque’s
logic is classical. The general motivation behind this approach is that Boolean
connectives seem to correctly represent the logic of agent-independent facts,
while agents’ reasoning is regimented by a weaker non-classical logic. This
approach will be followed in this paper.

Levesque acknowledges that an extension of his formalism with a non-
standard implication connective would be desirable to properly formalize epis-
temic attitudes towards implicational statements. Fagin et al. [7] study an ex-
tension of FDE with epistemic modal operators and material implication, thus
providing some means to formalize attitudes towards implicational statements,
but the well known discrepancy between properties of material implication and
the intuitive properties of implicational statements renders their formalization
problematic.

Relevant modal logic including a relevant implication connective is used as
a basis for epistemic logic in [3,4]. As is usual in relevant logic, this framework
does not take standard states to be classical possible worlds. Hence, it is not
an option if one intends to extend classical propositional logic with epistemic
modal operators regimented by a relevant logic. Such an option is provided in
[16,17] where combinations of classical propositional logic with relevant modal
logic are studied. The semantics of [17] is two-sorted and the Hilbert-style
axiomatizations provided in the paper use a meta-rule of inference, which is
inconvenient if the underlying relevant logic is undecidable. The semantics
of [16] is one-sorted, thus more elegant, but the Hilbert-style axiomatizations
provided in that paper have two peculiar features: proofs are defined non-
standardly as pairs of finite sequences of formulas, and the completeness proof
relies on the presence of extensional truth constants ⊤,⊥ in the language.

In this paper we provide a framework for epistemic logic based on relevant
modal logic that avoids the problematic features of the previous approaches.
The crucial features of our approach are that (i) closure of epistemic attitudes
under normal modal consequence is avoided in all forms (that is, taking into
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account zero, one or more assumptions) but (ii) epistemic attitudes are repre-
sented as being regimented by relevant modal logic while (iii) the non-modal
fragments of our epistemic logics remain classical; (iv) our use of full relevant
logic, including a relevant implication connective, enables a more realistic rep-
resentation of attitudes towards implicational statements; and (v) our main
technical result, a modular completeness theorem parametrized by the relevant
modal logic governing the agents’ reasoning, is stated in terms of a standard
Hilbert-style proof system, and to obtain the result we do not need to assume
the presence of extensional truth constants in the language.

The paper is structured as follows. In Section 2 we give some background
information on relevant modal logic and in Section 3 we outline the general
strategy behind our framework. The framework itself is introduced in Section
4 and the axiomatization results are obtained in Section 5. The concluding
section summarizes the paper and discusses some attractive topics for future
research. Proofs of some of our results are given in the appendix.

2 Relevant modal logics

This section gives some background information on relevant modal logic. We
build on the approach of Fuhrmann [8,9], with the difference that relevant
modal logics discussed here are bimodal, with a pair of modal operators 2

and 2L. While 2 will be seen as an epistemic modal operator, the auxiliary
operator 2L is introduced to capture “validity in relevant logic” in a specific
technical sense that will be discussed later.

Definition 2.1 The modal language L contains a countable set Pr of propo-
sitional variables and operators ∧,∨,→ (binary), and ¬,2,2L (unary). The
set of formulas of this language is defined as usual and denoted as FmL. We
define φ↔ ψ := (φ→ ψ) ∧ (ψ → φ).

The propositional operators ∧,∨,¬ and → are read as usual. The modal
operator 2 is read (with a contextually fixed agent in mind) as “the agent
believes that ...”, while the operator 2L is auxiliary. We note that we stick
to a language with one epistemic modal operator 2, instead of multiple 2i

for agents i ∈ G, only for the sake of simplicity and that the extension of our
framework to the multi-agent case is trivial.

Before defining the semantics for the modal language, we introduce some
simplifying notation. Let (S1,≤1) and (S2,≤2) be two partially ordered sets.
If k1, . . . , kn, kn+1 ⊆ {↓, ↑}, then an n-ary function f from (S1,≤1) to (S2,≤2)
is said to be of type k1 . . . kn 7→ kn+1 iff∧

i≤n

(
siZiti

)
=⇒ f(s1, . . . , sn)Zn+1f(t1, . . . , tn)

where Zi = ≤ in case ki = ↑ and Zi = ≥ in case ki = ↓. We denote
as S1(k1 . . . kn, S2(kn+1)) the set of n-ary functions from S1 to S2 of type
k1 . . . kn 7→ kn+1. As a special case, n-ary relations on (S,≤) are n-ary opera-
tions from (S,≤) to T = ({true, false},⊑), where it is assumed that false ⊑ true.
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For example, S(↑, T (↑)) denotes the set of all subsets of S that are closed up-
wards under ≤; S(↓↑, T (↑)) denotes the set of binary relations on S that are
anti-monotonic in the first position and monotonic in the second position; and
S(↑, S(↓)) denotes the set of anti-monotonic unary functions on S. We will
usually omit T (↑); hence S(↑) means S(↑, T (↑)). If B is a binary relation on S,
then B(s) denotes the set {t | Bst}, and if X ⊆ S, then B(X) :=

⋃
s∈X B(s).

Definition 2.2 A frame is a tuple F = (S,≤, R, ∗, Q,QL) where (S,≤) is a
partially ordered set, R ∈ S(↓↓↑), ∗ ∈ S(↑, S(↓)) and Q,QL ∈ S(↓↑). A model
based on a frame F is M = (F, V ) where V : Pr → S(↑).

We will consider later on structures that expand frames by additional re-
lations on S and we will apply the terminology defined for frames to these
structures.

Definition 2.3 For each frame F , we define the following operations on 2S :

X ∧F Y = X ∩ Y
X ∨F Y = X ∪ Y

¬FX = {s | s∗ ̸∈ X}
X ◦F Y = {u | ∃s, t(s ∈ X & t ∈ Y & Rstu)}

X →F Y = {s | {s} ◦F X ⊆ Y }
2FX = {s | ∀t(Qst⇒ t ∈ X)}
2F

LX = {s | ∀t(QLst⇒ t ∈ X)}

These operations are related to the standard satisfaction clauses of relevant
(modal) logic. The tonicity conditions incorporated into the definition of a
frame ensure that S(↑) is closed under cF for c ∈ {∧,∨,→,¬,2,2L}.

Definition 2.4 For eachM = (F, V ), theM -interpretation is a function J KM :
FmL → S(↑) such that JpKM = V (p) and

Jc(φ1, . . . , φn)KM = cF
(
Jφ1KM , . . . , JφnKM

)
for all c ∈ {∧,∨,→,¬,2,2L}.

Since S(↑) is closed under each cF and V (p) ∈ S(↑) by definition, it follows
that JφKM ∈ S(↑) for all φ ∈ FmL. We will often write (M, s) |= φ instead
of s ∈ JφKM and (M,X) |= Γ instead of (M, s) |= φ for all φ ∈ Γ and s ∈ X
(s |= φ, X |= Γ when M is clear from context); and we will not distinguish
between singletons and their elements when using this notation.

As usual in relevant logic, elements of S are seen as bodies of information,
or situations, roughly in the sense of [1], partially ordered by the amount of
information they support. Situations are not closed under the usual laws of
classical logic, and the relations used to define the operations corresponding to
¬ and → are introduced to achieve this. First, situations may be incomplete or
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inconsistent, i.e. for some s ∈ S we may have s ∈ JφKM ∩J¬φKM (meaning that
s ̸≤ s∗) or s ̸∈ JφKM ∪ J¬φKM (meaning that s∗ ̸≤ s). Informally, s∗ is seen as
the maximal situation that is compatible with s. Second, note that s ∈ X → Y
iff, for all t, u, if Rstu and t ∈ X, then u ∈ Y . Interpretation of implication
in terms of a ternary relation on situations enables the failure of the so-called
“paradoxes of strict implication”; note that it may be the case that s ∈ JφKM
and s ̸∈ Jφ → φKM if there are t, u such that Rstu and t ̸≤ u. Informally,
the ternary relation R is seen as representing combination of information sup-
ported by situations; Rstu can be seen as representing the fact that the body of
information that results from combining the information supported by s with
the information supported by t is contained in the information supported by
u. 1 Not much is assumed about R in the general setting; for instance, we
do not assume that information combination is commutative (Rstu ⇒ Rtsu),
associative (Rstuv ⇒ Rs(tu)v; see the explanation of the notation before Fig-
ure 1) or reflexive (Rsss). However, these and similar properties of R can be
assumed when one considers stronger relevant logics; see Figure 1. The modal
accessibility relation Q represents information about the beliefs of our contex-
tually fixed agent. In particular, Qst expresses that all information that the
agent believes according to s is supported by t.

We now define an expansion of frames that is used in relational semantics
for relevant logics. The key feature is a semantic deduction theorem according
to which φ→ ψ is valid iff ψ follows from φ in the frame.

Definition 2.5 An L-frame is a structure F = (F,L), where F is a frame and
L ∈ S(↑) such that

∀s∃x(x ∈ L & Rxss) (1)

s ∈ L & Rstu⇒ t ≤ u (2)

A model based on an L-frame F (an L-model) is a tuple M = (F , V ) where
V : Pr → S(↑). A formula φ is valid in an L-model iff L ⊆ JφKM ; notation
M |= φ. A formula φ is valid in a class of L-frames iff it is valid in each L-model
based on an L-frame in the class.

Lemma 2.6 For all L-models M , φ→ ψ is valid in M iff JφKM ⊆ JψKM .

Proof. Frame conditions (1), (2) and the fact that JφKM ∈ S(↑) for all φ. 2

The set of formulas valid in all L-models is denoted as BM.C. We use the
notation of [8,9], where BM.C denotes the smallest conjunctively regular modal
extension of BM. A modal logic is said to be conjunctively regular if its modal
operators distribute over conjunctions. The logic BM is one of the weakest
propositional relevant logics; see [8, I.3–I.4].

1 For instance, Dunn and Restall point out that “perhaps the best reading [of Rstu] is to
say that the combination of the pieces of information s and t (not necessarily the union) is
a piece of information in u” [5, p. 67].
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Definition 2.7 The axiom system BM.C consists of the following axioms

(a1) p→ p (a7) q → (p ∨ q)
(a2) ¬(p ∧ q) → (¬p ∨ ¬q) (a8) ((p→ q) ∧ (p→ r)) → (p→ (q ∧ r))
(a3) (¬p ∧ ¬q) → ¬(p ∨ q) (a9) ((p→ r) ∧ (q → r)) → ((p ∨ q) → r)

(a4) (p ∧ q) → p (a10) (p ∧ (q ∨ r)) → ((p ∧ q) ∨ (p ∧ r))
(a5) (p ∧ q) → q (a11) (2p ∧2q) → 2(p ∧ q)
(a6) p→ (p ∨ q) (a12) (2Lp ∧2Lq) → 2L(p ∧ q)

plus the rules of Uniform substitution (US) and Modus ponens (MP) and

φ ψ
(Adj)

φ ∧ ψ
φ′ → φ ψ → ψ′

(Aff)
(φ→ ψ) → (φ′ → ψ′)

φ→ ψ
(Con) ¬ψ → ¬φ

φ→ ψ
(2L-Mon)

2Lφ→ 2Lψ

φ→ ψ
(2-Mon)

2φ→ 2ψ

The set of theorems of BM.C, Th(BM.C), is defined in the usual way. The
axiom system BM.C given here differs from Fuhrmann’s axiom system for the
conjunctively regular modal extension of BM as follows: instead of axiom
schemata we use axioms and add (US); we add a conjunctive regularity ax-
iom and a monotonicity rule for the second modal box operator 2L. Note that
we do not assume any interplay between 2 and 2L.

Some frame conditions assumed in the semantics for relevant modal log-
ics stronger than BM.C are listed in Figure 1, where we define Rstuv :=
∃x(Rstx & Rsuv), Rs(tu)v := ∃x(Rsxv & Rtux), RQstu := ∃x(Rstx &
Qxu) and QRstu := ∃x(Qsx & Rxtu).

For example, the logic DW.C is defined in terms of frames satisfying (Cp),
the logic TW.C adds (B) and (CB), T.C adds (WB), (X), (RD) and (W),
E.C adds the rule (ER), R.C adds (C) and the logic RM.C adds (M). For a
propositional relevant logic PL, the logic PL.R adds implicational regularity
(2K) to PL.C and PL.K further adds (Nec). If X ∈ {C,R,K}, then PL.XT
adds (2T) to PL.X, and similarly for D, 4 and 5. For a more extensive list,
including especially more variation on the propositional level, see [8,9,15].

If a relevant modal logic L is defined as a set of formulas valid in all L-frames
satisfying a selection of frame conditions from Figure 1, then we will denote the
set of L-frames satisfying those frame conditions as L-frames for L, or simply
L-frames, and the selection of the frame conditions as L-conditions. For any
relevant modal logic L, the axiom system L is obtained by adding to BM.C the
axioms and rules corresponding to the L-conditions according to Figure 1.

Theorem 2.8 For all L, L = Th(L).

Proof. Virtually the same argument as the one in [8,9]. 2

3 Classical epistemic logic based on relevant modal logic

It is clear that relevant modal logics, as presented above, can be used to model
reasoning about agents that are not logically omniscient with respect to classical
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Frame condition Corresponding axiom/rule

(DN) s∗∗ = s p↔ ¬¬p
(Cp) Rstu⇒ Rsu∗t∗ (p→ q) → (¬q → ¬p)
(WB) Rstu⇒ Rs(st)u ((p→ q) ∧ (q → r)) → (p→ r)
(X) s ∈ L⇒ s∗ ≤ s p ∨ ¬p
(Rd) Rss∗s (p→ ¬p) → ¬p
(B) Rstuv ⇒ Rs(tu)v (p→ q) → ((r → p) → (r → q))
(CB) Rstuv ⇒ Rt(su)v (p→ q) → ((q → r) → (p→ r))
(W) Rstu⇒ Rsttu (p→ (p→ q)) → (p→ q)
(C) Rstuv ⇒ Rsutv (p→ (q → r)) → (q → (p→ r))
(M) Rstu⇒ (s ≤ u ∨ t ≤ u) p→ (p→ p)

(ER) ∃x(x ∈ L & Rsxs)
φ

(φ→ ψ) → ψ

(Nec) (x ∈ L & Qxs) ⇒ s ∈ L
φ

2φ
(2K) RQstu⇒ ∃x(Qtx & QRsxu) 2(p→ q) → (2p→ 2q)
(2T) Qss 2p→ p
(2D) ∃x(Qsx∗ & Qs∗x) 2¬p→ ¬2p
(24) (Qst & Qtu) ⇒ Qsu 2p→ 22p
(25) (Qs∗u & Qst) ⇒ Qt∗u ¬2p→ 2¬2p

Fig. 1. Some prominent frame conditions with the corresponding axioms and rules.

logic, but whose beliefs are still logically regimented. For instance, 2(p∧¬p) →
2q is invalid in all L mentioned above, but 2(p∧q) → 2p is valid. Interestingly,
the degree to which agents are represented as being omniscient with respect to
the relevant modal logic at hand is smaller than in the case of classical modal
logic. As the Regularity axiom (a11) and the Monotonicity rule (2-Mon) entail,
each L is closed under

φ1 ∧ . . . ∧ φn → ψ

2φ1 ∧ . . . ∧2φn → 2ψ
(CR)

for n > 0, but not each L is closed under the Necessitation rule (Nec). This
means that even though the beliefs of agents are assumed to be closed un-
der valid implications with non-empty antecedents, agents are not assumed to
believe all valid formulas.

Moreover, in general L is not closed under the implicational version of (CR)

φ1 → (. . . (φn → ψ) . . .)

2φ1 → (. . . (2φn → 2ψ) . . .)
. (IR)

Relational semantics for relevant modal logics yield conjunctively regular but
not necessarily implicatively regular modal logics. For instance, even in logics
with the implicational version of contraposition (Cp) as an axiom, the for-
mula 2(p → q) → (2¬q → 2¬p) is not necesarily valid. In this respect
relevant modal logic is more fine-grained than classical modal logic, where
the distinction between (CR) and (IR) collapses due to the provability of
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(φ → (ψ → χ)) ↔ ((φ ∧ ψ) → χ) 2 . The difference between (CR) and (IR)
expresses the assumption that while beliefs of agents are represented as “auto-
matically” closed under conjunction introduction, they are not seen as closed
under implication elimination. As Sequoiah-Grayson [20] points out, this can
be understood as meaning that while agents are assumed to automatically ag-
gregate their beliefs, they are not assumed to automatically combine them.
While this view constitutes a prima facie motivation for (CR), belief aggre-
gation has been criticised in the epistemic logic literature, e.g. by [6], who
argue that beliefs tend to come in non-interacting clusters, or frames of mind.
Accommodating this idea in our framework leads to a shift from relational to
neighborhood semantics, and is left for further work.

The informational interpretations of relevant logics make them good can-
didates for logics that regiment epistemic attitudes of realistic, non-omniscient
agents. One may wonder if such an employment of relevant logics is in con-
flict with using classical propositional logic. In fact, most frameworks dealing
with logical omniscience build on classical propositional logic and add various
extra requirements to normal modal logic on the epistemic level; see [2,6,11]
for instance. It can be argued that while classical consequence models truth
preservation, relevant consequence models preservation of informational sup-
port in situations and their combinations. The latter is naturally associated
with models of how agents reason.

In the rest of this paper we will develop a framework for epistemic logic
based on these considerations. In our framework, the agent is modelled as a
relevant reasoner in a classical world: the agent reasons in accordance with a
relevant modal logic, but the propositional fragment is classical. Our framework
extends the framework of [10,11] by including relevant implication and allowing
for a greater variability on the propositional level.

More specifically, for each relevant modal logic L we develop a “classical”
modal logic CL with two main features. First, the propositional fragment of
each CL is classical propositional logic. Second, the set of theorems of CL is not
closed under (CR), but only under the so-called Relevant reasoning meta-rule

⊢L φ1 ∧ . . . ∧ φn → ψ

⊢CL 2φ1 ∧ . . . ∧2φn → 2ψ
(RR)

for n > 0. In order to ensure that the propositional fragment of CL is classical
propositional logic, CPC, we modify the relational semantics for relevant modal
logics presented above so that validity in a model is defined as satisfaction
throughout a set of designated states that, as far as propositional connectives
are concerned, behave like classical possible worlds.

The auxiliary modal operator 2L is crucial in achieving the second feature
of our framework, closure under (RR). In particular, we will show that

⊢L φ→ ψ =⇒ ⊢CL 2L(φ→ ψ) =⇒ ⊢CL φ→ ψ

2 This will be the case also for any L containing the K-axiom (2K), as well as for classical
logic, where (φ→ (ψ → χ)) ↔ ((φ ∧ ψ) → χ) is provable.
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In fact, we will show that ⊢L φ ⇐⇒ ⊢CL 2Lφ. In this sense, 2L captures
validity in L.

Closure under (RR) is the key feature of our framework. We stress that
while it is satisfied, the standard logical omniscience problem is avoided in our
framework since CL is generally not closed under (CR) nor under (Nec). This
follows from the fact that while validity is defined as satisfaction in all standard
states (in our case, possible worlds), the epistemic accessibility relation Q may
connect standard states with non-standard states.

4 Possible worlds in relevant models

In this section we introduce the central semantic framework of the paper. Our
semantics is a modification of the relational semantics for relevant modal logics
introduced in Section 2 where the set of logical states L is replaced with a set
of states W that, as far as propositional connectives are concerned, behave like
classical possible worlds. For technical reasons, our frames need to be bounded
in a specific sense. Bounded models for relevant modal logics were introduced
by Seki [18,19].

Definition 4.1 A bounded frame is a frame F where (S,≤) is a bounded poset,
i.e. there are elements 0, 1 ∈ S such that for all s ∈ S 0 ≤ s ≤ 1, and where,
for all s, t ∈ S, the following are satisfied (Q(L) ∈ {Q,QL}):

1∗ = 0 and 0∗ = 1 (3)

Q(L)00 (4)

Q(L)1s⇒ s = 1 (5)

R010 (6)

R1st⇒ (s = 0 or t = 1) (7)

A bounded model is a model M = (F, V ) where F is a bounded frame and, for
all p ∈ Pr, 0 ̸∈ V (p) and 1 ∈ V (p).

Lemma 4.2 If M is a bounded model, then

(i) (M, 1) |= φ for all φ;

(ii) (M, 0) ̸|= φ for all φ.

Proof. By simultaneous induction on the complexity of φ. The base case holds
by definition of V in bounded models. The cases of φ := ψ ∧χ, φ := ψ ∨χ are
trivial. When φ := ¬ψ, 1 |= ¬ψ iff 1∗ ̸|= ψ iff by (3) 0 ̸|= ψ, which holds by
the induction hypothesis (IH); 0 ̸|= ¬ψ iff 0∗ |= ψ iff by (3) 1 |= ψ, which holds
by IH. When φ := ψ → χ, 1 |= ψ → χ iff ∀s, t ∈ S(R1st, s |= ψ ⇒ t |= χ). If
R1st, then by (7) we distinguish two cases: if s = 0 then by IH 0 ̸|= ψ, and if
t = 1, then t |= χ by IH. In both cases 1 |= φ → ψ. 0 ̸|= ψ → χ iff ∃s, t ∈ S
such that R0st, s |= ψ and t ̸|= χ; by (6) in particular R010, so 1 |= ψ and
0 ̸|= χ by IH. When φ := 2ψ, 1 |= 2φ iff ∀s ∈ S, Q1s ⇒ s |= ψ; by (5), Q1s
entails s = 1 and by IH 1 |= ψ. 0 ̸|= 2ψ iff ∃s ∈ S such that Q0s and s ̸|= ψ;
by (4) Q00 and 0 ̸|= ψ by IH. The case φ := 2Lψ is analogous. 2
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Definition 4.3 Let M be a bounded model. An element w ∈ S is a possible
world iff, for all s, t ∈ S:

w∗ = w (8)

Rwww (9)

Rwst⇒ (s = 0 or w ≤ t) (10)

Rwst⇒ (t = 1 or s ≤ w∗) (11)

Definition 4.4 A W -frame is a structure F = (F,W ) where F is a bounded
frame, W ⊆ S is a set of possible worlds and the following conditions are
satisfied:

(∀w ∈W )(∀s, t, u)(QLwu & Rust⇒ s ≤ t) (12)

(∀s)(∃w ∈W )(∃u)(QLwu & Russ) (13)

A W -model based on F is M = (F , V ) where V : Pr → S(↑) such that
1 ∈ V (p) for all p and 0 ̸∈ V (p) for all p ∈ Pr.

Conditions (12)-(13) enable W -frames to simulate validity in L-models. In
W -frames, the set of states QL(W ) = {u | ∃w(w ∈ W & QLwu)} “plays the
role” of L in L-models: comparing (1)-(2) with (12)-(13), we observe that the
set of states QL-accessible from W has the crucial properties of L in L-models.
In fact, if (F,W ) is a W -frame, then (F,QL(W )) is an L-frame. Moreover, we
note that we have to explicitly mention the bounds 0, 1 in (10) and (11) since
Rwst ⇒ w ≤ t and Rwst ⇒ s ≤ w∗ do not hold in the canonical model (see
Section 5 and Footnote 6).

Definition 4.5 For each W -model M , the M - interpretation J KM is defined
as in Definition 2.4. A formula φ is valid in a W -model M iff W ⊆ JφKM . A
formula φ is valid in a class of W -frames iff it is valid in each W -model based
on a W -frame belonging to the class.

Lemma 4.6 2L(φ→ ψ) is valid in a W -model M iff JφK ⊆ JψK.

Proof. (12) and (13), together with the fact that JφKM ∈ S(↑), for all φ. 2

Proposition 4.7 Let M be any W-model and w a possible world. Then:

(i) (M , w) |= ¬φ iff (M , w) ̸|= φ

(ii) (M , w) |= φ→ ψ iff (M , w) ̸|= φ or (M , w) |= ψ.

Proof. The first claim follows easily from w = w∗. The left-to-right implica-
tion of the second claim follows from Rwww. The right-to-left implication is
established as follows. If w |= ψ, then w |= φ → ψ since Rwst implies w ≤ t.
If w ̸|= φ and Rwst with s |= φ, then we reason as follows. If t = 1, then t |= ψ
by Lemma 4.2. If t ̸= 1, then s ≤ w = w∗ by (11) and so w |= φ, which is a
contradiction. 2

Note that even though ¬ and → behave like Boolean negation and material
implication, respectively, when evaluated in possible worlds, their semantic
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interpretation is uniform across the model, namely, it is given by the semantic
operations ¬F and →F . The difference in their behaviour is given by the
specific properties of the states of evaluation. Hence, we do not assume that
the meaning of the symbols ¬ and → is context-dependent in our setting. 3

Definition 4.8 A C-variant of an L-frame condition Φ from Figure 1 is a
first-order formula that results from Φ by replacing each occurrence of s ∈ L
by ∃w(w ∈W & QLws), where w is a fresh variable.

CL frame conditions are the C-variants of the L frame conditions, for all L.
A CL-frame is anyW -frame that satisfies the CL frame conditions. A CL-model
is a model based on a CL-frame.

It follows from the definition that if L does not occur in frame condition Φ,
then Φ is identical to its C-variant.

We have already noted that each W -model can be seen as an L-model
where L = QL(W ). Conversely, each L-model can be transformed into an
“equivalent” W -model satisfying the “right” frame conditions. This fact will
be used in the completeness proof in the next section.

Proposition 4.9 For each L-model M for L with a set of states S there is a
W -model M ′ for CL with the set of states S′ ⊋ S such that, for all φ ∈ FmL:

(i) for all s ∈ S, (M , s) |= φ iff (M ′, s) |= φ;

(ii) if M ̸|= φ, then M ′ ̸|= 2Lφ.

Proof. See the appendix. 2

We note that, in comparison with [8,9], we do not consider logics arising by
using two specific frame conditions, namely, the weakening frame condition (K)
Rstu⇒ s ≤ u and (M3) s ∈ L & t ≤ u⇒ t ≤ s. The reason for avoiding these
is that (i) both are rather strong from the relevant logic perspective and (ii)
including them would force us to use a substantially more complicated version
of the construction used in the proof of Proposition 4.9.

5 Axiomatization

In this section we establish the main technical result of the paper, namely, a
modular axiomatization result for logics of the form CL.

Definition 5.1 Let L be the axiom system for one of the relevant modal logics
discussed in Section 2. We define CL as the axiom system comprising

(i) CPC with (MP) and (US) where substitutions are functions from Pr to
FmL;

(ii) for all axioms φ of L, an axiom 2Lφ, and for all inference rules
φ1 . . . φn

ψ

of L, the rule
2Lφ . . .2Lφn

2Lψ
;

3 We thank Peter Verdée and Pierre Saint-Germier for pushing us on this point.
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(iii) The Bridge Rule (BR)
2L(φ→ ψ)

φ→ ψ
.

Lemma 5.2 (Soundness) For all L and all φ, if φ ∈ Th(CL), then φ ∈ CL.

Proof. Induction on the length of proofs. The base case is established by
showing that all axioms of CL are valid in all CL-frames. (i) All axioms of
CPC are valid in all W -frames thanks to Prop. 4.7. (ii) The fact that 2Lφ
is valid in all CL-frames for each axiom φ of L can be shown using Lemma
4.6 and, where applicable, using the C-variants of the L frame conditions. In
most cases, this boils down to standard arguments [8,9,15]. 4 The one case
where the C-variant differs from the original frame condition is established as
follows. Assume that the C-variant of the frame condition (X), namely (C-X)
∃w(w ∈ W & QLws) ⇒ s∗ ≤ s, holds in a W -frame F . To show that
2L(p∨¬p) is valid in any M based on F , take w ∈W and assume that QLws.
By (C-X), s∗ ≤ s. Thus, if s ̸|= p, then s∗ ̸|= p and so s |= ¬p.

To establish the induction step, we have to show that each rule of inference
of CL preserves validity in CL-frames. (i) (MP) preserves validity in W -frames
thanks to Proposition 4.7; and (US) clearly preserves validity in all frames.

(ii) The fact that the 2L-version of (Adj) preserves validity in W -frames
is established using the satisfaction clause for 2L and ∧. The fact that 2L-
versions of (Aff), (Con), (2-Mon) and (2L-Mon) preserve validity inW -frames
is established easily using Lemma 4.6 and satisfaction clauses for the operators
involved. The fact that the 2L-version of (ER) preserves validity in W -frames
satisfying (C-ER) ∀s∃wt(w ∈ W & QLwt & Rsts) is established as follows.
Assume that 2Lφ is valid in some M based on F satisfying (C-ER). Take
some s and assume s |= φ → ψ; we have to show that s |= ψ. Using (C-ER),
there are w ∈ W and t ∈ S such that QLwt and Rsts. Hence, t |= φ and so
s |= ψ. The fact that the 2L-version of (Nec) preserves validity in W -frames
satisfying (C-Nec) s ∈ QL(W ) & Qst⇒ t ∈ QL(W ) is established as follows.
Assume that 2Lφ is valid in some M based on F satisfying (C-Nec). Take
some w ∈ W and s, t such that QLws and Qst. By (C-Nec), there is u ∈ W
such that QLut. It follows from this that t |= φ. Hence, w |= 2L2φ.

(iii) The Bridge Rule preserves validity in W -frames by Lemma 4.6 and
Proposition 4.7. 2

Lemma 5.3 For all L, ⊢L φ iff ⊢CL 2Lφ.

Proof. The fact that ⊢L φ implies ⊢CL 2Lφ can be established by induction
on the length of L-proofs. The base case holds since 2Lφ is an axiom of CL
for all axioms φ of L. The induction step is established using the fact that,

by definition of CL, if
φ1 . . . φn

ψ
is an instance of an inference rule of L, then

2Lφ . . .2Lφn

2Lψ
is an instance of an inference rule of CL.

4 We note in relation to axiom (2D) that Fuhrmann’s frame condition ∀s∃x(Qs∗x & Qsx∗)
corresponds to 2p → ¬2¬p, not to 2¬p → ¬2p, as stated in [8,9]. The frame condition
suffices to show that 2¬p→ ¬2p is valid only if it is assumed that x ≤ x∗∗.
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Conversely, if ̸⊢L φ, then M ̸|= φ for some L-model M . By Prop. 4.9 there
is a CL-model M ′ such that M ′ ̸|= 2Lφ and so, by Lemma 5.2, ̸⊢CL 2Lφ. 2

Lemma 5.3 clarifies the role of the operator 2L in our framework. We stress
that 2L is not an epistemic operator expressing attitudes of agents. 5 It follows
from Lemma 5.3 and the presence of the Bridge Rule that ⊢L φ → ψ entails
⊢CL φ→ ψ. In fact, we can prove a stronger claim.

Proposition 5.4 The following hold for all L such that the rule (Nec) is not
an inference rule of L:

(i) ⊢L φ entails ⊢CL φ;

(ii) ⊢CL 2Lφ entails ⊢CL φ.

Proof. (i) The claim is established by induction on the length of L-proofs. All
implicational axioms of L are provable in CL by Lemma 5.3 and the Bridge
Rule; the axiom (X) p ∨ ¬p is provable in any CL since the propositional frag-
ment of each L is included in CPC (this argument can be used also to show
that the “purely propositional” axioms of L are provable in CL). The cases
of the induction step corresponding to rules with implicational conclusions are
established using Lemma 5.3 and (BR) as before (the arguments do not need to
use the induction hypothesis). The case corresponding to (Adj) is established
using the fact that ⊢CPC φ→ (ψ → (φ∧ψ)) for all φ,ψ. We note that (Nec) is
problematic: φ is not necessarily an implication, so we can not use Lemma 5.3
and (BR); using the induction hypothesis gives us only ⊢CL φ and using only
Lemma 5.3 gives us ⊢CL 2Lφ, from which we can infer only that ⊢CL 2L2φ
using the 2L-version of (Nec). (ii) follows from (i) and Lemma 5.3. 2

Note that the converses of (i) and (ii) from the previous proposition do not
hold.

Proposition 5.5 (Relevant Reasoning) Each CL is closed under the Rele-
vant reasoning meta-rule (RR)

⊢L φ1 ∧ . . . ∧ φn → ψ

⊢CL 2φ1 ∧ . . . ∧2φn → 2ψ

for all n > 0.

Proof. If ⊢L

∧
i≤n φi → ψ, then ⊢L

∧
i≤n 2φi → 2ψ using monotonicity and

regularity of 2 in L, and so ⊢CL 2L

(∧
i≤n 2φi → 2ψ

)
by Lemma 5.3. But

then ⊢CL

∧
i≤n 2φi → 2ψ follows using the Bridge Rule. 2

Let (C)L ∈ {L,CL}. A (C)L-theory is any set Γ of formulas such that (i)
φ ∈ Γ and ψ ∈ Γ only if φ ∧ ψ ∈ Γ; and (ii) if φ ∈ Γ and ⊢(C)L φ → ψ, then
ψ ∈ Γ. A (C)L-theory Γ is prime iff (iii) φ∨ψ ∈ Γ only if φ ∈ Γ or ψ ∈ Γ; it is
proper iff Γ ̸= Fm.

5 Nevertheless, formulas of the form 2L(φ → ψ) can be seen as expressing a form of infor-
mation constraint; see Lemma 4.6.
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A pair of sets of formulas (Γ,∆) is (C)L-independent iff there are no finite
non-empty sets Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that

⊢(C)L

∧
Γ′ →

∨
∆′ .

Lemma 5.6 (Extension Lemma) For all L:

(i) If (Γ,∆) is L-independent, then there is a prime L-theory Σ such that
Γ ⊆ Σ and ∆ ∩ Σ = ∅.

(ii) If (Γ,∆) is CL-independent and both Γ and ∆ are non-empty, then there
is a non-empty proper prime CL-theory Σ such that Γ ⊆ Σ and ∆∩Σ = ∅.

Proof. (i) If Γ = ∅, then let Σ := ∅. If Γ ̸= ∅ and ∆ = ∅, then let Σ := Fm.
If both Γ and ∆ are non-empty, then use the standard “prime extension”
argument (cf. Theorem 5.17 in [14], for example).

(ii) This is established similarly as the first claim (note that Σ needs to be
proper if ∆ ̸= ∅). In fact, this is the well-known Lindenbaum Lemma. 2

A (C)L-theory Γ is maximal (C)L-consistent iff it is a proper (C)L-theory
such that each (C)L-theory ∆ ⊋ Γ is not proper. It is easily shown that a
CL-theory is non-empty, proper and prime iff it is maximal CL-consistent. It
is also easily shown that if Γ is a non-empty proper prime CL-theory, then
Th(CL) ⊆ Γ.

Definition 5.7 The canonical CL-frame is the structure

F CL = (SCL,≤CL,WCL, RCL, ∗CL, QCL, QCL
L )

where

• SCL is the set of all prime L-theories;

• ≤CL is set inclusion;

• WCL is the set of all non-empty proper prime CL-theories;

• RCLstu iff ∀φ,ψ, if φ→ ψ ∈ s and φ ∈ t, then ψ ∈ u;

• s∗
CL

= {φ | ¬φ ̸∈ s};
• QCLst iff, ∀φ, 2φ ∈ s only if φ ∈ t.

• QCL
L st iff, ∀φ, 2Lφ ∈ s only if φ ∈ t;

The canonical CL-model is MCL = (F CL, V CL) where V CL : Pr → 2S
CL

such
that V CL(p) = {s ∈ SCL | p ∈ s}.

Canonical models are well defined since, for each L, any prime CL-theory is
a prime L-theory (note that if ⊢L φ → ψ, then ⊢CL 2L(φ → ψ) by Lemma 5.3
and then ⊢CL φ→ ψ using the Bridge Rule).

Note that MCL is defined almost exactly as the canonical L-model ML

(cf. [8,9]); the only difference is that in ML we have LL = {s | Th(L) ⊆ s}
instead of WCL. It follows that MCL automatically satisfies all the L-frame
conditions Φ that are identical to their C-variant and are satisfied by ML.
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Lemma 5.8 For all L, the structure MCL is a CL-model.

Proof. First we have to show that MCL is a W -model, that is, (i) relations
RCL, ∗CL, QCL and QCL

L satisfy the required tonicity conditions, (ii) MCL is
bounded, (iii) W is a set of possible worlds and (iv) conditions (12)-(13) are
satisfied. Then we have to show that (v)MCL satisfies the CL frame conditions.
In the remainder of the proof, we will mostly omit the superscript CL.

Claim (i) follows easily from the definitions. Claim (ii) is established as
follows. Let 0 := ∅ and 1 := Fm; both are prime L-theories. Then 0 is the
least element (with respect to set inclusion) of S and 1 is the greatest element.
Next, 1∗ = {φ | ¬φ ̸∈ 1} = ∅ = 0 and 0∗ = {φ | ¬φ ̸∈ 0} = Fm = 1. Next,
clearly Q(L)00 for all s. Next, if Q(L)1s and s ̸= 1, then there is φ /∈ s and so
2(L)φ /∈ 1, which is a contradiction; hence, s = 1. Next, R010 by the definition
of R. Finally, if R1st, s ̸= 0 and t ̸= 1, then there is φ ∈ s and ψ /∈ t such that
φ→ ψ ∈ 1, which contradicts the definition of R.

(iii) We know that non-empty proper prime CL-theories are maximal CL-
consistent theories, i.e. φ ∈ s iff ¬φ /∈ s. Hence w∗ = {φ | ¬φ /∈ w} = w. The
fact that Rwww follows from the fact that ⊢CPC (φ ∧ (φ → ψ)) → ψ. Now
assume that Rwst and s ̸= 0; we have to prove that w ⊆ t. Thus assume φ ∈ w
and ψ ∈ s. Since ⊢CPC φ → (ψ → φ), we have ψ → φ ∈ w, and so φ ∈ w by
the definition of R. Since φ is arbitrary, we established w ⊆ t. Finally, assume
Rwst and t ̸= 1; we have to prove that s ⊆ w∗. Hence, assume that ¬φ ∈ w,
ψ /∈ t and, towards a contradiction, that φ ∈ s. Since ⊢CPC ¬φ→ (φ→ ψ), we
have φ → ψ ∈ w and so ψ ∈ t by the definition of R. This is a contradiction;
hence, if φ ∈ s, then ¬φ ̸∈ w, meaning in general that s ⊆ w∗. 6

(iv) Note that (12) follows from the fact that 2L(φ→ φ) is a theorem of CL.
Now we prove that the canonical frame satisfies (13). Take any s ∈ S; we will
prove that there are w ∈W and t ∈ S such that QLwt and Rtss. If s = 1, then
QLws for all w ∈ W and Rsss and so we are done. If s = 0, then QLw1 for
all w ∈ W and R1ss and we are done. Finally, assume that s ̸= 1 and s ̸= 0.
First, it is easily shown that the pair

(
Th(L), {φ → ψ | φ ∈ s & ψ /∈ s}

)
is L-independent and so, by the Extension Lemma 5.6, there is a non-empty
prime L-theory t such that Rtss. If t = 1, then also QLwt for all w ∈ W and
we are done. If t ̸= 1, then we can show that the pair(

Th(CL), {2Lφ | φ /∈ t}
)

is CL-independent. If it were not, then

• ⊢CL

∨
i<n 2Lφi for some n > 0, and so

• ⊢CL 2L

∨
i<n φi by the properties of → in CL (namely, ⊢CL 2Lφ∨2Lψ →

2L(φ ∨ ψ)), hence
• ⊢L

∨
i<n φi by Lemma 5.3, so

6 Note that Rwst⇒ w ⊆ t does not hold since Rw0t for all w and t. Similarly, Rwst⇒ s ⊆
w∗ does not hold since Rws1 for all w and s.
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•
∨

i<n φi ∈ t by the construction of u, and so

• φi ∈ t for some i < n since u is prime.

This is a contradiction, so the pair is CL-independent. Note also that both sets
in the pair are non-empty (since, recall, t ̸= 1). It follows using the Extension
Lemma 5.6 that there is a non-empty maximal consistent CL-theory w such
that QLwt.

(v) Assume first that Φ is a L-frame condition that is identical to its C-
variant. As noted above, F CL has Φ iff F L has Φ. However, the fact that that
F L has Φ follows from the well-know result that all L considered in this paper
are canonical [8,9,15]. We will omit the details.

Assume now that Φ is a L-frame condition such that the C-variant Φ′ is
not identical to Φ. We reason by cases. Take (C-X) s ∈ QL(W ) ⇒ s∗ ≤ s. If
L contains axiom p ∨ ¬p, then CL contains axiom 2L(p ∨ ¬p). Hence, if QLws
for some w ∈ W , then φ ∨ ¬φ ∈ s for all φ. Now assume that ψ ∈ s∗. Hence,
¬ψ ̸∈ s and so ψ ∈ s. In general, s∗ ⊆ s as we wanted to show.

Now take (C-ER), ∀s∃w, t(w ∈ W & QLwt & Rsts). Fix any s ∈ S. We
first construct a prime L-theory t such that Rsts. In order to do this, we show
that the pair (

Th(L), {φ | ∃ψ(φ→ ψ ∈ s & ψ ̸∈ s)}
)

is L-independent if (ER) is an admissible rule of L. If the pair were not L-
independent, then

• ⊢L

∨
i<n φi for some n > 0, which entails that

• ⊢L (
∨

i<n φi →
∨

i<n ψi) →
∨

i<n ψi using (ER) where, for each i < n, ψi

is a formula such that φi → ψi ∈ s and ψi ̸∈ s; but this entails that

•
∨

i<n ψi ∈ s since
∧

i<n(φi → ψi) ∈ s and so (
∨

i<n φi →
∨

i<n ψi) ∈ s.
But this means that

• ψi ∈ s for some i < n.

This is a contradiction and so the pair is L-independent. Consequently, there is
a prime L-theory t such that Th(L) ⊆ t and Rsts, using the Extension Lemma
5.6. As a second step of the argument, we show that there is a non-empty
proper prime CL-theory w such that QLwt. If t = 1, then QLwt for all w ∈W
and we are done. If t ̸= 1, then we can show that the pair(

Th(CL), {2Lφ | φ /∈ t}
)

is CL-independent. (The argument is similar to the one establishing (13).) Note
also that both sets in the pair are non-empty (since it is assumed that t ̸= 1)
and so, using the Extension Lemma 5.6, there is a non-empty proper prime
CL-theory w such that QLwt. (C-Nec) is dealt with in a similar fashion.

2

Lemma 5.9 (Truth Lemma) For all L and all φ, (MCL, s) |= φ iff φ ∈ s.

Proof. Induction on the complexity of φ. The base holds by definition and
the cases of the induction step where the main connective is propositional
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are established as usual in relevant logic [14,15]. The cases where the main
connective is 2 or 2L are established as usual in relevant modal logic [8,9]
using monotonicity and regularity of the box operators (in L since the claim of
the lemma concerns an arbitrary prime L-theory). 2

Theorem 5.10 For all L, Th(CL) = CL.

Proof. Soundness is established as Lemma 5.2. Completeness follows from
Lemmas 5.6, 5.8 and 5.9. 2

6 Conclusion

In this paper we studied a framework for epistemic logic that avoids the log-
ical omniscience problem by introducing non-standard states, but where the
epistemic attitudes of agents are regimented by a relevant logic. Unlike the
classic non-standard-states approaches of Levesque [11] and Lakemeyer [10],
the relevant logic regimenting attitudes is not the ∧,∨,¬-fragment of E, but
any relevant modal logic from a wide variety of logics previously studied by
Fuhrmann [8,9], for example. Hence, our approach provides a more realistic
relevant formalization of attitudes towards implicational statements, which is
an improvement with respect to the approach of Fagin et al. [7] as well. In
comparison to earlier work on relevant epistemic logic [3,4,16,17], our frame-
work combines relevant modal logic with classical propositional logic and it uses
natural Hilbert-style proof theory without unnecessary linguistic assumptions.
The main technical result of the paper is a modular completeness theorem,
parametrized by the relevant modal logic governing the agents’ reasoning.

There is a number of issues to pursue in the future. Firstly, it would be
interesting to consider a version of our framework without the assumption of
conjunctive regularity 2φ ∧ 2ψ → 2(φ ∧ ψ). Such a framework needs to be
based on neighborhood semantics. Secondly, it would be interesting to look
at extensions of our logics with operators representing group epistemic notions
such as common and distributed belief, or dynamic phenomena such as public
announcements. A combination of our framework with the approach of [12] is
an option to consider. Thirdly, it is tempting to consider a first-order version
of the present framework.
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Argumentation. Proc. of the 4th International Conference on Logic and Argumentation
(CLAR 2021), Lecture Notes in Computer Science 13040, pp. 342–361.

[13] Rantala, V., Impossible worlds semantics and logical omniscience, Acta Philosophica
Fennica 35 (1982), pp. 106–115.

[14] Restall, G., “An Introduction to Substrucutral Logics,” Routledge, London, 2000.
[15] Routley, R., V. Plumwood, R. K. Meyer and R. T. Brady, 1, Ridgeview, 1982.
[16] Sedlár, I., Substructural epistemic logics, Journal of Applied Non-Classical Logics 25

(2015), pp. 256–285.
[17] Sedlár, I., Epistemic extensions of modal distributive substructural logics, Journal of

Logic and Computation 26 (2016), pp. 1787–1813.
[18] Seki, T., General frames for relevant modal logics, Notre Dame Journal of Formal Logic

44 (2003), pp. 93–109.
[19] Seki, T., A sahlqvist theorem for relevant modal logics, Studia Logica 73 (2003), pp. 383–

411.
[20] Sequoiah-Grayson, S., A logic of affordances, in: M. Blicha and I. Sedlár, editors, The

Logica Yearbook 2020, 2021, pp. 219–236.
[21] Wansing, H., A general possible worlds framework for reasoning about knowledge and

belief, Studia Logica 49 (1990), pp. 523–539.

A Technical appendix

This technical appendix contains the proof of Proposition 4.9.

Proposition 4.9. For each L-model M for L with a set of states S there is a
W -model M ′ for CL with the set of states S′ ⊋ S such that, for all φ ∈ FmL:

(i) for all s ∈ S, (M , s) |= φ iff (M ′, s) |= φ;

(ii) if M ̸|= φ, then M ′ ̸|= 2Lφ.

Proof. Let M = (S,≤, L,R, ∗, Q,QL, V ) be a L-model. The structure M+ =
(S+,≤+,W+, R+, ∗+, Q+, Q+

L , V
+) is defined as follows:

S+ = S ∪ {w, 0, 1}
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≤+ = ≤ ∪ {(w,w)} ∪ {(s, 1) | s ∈ S+} ∪ {(0, s) | s ∈ S+}
W = {w}
R+ = R ∪ {(w,w,w)} ∪ {(0, s, t), (s, 0, t), (s, t, 1) | s, t ∈ S+}
∗+ = ∗ ∪ {(w,w)} ∪ {(0, 1), (1, 0)}
Q+ = Q ∪ {(w,w)} ∪ {(s, 1) | s ∈ S+} ∪ {(0, s) | s ∈ S+}
Q+

L = QL ∪ {(w,w)} ∪ {(w, s) | s ∈ L} ∪ {(s, 1) | s ∈ S+} ∪ {(0, s) | s ∈ S+}
V +(p) = V (p) ∪ {1} for all p

We prove first that for all M , the structure M+ is a W -model (Claim A.1),
then we prove that for all s ∈ S and all φ ∈ FmL, (M , s) |= φ iff (M+, s) |= ψ
(Claim A.2). It follows from the construction of M+ and Claim A.2 that if
M ̸|= φ, then M+ ̸|= 2Lφ (since (M , s) ̸|= φ for some s ∈ L implies that
(M+, w) ̸|= 2Lφ). Finally, we prove that if M is an L-model, then M+ is a
CL-model (Claim A.3).

Claim A.1 For all M , the structure M+ is a W -model.

Firstly, we have to show that M+ is a model, i.e. ≤+ is a partial order and
R+, ∗+, Q+ and Q+

L satisfy the required tonicity conditions. A simple analysis
of cases shows that ≤+ is a partial order. To show that R+ ∈ S+(↓↓↑), assume
for instance that R+stu and v ≤ s. If {s, t, u} ⊆ S, then either v ∈ S or
v = 0; in both cases R+vtu. If s ̸∈ S and s = 0, then v = 0 and we are done
since R+0tu for all t, u. If s = w, then either s = t = u and so either v = w
or v = 0 and we are done, or t = 0 and we are done, or u = 1 and we are
done. Finally, if s = 1, then either t = 0 or u = 1, but then we are done in
both cases. The cases t ̸∈ S and u /∈ S are dealt with similarly. The fact that
the other relations satisfy the required tonicity conditions is established by a
similar tedious examination of cases.

Secondly, we have to show that M+ is a bounded model and that w is a
possible world. This is easily checked. Thirdly, we have to show that the frame
conditions (12) and (13) are satisfied. Note that Q+

Lwu iff u ∈ L ∪ {w, 1}. We
deal with (12) first. If u ∈ L and R+ust, then either s, t ∈ S and we are done
thanks to (1), or s = 0 or t = 1, and then we are done thanks to the properties
of ≤+. If u = w, then by (10) either s = 0 in which case we are done or w ≤+ t.
If w = t, then either s = w or s = 0 and we are done; if t = 1, then we are
done no matter what s is. Now we check (13). If s ∈ S, then there is u ∈ L
such that Russ by (11); hence R+uss, but we also know that Q+

Lwu and so we
are done. If s /∈ S, then R+wss by easy inspection of cases, but we also know
that Q+

Lww, and so we are done. This concludes the proof of Claim A.1.

Claim A.2 For all s ∈ S and all φ ∈ FmL, (M , s) |= φ iff (M+, s) |= φ.

The proof is by induction on the complexity of φ. The base case and the induc-
tion steps for ∧,∨ are trivial. (M , s) |= ¬φ iff (M , s∗) ̸|= φ iff (M+, s∗) ̸|= φ

(by IH) iff (M+, s∗
+

) ̸|= φ (by the fact, easily confirmed by inspection of the

definition, that if s ∈ S, then s∗ = s∗
+

) iff (M+, s) |= ¬φ. If (M , s) ̸|= φ→ ψ,
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then there are t, u ∈ S such that Rstu and (M+, t) |= φ and (M+, u) ̸|= ψ by
IH. The rest follows from R ⊆ R+. Conversely, if (M+, s) ̸|= φ→ ψ, then there
are t, u ∈ S+ such that R+stu, (M+, t) |= φ and (M+, u) ̸|= ψ. By inspection
of the definition of R+, either t, u ∈ S, or t = 0, or u = 1. Since we already
know that M+ is a bounded model, the latter two options are ruled out by
Lemma 4.2. Hence, t, u ∈ S but in this case Rstu and so (M , s) ̸|= φ → ψ by
IH. If (M , s) ̸|= 2Lφ, then (M+, s) ̸|= 2Lφ by QL ⊆ Q+

L and IH. Conversely,
if (M+, s) ̸|= 2Lφ, then there is t such that Q+

Lst and (M+, t) ̸|= φ. By
inspection of the definition of Q+

L we see that either t = 1, which contradicts
Lemma 4.2, or t ∈ S, in which case QLst and so we are done by IH. The case
of 2 is analogous. This concludes the proof of Claim A.2.

Claim A.3 if M is an L-model, then M+ is a CL-model.

The proofs for (B), (CB), (W), (C), (WB) and (M) follow the same strategy,
hence we show the details for (B) only. Assume that R+stx and R+xuv; we
have to prove that there is y such thatR+tuy andR+syv. Let T = {s, t, u, v, x}.
First, if T ⊆ S, then Rstx & Rxuv and so we are done, since (B) holds in M
and R ⊆ R+. Second, if 1 ∈ T or 0 ∈ T , then we distinguish three cases:

(i) If 0 ∈ {s, t, u} or v = 1, then we are done. (For instance, if s = 0, then
R+s1v and R+tu1; the other cases are similar.)

(ii) If x = 0, then by (7) either s = 0 or t = 0 and we are in (i). If x = 1, then
by (7) either u = 0 or v = 1; in both cases we are in (i). We will use (7)
without explicit reference below.

(iii) If s = 1, then t = 0 (i) or x = 1 (ii). If t = 1, then s = 0 (i) or x = 1 (ii).
If u = 1, then x = 0 or v = 1 (ii). If v = 0, then x = 0 (ii) or u = 0 (i).

Third, if T ⊆ S ∪ {w}, then we are either in case (i) or T = {w}. In the
latter case, set y = w and we are done. These three groups of cases exhaust all
possibilities and so M+ has to satisfy (B) if M does.

(DN) and (Rd) are preserved since they hold for s ∈ {w, 0, 1} irrespectively
of the properties of M . (Cp) Assume that R+stu. If T = {s, t, u} ⊆ S, then
M+ satisfies the fame condition if M does. If s = 0 or t = 0 or u = 1 then
R+su∗

+

t∗
+

holds by definition of ∗+ and R+. The cases where s = 1 or t = 1
or u = 0 reduce to the previous cases. If T ⊆ S ∪ {w}, then either T ⊆ S or
T = {w}; we are done in both cases. To prove that if M satisfies (X), then
M+ satisfies (C-X) s ∈ QL(W ) ⇒ s∗ ≤ s, assume s ∈ Q+

L(w), i.e. s = w ,
s = 1 or s ∈ L. If s = 1, 0 ≤+ 1; if s = w w ≤+ w; and if s ∈ L then s∗ ≤ s by
assumption and so s∗

+ ≤+ s.
To show that M+ satisfies (C-ER) ∀s∃x(x ∈ Q+

L(w) & R+sxs) if M
satisfies (ER), we reason as follows. If s ∈ {w, 0, 1}, then R+sws, and we know
that Q+

Lww. If s ∈ S, then by (ER) there is x ∈ L such that Rsxs, and so
Q+

Lwx and R+sxs.
To show that M+ satisfies (C-Nec) ∀s∀x(Q+

Lwx & Q+xs) ⇒ Q+
Lws if M

satisfies (Nec), we reason as follows. Assume that Q+
Lwx & Q+xs. WE have

to prove Q+
Lws. If T = {x, s} ⊆ S, then x ∈ L and Qxs. Using (Nec), we
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obtain s ∈ L, which entails that Q+
Lws. If 0 ∈ T or 1 ∈ T , then we reason as

follows. If x = 0, then Q+wx entails that w = 0, which is a contradiction. If
x = 1, then Q+xs entails s = 1 and then Q+

Lws by definition of Q+
L , and we

are done. If s = 0, then Q+xs entails x = 0 which we already know to lead to
a contradiction. The only remaining possibility is that T ⊆ S ∪ {w}. We have
already checked the case T ⊆ S. If, on the other hand, w ∈ T , then we reason
as follows. If x = w, then Q+xs entails that either s = w or s = 1. In both
cases Q+

Lws. If s = w, then Q+
Lws as before. This exhausts all possibilities

and so we are done.
To show that M+ satisfies (2K) if M does, assume that R+stx and Q+xu;

we have to prove that there are y, z such that Q+ty, Q+sz and R+zyu. First,
if T = {s, t, u, x} ⊆ S, then Rstx & Qxu, and so we are done using the
assumption that M satisfies (2K) and R ⊆ R+, Q ⊆ Q+. Second, if 0 ∈ T or
1 ∈ T , then we reason as follows. (i) If s = 0 or t = 0 or u = 1, then we can
easily find y, z ∈ {0, 1} such that Q+ty, Q+sz and R+zyu; (ii) if x = 0, then
s = 0 or t = 0, which reduce to case (i), and if x = 1, then u = 1, which also
reduces to case (i); (iii) if s = 1, then t = 0 (i) or x = 1 (ii); if t = 1, then s = 0
(i) or x = 1 (ii); and if u = 0, then x = 0 (ii). Third, if T ⊆ S ∪ {w}, then
either T ⊆ S, which is the first case, or w ∈ T ; but then it can be shown that
T = {w} from which it follows easily that Q+tw, Q+sw and R+wwu. This
exhausts all possibilities and so we are done.

If M satisfies (2T), then so does M+ since Q+ss if s ∈ {w, 0, 1}. (2D)
is dealt with similarly; if s ∈ {w, 0, 1} then a suitable x ∈ {w, 0, 1} is easily
found. To show that (24) is satisfied in M+ if it is satisfied in M , we reason
as follows. Assume that Q+st and Q+tu; we have to show that Q+su. First, if
T = {s, t, u} ⊆ S, then Q+su follows from the assumption that (24) holds in
M and Q ⊆ Q+. Second, if 0 ∈ T or 1 ∈ T , then we reason by cases as follows:
(i) if s = 0 or u = 1, then trivially Q+su. (ii) If s = 1, then t = 1 and so u = 1,
which brings us back to case (i); if u = 0, then t = 0 and so s = 0, which brings
us back to (i). Third, if T ⊆ S ∪ {w}, then either T ⊆ S, in which case we are
done, or T = {w}, in which case of course Q+su. This exhausts all possibilities
and so we are done. Preservation of (25) is established in a similar way. This
concludes the proof of Claim A.3 and Proposition 4.9. 2


	Introduction
	Relevant modal logics
	Classical epistemic logic based on relevant modal logic
	Possible worlds in relevant models
	Axiomatization
	Conclusion
	References
	Technical appendix

