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Abstract

We study the proof theory of C.I. Lewis’ logics of strict conditional S1-S5 and we
propose the first modular and uniform presentation of C.I. Lewis’ systems. In partic-
ular, for each logic Sn we present a labelled sequent calculus G3Sn and we discuss
its structural properties: every rule is height-preserving invertible and the structural
rules of weakening, contraction and cut are admissible. Completeness of G3Sn is es-
tablished both indirectly via the embedding in the axiomatic system Sn and directly
via the extraction of a countermodel out of a failed proof search. Finally, the sequent
calculus G3S1 is employed to obtain a syntactic proof of decidability of S1.

Keywords: Strict implication, non-normal modalities, S1, sequent calculi cut
elimination.

1 Introduction
Clarence Irving Lewis proposed the first axiomatic systems of propositional
modal logic [7,8]. In particular, due to his dissatisfaction towards the material
conception of classical implication, he devised a new logical operator, namely
strict implication (J). He introduced five systems from S1 to S5 [8]. The
modal logics S4 and S5 have been intensively studied, whereas S2, S3 and,
above all, S1 did not receive much attention.

It can be argued that this depended on the fact that the latter are non-
normal modal logics, as the rule of necessitation does not hold unrestrictedly.
The semantics of the systems S2 and S3 was obtained via a slight modification
of the standard Kripke semantics, by considering models with non-normal (or
queer) worlds [6].
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On the contrary, Cresswell [3] proposed a semantics for S1 which combines
features of neighborhood and relational models. 3 Due to the rather complex
formulation of the semantics S1 was long considered as an uninteresting system,
but see [2]. In our opinion, this position is not justified, insofar as the system
exhibits some interesting metalogical properties. In particular, the system is
decidable and the modal operator defined from the strict implication has some
hyperintensional features: unrestricted substitution of materially equivalent
formulas does not hold, cf. [1,5,12].

In the present work we shall focus on the proof theory of these systems.
In a previous paper by one of the two authors labelled sequent calculi were
introduced for the logics S2, S3 and some related systems [14]. However, a
modular and uniform treatment is still lacking, due to the impossibility to
encompass the system S1.

We propose the first modular and analytic approach to the proof theory of
the original systems by C. I. Lewis (related systems are omitted for brevity).
As in the tradition of labelled systems, sequent calculi are obtained by con-
verting the truth conditions for the logical operators in corresponding rules.
The rules introduced in Table 1 for J correspond more directly to a simpli-
fication of Cresswell’s semantics where the neighborhood function is replaced
by a bi-neighborhood as it is done in [4] for non-normal modal logics. In bi-
neighborhood semantics worlds are mapped to pairs of disjoint sets of worlds,
providing ‘independent positive and negative evidence (or support) for a propo-
sition’ [4, p. 161]. Neverthteless, this paper sticks to Cresswell’s semantics for
simplicity.

The calculi satisfy good structural properties, namely admissibility of the
rules of weakening, contraction and cut, as well as invertibility of all rules.

Completeness is first established by showing the embedding of Lewis’ ax-
iomatic calculi into the corresponding labelled sequent calculi. The admissibil-
ity of the rule of substitution of strict equivalents requires to prove a non trivial
lemma, see Lemma 4.9. We then establish a more direct form of completeness
via the extraction of a countermodel out of a failed proof search and we discuss
the relation between the S1 neighborhood semantics and the bi-neighborhood
framework.

Our proof-theoretic approach enables us to investigate the system S1 by
purely syntactic means which are uniform with respect to the ones traditionally
employed for S2 − S5. In particular, we exploit the calculus G3S1 to obtain
the first purely syntactic proof of decidability of the logic S1 via terminating
proof search. The decidability of the system S1 had already been established
by semantic means. In particular, the proof used the filtration method to prove
the finite model property, see [2,3]. We are not aware of a syntactic proof of
decidability for S1. This depends on the fact that axiomatic presentations are
not amenable to proof search due to their substantial lack of analyticity.

3 A semantics for S1 based on Rantala models has been given in [15], and a relational
semantics has been given in [13].
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The structure of the paper is as follows. Section 2 recalls the logics S1 − S5.
Then, Section 3 introduces the labelled calculi G3S1 − G3S5 and Section 4
studies their structural properties. Section 5 gives a direct and modular proof
of completeness for G3Sn. Finally Section 6 proves the decidability of G3S1.

2 Logics of strict implication
Language
The language of strict implications is defined by the following grammar:

A ::= p | ⊥ | A ∧ A | A ∨ A | A ⊃ A | A J A (LJ)

where p ∈ P for a denumerable set of sentential variables P.
Parentheses are used as customary (J binds lighter than other operators).

Capital roman letters will be used for arbitrary formulas and lower-case ones
for sentential variables. We use ≡ to denote syntactic identity. The symbol ⊤
is short for ⊥ ⊃ ⊥ and ¬A is short for A ⊃ ⊥. The unary modalities 2 and 3

can be defined as: 2A ≡ ⊤ J A and 3A ≡ ¬(⊤ J ¬A)
We use L2 to denote the standard modal language—i.e., LJ with 2 and 3 in
place of J. The formula A J B can be defined in L2 either as 2(A ⊃ B) or
as ¬3(A ∧ ¬B). Observe that languages LJ and language L2 are not minimal
since we have the usual classical and modal interdefinabilities—e.g., C.I. Lewis
[8] considered a language with only ¬, ∧ and 3 as primitives.

We will use A[B//C] for the formula obtained from A by replacing some
occurrences of C with occurrences of B.
Axiomatic systems
We present here C.I. Lewis [8] axiomatisation of the logics S1−S5. As already
anticipated Lewis considered a language with only ¬, ∧ and 3 as primitives.
For simplicity we assume to have the definition of the other symbols as implicit
axioms. We simplify Lewis’ axiomatisations by dropping the redundant axiom
A J ¬¬A—see [9]—and by considering axiom schemes instead of having as
primitive a rule of uniform substitution of material equivalents.

Definition 2.1 [Lewis’ axiomatisation of S1]
• Axioms:
(i) (A ∧ B) J (B ∧ A)
(ii) (A ∧ B) J A
(iii) A J (A ∧ A)
(iv) ((A ∧ B) ∧ C) J (A ∧ (B ∧ C))
(v) ((A J B) ∧ (B J C)) J (A J C)
(vi) (A ∧ (A J B)) J B

• Rules:

(i)
A (B J C) ∧ (C J B)

A[B//C] SSE

(ii)
A B
A ∧ B

Adj

(iii)
A J B A

B
MPJ

Definition 2.2 [Axiomatisation of S2–S5] S2 = S1 ⊕ 3(A ∧ B) J 3A; S3 =
S2 ⊕ (A J B) J (2A J 2B); S4 = S1 ⊕ 2A J 22A; S5 = S4 ⊕ A J 23A.
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Semantics
As it is well-known, standard relational semantics can be used for the normal
conditional logics S4 and S5. A modification thereof has been used by Kripke
[6] to give a semantics for the non-normal conditional logics S2 and S3: we must
add so-called queer (or non-normal) worlds where 3A is always true and 2A
is always false. Finally, a semantics for S1 has been introduced by Cresswell in
[3] and generalised to logics weaker than S1 in [2]. This semantics is interesting
because it needs both an accessibility relation and a neighborhood functions to
define strict implication (as well as 2 and 3): the accessibility relation is used
in normal worlds and the neighborhood function is used in queer ones.

Formally an S1-frame is quadruple F = ⟨W, N , R, I⟩ where: (i) W is a non-
empty set of worlds; (ii) N is a subset of W, of so-called normal worlds (worlds
in W \N will be called queer worlds); (iii) R ⊆ W ×W is a reflexive accessibility
relation on W; (iv) I : W −→ P(P(W)) is a neighborhood functions mapping
worlds to sets of sets of worlds with the side conditions that if α ∈ I(w) then
w ∈ α—i.e., I is reflexive— and that if X, Y ∈ I(w) then X ∪ Y ̸= W.

By adding conditions on N , R, and I we can define a class of frames for
the other Lewis’ systems. In particular: (i) an S2-frame is an S1-frame where
I is such that it maps each world to ∅; (ii) an S3-frame is a transitive S2-
frame—i.e., if wRv and vRu then wRu; (iii) an S4-frame is an S3-frame
where N = W; (iv) an S5-frame is a symmetric S4-frame—i.e., if wRv then
vRw. Some observations are in order. S2-frames can be equivalently defined
by simply dropping I from S1 fames, thus obtaining Kripke semantics for non-
normal logics [6]. S4 can be defined by dropping N and I from S1-frames,
thus obtaining standard relational semantics for normal modalities.

A model M is a frame augmented with a valuation function
V : W −→ P(W) mapping each sentential variable to the set of worlds where it
holds. We say that M is an Sn-model if its underlying frame is an Sn-frame.

We are now ready to define truth of a formula A at a world w of a model M,
|=M

w A or simply |=w A when M is clear from the context. The definition is
standard for sentential variables and for the extensional operators—e.g., |=w p
iff w ∈ V(p) and |=w A ∧ B iff |=w A and |=w B. The only interesting case is
that of strict implication where we have:

|=w A J B iff
{

∀v ∈ W, wRv and |=v A imply |=v B, if w ∈ N
JA ⊃ BKM ∈ I(w), else

where JAKM is the truth set of A in M: JAKM = {w : |=M
w A}. Equivalently,

we have that |=w A J B for w ∈ W \ N iff ∃α ∈ I(w) such that, for all v ∈ W,
(̸|=v A or |=v B) if and only if v ∈ α.

We now introduce two abbreviations. α ⊩ B expresses ∀u(u ∈ α ⇒ |=u B)
—i.e., every world in α satisfies the formula B. α ◁ B is the covering relation
which asserts ∀u(|=u B ⇒ u ∈ α)—i.e., every world which satisfies B is in α.
The latter can also be equivalently formulated as ∀u¬(u /∈ α & |=u B). The
expression JA ⊃ BKM ∈ I(w) can be rewritten as:

∃α ∈ I(w)(α ⊩ A ⊃ B & α ◁ A ⊃ B)
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Observe that for S2- and S3-models the clause for queer worlds says that
A J B cannot be true therein, and for S4- and S5-models it can be dropped.

A formula A is said to be: (i) True in a model M, |=M A, if it true in
every normal point of that model; (ii) Sn-valid, Sn |= A, if it is true in all
Sn-models; (iii) An Sn-consequence of a set of formulas X, X |=Sn A, if A is
true in all normal world of each Sn-model where all formulas in X are true.
Theorem 2.3 (Characterisation, [3]) The axiomatic calculus Sn is sound
and compete for validity w.r.t. the class of all Sn-frames.

3 Labelled sequent calculi
We are now going to introduce labelled sequent calculi for the logics of strict
implication S1-S5. Labelled calculi for normal modal logics have been intro-
duced in [10] and for the non-normal ones in [4,11]. Labelled calculi for the
non-normal logics S2 and S3, as well as for some of their extensions, based on
the language L2 have been studied in [14]. Here we consider also S1 and we
work with a language with J instead of 2 as primitive.

To define the language of sequent calculi we consider two denumerable sets
of labels: a set W of world labels, for which we use the metavariables w, v, u, . . . ,
and a set I of neighbours label, denoted by α, β, γ, . . . . Moreover, we add the
following atomic predicates R, N, Q, ∈, and ̸∈ that are syntactic counterparts
of the elements of S1-frames. The formulas of the labelled language Lll are
the following (where w, v ∈ W, α ∈ I and A ∈ LJ): (i) relational atoms wRv;
(ii) normality atoms Nw; (iii) queer atoms Qw; (iv) neighbour atoms α ∈ Iw;
(v) inclusion atoms w ∈ α; (vi) exclusion atoms w ̸∈ α; (vii) labelled formulas
w : A; (viii) forcing formulas α ⊩ A; and (ix) covering formulas α ◁ A.
Definition 3.1 The label of a formula E in Lll of form u : A (resp. α ⊩
A or α ◁ A) is u (resp. α) and is denoted by l(E). The pure part of a
labelled formula E is obtained removing from E the label and the forcing and
is denoted by p(E). The notion of weight is defined for labels and pure parts
of formulas. For every u ∈ W, w(u) = 0, and for every a ∈ I, w(α) = 1.
The weight of a pure formula A, w(A) is defined as follows: w(p) = w(⊥) =
1, w(A ◦ B) = max({w(A), w(B)}) + 1, where ◦ ∈ {∧, ∨, ⊃}, w(A J B) =
max({w(A), w(B)}) + 2. The degree of a labelled, forcing, or covering formula
E is an ordered pair deg(E) = (w(p(E)), w(l(E))). Additionally, we stipulate
deg(wRu) = deg(Nu) = deg(Qu) = deg(α ∈ Iu) = deg(u ∈ α) = deg(u /∈
α) = (0, 1). Degrees of Lll-formulas are ordered lexicographically.

A sequent is an expression Γ ⇒ ∆ where Γ is a finite multiset of Lll-formulas
and ∆ is a finite multiset of labelled, forcing, and covering formulas only. Sub-
stitutions of labels in an Lll-formula E, E[v/u] and E[α/β], are defined as
expected and it is extended to multisets by applying it componentwise.

The rules of the calculi G3S1–G3S5 are given in Table 1: G3S1 con-
tains all initial sequent and all propositional, conditional, and relational rules.
G3S2 = G3S1 plus rule S2. G3S3 = G3S2 plus rule Trans. G3S4 = G3S3
plus rule Norm. G3S5 = G3S4 plus rule Sym. Observe that the calculus
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G3S2 (G3S4) is equivalent to the simpler calculus obtained by dropping rules
L/R JQ (and removing normality atoms from rules L/R JN ) and all relational
rules but RefR from the calculus G3S1 (G3S3).

A G3Sn-derivation of a sequent Γ ⇒ ∆ is a tree of sequents, whose leaves
are initial sequents, whose root is Γ ⇒ ∆, and which grows according to the
rules of G3Sn. The height of a G3Sn-derivation is the number of nodes of a
branch of maximal length. We say that Γ ⇒ ∆ is G3Sn-derivable (with height
n), and we write G3Sn ⊢(n) Γ ⇒ ∆, if there is a G3Sn-derivation (of height
at most n) of Γ ⇒ ∆. A rule is said to be (height-preserving) admissible in
G3Sn, if, whenever its premisses are G3Sn-derivable (with height at most n),
also its conclusion is G3Sn-derivable (with height at most n). In each rule
depicted in Table 1, Γ and ∆ are called contexts, the formulas occurring in the
conclusion are called principal, and those occurring in the premisses only are
called active.

Lemma 3.2 The sequent E, Γ ⇒ ∆, E is G3Sn-derivable for every Γ, ∆, E.

Proof By induction on the degree of the formula E: the rules are applied
root-first since in each branch we reach a sequent with a formula occurring
both in the antecedent and in the succedent and having lesser degree than E.2

4 Structural properties

Lemma 4.1 (Substitution) G3Sn ⊢n Γ ⇒ ∆ implies G3Sn ⊢n Γ[v/u] ⇒
∆[v/u] and G3Sn ⊢n Γ[α/β] ⇒ ∆[α/β].

Proof A standard induction on the height of the derivation D of the sequent
Γ ⇒ ∆. We apply to D the inductive hypothesis either twice or once—
depending on whether the last rule instance Rule in D has a variable condition
that clashes with the substitution or not— and then we conclude by applying
an instance of Rule. 2

Theorem 4.2 (Weakening) For every multiset Π and Σ, G3Sn ⊢n Γ ⇒ ∆
implies G3Sn ⊢n Π, Γ ⇒ ∆, Σ.

Proof By induction on the height of the derivation D of Γ ⇒ ∆, possibly
applying an (hp-admissible) instance of substitution if the last rule instance in
D has a variable condition. 2

Lemma 4.3 If A is an axiom of the axiomatic system Sn then the sequent
Nw ⇒ w : A is G3Sn-derivable.

Proof The proof is straightforward by a root-first application of the rules of
the calculi, possibly using the admissiblity of weakening. We limit ourselves to
considering axiom (v).
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Table 1
Rules of the calculi G3S1–G3S5

Initial Sequents Ax
w : p, Γ ⇒ ∆, w : p

L⊥
w : ⊥, Γ ⇒ ∆

AxN

Nw, Qw, Γ ⇒ ∆
Ax∈

w ∈ α, w /∈ α, Γ ⇒ ∆

Propositional Rules

w : A, w : B, Γ ⇒ ∆
L∧

w : A ∧ B, Γ ⇒ ∆
Γ ⇒ ∆, w : A Γ ⇒ ∆, w : B

R∧
Γ ⇒ ∆, w : A ∧ B

w : A, Γ ⇒ ∆ w : B, Γ ⇒ ∆
L∨

w : A ∨ B, Γ ⇒ ∆

Γ ⇒ ∆, w : A, w : B
R∨

Γ ⇒ ∆, w : A ∨ B

Γ ⇒ ∆, w : A w : B, Γ ⇒ ∆
L ⊃

w : A ⊃ B, Γ ⇒ ∆
w : A, Γ ⇒ ∆, w : B

R ⊃
Γ ⇒ ∆, w : A ⊃ B

Conditional Rules Nw, wRv, w : A J B, Γ ⇒ ∆, v : A v : B, Nw, wRv, w : A J B, Γ ⇒ ∆
L JN

Nw, wRv, w : A J B, Γ ⇒ ∆

u : A, wRu, Nw, Γ ⇒ ∆, u : B
R JN , u fresh

Nw, Γ ⇒ ∆, w : A J B

α ∈ Iw, α ⊩ A ⊃ B, α ◁ A ⊃ B, Qw, Γ ⇒ ∆
L JQ, α fresh

Qw, w : A J B, Γ ⇒ ∆

Qw, α ∈ Iw, Γ ⇒ ∆, w : A J B, α ⊩ A ⊃ B Qw, α ∈ Iw, Γ ⇒ ∆, w : A J B, α ◁ A ⊃ B
R JQ

Qw, α ∈ Iw, Γ ⇒ ∆, w : A J B

Relational rules v : A, v ∈ α, α ⊩ A, Γ ⇒ ∆
L ⊩

v ∈ α, α ⊩ A, Γ ⇒ ∆
u ∈ α, Γ ⇒ ∆, u : A

R ⊩, u fresh
Γ ⇒ ∆, α ⊩ A

v /∈ α, α ◁ A, Γ ⇒ ∆, v : A
L ◁

v /∈ α, α ◁ A, Γ ⇒ ∆
u /∈ α, u : A, Γ ⇒ ∆

R ◁, u fresh
Γ ⇒ ∆, α ◁ A

wRw, Γ ⇒ ∆
RefRΓ ⇒ ∆

u /∈ α, u /∈ β, α ∈ Iw, β ∈ Iw, Γ ⇒ ∆
S1, u fresh

α ∈ Iw, β ∈ Iw, Γ ⇒ ∆
w ∈ α, α ∈ Iw, Γ ⇒ ∆

RefI

α ∈ Iw, Γ ⇒ ∆

Nw, Γ ⇒ ∆ Qw, Γ ⇒ ∆
Norm

Γ ⇒ ∆

Additional rules S2
α ∈ Iw, Γ ⇒ ∆

wRu, wRv, vRu, Γ ⇒ ∆
T rans

wRv, vRu, Γ ⇒ ∆

Nw, Γ ⇒ ∆
Norm

Γ ⇒ ∆
uRw, wRu, Γ ⇒ ∆

Sym
wRu, Γ ⇒ ∆

Nw, Nu, wRu, u : A J B, u : B J C ⇒ u : A J C

Lem.3.2[...], v : B, v : A ⇒ v : B, v : C, [...]
R⊃

[...], v : A ⇒ v : B, v : B ⊃ C, [...]
R⊃

[...] ⇒ v : A ⊃ B, v : B ⊃ C, [...]
L◁

[...], v /∈ α, v /∈ β, α ◁ A ⊃ B, β ◁ B ⊃ C ⇒ u : A J C, v : A ⊃ B
L◁

[...], v /∈ α, v /∈ β, α ∈ Iu, α ◁ A ⊃ B, β ∈ Iu, β ◁ B ⊃ C ⇒ u : A J C
S1

[...], α ∈ Iu, α ◁ A ⊃ B, β ∈ Iu, β ⊩ B ⊃ C, β ◁ B ⊃ C ⇒ u : A J C
LJQ

[...], Qu, α ∈ Iu, α ⊩ A ⊃ B, α ◁ A ⊃ B, u : B J C ⇒ u : A J C
LJQ

Qu, u : A J B, u : B J C ⇒ u : A J C
Norm

Nw, wRu, u : A J B, u : B J C ⇒ u : A J C
L∧

Nw, wRu, u : (A J B) ∧ (B J C) ⇒ u : A J C
RJN

Nw ⇒ w : ((A J B) ∧ (B J C)) J (A J C)

The leftmost top-sequent is provable via applications of rules RJN and LJN .2

Lemma 4.4 Each rule of G3Sn is height-preserving invertible.

Proof For the rules with repetition of the principal formulas in the premiss hp-
invertibility follows from Theorem 4.2. For the other rules, if we are inverting
w.r.t. the principal formula of the last rule instance in D, there is nothing
to prove. Else, we reason by induction on the height of D, possibly applying
Lemma 4.1. The base case is trivial, because only atomic formulas are active
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in initial sequent. To illustrate, assume we are inverting rule R JN and the
last rule instance in D is the following instance of R ⊩:

Nw, u ∈ α, Γ ⇒ ∆′, w : B J C, u : A
R ⊩, u fresh

Nw, Γ ⇒ ∆′, α ⊩ A, w : B J C

We transform D into the following derivation having at most the same height:
Nw, u ∈ α, Γ ⇒ ∆′, w : B J C, u : A

Lem.4.1
Nw, u′ ∈ α, Γ ⇒ ∆′, w : B J C, u′ : A

IH
Nw, w′ : B, wRw′, u′ ∈ α, Γ ⇒ ∆′, u′ : A, w′ : C

R ⊩
Nw, w′ : B, wRw′, Γ ⇒ ∆′, α ⊩ A, w′ : C

where the substitutions are needed if w′ ≡ u. 2

Theorem 4.5 (Contraction) G3Sn ⊢n Π, Π, Γ ⇒ ∆, Σ, Σ implies
G3Sn ⊢n Π, Γ ⇒ ∆, Σ.
Proof By induction on the height of the derivation D of Π, Π, Γ ⇒ ∆, Σ, Σ.
If Π, Π, Γ ⇒ ∆, Σ, Σ is an initial sequent, then the proof is immediate. If the
principal formula of last rule applied is not in Π or Σ, then the conclusion
follows from an application of the induction hypothesis to the premise(s) and
then of the rule. If the principal formula of the last rule applied is in Π or
Σ, we exploit the invertibility of the corresponding rule. We give a concrete
example of this qualitative analysis.

Let us assume the conclusion of D is w : A J B, w : A J B, Π′, Π′, Γ′ ⇒
∆, Σ, Σ. we have two cases depending on whether Rule is an instance of L JN

or of L JQ. In the former case we can proceed as when no instance of w : A J B
is principal since L JN is a rule with repetition of the principal formulas. In
the latter case we transform

α ∈ Iw, α ⊩ A ⊃ B, α ◁ A ⊃ B, Qw, w : A J B, Π′, Π′, Γ′′ ⇒ ∆, Σ, Σ
L JQ, α fresh

Qw, w : A J B, w : A J B, Π′, Π′, Γ′′ ⇒ ∆, Σ, Σ

into the following derivation of at most the same height:
α ∈ Iw, α ⊩ A ⊃ B, α ◁ A ⊃ B, Qw, w : A J B, Π′, Π′, Γ′′ ⇒ ∆, Σ, Σ

Lem.4.4
β ∈ Iw, β ⊩ A ⊃ B, β ◁ A ⊃ B, α ∈ Iw, α ⊩ A ⊃ B, α ◁ A ⊃ B, Qw, Π′, Π′, Γ′′ ⇒ ∆, Σ, Σ

Lem.4.1
α ∈ Iw, α ⊩ A ⊃ B, α ◁ A ⊃ B, α ∈ Iw, α ⊩ A ⊃ B, α ◁ A ⊃ B, Qw, Π′, Π′, Γ′′ ⇒ ∆, Σ, Σ

IH
α ∈ Iw, α ⊩ A ⊃ B, α ◁ A ⊃ B, Qw, Π′, Γ′′ ⇒ ∆, Σ

L JQ

Qw, w : A J B, Π′, Γ′′ ⇒ ∆, Σ

where both α and β do not occur in the conclusion. 2

Theorem 4.6 (Cut) Let E be a relational, forcing, or covering formula. The
following rule of cut is admissible in G3Sn:

Γ ⇒ ∆, E E, Π ⇒ Σ
Cut

Π, Γ ⇒ ∆, Σ

Proof We consider an uppermost instance of Cut and we proceed by induction
on the degree of the cut-formula with a sub-induction on the cut-height of D—
i.e., the sum of the heights of the derivations D1 and D2 of the two premisses.
The theorem then follows by induction on the number of cuts in the derivation.
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As usual it is convenient to divide the proof in three exhaustive cases: in
case (i) one premiss has a derivation of height 1; in case (ii) the cut-formula is
not principal in the last step of at least one of the two premisses; in case (iii)
the cut-formula is principal in the last step of both premisses.

The proof of cases (i) and (ii) as well as the sub-cases of case (iii) where
the principal operator of the cut-formula is in ∧, ∨, →, are standard and can
thus be omitted. The proof of the sub-cases of (iii) when the cut-formula has
shape α ⊩ A or α ◁ A can be found in [11]. Hence, we have to consider only
the sub-cases of (iii) where the cut-formula has shape w : B J C and either
the multiset Nw, wRv or Qw, α ∈ Iw occurs in Γ.

In the first case suppose D is a follows (for u not in the conclusion):
...D11

u : B, wRu, Nw, Γ′ ⇒ ∆, u : C
R JN

Nw, Γ′ ⇒ ∆, w : B J C

...D21

Nw, wRv, w : B J C, Π′ ⇒ Σ, v : B

...D22

v : C, Nw, wRv, w : B J C, Π′ ⇒ Σ
L JN

w : B J C, Nw, wRv, Π′ ⇒ Σ
Cut

Nw, Nw, wRv, Π′, Γ′ ⇒ ∆′, Σ

We transform it into the following derivation ([Γ]n stands for n copies of Γ,
and, for the sake of space, we omit the premisses of dotted inferences):

...D1
...D21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cutj

[Nw]2, wRv, Π′, Γ′ ⇒ ∆, Σ, v : B

...D11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lem.4.1
v : B, wRv, Nw, Γ′ ⇒ ∆, v : C

Cuti

[Nw]3, [wRv]2, Π′, [Γ′]2 ⇒ [∆]2, Σ, v : C

...D1
...D22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cutj

v : C, [Nw]2, wRv, Π′, Γ′ ⇒ ∆, Σ
Cuti

[Nw]5, [wRv]3, [Π′]2, [Γ′]3 ⇒ [∆]3, [Σ]2
Lem.4.5

Nw, wRv, Π, Γ ⇒ ∆, Σ

where instances of Cut with subscript i (j) are admissible by the (sub-)induction
hypothesis.

Finally, if D is a follows (for β not in the conclusion):
...D11

Qw, β ∈ Iw, Γ′ ⇒ ∆, w : B J C, β ⊩ B ⊃ C

...D12

Qw, β ∈ Iw, Γ′ ⇒ ∆, w : B J C, β ◁ B ⊃ C
R JQ

Qw, β ∈ Iw, Γ′ ⇒ ∆, w : B J C

...D21

α ∈ Iw, α ⊩ B ⊃ C, α ◁ B ⊃ C, Qw, Π′ ⇒ Σ
L JQ

Qw, w : B J C, Π′ ⇒ Σ
Cut

Qw, α ∈ Iw, Π′, Γ′ ⇒ ∆, Σ

we transform it into the following derivation (D1i[⋆] stands for the derivation
D1i with α in place of β by an instance of Lemma 4.1, and D stands for B ⊃ C):

...D12[⋆]
...D2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cutj

[Qw]2, α ∈ Iw, Π′, Γ′ ⇒ ∆, Σ, α ◁ D

...D11[⋆]
...D2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cutj

[Qw]2, α ∈ Iw, Π′, Γ′ ⇒ ∆, Σ, α ⊩ D

...D21

α ⊩ D, α ◁ D, α ∈ Iw, Qw, Π′ ⇒ Σ
Cuti

α ◁ D, [Qw]3, [α ∈ Iw]2, [Π′]2, Γ′ ⇒ ∆, [Σ]2
Cuti

[Qw]5, [α ∈ Iw]3, [Π′]3, [Γ′]2 ⇒ [∆]2, [Σ]3
T hm.4.5

Nw, α ∈ Iw, Π, Γ ⇒ ∆, Σ

2

Corollary 4.7 The rule MPJ is G3Sn-admissible:
Nw ⇒ w : A J B Nw ⇒ w : A

Det.
Nw ⇒ w : B

Proof By applying Lemma 4.4 to Nw ⇒ w : A J B we obtain the derivability
of u : A, wRu, Nw ⇒ u : B for some fresh label u. By an instance of Lemma
4.1 this becomes w : A, wRw, Nw ⇒ w : B and, by a Cut with Nw ⇒ w : A,
we obtain wRw, Nw, Nw ⇒ w : B. Finally, we apply an instance of Rule RefR
and one of Theorem 4.5 to conclude that Nw ⇒ w : B is derivable. 2
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Corollary 4.8 G3Sn-derivations are analytic, i.e. every label occurring in a
derivation either occurs in its conclusion or it is an eigenvariable and every
formula is a subformula of the formulas in the conclusion.
Proof See [14, Lemma 3.17]. 2

Lemma 4.9 For every formula A, B and C, if the sequents w : A ⇒ w : B
and w : B ⇒ w : A are derivable in G3Sn, then the sequents:

w : C ⇒ w : C[A//B] and w : C[A//B] ⇒ w : C

are provable in G3Sn.
Proof The proof runs by induction on the weight of the formula C. We assume
that C ̸≡ A, otherwise the proof is trivial. If C is a sentential variable p or ⊥,
the claim is trivial. If C is a conjunction, a disjunction or a formula of the shape
D ⊃ E, then the proof easily follows by applying the induction hypothesis. We
discuss the case in which C is of the form D J E. Since C ̸≡ A, we have
(D J E)[A//B] ≡ D[A//B] J E[A//B].

We first show that Nw, w : D J E ⇒ w : D[A//B] J E[A//B] is derivable.

[...], w : D J E, u : D[A//B] ⇒ u : E[A//B], u : D [...], w : D J E, u : D[A//B], u : E ⇒ u : E[A//B]
LJN

Nw, wRu, w : D J E, u : D[A//B] ⇒ u : E[A//B]
RJN

Nw, w : D J E ⇒ w : D[A//B] J E[A//B]

The derivability of the topmost sequents follows from the induction hypothesis
and weakening. The sequent Qw, w : D J E ⇒ w : D[A//B] J E[A//B] is
derivable too.

[...], o ∈ α, o : D ⊃ E ⇒ o : D[A//B] ⊃ E[A//B]
L⊩

[...], o ∈ α, α ⊩ D ⊃ E ⇒ o : D[A//B] ⊃ E[A//B]
R⊩

[...], α ⊩ D ⊃ E ⇒ α ⊩ D[A//B] ⊃ E[A//B]

[...], u : D[A//B] ⊃ E[A//B], α ◁ D ⊃ E ⇒ u : D ⊃ E
L◁

[...], u /∈ α, u : D[A//B] ⊃ E[A//B], α ◁ D ⊃ E ⇒
R◁

[...], α ◁ D ⊃ E ⇒ α ◁ D[A//B] ⊃ E[A//B]
RJQ

Qw, α ∈ Iw, α ◁ D ⊃ E, α ⊩ D ⊃ E ⇒ w : D[A//B] J E[A//B]
LJQ

Qw, w : D J E ⇒ w : D[A//B] J E[A//B]

The derivability of the topmost sequents follows from application of the rules
L⊃, R⊃, the induction hypothesis and weakening. The desired conclusion
follows from an application of Norm.

We now discuss the other part of the claim, i.e. w : D[A//B] J E[A//B] ⇒
w : D J E. We first show that Nw, w : D[A//B] J E[A//B] ⇒ w : D J E:

[...], u : D ⇒ u : D[A//B], u : E [...], , u : E[A//B], u : D ⇒ u : E
LJN[...], w : D[A//B] J E[A//B], u : D ⇒ u : E

RJN

Nw, w : D[A//B] J E[A//B] ⇒ w : D J E

Again, the derivability of the topmost sequents follows from the induction hy-
pothesis and weakening. For the other direction we proceed as follows (we omit
to display redundant repetition of formulas):

[...], o : D[A//B] ⊃ E[A//B] ⇒ o : D ⊃ E, [...]
L⊩

[...], o ∈ α, α ⊩ D[A//B] ⊃ E[A//B] ⇒ α ⊩ D ⊃ E, [...]

[...], u : D ⊃ E ⇒ u : D[A//B] ⊃ E[A//B], [...]
L◁

[...], u /∈ α, u : D ⊃ E, α ◁ D[A//B] ⊃ E[A//B] ⇒ [...]
R◁

[...], α ◁ D[A//B] ⊃ E[A//B] ⇒ α ◁ D ⊃ E, [...]
RJQ

Qw, α ∈ Iw, α ⊩ D[A//B] ⊃ E[A//B], α ◁ D[A//B] ⊃ E[A//B] ⇒ w : D J E
LJQ

Qw, w : D[A//B] J E[A//B] ⇒ w : D J E
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The topmost sequents are derivable via applications of the rules R⊃, L⊃, the
induction hypothesis and admissibility of weakening.

2

We shall now prove the admissibility of the rule of substitution of strict
equivalents.
Corollary 4.10 The rule of substitution of strict equivalents is G3Sn-
admissible:

Nw ⇒ w : A Nw ⇒ w : (B J C) ∧ (C J B)
SSE

Nw ⇒ w : A[B//C]

Proof We assume that we have a proof of the sequents Nw ⇒ w : A and
Nw ⇒ w : (B J C) ∧ (C J B). By invertibility of the rule R∧ we get the
derivations of Nw ⇒ w : B J C and Nw ⇒ w : C J B.

We apply again the invertibility of the rule RJ we get Nw, wRu, u : B ⇒
u : C and Nw, wRu, u : C ⇒ u : B. By inspection of the rules, the normality
atoms and the relational atoms displayed in such sequents are never active in
a derivation, so we can remove them.

Therefore the sequents u : C ⇒ u : B and u : B ⇒ u : C are derivable and
we can apply Lemma 4.9 which yields w : A ⇒ w : A[B//C]. Finally, a cut
gives the desired result. 2

We are now in the position to state and prove the embedding of the ax-
iomatic calculi Sn into G3Sn.
Theorem 4.11 If Sn ⊢ A, then G3Sn ⊢ Nw ⇒ w : A.
Proof The proof runs by induction on the height of the derivation in the
axiomatic calculi Sn. The axioms are derivable by Lemma 4.3. The rule Adj
is admissible by rule R∧. The admissibility of MPJ is a consequence of the
Corollary 4.7, and that of SSE follows from Theorem 4.10. 2

5 Characterisation
We will now propose an alternative and more direct form of completeness which
is obtained by extracting a countermodel out of a failed proof search. We start
by defining the notion of validity of labelled sequents [11].
Definition 5.1 Given a set W′ of world labels w, a set I′ of neighborhood
labels α and an Sn model M = ⟨W, N , R, I, V⟩, an SN realisation (ρ, σ) is
a pair of functions mapping each w ∈ W′ into ρ(x) ∈ W and mapping each
α ∈ I′ into σ(α) ∈ Iw for some w ∈ W. We introduce the notion M satisfies a
formula E under an W′I′-realisation (σ, ρ) and denote it by M ⊨ρ,σ E, where
we assume that the labels in E occur in W′, I′. The definition extends by cases
on the form of E, we give some examples:
• M ⊨ρ,σ w ∈ α if ρ(w) ∈ σ(α).
• M ⊨ρ,σ w : A if ⊨ρ(w) A

• M ⊨ρ,σ α ⊩ A if for all u in σ(α), ρ(u) ⊨ A
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• M ⊨ρ,σ α ◁ A if for all u s. t. M ⊨ρ,σ u : A, ρ(u) ∈ σ(α).
Given a sequent Γ ⇒ ∆, let W′, I′ be the sets of world and neighborhood
labels occurring in Γ ∪ ∆, and let (ρ, σ) be an W′, I′-realisation; we define
M ⊨ρ,σ Γ ⇒ ∆ to hold if, whenever M ⊨ρ,σ E for all formulas E ∈ Γ, then
M ⊨ρ,σ F for some formula F ∈ ∆. We further define M-validity by:

M ⊨ Γ ⇒ ∆ iff M ⊨ρ,σ Γ ⇒ ∆ for every SN -realisation (ρ, σ).
A sequent Γ ⇒ ∆ is Sn-valid if M ⊨ Γ ⇒ ∆ for every Sn-model M.
Theorem 5.2 (Soundness) If G3Sn ⊢ Γ ⇒ ∆, then Γ ⇒ ∆ is Sn-valid.
Proof By induction on the height of the derivations in the calculus G3Sn.2
We introduce the notion of saturated sequent in a derivation. For every branch
in a derivation we write ↓ Γ (↓ ∆) to denote the union of the antecedents
(succedents) in the branch from the endsequent up to the sequent Γ ⇒ ∆.
Definition 5.3 A branch in a proof search in the system G3S1 from the
endsequent up to the sequent Γ ⇒ ∆ is saturated if, for every rule R, if the
principal formulas of R occur in the branch, the formulas introduced by one of
the premises of R also occur in the branch. In detail, a saturated branch up to
Γ ⇒ ∆ has to satisfy the following conditions (we omit some of them): (Ax)
There is no sentential variable p such that w : p ∈ Γ ∩ ∆. (AxC) There are no
α, w such that w ∈ α, w /∈ α, ∈ Γ. (AxN ) There is no w such that Nw, Qw, ∈ Γ.
(L⊥) It is not the case that w : ⊥ ∈ Γ. (LJQ) If Qw and w : A J B ∈↓ Γ,
then α ∈ Iw, α ◁ A ⊃ B and α ⊩ A ⊃ B are in ↓ Γ for some α. (RJQ)
If Qw, α ∈ Iw are in ↓ Γ and w : A J B ∈↓ ∆, then α ◁ A ⊃ B ∈↓ ∆ or
α ⊩ A ⊃ B ∈↓ ∆. The notion of saturated sequent is extended to the systems
G3Sn by adding conditions relative to the additional rules.

Given a sequent Γ ⇒ ∆ we build a proof search tree by applying all possible
rules of the calculus. To avoid repetitions, we fix a counter. At stage 1 we
apply rule L∧, at stage 2 the rule R∧ and so forth. There are 18 + m different
stages (where m is the number of relational and additional rules depending on
the system). At stage 18 + m + 1 we repeat stage 1. If the construction ends
we obtain a derivation or a finite tree in which a branch is saturated, otherwise
we obtain an infinite tree. By König’s Lemma there is an infinite branch which
is saturated from which we can extract a countermodel.
Theorem 5.4 Given a saturated branch B in a proof search tree for a sequent
Π ⇒ Σ up to the sequent Γ ⇒ ∆ built according to the rules of system G3Sn,
we can extract a countermodel M for the endsequent based on an Sn-frame.
Proof Given a saturated branch B up to Γ ⇒ ∆ in a proof search tree for the
endsequent Π ⇒ Σ we define the following countermodel: ⟨W, N , R, I, V⟩ such
that:
• W is the set of all world labels occurring in ↓ Γ.
• N is the set of all labels w such that Nw ∈↓ Γ.
• wRu if and only if wRu occurs in ↓ Γ.
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• I(w) is the set of all the neighbors α such that α ∈ Iw occurs in ↓ Γ and
every α consists of all the worlds w such that w ∈ α occur in ↓ Γ.

• V(p) is the set of all worlds w such that w : p occurs in ↓ Γ.
Notice that V is well defined by the saturation conditions Ax, AxC , AxN , and
L⊥. For every system G3Sn, the frame ⟨W, N , R, I⟩ satisfies the properties
of Sn-frames by the saturation conditions regarding relational and additional
rules. We define the realization (ρ, σ) such that ρ(w) ≡ w and σ(α) ≡ α. We
claim that:
(i) If w : A is in ↓ Γ, then M ⊨ρ,σ w : A.
(ii) If w : A is in ↓ ∆, then M ⊭ρ,σ w : A.
The proof is by simultaneous induction on the degree of A. We focus on the
case of strict implication.

(a) If w : A J B is in ↓ Γ, then by the saturation condition there is either
Qw or Nw in ↓ Γ. In the first case, again by the saturation condition,
there are α ∈ Iw, α ◁ A ⊃ B and α ⊩ A ⊃ B in ↓ Γ. By definition of
M and induction hypothesis we have α ∈ I(w), M ⊨ρ,σ α ◁ A ⊃ B and
M ⊨ρ,σ α ⊩ A ⊃ B, therefore M ⊨ρ,σ w : A J B. In the second case, we
distinguish two subcases. If there is no label u such that wRu occurs in ↓ Γ,
then the claim trivially follows. Otherwise for every u sucht that wRu occurs
in ↓ Γ, by the saturation condition either u : A is in ↓ ∆ or u : B is in ↓ Γ.
By induction hypothesis we get M ⊭ρ,σ u : A or M ⊨ρ,σ u : B. Therefore
we get M ⊨ρ,σ w : A J B.

(b) If w : A J B is in ↓ ∆, then by the saturation condition there is either Qw or
Nw in ↓ Γ. In the first case, by the saturation condition, for every α ∈ I(w),
there is α ◁ A ⊃ B or α ⊩ A ⊃ B in ↓ ∆. In both cases by induction
hypothesis it follows M ⊭ρ,σ w : A J B. In the second case, by saturation
there are wRu, u : A ∈↓ Γ and u : B in ↓ ∆. By induction hypothesis we get
M ⊨ρ,σ u : A and M ⊭ρ,σ u : B, which yields M ⊨ρ,σ w : A J B.

2

Corollary 5.5 (Completeness) For every formula A:
Sn ⊨ A if and only if G3Sn ⊢ Nw ⇒ w : A

Proof The direction from right to left is the content of the soundness theorem.
For the other direction we prove the contrapositive. Suppose that G3Sn ⊬
Nw ⇒ w : A, hence there is a saturated branch and we can extract a Sn-
countermodel for Nw ⇒ w : A, which gives Sn ⊭ A. 2

We observe that our completeness proof builds a natural bridge from the
neighborhood semantics for S1 to a bi-neighborhood one, see [4]. Indeed, to
build the countermodel out of a failed proof search we are actually considering
the complement of every neighbor α, but the rules of our calculus naturally
build a pair of disjoint sets for every modal operator as in the case of bi-
neighborhood semantics.
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6 Syntactic decidability of S1
In this section we use the labelled system G3S1 to obtain a syntactic decidabil-
ity result for S1 via terminating proof search. The decidability proofs in the
literature for S1 are obtained via semantic methods showing that the system
satisfies the finite model property [2].

To establish decidability we need to show that the search for a derivation can
be interrupted at a certain point and that we can extract a finite countermodel
if the search fails. Termination of the proof search and completeness entail
decidability. However, the extraction of a countermodel can be regarded as a
desideratum as it yields a constructive proof of the finite model property. First
we prove some preliminary lemmata.

Lemma 6.1 The rules RefR, RefI , S1, Norm, L⊩, L◁, LJN and RJQ need
not be instantiated more than once on the same principal formula(s) in every
branch in a proof search.

Proof By height-preserving admissibility of contraction. 2

In order to obtain a termination result we need to show that the number
of labels introduced in a proof search is finite. Therefore we need to establish
some bounds on the application of the dynamic rules—i.e., the rules which
introduce new labels, which are R⊩, S1, R◁, LJQ and RJN . We now introduce
some definitions which allow us to check the relations between world labels and
neighborhood labels.

Definition 6.2 In a branch B of a proof search tree of the sequent Nw ⇒ w : A
we define the relation →B of immediate successor (for u, v ∈ W and α ∈ I):
(i) u →B α if α ∈ Iu occurs in B; (ii) α →B u if in B there is either u ∈ α or
u /∈ α; (iii) u →B v uRv is in B.

Fact. 1 The transitive closure of →B defines a tree which, as it is easy to
check, does not contain cycles modulo the reflexive ones.
Fact. 2 The immediate successors of a world label in a saturated brach of
a proof search tree are either all neighborhood labels or world labels, but not
both.

Theorem 6.3 Each label in a branch B of a proof search tree of an endsequent
Nw ⇒ w : A has only a finite number of immediate successors.

Proof The immediate successors of a label can be introduced only by appli-
cations of the dynamic rules R⊩, S1, R◁, LJQ or RJN . The subformulas of
the formula A which occur in a proof search are finite by Corollary 4.8, there-
fore if there were infinite immediate successors there would be more than one
application of one of the above mentioned rules to the same principal labelled
formulas. We show that every derivation can be transformed in a derivation
of the same height in which every branch contains at most one application of
such rules to the same principal labelled formulas. We detail the case of LJQ

as an example; notice that by Fact 2 we can assume that the formula is again
principal in an application of LJQ and not of LJN .
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Qu, β ∈ Iu, β ⊩ A ⊃ B, β ◁ A ⊃ B, α ∈ Iu, α ⊩ A ⊃ B, α ◁ A ⊃ B, Γ ⇒ ∆
LJQ

Qu, u : A J B, α ∈ Iu, α ⊩ A ⊃ B, α ◁ A ⊃ B, Γ ⇒ ∆
... D

Qu, α ∈ Iu, α ⊩ A ⊃ B, α ◁ A ⊃ B, Γ ⇒ ∆
LJQ

Qu, u : A J B, Γ ⇒ ∆
We transform the derivation as follows:

Qu, β ∈ Iu, β ⊩ A ⊃ B, β ◁ A ⊃ B, α ∈ Iu, α ⊩ A ⊃ B, α ◁ A ⊃ B, Γ ⇒ ∆
Lem.4.1

Qu, α ∈ Iu, α ⊩ A ⊃ B, α ◁ A ⊃ B, α ∈ Iu, α ⊩ A ⊃ B, α ◁ A ⊃ B, Γ ⇒ ∆
Thm.4.5

Qu, α ∈ Iu, α ⊩ A ⊃ B, α ◁ A ⊃ B, Γ ⇒ ∆
Thm.4.2

Qu, α ∈ Iu, α ⊩ A ⊃ B, α ◁ A ⊃ B, u : A J B, Γ ⇒ ∆
... D

Qu, α ∈ Iu, α ⊩ A ⊃ B, α ◁ A ⊃ B, Γ ⇒ ∆
LJQ

Qu, u : A J B, Γ ⇒ ∆
The application of the hp-admissible rules of substitution, contraction and
weakening does not introduce new applications of LJ (this is easily checked).2

As a consequence, the tree defined by →B is finitely branching. The second
part of the proof of termination consists in showing that in every branch the
length of a chain of labels is finite. This depends on the fact that the relation
defined by →B in a proof search is intransitive. In particular, a label sees only
its immediate successors and itself (by reflexivity). Therefore the length of a
branch is determined by the number of modal operators occurring in a formula.

Theorem 6.4 Every chain of labels in a branch in a proof search for the se-
quent Nw ⇒ w : A is finite.

Proof Given a chain of labels in a branch in a proof search for the sequent
Nw ⇒ w : A and a label u in the chain, every immediate successor of u is
introduced by the application of one of the dynamical rules RJN , LJQ, R◁,
R⊩ or S1 to a formula B labelled by u. By inspection, these rules can be applied
whenever B contains at least one modal operator. However, since every label
sees only itself and its immediate successors, every label introduced by the
analysis of u : B will label only formulas of lesser degree. Since by definition
the degree of each formula is finite, the chain is finite. 2

Theorem 6.5 The proof search for a sequent Nw ⇒ w : A in the system
G3S1 terminates.

Proof The proof is immediate because in every branch the number of labels
generated is finite. 2

Corollary 6.6 The relation G3S1 ⊢ Nw ⇒ w : A is decidable.

Proof By Theorem 5.4 we can extract a countermodel out of a saturated
branch, so we get the finite model property and the decidability of the system.2
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7 Conclusion
We introduced a modular and uniform approach to the proof theory of the
strict implication logics by C. I. Lewis. By converting the truth conditions
of the semantics into suitably formulated rules of the calculus, we obtained
labelled systems with good structural properties. Furthermore, the analyticity
of the systems enabled us to obtain a syntactic proof of the decidability of the
system S1. We conjecture that the upper bound given by the proof search
procedure is not optimal, but we have not investigated this and other related
complexity issues yet.

There are some possible themes for future research. First, it would be in-
teresting to see whether it is possible to obtain calculi for systems related to
S1, cf. [2]. Second, the semantics of S1, or a modification theoreof, might
be employed to model hyperintensional features—see [1,5,12]—in the context
of epistemic logics. Finally, it might be interesting to see whether the seman-
tics for S1 can be simplified and if it can be adapted to the bi-neighborhood
framework.
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