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Abstract

In this paper we present an analytic proof system for multi-modal logic with common-
knowledge over S5 (called S5-CKL). The system is an annotated cyclic calculus ma-
nipulating two-sided Gentzen sequents and extending a known system for multi-modal
S5. First a direct argument is used to show that the system is sound. Using a canon-
ical model construction, we then show that the system is analytically complete. In
particular, the use of the cut-rule is restricted to analytic cuts. Exploiting this an-
alyticity, we then reduce the provability problem of a given sequent to the problem
of solving a certain parity game. As a consequence we obtain an optimal decision
procedure for proof search and thereby for the validity problem of S5-CKL.

Keywords: Common knowledge, S5 multi-modal logic, analytic proof systems,
cyclic proofs, proof search games.

1 Introduction

Common knowledge is an important notion of group knowledge with applica-
tions ranging from philosophy to computer science. A proposition p is common
knowledge in a group of agents if all agents know that p, all agents know that
all agents know that p, and so on. In a formal setting, common knowledge
is often studied using a logic called common knowledge logic (CKL, for short).
The logic CKL is an extension of multi-agent modal logic by a fixed point op-
erator □∗ meant to express common knowledge. As such it is a fragment of the
alternation-free modal µ-calculus [4]. CKL was introduced in 1990 by Halpern
and Moses [12]. For an introduction to logics of common knowledge in general
we refer the reader to [22].
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Most commonly CKL is axiomatised using a Hilbert-style system for multi-
modal logic, extended by fixed point axioms expressing that □∗ is a greatest
fixed point (see for example [22]). However, axiomatisiations of this kind suffer
from the usual drawback of Hilbert-style systems: the presence of the modus
ponens rule frustrates proof-theoretic analysis.

The common solution to this problem is to construct a sequent system with
restricted applications of the cut rule, but this has been proven difficult for
the logic CKL. When the base modal logic is required to satisfy certain frame
conditions (motivated for example by the study of distributed systems), the
difficulty often further increases. It is for example an open question whether
there exists a finite and analytic sequent calculus for the logic CKL interpreted
over S5-frames (this logic will be called S5-CKL). As usual, we call a calculus
analytic whenever every valid sequent admits a finite proof containing only
formulas in some sense relevant to the endsequent. In the context of modal
fixed point logics one usually counts as relevant the formulas in the endsequent’s
Fischer-Ladner closure (originally defined in [10]). Notable sequent calculi for
S5-CKL have been constructed for example by Alberucci & Jäger [5] and Hill &
Poggiolesi [14], but although both are finite, neither are analytic. A description
of these systems, as well as a comparison between them and the present paper,
is postponed to Section 7 below.

More related work exists in the area of tableau-based decision procedures.
In [3], Ajspur et al. give such a procedure for S5-CKL and several of its exten-
sions. While their procedure is analytic, the fact that it requires multiple passes
makes it unclear how one could extract an analogous sequent-style proof sys-
tem. A single pass tableau-based decision procedure for CKL is given by Abate
et. al in [1], but only for the interpretation of CKL over the class of all frames.

In the first part of this paper we give a positive answer to the question of
whether S5-CKL admits a finite and analytic sequent calculus. To that end we
present the cyclic sequent calculus sCKLf . Instead of an induction rule as in [5]
and [14], sCKLf uses cycles to characterise □∗ as a greatest fixed point. These
cycles are handled by a focus mechanism, a technique originally proposed by
Lange & Stirling in [16]. Roughly, a cyclic branch of some proof is deemed
valid whenever some form of progress is made. The soundness argument then
exploits the fact that this form of progress cannot be made infinitely often. In
our case we show the soundness of sCKLf by a minimal countermodel approach
that is sometimes found in the literature (see e.g. [21]). For completeness we
use a canonical model construction that is similar to the construction in [20].
Importantly, in the completeness proof the cut rule is only applied to formulas
in the Fischer-Ladner closure of the endsequent. As every other rule of sCKLf
enjoys the subformula property (or its analogue for the Fischer-Ladner closure),
we obtain that the calculus is analytic. The approach of using cyclic proof
systems for common knowledge logic has also been been taken by Ricardo
Wehbe in his PhD Thesis [23], but, like Abate et. al, he does not consider the
restriction to S5-frames.

In the second part of the paper we show that sCKLf is suitable for proof
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search. To that end we translate the calculus into a parity game which is played
by a player called Prover, who tries to show that a given sequent is derivable
in sCKLf , and a player called Refuter who tries to show the opposite. We then
show that a sequent is derivable in sCKLf if and only if Prover has a memoryless
winning strategy in the corresponding game. Next, we use a result proven by
Calude et al. in [8] to establish the existence of an efficient algorithm which
computes the winner of each game. Finally, by combining these two results
we establish the existence of an algorithm deciding whether a given sequent is
derivable in sCKLf , which runs in optimal time.

The paper is structured as follows: in Section 2 we introduce the basic
definitions and notations for S5-CKL, including its syntax and semantics. In
Section 3 we define the sequent calculus sCKLf . Sections 4 and 5 are devoted
to prove soundness and completeness, respectively. In Section 6 we define the
aforementioned proof search game and establish that there exists and optimal
proof search algorithm. Finally, in Section 7 we compare our work to related
work of different authors and sketch some ideas for further research.

2 Basic definitions

The language of CKL consists of a finite set of atomic agents A = {1, . . . n} and
a countably infinite set of atomic propositions P.

Definition 2.1 Formulas φ,ψ of CKL are inductively defined as follows:

φ,ψ := p | ¬φ | φ ∧ ψ | □iφ | □∗φ

where p ∈ P and i ∈ A. The set of CKL-formulas is denoted by Fm.

We will use the abbreviation □φ :≡
∧
i∈A □iφ. Furthermore, we define

□0φ := φ and □n+1φ := □□nφ. The expression □ni φ is defined analogously.

Definition 2.2 An epistemic Kripke model is a tuple S = (S, {Ri | i ∈ A}, V }
where

• S is a non-empty set;

• Ri is an equivalence relation on S for each i ∈ A;

• V is a function S → P(P ).

Elements in S are called states. The binary relations Ri are called transition
relations and V is called a valuation. Instead of (s, t) ∈ Ri we usually write
sRit.

Formulas of CKL are evaluated in epistemic Kripke models as follows:

Definition 2.3 Let S = (S, {Ri | i ∈ A}, V } be an epistemic Kripke model
and s ∈ S be a state. The relation ⊩ ⊆ S × Fm is inductively defined by:

S, s ⊩ p ⇔ p ∈ V (s)
S, s ⊩ ¬φ ⇔ S, s ̸⊩ φ
S, s ⊩ φ ∧ ψ ⇔ S, s ⊩ φ and S, s ⊩ ψ
S, s ⊩ □iφ ⇔ for all t ∈ S with sRit, it holds that S, t ⊩ φ
S, s ⊩ □∗φ ⇔ for all t ∈ S with sR∗t, it holds that S, t ⊩ φ
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where R∗ is the transitive closure of the relation
⋃
i∈ARi.

If S, s ⊩ φ, then we say that φ is true or holds at state s of the epistemic
Kripke model S. A formula φ is satisfiable if there exists an epistemic Kripke
model S and a state s such that S, s ⊩ φ, and unsatisfiable if not satisfiable.
A formula φ is valid if S, s ⊩ φ for every epistemic Kripke model S and every
state s in S, and invalid if not valid.

Definition 2.4 The Fischer-Ladner closure of a formula φ is the smallest set
of formulas Cl(φ) which contains φ and is closed under the following conditions:

• ¬ψ ∈ Cl(φ) implies ψ ∈ Cl(φ);

• ψ1 ∧ ψ2 ∈ Cl(φ) implies ψk ∈ Cl(φ) for each k ∈ {1, 2};
• □iψ ∈ Cl(φ) implies ψ ∈ Cl(φ);

• □∗ψ ∈ Cl(φ) implies ψ ∈ Cl(φ) and {□i□∗ψ | i ∈ A} ⊆ Cl(φ).

We will usually denote Cl(φ) simply as the closure of φ. The definition of
the closure of a formula is extended to the definition of the closure of a set of
formulas A as follows:

Cl(A) :=
⋃

{Cl(φ) | φ ∈ A}.

A set A of formulas is called closed whenever Cl(A) = A.

3 An annotated sequent system

An annotated formula is a pair (φ, a), usually written φa, where φ is a formula
and a is either u (designating that the formula is unfocussed) or f (designating
that the formula is in focus). A sequent is a pair (Γ,∆), usually written Γ ⇒ ∆,
where Γ and ∆ are finite sets of annotated formulas. In later proofs we will
often denote sequents using the Greek letter σ, possibly with subscript.

We will only consider sequents whose formulas are annotated in a very
specific way. Namely, if Γ ⇒ ∆ is a sequent, we require that every formula in Γ
is unfocussed, and at most one formula in ∆ is in focus. Moreover, if ∆ contains
a formula that is in focus, then it must be of the form □∗φ or of the form □i□∗φ.
To emphasise that we are only considering sequents of this restricted form, we
will also refer to them as CKL-sequents.

For Γ a finite set of annotated formulas, we define the following abbrevia-
tions:

Γu := {φu | φa ∈ Γ}, □iΓ := {□iφa | φa ∈ Γ}
Γ− := {φ | φa ∈ Γ}, □

−1
i Γ := {φa | □iφa ∈ Γ}

The following definition presents our proof system. Note that basic modal part,
i.e. the part without the rules □∗L, □∗R, U, F, is based on a standard system
for the modal logic S5. This system was originally presented by Ohnishi and
Matsumoto in 1957 [19].

Definition 3.1 The sequent calculus sCKLf manipulates CKL-sequents by the
following axioms and rules.
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id
φu ⇒ φa

Γ ⇒ ∆wL
Γ, φu ⇒ ∆

Γ ⇒ ∆wR
Γ ⇒ φa,∆

Γ ⇒ φu,∆¬L
Γ,¬φu ⇒ ∆

Γ, φu ⇒ ∆¬R
Γ ⇒ ¬φu,∆

Γ, φu, ψu ⇒ ∆∧L
Γ, (φ ∧ ψ)u ⇒ ∆

Γ ⇒ φu,∆ Γ ⇒ ψu,∆∧R
Γ ⇒ (φ ∧ ψ)u,∆

Γ, φu, {□i□∗φu}ni=1 ⇒ ∆
□∗L

Γ,□∗φu ⇒ ∆

Γ ⇒ φu,∆ {Γ ⇒ □i□∗φa,∆}ni=1
□∗R

Γ ⇒ □∗φa,∆

Γ, φu ⇒ ∆
□T

Γ,□iφ
u ⇒ ∆

□iΓ ⇒ φa,□i∆
□S5

□iΓ ⇒ □iφ
a,□i∆

Γ ⇒ ∆u

U
Γ ⇒ ∆

Γ ⇒ φf ,∆u

F
Γ ⇒ φu,∆u

Γ ⇒ φu,∆ Γ, φu ⇒ ∆
cut

Γ ⇒ ∆

As usual, we will call the main formula introduced in the conclusion of a
rule the principal formula of that rule. In the case of the rule □S5, this is the
formula □iφ

a. The rules U and cut have no principal formula.

Remark 3.2 To readers familiar with cyclic proof systems for modal fixed
point logics, we offer the following motivation for the focus annotations. The
purpose is to capture traces, in the sense of [18]. Because we are working
in a very simple fragment of the modal µ-calculus, our ν-traces are relatively
elementary. In particular, since we are in the alternation-free fragment, our
ν-traces do not pass through µ-unfoldings. Moreover, our ν-traces do not
pass trough disjunctions, or, in terms of two-sided sequents, they do not pass
through conjunctions on the left-hand side of the sequent. It is because of
this latter property, characteristic of the completely additive fragment of the
µ-calculus (see [9]), that the traces do not split, whence it suffices to have at
most one formula in focus.

The fact that our sequent calculus only manipulates CKL-sequents imposes
restrictions on how its rules can be applied. This is illustrated by the following
lemma.

Lemma 3.3 In any application of the □∗R-rule such that the principal formula
is in focus, the leftmost premiss has no formula in focus.

Proof. Suppose that in the rule application

Γ ⇒ φu,∆ {Γ ⇒ □i□∗φf ,∆}ni=1
□∗R

Γ ⇒ □∗φf ,∆
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the leftmost premiss has a formula in focus. Then this formula must belong
to ∆. Specifically, for the conclusion is a CKL-sequent, we have □∗φf ∈ ∆.
However, that means that every other premiss has two formulas in focus, con-
tradicting the fact that they must also be CKL-sequents. 2

A derivation in sCKLf is a finite tree whose nodes are labelled by CKL-
sequents and which is generated by the rules of the calculus sCKLf . Given
a derivation π in sCKLf , an upward path ρ in π is a finite sequence of nodes
ρ = ρ(0), ρ(1), ..., ρ(n) of π such that for each 0 ≤ i < n the node ρ(i+ 1) is a
child of the node ρ(i). Observe that we do not require upward paths to start
in the root of the derivation.

Definition 3.4 An upward path ρ in an sCKLf -derivation is said to be suc-
cessful if the following holds:

(i) Every sequent Γ ⇒ ∆ on the path ρ has a formula in focus, i.e. ∆ contains
an annotated formula of the form φf .

(ii) The path ρ passes through at least one application of □∗R, where the prin-
cipal formula is in focus.

Observe that on a successful path there are no applications of the focus
rules U and F. Given a derivation π in sCKLf and a leaf l in π we call l an
axiomatic leaf if l is the conclusion of an application of the rule id. If l is not
axiomatic, we call it a non-axiomatic leaf. A repetition in π is a pair of nodes
⟨u, v⟩ such that u is a proper ancestor of v and both u and v are labelled by
the same sequent. A repetition ⟨u, v⟩ is called successful if the path from u to
v is successful.

Definition 3.5 A derivation π in sCKLf is a proof if every leaf l of π is either
axiomatic or there exists a node c(l) such that ⟨c(l), l⟩ is a successful repetition.

If π is a proof with root sequent Γ ⇒ ∆, then π is said to be an sCKLf -proof
of Γ ⇒ ∆ and Γ ⇒ ∆ is called sCKLf -provable.

4 Soundness

A sequent Γ ⇒ ∆ is said to be satisfied at a state s of an epistemic Kripke
model S - denoted by S, s ⊩ Γ ⇒ ∆ - if it holds that either S, s ̸⊩ φ for some
φu ∈ Γ, or S, s ⊩ ψ for some ψa ∈ ∆. A sequent is called valid if it is satisfied at
every state of every epistemic Kripke model. Note that the focus annotations
play no meaningful role in the above definitions.

The proof of the following lemma, which states that every rule of sCKLf is
individually sound, is standard and therefore omitted.

Lemma 4.1 Let
σ1 · · · σnr σ

be a rule application of sCKLf . If σ is invalid, then so is one of the premisses.

In order to prove that the system sCKLf is sound as a whole, we will first
prove a strengthening of Lemma 4.1 which takes the annotations into account.
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Let σ be a sequent that has a formula in focus, i.e. for j ∈ {0, 1} the right-
hand side ∆ of σ contains a formula of the form □

j
i□∗ψf . We denote by σ(n)

the sequent obtained by adding the formula □
j
i□
nψu to ∆ (recall the definition

of □n below Definition 2.1). For any invalid sequent σ that has a formula in
focus, we define:

µ(σ) := min{n ∈ ω : σ(n) is invalid}.

Observe that the function µ is well-defined.

Lemma 4.2 Let
σ1 · · · σnr σ

be any rule application of sCKLf . If σ is invalid, then there is an invalid premiss
σi such that, if σ and σi both have a formula in focus, then:

µ(σi) ≤ µ(σ), (1)

and, if moreover r = □∗R and the principal formula is in focus, then the inequal-
ity (1) is strict.

Proof. Note that the statement becomes vacuous if r is id, since id derives
only valid sequents. Moreover, if either σ, or all of the σi, have no formula in
focus, then the statement reduces to Lemma 4.1. This covers the cases where
r is among {U,F}, because those rules require either the conclusion or the sole
premiss to have no formula in focus.

Now suppose that r /∈ {U,F, id} and both σ and at least one of the σi have a
formula in focus. We first consider the case where the formula that is in focus
in σ is not the principal formula of the rule application (this includes the case
where r = cut). Direct inspection of the rules shows that in this case every
premiss σi has a formula in focus and that

σ1(µ(σ)) · · · σn(µ(σ))
r

σ(µ(σ))

is a valid rule application. The required result then follows from Lemma 4.1.
The only cases left are those in which the principal formula is in focus,

which can only be the case if r ∈ {wR,□S5,□∗R}. The case r = wR is immediate,
as the sole premiss will have no formula in focus whenever the principal formula
is in focus. We treat the two remaining cases separately.

▷ □S5: Then σ is of the form:

□iΓ ⇒ □i□∗ψf ,□i∆.

Let n := µ(σ). By the definition of µ, there is an epistemic Kripke model
S, and a state s of S such that S, s ̸⊩ σ(n). In particular, it holds that

S, s ̸⊩ □i□
nψ.
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It follows that there is a state t in S such that sRit and S, t ̸⊩ □nψ. Clearly
this also means that S, t ̸⊩ □∗ψ. We claim that, in fact,

S, t ̸⊩ □iΓ ⇒ □∗ψf ,□nψu,□i∆,

which gives the required result.
By the fact that Ri is transitive, it holds for all φ such that S, s ⊩ □iφ,

that S, t ⊩ □iφ. It follows that S, t ⊩ □iφ for each □iφ
u ∈ □iΓ. Moreover,

suppose that □iψ
a ∈ □i∆. Then S, s ̸⊩ □iψ. Thus there is a state r in S

such that sRir and S, r ̸⊩ ψ. By symmetry and transitivity, we get tRis,
whence S, t ̸⊩ □iψ, as required.

▷ □∗R: As in the previous case, let n := µ(σ) and let S, s be such that
S, s ̸⊩ σ(n). Then S, s ̸⊩ □∗φ, where □∗φf is the principal formula.

If n = 0, then S, s ̸⊩ φ and thus the leftmost premiss is invalid and
forms a witness to the statement, as it has no formula in focus. If n > 0,
then S, s ̸⊩ □i□

n−1φ, for some i ∈ A. This means that there is an invalid
premiss σk with µ(σk) = n− 1, as required. 2

We are now ready to prove the soundness theorem.

Theorem 4.3 If there is an sCKLf-proof with root σ, then σ is valid.

Proof. Suppose, towards a contradiction, that an invalid sequent σ is the root
of some sCKLf -proof π. Repeatedly applying Lemma 4.2, we obtain an upward
path

ρ = σ0, σ1, . . . , σn

through π such that σ0 = σ and σn labels a leaf of π. Since σn is invalid by
construction, this leaf cannot be axiomatic. Therefore, there there must be
some k < n such that ⟨σk, σn⟩ is a successful repeat. Observe that this implies
that σk = σn. However, by the fact that we constructed this path using Lemma
4.2, it holds that µ(σk) < µ(σn), a contradiction. 2

5 Completeness

Let Σ be a finite and closed set of formulas and let Γ ⇒ ∆ be a sequent. We
say that Γ ⇒ ∆ is a Σ-sequent if Γ− ∪ ∆− ⊆ Σ. A sequent Γ ⇒ ∆ will be
called Σ-provable whenever there is an sCKLf -proof of Γ ⇒ ∆ that contains
only Σ-sequents. Finally, we say of a Σ-sequent Γ ⇒ ∆ that it is saturated
whenever it is Σ-unprovable and Γ− ∪∆− = Σ.

By the presence of the cut rule, the following lemma is immediate.

Lemma 5.1 For any Σ-unprovable Σ-sequent Γ ⇒ ∆, there is a saturated
Σ-sequent Γ ⇒ ∆ such that Γ ⊆ Γ and ∆ ⊆ ∆.

Similarly, the following follows by the presence of the rule T.

Lemma 5.2 If Γ ⇒ ∆ is saturated and □iφ ∈ Γ−, then φ ∈ Γ−.

The following is a standard definition for the canonical model of S5-CKL
(although the canonical model is usually defined with respect to a Hilbert-style
proof system).
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Definition 5.3 Let Σ be a non-empty, finite and closed set of formulas. The
canonical model SΣ of Σ is given by:

SΣ := {Γ− | Γ ⇒ ∆ is a saturated Σ-sequent}
ARΣ

i B :⇔ □i□
−1
i A = □i□

−1
i B

V Σ(A) := {p ∈ P | p ∈ A}

It is immediate to verify that for every non-empty, finite and closed set Σ,
its canonical model SΣ is an epistemic Kripke model.

We are now ready to prove the Truth Lemma.

Lemma 5.4 (Truth Lemma) For every φ ∈ Σ: SΣ, A ⊩ φ if and only if
φ ∈ A.

Proof. We prove this by induction on φ. We only treat the cases φ = □iψ and
φ = □∗ψ. The other cases are standard.

▷ φ = □iψ.
In case φ ∈ A, we must show that for every B with ARΣ

i B, it holds that
SΣ, B ⊩ ψ. By the induction hypothesis it suffices to show that ψ ∈ B.
First note that, by the definition of RΣ

i , we have □iψ ∈ B. Lemma 5.2
then gives ψ ∈ B.

Now suppose that φ ̸∈ A. By definition there is a saturated Σ-sequent
Γ ⇒ ∆ such that Γ− = A. Note that by saturation, we have φa ∈ ∆ for
some a ∈ {u, f}. Let ∆0 = ∆ \ {φa}. We claim that the Σ-sequent

□i□
−1
i Γ ⇒ ψa,□i□

−1
i ∆0 (2)

is Σ-unprovable. Indeed, consider the inference

□i□
−1
i Γ ⇒ ψa,□i□

−1
i ∆0

□S5
□i□

−1
i Γ ⇒ □iψ

a,□i□
−1
i ∆0

If the premiss were Σ-provable, then so would be the conclusion. How-
ever, this cannot be the case because Γ ⇒ ∆ can be obtained from the
conclusion by a series of weakenings.
By Lemma 5.1, there is a saturated Σ-sequent Γ ⇒ ∆ extending the

sequent depicted in (2). Define the set B := (Γ)−. Since ψ /∈ B, the
induction hypothesis gives SΣ, B ̸⊩ ψ. Finally, we claim that ARΣ

i B and
thus SΣ, A ̸⊩ □iψ. Indeed, we clearly have □i□

−1
i A ⊆ □i□

−1
i B. For the

other direction, first note that □iψ /∈ B, for otherwise we would have
ψ ∈ B. It follows for any □iχ ∈ Σ that □iχ ∈ B entails □iχ /∈ ∆−, whence
□iχ ∈ A, as required.

▷ φ = □∗ψ. As before, we will first consider the case where □∗ψ ∈ A. Let
Γ ⇒ ∆ be a saturated Σ-sequent such that A = Γ−. Then it holds by
saturation that ψu ∈ Γ and □i□∗ψu ∈ Γ for all 1 ≤ i ≤ n. By the induction
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hypothesis, we have SΣ, A ⊩ ψ. Moreover, for every B ∈ SΣ such that
ARΣ

i B, it holds by the definition of RΣ
i and Lemma 5.2 that □∗ψ ∈ B. By

repeating this argument we obtain that SΣ, A ⊩ □∗ψ.

In case φ /∈ A, we again consider a saturated Σ-sequent Γ ⇒ ∆ such that
A = Γ−. By the presence of the rules U and F, we may assume without
loss of generality that φf ∈ ∆. Now suppose, towards a contradiction,
that SΣ, A ⊩ φ.
For every A(RΣ)∗B it holds that SΣ, B ⊩ ψ. In particular, it fol-

lows that SΣ, A ⊩ ψ, whence, by the induction hypothesis, we have ψu ∈ Γ.

As in the previous case, we take ∆0 = ∆ \ {φf}. Consider the following
derivation:

π
Γ ⇒ ψu,∆0

π1

Γ ⇒ □1□∗ψf ,∆0 · · ·
πn

Γ ⇒ □n□∗ψf ,∆0
□∗R

Γ ⇒ □∗ψf ,∆0

where π is a series of weakenings followed by an application of id to derive
ψu ⇒ ψu, and each πi is constructed as follows:

π′

σ′
π′
1

σ′
1

· · ·
· · ·

π′
n

σ′
n

□∗R
□i□

−1
i Γ ⇒ □∗ψf ,□i□−1

i ∆0
□S5

□i□
−1
i Γ ⇒ □i□∗ψf ,□i□−1

i ∆0wL
...wL

Γ ⇒ □i□∗ψf ,□i□−1
i ∆0wR

...wR
Γ ⇒ □i□∗ψf ,∆0

In the above derivation the sequent σ′ is given by

σ′ = □i□
−1
i Γ ⇒ ψu,□i□

−1
i ∆0

and the derivation π′ is obtained from the Σ-provability of the sequent
□i□

−1
i Γ ⇒ ψu,□i□

−1
i ∆0. Indeed, if it were not Σ-provable, then by apply-

ing Lemma 5.1 and the induction hypothesis, we would obtain a state B
such that SΣ, B ̸⊩ ψ. By the same argument as in the previous case, we
would moreover have ARΣ

i B, contradicting the assumption that A ⊩ □∗ψ
Furthermore, each sequent σ′

k in the derivation πi is given by

σ′
k = □i□

−1
i Γ ⇒ □k□∗ψf ,□i□−1

i ∆0

and each derivation π′
k is constructed by repeatedly applying cut to add

formulas from Σ until every leaf is either saturated or Σ-provable. To the
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leaves that are Σ-provable we append their respective proofs, and to the
saturated sequents we apply the same process as we have now applied to
Γ ⇒ □i□∗ψf ,∆0. Crucially, for every such saturated leaf Γ′ ⇒ □k□∗ψf ,∆′

we have that ARΣ
i C, where C := (Γ′)−. Our assumption SΣ, A ⊩ □∗ψ

therefore entails that SΣ, C ⊩ □∗ψ, allowing us to repeat the same argu-
ment.
By the pidgeonhole principle, at some point one of these saturated leaves

must be identical to a saturated leaf reached earlier in the construction.
Note that in this case the upward path from the earlier saturated leaf to
the later one is successful. We then terminate the construction of this
branch. Since every branch is terminated at some point, we end up with
a Σ-proof of Γ ⇒ ∆, a contradiction. 2

The following theorem can now be proven by a standard argument.

Theorem 5.5 If a Σ-sequent σ is valid, then it is Σ-provable in sCKLf .

6 A proof search game

Deciding whether a CKL-formula is valid is known to be EXPTIME-
complete [13]. In this section we are going to show that our proof system admits
optimal proof search, i.e. there exists an algorithm that decides whether a for-
mula is provable in sCKLf in time exponential in the size of the formula. To that
end we are going to take a game-theoretic perspective on our proof system. For
each sequent σ we will define a parity game Gσ which is played by two players
called Prover and Refuter. Roughly, the goal of Prover is to show that σ has
a proof in sCKLf while Refuter tries to show the opposite. We will show that
a sequent σ has a sCKLf -proof if and only if Prover has a memoryless winning
strategy in the game Gσ. In order to obtain our complexity-theoretic result,
we will then refer to an algorithm given in [8] which decides for each game Gσ
whether Prover has a memoryless winning strategy in time polynomial in the
size of the input i.e. the size of Gσ. Finally, as the size of Gσ is exponential in
the size of σ, we obtain an optimal proof search result.

Throughout this section Σ always denotes a finite and closed set of formulas.
For the basic definitions around parity games we refer the reader to [11]. The
game Gσ has two types of positions: CKL-sequents and rule instances.

Definition 6.1 A rule instance (or instance for short) is a triple
(σ, r, ⟨σ1, . . . , σn⟩) such that

σ1 · · · σnr σ
is a valid rule application in sCKLf .

If i is a rule instance, we write conc(i) for the first element of i, i.e. for the
conclusion of i. A Σ-instance is a rule instance involving only Σ-sequents. For
a Σ-sequent σ the game Gσ is defined as follows:

Definition 6.2 Let σ be a Σ-sequent. The proof search game Gσ associated
to σ takes positions in S ∪ I, where S is the set of Σ-sequents and I is the set
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of Σ-instances. The ownership function and admissible moves are as described
in the following table:

Position Owner Admissible moves
σ Prover {i ∈ I | conc(i) = σ}

(σ, r, ⟨σ1, . . . , σn⟩) Refuter {σi | 1 ≤ i ≤ n}
The positions are given the following priorities:

(i) Every position of the form Γ ⇒ ∆u has priority 3;

(ii) Every position of the form (σ,□∗R, ⟨σ0, . . . , σn⟩) where the principal formula
is in focus has priority 2;

(iii) Every other position has priority 1.

A position is called a dead end if its owner has no admissible moves in this
position available. A match in Gσ is a sequence of positions starting in σ,
such that any two consecutive positions are related by an admissible move. A
match is either finite and ends in a dead end or infinite. The winning conditions
for a match are as follows: Prover wins every finite match in which the dead
end belongs to Refuter and she wins every infinite match in which the highest
priority encountered infinitely often is even. Refuter wins every finite match
in which the dead end belongs to Prover and he wins every infinite match in
which the highest priority visited infinitely often is odd.

Observe that the only positions that are dead ends are rule instances of id.
Therefore Prover wins every finite match. In the following we are going to use
standard terminology in the theory of parity games such as strategy, memoryless
strategy, winning strategy and strategy tree. For definitions of these concepts
we again refer the reader to [11].

Proposition 6.3 Let σ be a Σ-sequent. If σ is Σ-provable, then Prover has a
memoryless winning strategy in Gσ.

The basic proof idea is to read off a winning strategy for Prover from a
Σ-proof π for σ. This can be done by identifying each play in Gσ with a finite
or infinite path through π. As Prover can always choose which rule to apply
to a given sequent and every play starts in σ (which labels the root of π), we
can ensure that every possible play in Gσ - when Prover uses this strategy -
corresponds to some path through π. The fact that π is a proof then guar-
antees that Prover wins every play. Finally, since in each parity game exactly
one player has a memoryless winning strategy [11], the existence of a winning
strategy for Prover implies the existence of a memoryless winning strategy for
her. In order to present a detailed proof, we require some preliminary work.

Recall that in a proof π there exists for every non-axiomatic leaf l a node
c(l) such that ⟨c(l), l⟩ is a successful repetition. As there might exist several
candidates for the node c(l), we fix for each non-axiomatic leaf l one candidate
c(l) which we call the companion of l.

Definition 6.4 Let π be a sCKLf -proof. A path ρ through π is a (possibly
infinite) sequence ρ = ρ(0), ρ(1), . . . of nodes in π which satisfies the following
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properties:

(i) ρ(0) is the root of π.

(ii) If ρ(i) is an axiomatic leaf, then ρ is finite and ends at ρ(i).

(iii) If ρ(i) is an non-axiomatic leaf l with companion c(l), then ρ(i + 1) is a
child node of c(l).

(iv) Otherwise, ρ(i+ 1) is a child node of ρ(i).

If condition (iii) applies, then we say that ρ passes through the non-axiomatic
leaf l. Observe that paths never pass through axiomatic leaves. Notice that
there is a difference between paths as defined here and upward paths as defined
is section 3. Namely, an upward path is always finite, has to end at latest at a
leaf of π (axiomatic or non-axiomatic) and might start at any node. In partic-
ular, an upward path cannot pass through a non-axiomatic leaf and continue
at its companion. A path as defined here has to start at the root and in case it
reaches a non-axiomatic leaf, it has to continue at its companion. Moreover, a
finite path can only end at an axiomatic leaf. Notice that a finite path might
still pass through some non-axiomatic leaves first before eventually reaching
an axiomatic leaf. Furthermore, notice that paths are defined with respect to
sCKLf -proofs and not with respect to arbitrary derivations like upward paths.
The reason for this is simply to avoid the case that some non-axiomatic leaf is
not part of a successful repetition.

The following lemma states a first basic result about infinite paths through
sCKLf -proofs. The proof of the lemma follows immediately from the fact that
sCKLf -proofs are finite.

Lemma 6.5 Suppose π is an sCKLf-proof and ρ is an infinite path through π.
Then there exists a non-axiomatic leaf l through which ρ passes infinitely often.

Given sets X,Y and a function f : X −→ Y we denote by dom(f) the
domain of f and by ran(f) the range of f .

Definition 6.6 A finite tree with back edges is a pair (T, f) consisting of a
finite tree T and a (partial) function f : T −→ T , such that every u ∈ dom(f)
is a leaf of T and the node f(u) is a proper ancestor of u.

Observe that cyclic proofs can be considered as finite trees with back edges,
that satisfy the property that if u ∈ dom(f), then u is a non-axiomatic leaf
and f(u) is the companion of u. The definition of path through a cyclic proof
is generalised to path through a finite tree with back edges in the obvious way.

Definition 6.7 Let (T, f) be a finite tree with back edges. Define the one-step
dependency order ⪯1 on ran(f) as follows:

u ⪯1 v :⇔ u occurs on the upward path from v to v′ for some v′ ∈ f−1(v)

Define the dependency order ⪯ on ran(f) as the transitive closure of ⪯1.

Observe that the dependency order ⪯ is reflexive and transitive. Further-
more it is also anti-symmetric and so ⪯ is a partial order on ran(f). Observe
that u ⪯ v implies that there exists an upward path from v to u. Let (T, f)



672 An analytic proof system for common knowledge logic over S5

be a finite tree with back edges and let ρ be an infinite path through (T, f).
Denote by Inf(ρ) the set of nodes of T that occur infinitely often in ρ.

Lemma 6.8 Let (T, f) be a finite tree with back edges and let ρ be an infinite
path through (T, f). Then the set Inf(ρ) ∩ ran(f) has a ⪯-greatest element.

Proof. Observe that the set Inf(ρ) ∩ ran(f) is finite since T is a finite tree.
Furthermore, observe that Inf(ρ)∩ran(f) is non-empty, as ρmust pass through
some leaf l ∈ dom(f) infinitely often (see Lemma 6.5). It therefore suffices to
prove that all ⪯-maximal elements in Inf(ρ) ∩ ran(f) are identical. To that
end let u ∈ Inf(ρ) ∩ ran(f) be a ⪯-maximal element. We claim that all
nodes in Inf(ρ) belong to Tu, where Tu denotes the subtree of T which is
rooted at u. Notice that it suffices to prove the claim for each f(l) for which
l ∈ Inf(ρ) ∩ dom(f) ∩ Tu. Therefore let l be an arbitrary such leaf. Then
there exists an upward path ρl starting at the root of T and ending in l, such
that both f(l) and u occur on ρl. Moreover, since l ∈ Inf(ρ) we have that
f(l) ∈ Inf(ρ) ∩ ran(f). As u is a ⪯-maximal element of Inf(ρ) ∩ ran(f)
it follows that u ̸≺ f(l). Therefore f(l) belongs to Tu. Since u was chosen
arbitrarily, it follows that Inf(ρ) ∩ ran(f) has a ⪯-greatest element. 2

Corollary 6.9 Let π be a sCKLf-proof and ρ be an infinite path through π. Let
l1, . . . , lk be the non-axiomatic leaves through which ρ passes infinitely often.
There exists 1 ≤ i ≤ k such that there exists an upward path from c(li) to c(lj)
for each 1 ≤ j ≤ k.

Recall that a match m in a proof search game is a finite or infinite sequence
of positions m(0),m(1),m(2), . . .. Observe that each even position m(2i) is
owned by Prover and each odd position m(2i + 1) by Refuter. For an initial
segment m(0), . . .m(i) of m we say that its length is i.

Definition 6.10 Let σ be a Σ-sequent and let π be a Σ-proof of σ. Let ρ be
an infinite path through π and let m be an infinite match in Gσ.

• An initial segment m(0), . . . ,m(i) of m corresponds to an initial segment
ρ(0), . . . , ρ(j) of ρ if i = 2j and for each 0 ≤ k ≤ i with k = 2l it holds
that m(k) is the sequent that labels ρ(l).

• The match m and the path ρ are called corresponding if every initial
segment of m with even length corresponds to an initial segment of ρ.

Proof. [of Proposition 6.3] Suppose that σ is Σ-provable. So there exists a
proof π of σ in which every occurring sequent is a Σ-sequent. We denote the
root of π by rπ. We simultaneously define a strategy S for Prover in the game
Gσ and show how to map each initial segment of a match of even length in
which Prover uses S onto an initial segment of a path through π. The strategy
S is a function which maps initial segments of matches ⟨m(0), . . . ,m(2i)⟩ of
even length onto rule instances. Therefore strategy S uses a memory.

For the base case observe that each match in Gσ begins in σ. Therefore
⟨m(0)⟩ for m(0) = σ is an initial segment of every match in Gσ. Similarly,
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every path through π starts in rπ which is labelled by σ. Thus ⟨ρ(0)⟩ for
ρ(0) = rπ is an initial segment of every path through π. Observe that ⟨m(0)⟩
corresponds to ⟨ρ(0)⟩.

For the inductive step suppose that we have already mapped the initial
segment

mi = ⟨m(0), . . . ,m(2i)⟩
of a match onto the initial segment

ρi = ⟨ρ(0), . . . , ρ(i)⟩

of a path, such that mi corresponds to ρi, where i ≥ 0. Let j ∈ I be the
Σ-instance

j = (m(2i), r, ⟨σ′
1, . . . , σ

′
k⟩),

which generated ρ(i) in π when read top down. Then define

S(mi) = j.

Now suppose that Refuter extends the match by choosing premiss σ′
l. Then let

m(2i+ 1) = j and let m(2i+ 2) = σ′
l and extend the initial segment mi to

mi+1 = ⟨m(0), . . . ,m(2i),m(2i+ 1),m(2i+ 2)⟩

Furthermore, let ρ(i+1) be the child of ρ(i) which is labelled by σ′
l and extend

ρi to
ρ(i+ 1) = ⟨ρ(0), . . . , ρ(i), ρ(i+ 1)⟩

Observe that m(i+ 1) corresponds to ρ(i+ 1).

Finally, in order to turn S into a total function which maps every initial
segment of a match with even length onto a rule instance (and not just those
that correspond to initial segments of paths), we add the following clause. Fix
a Σ-instance j′ ∈ I. For any initial segment m′

i = ⟨m(0)′, . . . ,m(2i)′⟩ of a
match which is not covered in the above construction we define

S(m′
i) = j′

Observe that S is a well-defined strategy for Prover, which has the property
that if m is a match of Gσ in which Prover uses strategy S, then there exists
by construction a path ρ through π such that every initial segment of m of
even length corresponds to some initial segment of ρ. Therefore m corresponds
to ρ.

We show that S is a winning strategy for Prover. To that end let m be a
match in Gσ in which Prover uses strategy S and let ρ be the path through π
which corresponds to m. In case m is finite Prover wins by default and we have
nothing to show. So suppose m is infinite. Then ρ is also infinite. By Lemma
6.5 and Corollary 6.9 there exists a non-axiomatic leaf l0 with companion c(l0)
such that the following holds:
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(i) ρ passes through l0 infinitely often.

(ii) If l0, l1, ..., lk are the non-axiomatic leaves through which ρ passes infinitely
often, then there is an upward path from c(l0) to c(li) for each 1 ≤ i ≤ k.

Consider the subtree πl0 of π rooted at c(l0). Observe that for each up-
ward path from c(l0) to one of the non-axiomatic leaves li there is always a
formula in focus (for a proof of this claim, see for example Proposition 2 in
[20]). Next, observe that ρ contains a final segment in which each of l0, l1, ..., lk
occur infinitely often and no other non-axiomatic leaf occurs. Therefore on this
final segment ρ only passes through nodes of πl0 which occur on the upward
paths between c(l0) and li and so there is a formula in focus in each step on
that final segment. Hence, the match m passes, after finitely many moves,
only through positions with priority 1 or 2. As π is a proof, there exists a
rule application of □∗R between c(l0) and l0 where the principal formula is in
focus. This means that, since ρ passes infinitely often through l0, priority 2 is
encountered infinitely often. Hence, the highest priority encountered infinitely
often is even and Prover wins the match. We conclude that S is a winning
strategy for Prover. Finally, since in a given parity game exactly one of the
two players has a memoryless winning strategy [11], the existence of a winning
strategy for Prover implies the existence of a memoryless winning strategy for
her. 2

Let us now consider the converse direction of Proposition 6.3.

Proposition 6.11 Let σ be a Σ-sequent. If Prover has a memoryless winning
strategy in Gσ, then σ is Σ-provable.

Proof. Suppose that Prover has a memoryless winning strategy in Gσ. Let T
be the corresponding strategy tree. Let π be the finite subtree of T obtained
by pruning every infinite branch of T at the first repetition. Observe that the
root of π is labelled by σ and π is generated by rules of sCKLf . Therefore π
is a derivation. In order to show that π is indeed a sCKLf -proof, let l be an
arbitrary leaf of π. If l is also a leaf of T , then l is axiomatic as T is the
strategy tree of a winning strategy for Prover. Otherwise, l was generated by
pruning an infinite branch of T . In that case there exists a node c(l), such
that ⟨c(l), l⟩ is a repetition. Therefore it remains to show ⟨c(l), l⟩ is successful.
Suppose towards a contradiction that ⟨c(l), l⟩ is not successful. Then on the
upward path ρ from c(l) to l either some sequent does not have a formula
in focus or ρ does not pass through an application of □∗R where the principal
formula is in focus. This implies that there is a position occurring in ρ which
has priority 3, or every position in ρ has priority 1. Since T is the strategy tree
of a memoryless strategy, there exists an infinite branch in T that has a final
segment which is an infinite concatenation ρ ·ρ ·ρ · · · . On this path the highest
priority occurring infinitely often is odd, contradicting the assumption that T
is the strategy tree of a winning strategy for Prover. Therefore each repetition
is successful and so we conclude that π is a sCKLf -proof of σ. 2

Observe that the above constructed proof is uniform in the following sense:
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Definition 6.12 A Σ-proof π is uniform if there exists a function f : S −→ I
such that whenever a sequent σ ∈ S occurs in π, it occurs as the conclusion of
the rule instance f(σ).

Observe that in a uniform proof the first repetition in each branch is suc-
cessful. We conclude:

Theorem 6.13 The following are equivalent for any sequent σ:

(i) σ is sCKLf-provable

(ii) Prover has a memoryless winning strategy in Gσ.
(iii) σ has a uniform sCKLf-proof.

Let us now turn towards complexity. The size c(φ) of a formula φ is the
number of subformulas of φ. The size c(Γ ⇒ ∆) of a sequent Γ ⇒ ∆ is defined
as follows:

c(Γ ⇒ ∆) :=
∑

φ∈Γ−⊎ ∆−

c(φ)

where ⊎ denotes the disjoint union. Observe that if Σ is the closure of Γ−∪∆−,
then |Σ| is linear in c(Γ ⇒ ∆).

Lemma 6.14 Given a Σ-sequent σ, the number of positions in Gσ is polyno-
mially bounded by |P(Σ)|.
Proof. Observe that each unannotated Σ-sequent is an ordered pair of subsets
of Σ. Therefore there are |P(Σ)|2 many unannotated Σ-sequents. By taking
the focus annotations into account we obtain at most |P(Σ)|3 many Σ-sequents.
Hence |S| ≤ |P(Σ)|3. Next, observe that for each Σ-sequent σ′ and each rule r,
there are at most |Σ| many ways of applying r to σ′. We therefore obtain the
following upper bound:

|I| ≤ 14 · |P(Σ)|3 · |Σ| ≤ 14 · |P(Σ)|4

Together, the set of positions of Gσ is bounded by 14 · |P(Σ)|4 + |P(Σ)|3 which
is polynomial in |P(Σ)|. 2

In order to get a polynomial bound for deciding the winner of a given proof
search game we can now make use of one of the many existing algorithms for
solving parity games. For instance the following result by Calude et al. [8].

Theorem 6.15 ([8, Theorem 2.9]) There is an algorithm which finds the
winner of a parity game in time O(nlog(m)+6) for a parity game with n posi-
tions and priorities in {1, 2, ...,m}. Furthermore, the algorithm can compute a
memoryless winning strategy for the winner in time O(nlog(m)+7 · log(n)).

Let σ be a sequent and let Σ be its closure. By Lemma 6.14 the number
n of positions in Gσ is polynomial in the size of |P(Σ)|. Since the number of
different priorities in our games is constant, Theorem 6.15 implies that there
is an algorithm deciding the winner of Gσ in time polynomial in |P(Σ)| and
so exponential in c(σ). By the same argument the above mentioned algorithm
also computes a memoryless winning strategy in time exponential in c(σ).
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Corollary 6.16 For any CKL-sequent σ, there is an algorithm deciding
whether σ is provable that runs in time exponential in c(σ).

7 Related research and future work

In this section we discuss the relation of the present paper with earlier research.
In passing we also propose some directions for further research.

7.1 Explicit induction

In [5], Alberucci & Jäger present another proof system for S5-CKL. In contrast
to our system sCKLf , their system S5n(C) does not allow cyclic proofs. Rather,
it uses an explicit induction rule, which can be thought of as the Gentzen-style
translation of the well-known induction axiom: □∗(p→ □p) → (p→ □∗p).

Like us, Alberucci & Jäger obtain a partial cut-elimination result. However,
given some endsequent Γ ⇒ ∆, they do not manage to restrict cuts to Cl(Γ∪∆),
but only to a larger set that they call the disjunctive-conjunctive closure of
Cl(Γ∪∆). One could try to sharpen their cut-elimination result by translating
our sCKLf -proofs into S5n(C)-proofs. Such a translation from cyclic proofs into
inductive proofs occurs more often in the literature (see e.g. [16] and [2]).

A first problem with this approach is caused by the fact that our language is
not sufficiently expressive to capture the strengthened induction rule from [2].
Indeed, an adaptation of the rule inds to our system would have to take the
following form:

Γ ⇒ φ,∆ {Γ ⇒ □iνx.□(Γ ⇒ ∆ ∨ x) ∧ φ}ni=1inds Γ ⇒ □∗φ,∆
where Γ ⇒ ∆ is defined as ∧

φ∈Γ

φ ∧
∧
ψ∈∆

¬ψ

But the µ-calculus formulas in the right premisses are not expressible in the
language of CKL. This problem is circumvented by Brünnler & Lange in [7] by
augmenting the language with annotations. However, if we were to extend our
language analogously, it would be unclear how to translate sequents from this
extended language into the ordinary sequents of the system S5n(C).

One could resort to a reformulation of S5n(C) in terms of the augmented
language, but then a second problem arises. Namely, to make the translation
one has to show that the strengthened induction rule is derivable in S5n(C).
But for this one needs to apply cut to formulas of the form Γ ⇒ ∆, where
Γ and ∆ only contain formulas in the ordinary language. Interestingly, this
seems to give a partial cut-elimination result very similar to the one obtained
by Alberucci & Jäger. This suggests that inductive proofs for S5-CKL might
require strictly more complex cut formulas than cyclic proofs. We leave it as
future work to investigate this conjecture.

Finally, we wish to point out that the sequent given in [5, p.10] as example
of a sequent that does not admit a cut-free proof in S5n(C), namely the sequent
□1(p ∧ □∗q) ∧ □2(q ∧ □∗p) ⇒ □∗(p ∨ q), does have a cut-free proof in our system.
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7.2 Generalised sequent calculi

Another proposal for a proof system for S5-CKL is made by Hill & Poggiolesi
in [14]. Their system HS5C does not manipulate ordinary sequents, but a gen-
eralised form of sequents called indexed hypersequents. Indexed hypersequents
are akin to the more well-known formalisms of nested sequents (see e.g. [6]) or
labelled sequents (see e.g. [17]) .

Like us, Hill & Poggiolesi start with a non-analytic system, and then use
semantic methods to show that proofs can be restricted to a certain shape.
While this restriction does not result in fully analytic proofs, Hill & Poggiolesi
claim that it nevertheless makes their system suitable for proof search. No
complexity bound for proof search is given.

Using a syntactic cut-elimination procedure, Hill & Poggiolesi show that the
system HS5C is cut-free. In particular, its non-analyticity does not arise from
unavoidable applications of the cut-rule. Rather, the system HS5C features a
non-analytic explicit induction rule similar to that of the system S5n(C) dis-
cussed in the previous subsection. It is this induction rule whose non-analyticity
cannot be avoided.

We consider it a very interesting avenue for further research to see if the
explicit induction rule in HS5C can be replaced by cyclic proofs. The main
obstacle to this approach is the fact that even an analytic proof of a given
endsequent may still contain infinitely many distinct labels. In terms of our
approach, this would obstruct the appeal to the pidgeonhole principle in the
proof of the Truth Lemma.

7.3 Focus games

In [15], Lange introduces a two-player game for checking satisfiability of
Converse-PDL (CPDL, for short). This is an extension of Propositional Dy-
namic Logic (or, PDL) introduced by Fischer and Ladner in [10]. The logic
CPDL introduces the possibility to reason about the backwards application of
programs. The satisfiability game introduced in [15] is played by a player ∃
whose goal is to show that a given formula of CPDL is satisfiable and a player ∀
whose goal is to show that the formula is unsatisfiable. As in our case, the game
uses a focus mechanism to capture traces. Furthermore, as our proof system,
the satisfiability game is cyclic, i.e. plays are finite and end when either a leaf
is encountered or a certain condition for cycles (similar to our condition for
successful repetitions) is met. For details about the game we refer the reader
to [15]. Lange claims that the satisfiability game is sound and complete, i.e.
player ∃ has a winning strategy in the game for a sequent Φ if and only if Φ is
satisfiable. Unfortunately, however, the authors of the present paper discovered
a counterexample to the soundness of Lange’s system. Namely, consider the
sequent Φ = {[a]p, ⟨a⟩[ā]⟨a⟩¬p}, where a is an atomic program, p an atomic
proposition and ā is the converse program of a. It is readily checked that Φ is
unsatisfiable in any Kripke model. However, player ∃ has a winning strategy in
the satisfiability game for Φ. This can be seen by observing that no matter in
what order rules are applied to Φ, neither winning condition 1 nor 2 of ∀ can
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ever be met. For winning condition 2, this is immediate, as Φ does not contain
a formula of the form ⟨α∗⟩φ. For winning condition 1, it suffices to notice that
no play starting in Φ can ever reach a sequent containing the formulas p and
¬p, as by eliminating a modal operator in the left formula, one has to introduce
a modal operator in the right formula and vice versa. Therefore, no play can
ever be won by ∀, implying that ∃ has a winning strategy.

Due to the close connection between CPDL and S5-CKL, we conjecture that
the method of the present paper could be adapted to CPDL. If true, one could
extract a focus game for validity for CPDL in the same way as described in the
previous section. Such a game could then be dualised into a focus game for
satisfiability, thus fixing the original system proposed in [15]. The realisation
of this task is left for future research.
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