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Abstract

Graded modal logic is an extension of classical modal logic with modalities 3n, for
n ∈ N, that allows to count the number of successors of a state in a Kripke model.
In this article we study the logics obtained by restricting the language to a single
modality 3n for a fixed natural number n, where 3nφ is satisfied on a point w of a
Kripke model exactly when w has at least n successors satisfying φ. We compare the
logics Ln and Lm for n ̸= m. We provide concrete axiomatizations in cases n = 2
and n = 3 and provide a method for generating axiomatizations for every n.

Keywords: Graded modal logic, Kripke models, completeness, monotone modal
logic.

1 Introduction

Graded modal logic is an extension of classical modal logic with graded modali-
ties 3n(n ∈ N+) that allows to count the number of successors of a given state
in a Kripke model. Intuitively, the formula 3nA is satisfied at a point w of a
Kripke frame if and only if w has at least n successors satisfying A.

Graded modal logic was originally introduced in Goble [10]. Kaplan [12]
studied graded modal logic as an extension of S5. The completeness of graded
modal logic and its extensions was investigated in [9,7,2]. Van der Hoek [15]
and Cerrato [3] used filtrations to obtain the finite model property and decid-
ability of graded modal logic. Van der Hoek [15] also studied the expressibility,
definability and correspondence theory. Bisimulations for graded modal logic
were introduced in [8], and used to provide an alternative proof of the finite
model property, and show that a first-order formula is invariant under graded
bisimulation iff it is equivalent to a graded modal formula. Aceto, Ingolfsdottir
and Sack [1] showed that resource bisimulation and graded bisimulation coin-
cide over image-finite Kripke frames. Finally, various notions of epistemic and
dynamic graded modal logics have been investigated in [16] and [13].

Even though the modality 31 corresponds to the standard classical modal
logic connective, and therefore retains all its properties, the modalities 3n
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for n ≥ 2 do not. In particular, the modalities 3n are monotone, i.e. they
satisfy the rule ⊢ φ → ψ/ ⊢ 3nφ → 3nψ, and satisfy 3n⊥ ↔ ⊥, but are
not additive, that is, the implication 3n(p ∨ q) → (3np ∨3nq) fails for n ≥ 2.
Modal logics with monotone modalities have been extensively studied [4,11,14].
However, not much work has been done regarding the connections between
monotonic modal logics and graded modal logic. In [6], building on the proof-
theoretic and algebraic analysis of non-normal modal logics of [5], a line of
research studying these connection was initiated, where an elementary but
not modally definable class of neighbourhood frames was shown to exactly
correspond to graded Kripke frames, and the notion of graded bisimulation
was recasted through the lens of neighbourhood bisimulations.

This article adds to the study of connections between monotonic modal
logic and graded modal logic, albeit towards a different direction. Specifically,
the standard axiomatization of graded modal logic relies on the interaction
of the different graded modalities, and captures the properties of addition of
natural numbers. However, when viewed as monotone modalities, each graded
modality can also be studied in isolation. Accordingly, for every n ∈ N+, we
introduce the logic Ln, whose language contains a single modal operation, 3,
and whose theory is defined as the set of validities on Kripke frames, where 3

is interpreted as the graded modality 3n described in the first paragraph. We
show the relationship between these logics, and that they have the finite model
property and are decidable. Moreover, we investigate their axiomatizations.

This article is structured as follows: In Section 2, we present the basic
definition of the logic Ln for each n ∈ N via its semantics. In Section 3 we show
that if n ̸= m the logics Ln and Lm are distinct, we identify the relationship
between them, and we observe that they are decidable and enjoy the strong
finite model property. In Sections 4 we discuss possible axiomatizations and
their completeness. In particular, we introduce axiomatizations of L2 and L3,
and we present a method to generate axioms for Ln, showing that all logics Ln
are finitely axiomatizable. Finally, in Section 5 we suggest avenues for future
research.

2 Preliminaries

In this section, we introduce the languages and semantics for the logics, and
define some key notions that will be useful throughout this paper.

For every natural number n ≥ 2, the language for graded modal logic re-
stricted to the n-th modality will be the same Φ, generated by the following
grammar:

φ ::= p | ¬φ | φ ∧ φ | 3φ,

where p ranges over a countable collection of propositional variables AtProp.
We define → and ∨, as usual.

Given some n ≥ 2, the semantics of the language is given in terms of Kripke
frames X = (X,R). For any valuation function v : AtProp → P(X) and any
Kripke frame X, M = (X, v) is a model for the graded modal logic restricted to
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the n-th modality. Truth in a model M at a state x ∈ X is defined inductively
as follows:

M,x ⊨n p iff x ∈ v(p)
M,x ⊨n φ ∧ ψ iff M,x ⊨n φ and M,x ⊨n ψ
M,x ⊨n ¬φ iff M,x ⊭n φ
M,x ⊨n 3φ iff |{y ∈ R[x] :M,y ⊨n φ}| ≥ n,

where R[z] with z ∈ X indicates the direct image of {z} through R. We write
M ⊨n φ if M,x ⊨n φ for each x ∈ X and we write X ⊨n φ if (X, v) ⊨n φ for
every valuation v. Finally, we define

Ln := {φ ∈ Φ | ∀X X ⊨n φ}.

In what follows, to help the reader identify the intended interpretation of
formulas, we will sometimes slightly abuse notation, and use the modality 3n

instead of 3, when the formula is to be interpreted in Ln. Seeing this formally,
given ΦG, the language of graded modal logic defined as

ΦG ∋ φ ::= p | ¬φ | φ ∧ φ | 3nφ, n ∈ N+,

we can define an embedding ϵ : N+×Φ → ΦG recursively by letting ϵ(n,3φ) =
3nϵ(n, φ).

Even though the language and semantics of Ln cannot express the classical
normal modality 1 , it turns out that the notion that a point w of a Kripke frame
has at least one successor satisfying a formula φ can sometimes be captured
with a help of an auxiliary formula. In particular, consider the following formula

3
ψ
1 φ := 3(φ ∨ ψ) ∧ ¬3ψ (1)

It is easy to see that if M,w |=n 3
ψ
1 φ, then there exists some u, such that

wRu, and M,u |=n φ. Formulas of this form will be key in the construction of
the canonical model used in the proofs of completeness

Another important convention that we will follow in this article is the follow-
ing: We will reserve small letters from the Greek alphabet to denote sequences
of mutually contradictory formulas. In particular, when we write α1, . . . , αn
we understand that αi ∧ αj → ⊥ is provable in classical logic for i ̸= j. For
example, αi = pi ∧ ¬(

∨
j ̸=i pj).

Finally, throughout this paper we write N+ to denote the set of positive
natural numbers; we will also slightly abuse notation and identify n ∈ N+ with
the set {1, . . . , n}.

3 Basic properties

In this section we discuss the basic properties of the logics Ln and we compare
their validities.

1 For instance, a model with one point that is reflexive and and a model with a point which
is not reflexive are indistinguishable for all the logics Ln for n ≥ 2.
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3.1 Decidability and Finite model property

A formula φ ∈ Φ is a validity in Ln if and only if ϵ(n, φ) is a validity in graded
modal logic. Since graded modal logic is decidable, it immediately follows that
Ln is decidable. For the strong finite model property, the filtration construction
in [15, Section 6.1] works in this case verbatim, given that ϵ[{n},Φ] ⊆ ΦG.

3.2 Comparing the logics Ln
Lemma 3.1 If n < m, there exists a formula ζn, such that ζn ∈ Ln but
ζn /∈ Lm.

Proof. Consider the formula

ζn :=

(
n∧
i=1

3
qi
1 αi

)
→ 3

(
n∨
i=1

αi

)
.

Given any model M , if M,x ⊨n
∧n
i=1 3

qi
1 αi, then for each i ∈ n, there exists

a yi, such that xRyi and M,yi ⊨n αi. Since αi are mutually contradictory
formulas, the yi are all distinct, and hence M,x ⊨n 3 (

∨n
i=1 αi).

On the other hand, let m > n and consider the model

M = (m+ n,R, v),

where R = {(1, k) | 2 ≤ k ≤ m+ n}, v(qi) = m \ 1, and v(αi) = {m+ i}. Then
M, 1 ⊨m 3

qi
1 αi, since m \ 1∪ {m+ i} ⊆ R[1]. However, there are only n points

that satisfy
∨n
i=1 αi, and therefore M, 1 ⊭m 3 (

∨n
i=1 αi). 2

Lemma 3.2 Assume n < m such that m− 1 = (n− 1) · k+ r where r < n− 1.
Then, Lm ⊆ Ln if and only if r < k.

Proof. First, let’s assume that r < k. To show that Lm ⊆ Ln it is enough to
show that for every formula φ ∈ Φ and every modelM , there exists a modelM ′

such that M,w ⊨n φ if and only if M,w′ ⊨m φ. Given a model M = (X,R, v),
we define M ′ = (X × k,R′, v′), where (x, i)R′(y, j) if and only if xRy, and
v′(p) = v(p)× k. We will show that for any formula φ ∈ Φ,

M,w ⊨n φ ⇐⇒ M ′, (w, j) ⊨m φ

by induction on the complexity of φ. All cases are immediate, except for
the case where φ = 3ψ. Let’s assume that M,w ⊭n 3ψ. Then there are
z ≤ n− 1 successors of w satisfying ψ, so, by the induction hypothesis, exactly
z ·k ≤ (n−1) ·k ≤ m−1 successors of (w, j) satisfy ψ, henceM, (w, j) ⊭m 3ψ.
Now assume that M, (w, j) ⊭m 3ψ. By definition of M ′, it follows that (w, j)
has z · k successors satisfying ψ where z · k ≤ m− 1. By induction hypothesis,
w has z successors satisfying φ. Since z · k ≤ m− 1 and r < k we have

z · k ≤ m− 1 = (n− 1) · k + r < (n− 1) · k + k = n · k,

which implies that z < n. Hence M,w ⊭n 3ψ.
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Now let us assume that k ≤ r. We consider the formula

θn :=

n∧
i=1

n−1∧
j=1

3
qji
1 α

j
i ∧

n∧
i=1

¬3(

n−1∨
j=1

αji )

→
∨

s:n→n−1

¬3
n∨
i=1

α
s(i)
i .

Let us show that θn /∈ Ln. Recall that αji are mutually contradictory. Let

M = (n× n ⊔ {x1, . . . xn−1}, R, v)

where R[(1, 1)] = n × n ⊔ {x1, . . . xn−1}, v(qji ) = {x1 . . . , xn−1}, and v(αji ) =
{(i, j + 1)}. It is routine to check that M, (1, 1) ⊭n θn.

Let’s show now that θn ∈ Lm. Let M be a model. If w satisfies the
antededent of the implication, then, for each i, there exists some j (let’s call
it s(i)), such that w has at most k successors satisfying αji . Indeed, otherwise

for each j, w has at least k + 1 successors satisfying αji and hence it has at

least (n− 1) · (k + 1) successors satisfying
∨n−1
j=1 α

j
i by the fact that the αji are

mutually contradictory. Since

(n− 1) · (k + 1) = (n− 1) · k + (n− 1) > k(n− 1) + r = m− 1,

it follows that M,w ⊨m 3
∨n−1
j=1 α

j
i , a contradiction. Now, since w has at most

k successors satisfying α
s(i)
i for every i, it follows that w has at most n · k

successors satisfying
∨n
i=1 α

s(i)
i . Since

n · k = (n− 1) · k + k ≤ (n− 1) · k + r = m− 1,

it follows that M,w ⊨m ¬3
∨n
i=1 α

s(i)
i . Hence M,w ⊨m θn. 2

Summarizing the above results, we obtain a complete description of the
relation between the logics Ln:

Theorem 3.3 Let n < m such that m − 1 = (n − 1) · k + r where r < n − 1.
Then, if r < k it follows that Lm ⊊ Ln. If k ≤ r, then there exists ζn, θn ∈ Φ,
such that ζn ∈ Ln while ζn /∈ Lm and θn ∈ Lm while θn /∈ Ln.

4 Axiomatizations and completeness

In this section we will discuss the completeness of the logics Ln with respect
to the proposed axiomatizations. Before going into the various cases, we will
present the axioms that are present in the axiomatization of every Ln, as well
as a key result that will allow us to construct enough distinct points in the
canonical model.

For every logic Ln, their corresponding axiomatization GPn will include all
the propositional tautologies (or an axiomatization of them), the formula

(⊥) 3⊥ → ⊥,
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and it will be closed under modus ponens, uniform substitution, and the mono-
tonicity rule

⊢ p→ q

⊢ 2p→ 2q
(M).

We call this basic system GP0, which we will augment with further axioms
(depending on n) in the following sections.

Lemma 4.1 Let (B,3) be a Boolean algebra with a monotone operation sat-
isfying 3⊥ = ⊥. Let u be an ultrafitler on B and let

Zu = {a ∈ B | ∀b ∈ B(3(a ∨ b) ∈ u⇒ 3b ∈ u)}.

Then Zu is an ideal on B such that 3a ∈ u implies that a /∈ Zu.

Proof. Clearly 3(c ∨ ⊥) = 3(c) so ⊥ ∈ Zu. Assume that b ∈ Zu and a ≤ b.
Then if 3(c∨a) ∈ u, by monotonicity it follows that 3(c∨b) ∈ u, which implies
3c ∈ u, so a ∈ Zu. Finally assume that a, b ∈ Zu, and 3(c ∨ (a ∨ b)) ∈ u.
Then since a ∈ Zu, it follows that 3(c∨ b) ∈ u and since b ∈ Zu it follows that
3c ∈ u. Finally, assume that 3a ∈ u. Then 3⊥ /∈ u, while 3(a ∨ ⊥) ∈ u.
Hence a /∈ Zu. 2

Remark 4.2 Notice that Zu = {a ∈ B | ∀b ∈ B (3b
1a /∈ u)}.

4.1 Case n=2

The system GP2 is obtained by adding the following axiom-schema to GP0:

(G2) [3q1
1 (α1) ∧3

q2
1 (α2)] → 3(α1 ∨ α2);

where, as discussed in Section 2, α1 and α2 contradict each other. This axiom
intuitively states if w has at least one successor satisfying α1 (witnessed using
q1) and at least one successor satisfying α2 (witnessed using q2), then w has
at least two successors satisfying α1 ∨ α2. It is easy to check, also given this
explanation, that G2 is sound.

Completeness. To show completeness we will construct a canonical model
using, as usual, the ultrafilters of the free Boolean algebra generated by the
axiomatic system. Let B be a Boolean algebra with a monotone operation
satisfying the axioms and rules of GP2. Let u be an ultrafilter on B. Let us
define eu : B → {0, 1, 2} as follows:

eu(a) =


2 if 3a ∈ u,

1 if 3a /∈ u and (∃b ∈ B)(3b /∈ u and 3(a ∨ b) ∈ u),

0 otherwise.

Intuitively, this function roughly represents the number of permissible succes-
sors of u satisfying the statement a. Indeed, if 3a ∈ u, u must have at least 2
successors satisfying a, while if eu(a) = 1, u must have exactly one successor
satisfying a. In particular notice that eu(a) = 1, if 3a /∈ u and 3b

1a ∈ u, for
some b ∈ B.
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Corollary 4.3 The set Zu = {a ∈ B | eu(a) = 0} is an ideal.

Proof. Follows immediately from Lemma 4.1 and the definition of eu. 2

In the remainder of the paper, we write n to denote the set {1, 2, . . . , n}
given any natural number n.

Definition 4.4 Let B be the free Boolean algebra generated by the axiomatic
system above. The canonical frame of GP2 is the Kripke frame XB = (U(B)×
2, R), where U(B) denotes the collection of ultrafilters on B, and R is such that
for any u,w ∈ U(B), and i, j ∈ 2,

(u, j)R(w, i) iff e(w, u) ≥ i,

where e(w, u) = min{eu(a) | a ∈ w}. The canonical model of GP2 is the Kripke
model MB = (XB, v) such that, for any u ∈ U(B) and p ∈ AtProp,

(u, i) ∈ v(p) iff p ∈ u.

Lemma 4.5 (Truth lemma for GP2) For any Φ-formula φ, u ∈ U(B), and
i ∈ 2,

MB, (u, i) ⊨2 φ iff φ ∈ u.

Proof. We proceed by induction on the complexity of φ. All the cases are
trivial, except the one in which φ = 3ψ for some ψ ∈ Φ.

Assume that MB, (u, i) ⊨2 3ψ. Then, there exist (w, j), (r, k) ∈ U(B) × 2
such that (u, i)R(w, j), (u, i)R(r, k), and ψ ∈ w∩r by the induction hypothesis.
Consider two cases:

If w = r, then we can assume without loss of generality that j = 1 and
k = 2. So e(w, u) ≥ 2, and therefore for all a ∈ w, eu(a) = 2 holds; hence
eu(ψ) = 2, i.e., 3ψ ∈ u.

Now suppose that w ̸= r and e(w, u) = e(r, u) = 1, as otherwise, if e(w, u) =
2 or e(r, u) = 2, we proceed as above. Since w ̸= r, there is some θ ∈ w \ r,
and therefore ¬θ ∈ r \ w. Since e(w, u) = e(r, u) = 1, we can assume without
loss of generality that eu(ψ ∧ θ) = eu(ψ ∧ ¬θ) = 1. By definition of eu, there
are a and b such that

¬3a, ¬3b, 3((ψ ∧ θ) ∨ a), 3((ψ ∧ ¬θ) ∨ b) ∈ u.

Hence by (G2) and modus ponens 3((ψ ∧ θ) ∨ (ψ ∧ ¬θ)) ∈ u, i.e., 3ψ ∈ u.
For the converse direction assume that 3ψ ∈ u. If there is an ultrafilter w

such that e(w, u) = 2 and ψ ∈ w, then we are done since both (w, 1) and (w, 2)
are R-successors of (u, i). Suppose that there is no such ultrafilter. Since, Zu
is an ideal by Corollary 4.3, and ψ /∈ Zu since eu(ψ) = 2, by the prime ideal
theorem (PIT), there exists some ultrafilter w such that ψ ∈ w and w∩Zu = ∅;
thus (u, i)R(w, 1) as e(w, u) ≥ 1. Having ruled out ultrafilters containing ψ and
such that e(w, u) = 2, it must be e(w, u) = 1. Therefore, there exists some
ζ ∈ w such that eu(ζ) = 1, implying eu(ψ ∧ ζ) = 1, so 3(ψ ∧ ζ) /∈ u. By
hypothesis 3ψ ∈ u, thus eu(ψ ∧ ¬ζ) ≥ 1. Using PIT again, there exists some



650 Graded modal logic with a single modality

ultrafilter w′ such that ψ ∧ ¬ζ ∈ w′ and w′ ∩ Zu = ∅; hence (u, i)R(w′, 1)
as eu(w, u) ≥ 1. Since ψ ∈ w ∩ w′ and ψ ∧ ¬ζ /∈ w, it follows that w ̸= w′.
Therefore, MB, (u, i) ⊨2 φ holds. This concludes the proof. 2

From the lemma above, using the standard argument, the following theorem
holds.

Theorem 4.6 The system GP2 is strongly complete with respect to the logic
L2.

4.2 Case n=3

The system GP3 is obtained by adding the following axiom-schemata to GP0:
(G31) [3q1

1 (α1) ∧3
q2
1 (α2) ∧3

q3
1 (α3)] → 3(α1 ∨ α2 ∨ α3),

(G32) [3q1
1 (α2) ∧3

q2
1 (β2) ∧3(α1 ∨ β1) ∧ ¬3(α1 ∨ α2)] → 3(β1 ∨ β2);

where, as discussed in Section 2, the αi contradict each other, and likewise
the βi. The axiom (G31) states that if w has at least one successor satisfying
each of α1, α2 and α3, then w must satisfy 3(α1 ∨ α2 ∨ α3). The axiom (G32)
intuitively expresses the idea that if w has at most one successor satisfying
α1 (which is captured by the fact that w doesn’t satisfy 3(α1 ∨ β1)), while
satisfying 3(α1 ∨ β1), then w must have at least 2 successors satisfying β1. It
is routine to verify the soundness of these axioms.

Completeness. Let B be a Boolean algebra with a monotone operation sat-
isfying the axioms of GP3. Let u be an ultrafilter on B. Let us define
eu : B → {0, 1, 2, 3} as follows:

eu(a) =



3 if 3a ∈ u,

2 if eu(a) ̸= 3 and (∀b, c ∈ B)
(
3c /∈ u and 3(b ∨ c) ∈ u,

a ∧ b = ⊥ =⇒ 3(a ∨ b) ∈ u
)

1 if eu(a) /∈ {3, 2} and (∃b ∈ B)(3b /∈ u and 3(a ∨ b) ∈ u),

0 otherwise.

Notice that we can write the condition for 2 as

∀b, c ∈ B ((3c
1b ∈ u and a ∧ b = ⊥) ⇒ 3(a ∨ b) ∈ u).

Corollary 4.7 The set Zu = {a ∈ B | eu(a) = 0} is an ideal.

Proof. Follows immediately from Lemma 4.1 and the definition of eu. 2

Definition 4.8 Let B be the free Boolean algebra of GP3. The canonical
frame of GP3 is the Kripke frame XB = (U(B) × 3, R), where U(B) denotes
the collection of ultrafilters of B, and R is such that for any u,w ∈ U(B), and
i, j ∈ 3,

(u, j)R(w, i) iff e(w, u) ≥ i,

where e(w, u) = min{eu(a) | a ∈ w}. The canonical model of GP3 is the Kripke
model MB = (XB, v) such that, for any u ∈ U(V) and p ∈ AtProp,

u ∈ v(p) iff p ∈ u.
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Lemma 4.9 (Truth lemma for GP3) For any Φ-formula φ, u ∈ U(B), and
i ∈ 3:

MB, (u, i) ⊨3 φ iff φ ∈ u.

Proof. We proceed by induction on the complexity of φ. The only non-trivial
case is when φ = 3ψ for some ψ ∈ Φ.

AssumeMB, (u, i) ⊨3 φ. Then there are (w1, j1), (w2, j2), (w3, j3) ∈ U(B)×3
such that (u, i)R(w1, j1), (u, i)R(w2, j2), (u, i)R(w3, j3), and ψ ∈ w1 ∩w2 ∩w3.
Without loss of generality, we assume j1 ≤ j2 ≤ j3. There are three possible
cases:

(1) w1 = w2 = w3 and j1 = 1, j2 = 2, and j3 = 3. In this case, e(w, u) = 3,
thus eu(ψ) = 3, i.e., φ = 3ψ ∈ u.

(2) w1 ̸= w2 = w3, j1 = j2 = 1, and j3 = 2. In this case, there is θ ∈ w1 \ w2,
hence ¬θ ∈ w2 \ w1. If eu(ψ ∧ θ) = 3, then by monotonicity eu(3ψ) = 3
and we proceed as the case above. So let us suppose that eu(ψ ∧ θ) = 2.
Since ¬θ ∈ w2, it must be that eu(ψ ∧ ¬θ) ≥ 1, i.e. 3b

1(ψ ∧ ¬θ) ∈ u. By
the definition of eu(·), since eu(ψ ∧ θ) = 2 it follows that if 3b

1c ∈ u, then
3((ψ ∧ θ) ∨ c) ∈ u. Hence, 3((ψ ∧ θ) ∨ (ψ ∧ ¬θ)) ∈ u, i.e. 3ψ ∈ u.

(3) w1 ̸= w2 ̸= w3 ̸= w1, and j1 = j2 = j3 = 1. Clearly, there are

θ1 ∈ w1 \ (w2 ∪ w3), θ2 ∈ w2 \ (w1 ∪ w3), θ3 ∈ w3 \ (w1 ∪ w2),

such that eu(θ1) = eu(θ2) = eu(θ3) = 1, and θ1, θ2, θ3 ≤ ψ 2 , which are
w.l.o.g. contradictory. By the definition of eu(·), there are ζ1, ζ2, ζ3 such
that

¬3ζ1, ¬3ζ2, ¬3ζ3,
3(θ1 ∨ ζ1) ∈ u, 3(θ2 ∨ ζ2) ∈ u, 3(θ3 ∨ ζ3) ∈ u.

By axiom (G31) and modus ponens, 3(θ1∨ θ2∨ θ3) ∈ u. By monotonicity
of 3 (axiom (M)), as θ1 ∨ θ2 ∨ θ3 ≤ ψ, then 3ψ ∈ u.

For the converse direction, assume 3ψ ∈ u. There are three possible cases:

(1) There is an ultrafilter w such that e(w, u) = 3 and ψ ∈ w. In this case we
are done since (w, 1), (w, 2), and (w, 3) are (distinct) successors of (u, i)
(for any i ∈ 3), i.e. MB, (u, i) ⊨3 3ψ.

(2) There is an ultrafilter w such that e(w, u) = 2 and ψ ∈ w. Since e(w, u) =
2, there is θ ∈ w such that eu(θ) = 2; hence eu(ψ ∧ θ) = 2 and, since
3ψ ∈ u, eu(ψ ∧ ¬θ) ≥ 1. By the prime ideal theorem, there exists an
ultrafilter w′ such that ψ ∧ ¬θ ∈ w′ and w′ ∩ Zu = ∅, i.e. e(w′, u) ≥ 1,
and thus (u, 1)R(w′, 1). Since e(w, u) = 2, we have that (u, 1)R(w, 1) and
(u, 1)R(w, 2). Because ψ ∧ θ ∈ w, w ̸= w′. Hence there are at least three
different successors of (u, i) that satisfy ψ, i.e. MB, (u, i) ⊨3 3ψ.

2 In general, given two distinct filters f1 and f2 of some lattice L, and an element x ∈ f1∩f2,
there is an element y ∈ f1 \ f2 such that y ≤ x. Indeed, without loss of generality, there is
z ∈ f1 \ f2. As f1 is a filter, y := x ∧ z ∈ f1. Clearly y ≤ x, and y /∈ f2, as otherwise also x
would be in f2.
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(3) Every ultrafilter w that contains ψ is such that e(w, u) ≤ 1. By the
PIT, there is some ultrafilter w1 such that ψ ∈ w1 and w1 ∩ Zu = ∅ (as
eu(ψ) = 3), hence e(w1, u) = 1, yielding (u, i)R(w1, 1). It follows that
there exists θ ∈ w such that eu(θ) = 1, and so e(ψ ∧ θ) = 1. Therefore,
there are b and c such that 3c

1b ∈ u, (ψ∧θ)∧b = ⊥, and 3((ψ∧θ)∨b) /∈ u.
Hence ¬3((ψ ∧ θ) ∨ b) ∈ u, and hence, by axiom (G32), for any 3e

1d ∈ u,
with d∧ψ∧¬θ = ⊥, it follows that 3(ψ∧¬θ∨d) ∈ u, i.e. eu(ψ∧¬θ) ≥ 2.
Hence there exists ζ such that eu(ψ ∧ ¬θ ∧ ζ) = 1 and an ultrafilter w2,
such that ψ ∧ ¬θ ∧ ζ ∈ w2 and w2 ∩ Zu = ∅, i.e. (u, i)R(w2, 1). Now, if
3((ψ∧ θ)∨(ψ∧¬θ∧ζ)) ∈ u, axiom (G32) implies (arguing as above) that
eu(ψ∧¬θ∧ζ)) ≥ 2, a contradiction. Hence ¬3((ψ∧ θ)∨ (ψ∧¬θ∧ζ)) ∈ u
and, as 3ψ ∈ u, it follows that eu(ψ ∧ ¬θ ∧ ¬ζ) ≥ 1. By the PIT there
is an ultrafilter w3 containing ψ ∧ ¬θ ∧ ¬ζ and such that w2 ∩ Zu = ∅,
i.e. (u, i)R(w3, 1). Clearly w1, w2, w3 are all distinct and hence we have
MB, (u, i) ⊨3 3ψ.

This concludes the proof. 2

From Lemma 4.9, using the standard argument, the following theorem
holds.

Theorem 4.10 The system GP3 is strongly complete with respect to the logic
L3.

4.3 General case

Through the remainder of this section we will fix a natural number n and its
corresponding logic Ln. For the general case, we will not provide an explicit
axiomatization but connect axioms with inequalities of positive natural num-
bers.

The logic. We intend to introduce axioms that encode, in the same way as
the axioms of GP2 and GP3 did, several implications regarding inequalities
of natural numbers. In particular, we want to express for each mi,mj ≤ n,

I = {1, 2, . . . ,mi}, J = {1, . . . ,mj}, and positive natural numbers xji ∈ N
(with i ∈ I and j ∈ J),∧

j∈J
(
∑
i∈I

xji < n) →
∨

k∈K⊂J

(
∑

h∈H⊂I

xkh < n). (2)

Clearly, as there can be just a finite number of sets I and J since their size
is bounded, there is a finite amount of such implications, and each implication
has a finite number of inequalities on both sides.

Definition 4.11 Let GPn ⊆ Φ be the collection of Φ-formulas that contains
GP0 and for each true implication as in (2), an axiom3

qji
1 (αji ) ∧

∧
j∈J

¬3
∨
i∈I

αji

→
∨

k∈K⊂J

¬3
∨

h∈H⊂I

αkh.



Panettiere and Tzimoulis 653

As discussed above, the number of possible such inequalities is finite and
hence also the axiomatization proposed here is finite. Furthermore, knowing
whether the implication of inequalities is true or not is a decidable procedure:
these are statements in Presburger arithmetic which is a decidable theory.

Completeness. Let B be a Boolean algebra with a monotone operation sat-
isfying the axioms of GPn. Let u be an ultrafilter on B. Similar to the previous
cases, we want to define a function eu : B → N which satisfies the following
conditions for every φ ∈ Φ:

(i) eu(φ) ≥ n if 3(φ) ∈ u,

(ii) eu(φ) < n if 3(φ) /∈ u,

(iii) eu(φ) + eu(ψ) = eu(φ ∧ ψ) + eu(φ ∨ ψ), for every ψ ∈ Φ,

(iv) eu(φ) = 0 whenever for every ψ ∈ Φ, 3(ψ ∨ φ) → 3(ψ) ∈ u.

Lemma 4.12 Such an eu exists for each ultrafilter u ∈ U(B).
Proof. These restrictions on eu define a system of equations, ∆, that has a
solution if and only if ∆ ∪ P is satisfiable, where P is the set of the axioms of
Presburger arithmetic. This set, in turn, is satisfiable if and only if every finite
subset Y ⊆ ∆ ∪ P of it is satisfiable, by the compactness of first-order logic.
Finally Y is satisfiable if and only if X = Y ∩∆ has a solution. Hence, let Z
be a finite subset of ∆. The system Z contains as parameters formulas of Φ.
Let’s call the set of these formulas ΦZ We will strengthen the system Z, by
adding extra condition: We stipulate that for φ ∈ ΦZ , eu(φ) = 0 whenever for
every ψ ∈ ΦZ , 3(ψ ∨ φ) → 3(ψ) ∈ u. Let’s call this new system X. Notice
that ΦZ = ΦX . Clearly if X has a solution, so does Z. So let’s show that X
has a solution.

Let BX be the finite Boolean algebra generated by ΦX . Since BX is finite, it
is routine to verify that the subsystemX has a solution if and only if there exists
an assignment s : A→ N on the atoms A of BX such that

∑
a∈C⊆A s(a) ≥ n if

and only if 3(
∨
a∈C⊆A a) ∈ u for every C ⊆ A.

First notice that, by monotonicity of 3, for every a1, . . . , am,

eu(

m∨
i=1

ai) = 0 iff (∀i ∈ m)s(ai) = 0.

Indeed, for φ ∈ ΦX if 3(ai ∨ φ) ∈ u then 3(
∨m
i=1 ai ∨ φ) ∈ u; therefore

3φ ∈ u. For the other direction assume that 3((a1 ∨ · · · ∨ am) ∨ φ) ∈ u.
Then 3(a2 ∨ · · · ∨ am ∨φ) ∈ u. Continuing recursively on m, we conclude that
3φ ∈ u.

Now let us show that such an s exists. If no such s exists, then this is a
true statement about inequalities∧

j∈J
(
∑
i∈I

xji < n) →
∨

k∈K⊂J

(
∑

h∈H⊂I

xkh < n),

where J corresponds to the set of inequalities in X of the form eu(φ) < n and
K to the set of inequalities in X of the form eu(φ) ≥ n. But then GPn contains
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an axiom of the form3
qji
1 (αji ) ∧

∧
j∈J

¬3
∨
i∈I

αji

→
∨

k∈K⊂J

¬3
∨

h∈H⊂I

αkh.

This is a contradiction, since by definition on the conditions of eu
¬3(

∨
i∈I α

j
i ) ∈ u and 3(

∨
h∈H α

k
h) ∈ u for every k ∈ K. Therefore s exists,

and so eu also exists. 2

By Lemma 4.12, for each ultrafilter u, there is some map eu : B → N
satisfying the conditions above. By the axiom of choice, we choose one of such
eu for every ultrafilter and define

e(w, u) = min{eu(a) | a ∈ w}.

Notice that for each eu, also the inverse of condition (iii) holds: that is if there
exists ψ such that 3(φ ∨ ψ) ∈ u and 3(ψ) /∈ u, then eu(φ ∨ ψ) ≥ n, while
eu(ψ) < n. So

s(φ) = s(φ ∨ ψ)− s(ψ) + s(φ ∧ ψ) > 0.

Corollary 4.13 The set Zu = {a ∈ B | eu(a) = 0} is an ideal.

Proof. Immediately by Lemma 4.1. 2

Definition 4.14 Let B be the free Boolean algebra of GPn. The canonical
frame of GPn is the Kripke frame XB = (U(B) × n, R), where U(B) denotes
the collection of ultrafilters of B, and R is such that for any u,w ∈ U(B), and
i, j ∈ n,

(u, j)R(w, i) iff e(w, u) ≥ i.

The canonical model of GPn is the Kripke model MB = (XB, v) such that, for
any u ∈ U(V) and p ∈ AtProp,

u ∈ v(p) iff p ∈ u.

Lemma 4.15 (Truth lemma for GPn) For any Φ-formula φ, u ∈ U(B),
and j ∈ n,

MB, (u, j) ⊨n φ iff φ ∈ u.

Proof. We prove the statement by induction on the complexity of φ. We check
only the case φ = 3ψ for some ϕ ∈ Φ, the other cases being trivial.

Assume that M, (u, j) ⊨n 3ψ. Then there exist k different ultrafilters
w1, . . . , wk ∈ U(B), and m1, . . . ,mk ∈ n such that m1 + · · · + mk ≥ n and
(u, j)R(wi,mi) and such that M, (wi,mi) ⊨n ψ, and so ψ ∈ wi for each i ∈ k
by the induction hypothesis. Since all the wi are distinct ultrafilters, there
exist θ1, . . . , θk ∈ B such that for all i ∈ {1, . . . , k},

θi ∈ wi and ¬θj ∈ wi for all j ∈ {1, . . . , k} \ {i}.
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Without loss of generality we can assume θ1, . . . , θk are mutually disjoint 3

and by the argument in Footnote 2, we can also assume that θ1, . . . , θk ≤ ψ.
For each i, eu(ψ ∧ θi) ≥ mi since eu(wi, u) ≥ mi. Hence,

eu(ψ) = eu(ψ ∧ (θ1 ∨ · · · ∨ θk)) ≥
∑

1≤i≤k

mi ≥ n.

By the conditions that eu satisfies, it follows that 3ψ ∈ u.
For the other direction, assume that 3ψ ∈ u, and so eu(ψ) ≥ n. We

will recursively define a sequence of distinct ultrafilters w1, . . . , wk, such that
0 < e(wi, u) = mi, m1 + · · · + mk ≥ n, and ψ ∈ wi for all i. For the base
case, by the PIT, there exists an ultrafilter w1 disjoint from Zu such that
ψ ∈ w1. Since it’s disjoint from Zu, e(w1, u) > 0. Assume now that we
already have ℓ distinct ultrafilters w1, . . . , wℓ and m1 + · · ·+mℓ < n such that
ψ ∈

⋂ℓ
i=1 wi, and such that m1, . . . ,mℓ > 0. Since the ultrafilters are distinct

we have that there exist mutually disjoint θi ∈ wi for 1 ≤ i ≤ ℓ, such that
¬θi ∈ w1, . . . , wi−1, wi+1, . . . , wℓ, θi ≤ ψ and eu(ψ ∧ θi) = mi. Then,

ℓ∑
1=1

eu(ψ ∧ θi) = m1 + · · ·+mℓ < n,

Hence, since θ1, . . . , θℓ are mutually disjoint,

eu(ψ) = eu

(
(ψ ∧

∨ℓ
i=1 θi) ∨ (ψ ∧ ¬

∨ℓ
i=1 θi)

)
B Boolean

= eu

(∨ℓ
i=1(ψ ∧ θi) ∨ (ψ ∧ ¬

∨ℓ
i=1 θi)

)
B distributive

= eu

(∨ℓ
i=1(ψ ∧ θi)

)
+ eu

(
ψ ∧ ¬

∨ℓ
i=1 θi

)
property of eu

=
∑ℓ

1=1 eu(ψ ∧ θi) + eu

(
ψ ∧ ¬

∨ℓ
i=1 θi

)
θ1, . . . , θℓ disjoint

=
∑ℓ

1=1mi + eu

(
ψ ∧ ¬

∨ℓ
i=1 θi

)
definition of mi

iff eu

(
ψ ∧ ¬

∨ℓ
i=1 θi

)
= eu(ψ)−

∑ℓ
1=1mi

implies eu

(
ψ ∧ ¬

∨ℓ
i=1 θi

)
≥ n−

∑ℓ
1=1mi 3ψ ∈ u

implies eu

(
ψ ∧ ¬

∨ℓ
i=1 θi

)
> 0

∑ℓ
1=1mi < n

Thus, by the PIT, there exists some ultrafilter, wℓ+1 that contains ψ ∧ ¬(θ1 ∨
· · · ∨ θℓ) (and so distinct from w1, . . . , wℓ) that is disjoint from Zu, and hence
e(wℓ+1, u) > 0.

Finally, given that this process will terminate after a finite number of
steps we will obtain a sequence of distinct ultrafilters w1, . . . , wk such that

3 From any θ1, . . . θk such as the ones above, one could consider for each i,

θ′i := θi ∧
∧
j ̸=i

¬θj ∈ wi.

Clearly, for each i, j ∈ {1, . . . , k}, θ′i ∧ θ′j = ⊥ whenever i ̸= j.
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0 < e(wi, u) = mi, m1 + · · · + mk ≥ n, and ψ ∈ wi for all i. Therefore
(u, j)R(wi, ki), for ki ≤ mi, i.e. M, (u, j) ⊨n 3ψ. 2

The following theorem follows from Lemma 4.15 using standard complete-
ness arguments.

Theorem 4.16 (AC) The system GPn is strongly complete with respect to
the logic Ln.

5 Conclusions

Contributions. In this article we studied the family of the monotonic modal
logics Ln for any n ≥ 2, each with a single modality which is interpreted
semantically as a graded modality 3n. We observed that all these logics are
decidable and have the strong finite model property. We compared these logics
with each other showing that, if m−n is small, the logics Ln and Lm might be
incomparable, while if m−n is large enough, then Lm ⊊ Ln. We also provided
concrete complete axiomatizations for L2 and L3, and we showed that each Ln
for n ≥ 4 is finitely axiomatizable, by showing that each axiom corresponds to
a “rule” in a finite set.

The maps eu. The construction of the canonical model for classical graded
modal logic (see e.g. [7]) pivots on the map e : U(B) × U(B) → n (which we
also used in Definition 4.14). However, thanks to the fact that the language
of graded modal logic is much more expressive, in [7], the map eu can be
obtained immediately as eu(φ) = sup{k ∈ N | 3kφ ∈ u}, for every formula
φ ∈ ΦG. In the case of Ln, since the language is restricted, defining the map
eu becomes much more intricate and complicated. We showed that, if n = 2
or n = 3, the language is expressive enough to define eu in a unique and
uniform way. However, this is no longer possible already for n = 4. To see this,
consider the frame ({u} ⊔ 4, u × 4), and the valuation v(p) = {1}, v(q) = {2}
and v(r) = {3, 4}. Then under any permutation of {p, q, r}, the theory of u
remains unchanged, meaning that u cannot “tell apart” p, q, r. If a uniform
way of defining eu existed, then eu(p) = eu(q) = eu(r), but this is impossible,
since exactly one of them needs value 2, and the other two should have value
1. Therefore, when defining eu for n ≥ 4, arbitrary choices need to be made.

Future directions. Even though, as discussed above, some steps towards
complete axiomatization for Ln for n ≥ 4 were taken, the question of identifying
concrete axiomatic systems for Ln remains open. From the discussion in the
paragraph above, it is clear that such axiomatizations need to be more complex
than the ones presented for n = 2 and n = 3.

Acknowledgements. We would like to thank Hans van Ditmarsch, for raising
this very interesting question on the theory of the logics Ln, and for further
fruitful exchanges on this topic.
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