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Abstract

One of the standard methods to understand intuitionistic logic is to see it through its
semantical counterpart. Kripke semantics in particular offers an insightful interpre-
tation in terms of the growth of knowledge. This interpretation is extended to modal
operators in the case of intuitionistic modal logics. In the framework of M. Božić and
K. Došen, the four intuitionistic modalities (necessity, possibility, impossibility and
non-necessity) are characterised in a uniform manner, suggesting that they share a
type of assumption on how modal notions interact with the growth of knowledge. On
the other hand, there is another intuitionistic semantics called Beth semantics, which
supports a different perspective on the notion of the growth of knowledge. A natural
question then is how the four modalities appear from this alternative perspective.
The main observation of this paper is how the above-mentioned uniformity breaks
down in Beth semantics, which hints that the modalities can be seen to be based on
different conceptions of the growth of knowledge. In addition, we look at the Beth
correspondence theory of some modal principles, which is then applied to obtain a
Beth completeness of a paraconsistent system by R. Sylvan.

Keywords: Beth semantics, Intuitionistic Logic, Modal Logic, Negation,
Paraconsistent Logic.

1 Introduction

Relational semantics is a valuable tool to provide intuitive interpretations to
logical systems. An important example of this type of semantics is Kripke
semantics for intuitionistic logic [22]. This semantics captures the validity of
formulas using the pictures of the growth of knowledge (of an agent), depicted
with a partially ordered set of worlds (or information states). A character-
istic feature of intuitionistic Kripke semantics is the valuation of implication;
in order to establish that an implication holds at a world, one has to look at
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not only the world in question, but also all later worlds. This feature plays an
essential role in invalidating constructively unacceptable logical principles such
as the law of excluded middle.

Kripke semantics is one of the standard semantics for intuitionistic logic.
There is, however, another type of relational semantics that is worthy of atten-
tion. This semantics, introduced by E.W. Beth [3], is accordingly called Beth
semantics. Like Kripke semantics, Beth semantics can also be understood
to depict the growth of knowledge, but as the main differences, a model of
Beth semantics (a) typically involves infinitely many worlds, (b) has a stronger
constraint on the valuation of propositional variables, and (c) uses a different
condition for the forcing of disjunction, which allows a disjunction to hold at
a world without either of the disjuncts being so. The last point is analysed in
depth by W.H. Holliday [20].

Beth semantics is known to be more general than Kripke semantics (see
[4,31]), and so we may embed a Kripke model into a Beth model, whereas the
converse is not always possible. On the other hand, as far as logic is concerned,
the two semantics capture the same logic, namely intuitionistic logic. The situ-
ation can change, however, when we add an additional operator. For instance,
it is observed in [24] that when a type of alternative negation called empirical
negation [7,8] is considered, an identical forcing condition (falsity at the root of
a model) ends up in two different logics, depending on which of the semantics
is used. In other words, it is reflected in the logics that the two semantics offer
different philosophical interpretations of the notion of ‘growth of knowledge’.

Since empirical negation can be seen as a kind of modal operator in intu-
itionistic setting, this gives a motivation to investigate modal operators in Beth
semantics. We note there already exists a related investigation by R. Goldblatt
[19], which established that the lax operator [15] can be captured by the forc-
ing condition of (classical) possibility operator in cover semantics, which is a
generalisation of Beth semantics. Analogous observations are also established
in [19] for bimodal systems CK [23] and CS4 [1]. D. Rogozin [27] also applies
the framework for the systems of intuitionistic epistemic logic by S. Artemov
and T. Protopopescu [2].

Intuitionistic modal logics have been studied by various authors since Fitch
[17] (see e.g. [18,28,34] for overviews of early approaches). Among these, we
shall base our enquiry on the systems investigated by K. Došen and M. Božić
[5,10,11,12,13]. In particular, we shall mainly focus on (i) the system HK2

for necessity operator, and (ii) its negative counterpart, the system HK2′ for
non-necessity operator. We shall also consider operators for possibility and im-
possibility, and the corresponding systems HK3 and HK3′ 2 . These systems
can all be seen as intuitionistic analogues of the classical modal logic K. Kripke
semantics for the logics are defined in a uniform way, by (a) using the same
forcing condition as the classical case, and (b) employing a frame condition
specifying the interaction of the intuitionistic ordering and the modal acces-

2 See [14] for an investigation of further operators definable in these systems.
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sibility relation. Our central observation will be that this uniformity breaks
down once we move to Beth semantics.

The structure of this paper is as follows. Firstly, we shall look at the ne-
cessity operator: after introducing the axiomatisation and the corresponding
Kripke semantics, we shall formulate the Beth semantics forHK2 and show the
soundness and completeness with respect to the axiomatic system. Secondly,
we shall look at the non-necessity operator; we shall analogously formulate the
Beth semantics for HK2′ using a different forcing condition from the Kripke
one, and show the soundness and completeness. The third section treats the
cases for HK3 and HK3′. We shall point out that these cases are different
from the first two cases in that they require a new condition for the soundness.
This is followed by a step into the correspondence theory of a couple of modal
principles in the Beth semantics of necessity and non-necessity. The result is
then used in the final section to obtain a Beth semantics for a paraconsistent
logic of R. Sylvan [29].

2 Beth semantics for intuitionistic necessity

In this section, we shall give a complete Beth semantics for Božić and Došen
[5]’s system HK2, which is an intuitionistic analogue of the classical modal
logic K (with 2 primitive). We first specify the language to be used.

Definition 2.1 [L2] We shall use the following language L2:

A ::= p | ⊥ | A ∧A | A ∨A | A → A | 2A.

We shall adopt A ↔ B as an abbreviation for (A → B) ∧ (B → A).

As an inessential difference from [5], we take ⊥ as primitive and define a
negation ¬A as A → ⊥.

2.1 HK2: axiomatisation and Kripke semantics

Next, we give a Hilbert-style axiomatisation of HK2.

Definition 2.2 [HK2] We define the system HK2 in L2 by the following
axiom schemata and rules.

(A→(B→C))→((A→B)→(A→C)) (S)

A → (B → A) (K)

(A→B)→((A→C)→(A→B∧C)) (CI)

A1 ∧A2 → Ai (CE)

Ai → A1 ∨A2 (DI)

(A→C)→((B→C)→(A∨B→C)) (DE)

⊥ → A (EFQ)

(2A ∧2B) → 2(A ∧B) (P1)

2(A → A) (P2)

A A → B
B

(MP)

A → B
2A → 2B

(RM)

where i ∈ {1, 2}. A formula A is called a theorem of HK2 if there is a
finite sequence B1, . . . , Bn ≡ A of formulas such that each Bi is either an
instance of one of the axiom schemata, or obtained from the preceding formulas
by one of the rules. A proof of A from a set of formulas Γ in HK2 is a finite
sequence B1, . . . , Bn ≡ A, where each Bi is either an element of Γ, a theorem
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of HK2, or obtained from previous items in the sequence by (MP). We shall
write Γ ⊢HK2 A to denote the provability. In particular, when Γ = ∅ we shall
write ⊢HK2 A. Similar conventions apply to later systems.

We have the next Kripke semantics corresponding to the proof system.

Definition 2.3 [Kripke semantics for HK2] A Kripke frame F is a triple
(K,≤, R), where (K,≤) is a non-empty partially ordered set, and R ⊆ K ×K
such that ≤R ⊆ R≤ . 3 A Kripke model M then is a pair (F ,V) where V is a
mapping assigning to each propositional variable p a set V(p) ⊆ K. We require
each V(p) to be upward closed, i.e. k ∈ V(p) and k′ ≥ k implies k′ ∈ V(p). V
is uniquely extended to the forcing ⊩kp of formulas by the clauses below.

k ⊩kp ⊥ iff never.

k ⊩kp p iff k ∈ V(p).
k ⊩kp A ∧B iff k ⊩kp A and k ⊩kp B.

k ⊩kp A ∨B iff k ⊩kp A or k ⊩kp B.

k ⊩kp A → B iff for all k′ ≥ k(k′ ⊩kp A implies k′ ⊩kp B).

k ⊩kp 2A iff for all k′R−1k(k′ ⊩kp A).

where R−1 = {(k′, k) : kRk′}. We shall write M ⊨kp A if k ⊩kp A for any k in
M. We write F ⊨kp A if M ⊨kp A for any M with F as the frame. Finally,
we write ⊨kp A if M ⊨kp A for all M.

The next propositions are established in [5, Lemma 2, Theorem 1].

Proposition 2.4 (Upward closure) k ⊩kp A and k′ ≥ k implies k′ ⊩kp A.

Theorem 2.5 (Kripke soundness and completeness of HK2)
⊢HK2 A if and only if ⊨kp A.

2.2 HK2: Beth semantics

We now set out to formulate a Beth semantics forHK2. An important point to
note is that Beth semantics uses a stronger condition than the upward closure
of valuation. This means we have to generalise the condition ≤R ⊆ R≤ ,
which is put in place in order to preserve upward closure.

Beth semantics can be based either on trees (e.g. [31]) or posets (e.g. [32]).
In this paper we take the former approach as it appears simpler and perhaps
more loyal to the intuitionistic picture. At the same time, the conditions we will
see are not necessarily optimised for trees, in view of possible generalisations
into posets.

We define a tree T = (T,⪯) to be a poset s.t. there is the minimum element
g ∈ T and for each t, {t′ : t′ ⪯ t} is linearly ordered. A path of T is then a
maximal linearly ordered subset of T . 4 We will use α, β, . . . to denote a path
in T .

3 where R1R2 = {(x, z) : ∃y(xR1y ∧ yR2z)}.
4 For a more constructive approach, we can also take a tree to be a certain collection of
sequences of natural numbers [30, p.186].
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Definition 2.6 [Beth semantics forHK2] We define a Beth frame F forHK2

as a triple (B,⪯, S), where (B,⪯) is a tree s.t. ∀b ∈ B∃b′ ∈ B(b′ ≻ b) (i.e. it
is a spread), and S ⊆ B ×B. S also has to satisfy the next condition:

∀b, b′ ∈ B(b ⪯S b′ ⇒ ∃α ∋ b∀c ∈ α(c S⪯ b′))

A Beth model M for HK2 is then a pair (F ,V) such that V is a mapping
assigning to each propositional variable p a set V(p) subject to the following
condition (covering property):

b ∈ V(p) if and only if ∀α ∋ b∃b′ ∈ α(b′ ∈ V(p)).

V is now extended to the forcing ⊩bp by the clauses below.

b ⊩bp ⊥ iff never.

b ⊩bp p iff b ∈ V(p).
b ⊩bp A ∧B iff b ⊩bp A and b ⊩bp B.

b ⊩bp A ∨B iff ∀α ∋ b∃b′ ∈ α(b′ ⊩bp A or b′ ⊩bp B).

b ⊩bp A → B iff ∀b′ ⪰ b(b′ ⊩bp A implies b′ ⊩bp B).

b ⊩bp 2A iff ∀b′S−1b(b′ ⊩bp A).

We shall write M ⊨bp A if b ⊩bp A for any b in M. We write F ⊨bp A if
M ⊨bp A for any M with F as the frame, and ⊨bp A if M ⊨bp A for all M.

The conditions for disjunction are changed from those of Kripke semantics
and satisfy the following properties.

Proposition 2.7 (Covering property)
(i) b ⊩bp A if and only if ∀α ∋ b∃b′ ∈ α(b′ ⊩bp A).
(ii) b ⊩bp A and b′ ⪰ b implies b′ ⊩bp A.

Proof. We proceed by induction on the complexity of A, and treat (i) and
(ii) simultaneously. Note that the cases for (ii) follows from the cases for (i),
because if b′ ⪰ b, then any α ∋ b′ must pass through b as well. 5 Hence b ⊩bs A
implies b′ ⊩bs A from the case of A for (i).

As for (i), the left-to-right direction is always immediate. For the right-to-
left direction, the case A ≡ p follows from the covering property of V. The case
for conjunction is straightforward, and the case for disjunction is analogous to
the case for non-necessity we shall look at in the next section. For A ≡ B → C,
if ∀α ∋ b∃b′ ∈ α(b′ ⊩bp B → C), then c ⪰ b implies ∀α ∋ c∃c′ ∈ α(c′ ⊩bp

B → C). Hence if c ⊩bp B, then for any α s.t. c ∈ α there is c′ ∈ α with
c′ ⊩bp B → C. We have either c ⪯ c′ or c ⪰ c′, but in each case, the later world
must (using (ii) for B in one of the cases) force C. So ∀α ∋ c∃c′ ∈ α(c′ ⊩bp C).
Thus by I.H. again c ⊩bp C. Therefore b ⊩bp B → C.

When A ≡ 2B, then if ∀α ∋ b∃b′ ∈ α(b′ ⊩bp 2B), suppose bSc. Then
b ⪯S c, and so there is α ∋ b s.t. ∀c′ ∈ α(c′ S⪯ c), by the frame condition of

5 It is essential here that we are considering trees and not posets.
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S. Thus in particular, b′ S⪯ c for some b′ s.t. b′ ⊩bp 2B. Hence there exists
c′ such that b′Sc′ and c′ ⪯ c, which implies c′ ⊩bp B. So by (ii) for B, we infer
c ⊩bp B. Therefore b ⊩bp 2B. 2

Theorem 2.8 (Beth soundness of HK2) If ⊢HK2 A then ⊨bp A.

Proof. See Appendix. 2

In order to prove the Beth completeness, we shall employ an embedding of
Kripke models to Beth models. This method is similar to the one given in [31]
for the Beth completeness of intuitionistic logic, except that we put an extra
world to guarantee the existence of the root in the constructed Beth model.

Theorem 2.9 (Beth completeness of HK2) If ⊨bpA then ⊢HK2A.

Proof. See Appendix. 2

3 Beth semantics for non-necessity

In this section, we continue the investigation of Beth semantics for intuitionistic
modality. We now turn our attention to the non-necessity operator, denoted
by 2′ in [10]. Also, ⊥ turns out to be definable in the system we will consider;
we shall however include ⊥ in the language for uniformity.

Definition 3.1 [L2′ ] We shall use the following language L2′ :

A ::= p | ⊥ | A ∧A | A ∨A | A → A | 2′A.

3.1 HK2′: axiomatisation and Kripke semantics

The next system gives 6 an axiomatisation of the system HK2′ in [10].

Definition 3.2 [HK2′] We define the system HK2′ in L2′ with the axiom
schemata (S)–(EFQ), the rule (MP) in addition to the following axiom
schemata and a rule.

2′(A ∧B) → (2′A ∨2′B) (N1)

2′(A → A) → B (N2)

A → B
2′B → 2′A

(RC)

The notion of a proof is then defined as in HK2.

The following Kripke semantics is given to HK2′.

Definition 3.3 [Kripke semantics for HK2′] A Kripke frame F for HK2′ is
a triple (K,≤, R), where (K,≤) is as before, and R ⊆ K × K is such that
≥R ⊆ R≤ . A Kripke model M for HK2′ then is a pair (F ,V) where
V is again an upward closed assignment of propositional variables to worlds.
The forcing ⊩kn is defined similarly to ⊩kp; for non-necessity, we use the next
clause.

k ⊩kn 2′A iff for some k′R−1k(k′ ⊮kn A).

We will use ⊨kn for the validity with respect to this semantics.

6 Strictly speaking, there is a difference in that Došen’s system again has ¬ as primitive.
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The next propositions are established in [10, Lemma 10, Theorem 3].

Proposition 3.4 (Upward closure) k ⊩kn A and k′ ≥ k implies k′ ⊩kn A.

Theorem 3.5 (Kripke soundness and completeness of HK2′)
⊢HK2′ A if and only if ⊨kn A.

3.2 HK2′: Beth semantics

We now move on to the definition of Beth semantics for HK2′. In Kripke
semantics, the clauses for necessity and non-necessity are in a sense dual of each
other, as we have seen. In comparison, the clauses will turn out to be quite
different in Beth semantics, a situation comparable to those of conjunction
and disjunction. This is because the condition on the accessibility relation,
even when generalised for Beth semantics, guarantees only the upward closure
of forcing, and not the covering property. On the other hand, once we have
a forcing condition for non-necessity that assures covering property, there is
no longer a need for a condition on the accessibility relation: upward closure
follows automatically from the covering property. As a result, Beth semantics
for non-necessity will have simpler frames, but models are not necessarily so.

Definition 3.6 [Beth semantics for HK2′] We define a Beth frame F for
HK2′ as a triple (B,⪯, S), where (B,⪯) is as before, and S ⊆ B×B without
any other conditions. A Beth model M for HK2′ is a pair (F ,V) such that V
is an assignment satisfying the covering property. For the forcing ⊩bn, it has
the same clauses as ⊩bp, except the clause for non-necessity, which is:

b ⊩bn 2′A iff ∀α ∋ b∃b′ ∈ α∃cS−1b′(c ⊮bn A).

We shall write ⊨bn for the validity with respect to this semantics.

Remark 3.7 The Beth clause for disjunction may be interpreted as saying that
one can assert a disjunction even when one can not assert either of the disjuncts.
This perhaps better capture the informal usage of disjunction than the Kripke
clause. In a similar manner, the Beth clause for non-necessity appears to be
telling that one can assert “It is not necessary that A” even when all the states
that can be referred to (accessed) support A. This possibility is however under
the condition that a world which does not support A will eventually become
accessible in all cases.

Let us check that the forcing condition establishes the covering property.

Proposition 3.8 (Covering property)
b ⊩bn A if and only if ∀α ∋ b∃b′ ∈ α(b′ ⊩bn A).

Proof. We look at the right-to-left direction for the case of non-necessity.
When A ≡ 2′B, then if ∀α ∋ b∃b′ ∈ α(b′ ⊩bn 2′B), it follows that

∀α ∋ b∃b′ ∈ α(∀β ∋ b′∃c ∈ β∃c′S−1c(c′ ⊮bn B)).

In particular, since α ∋ b′, we infer ∀α ∋ b∃b′ ∈ α∃c′S−1b′(c′ ⊮bn B). Hence
b ⊩bn 2′B. 2
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Corollary 3.9 (Upward closure) b ⊩bn A and b′ ⪰ b implies b′ ⊩bn A.

We leave the proofs of Beth soundness and completeness for HK2′ in Ap-
pendix.

Theorem 3.10 (Beth soundness of HK2′) If ⊢HK2′A then ⊨bnA.

Theorem 3.11 (Beth completeness of HK2′) If ⊨bn A then ⊢HK2′ A.

4 Beth semantics for possibility and impossibility

Having looked at the necessity and non-necessity operators, let us move on
to consider their counterparts, possibility and impossibility operators [5,10].
At first glance, one may expect that the Beth semantics for these operators
are identical to the semantics for non-necessity and necessity modulo a simple
rewriting of the accessibility and forcing conditions. However, as we shall find
out, there is a subtle difference for these operators, which is perhaps not visible
in Kripke semantics. It thus points to a divergence of the two semantics for
intuitionistic modal logics at this basic level.

Let us again start with specifying the languages.

Definition 4.1 [L3,L3′ ] The languages L3 and L3′ are defined as follows.

A ::= p | ⊥ | A ∧A | A ∨A | A → A | 3A.

A ::= p | ⊥ | A ∧A | A ∨A | A → A | 3′A.

4.1 HK3,HK3′: axiomatisation and Kripke semantics

The proof systems HK3 and HK3′ quite resemble HK2 and HK2′.

Definition 4.2 [HK3, HK3′] We define the system HK3 in L3 and HK3′

in L3′ with the axiom schemata (S)–(EFQ), rule (MP) in addition to the
following axiom schemata and a rule.
For HK3:

3(A ∨B) → (3A ∨3B) (Q1)

¬3¬(A → A) (Q2)

A → B
3A → 3B

(RM2)

For HK3′:

(3′A ∧3′B) → 3′(A ∨B) (O1)

3′¬(A → A) (O2)

A → B
3′B → 3′A

(RC2)

The notions of a proof are then defined as in HK2.

Definition 4.3 [Kripke semantics for HK3, HK3′] The Kripke semantics
for HK3 and HK3′ are defined similarly to those of HK2 and HK2′. The
only difference for the frames is the frame condition for R, given respectively
as ≥R ⊆ R≥ and ≤R ⊆ R≥ . The forcing conditions ⊩kq and ⊩ko have
the next conditions for the respective modality.

k ⊩kq 3A iff for some k′R−1k(k′ ⊩kq A).

k ⊩ko 3′A iff for all k′R−1k(k′ ⊮ko A).
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We will use ⊨kq,⊨ko for the validity in the semantics, respectively.

Proposition 4.4 (Upward closure) For x∈{q, o}, k ⊨kx A and k′ ≥ k im-
plies k′ ⊩kx A.

Proof. See [5, Lemma 16] and [10, Lemma 2]. 2

Theorem 4.5 (Kripke soundness and completeness of HK3, HK3′)
(i) ⊢HK3 A if and only if ⊨kq A.
(ii) ⊢HK3′ A if and only if ⊨ko A.

Proof. See [5, Theorem 4] and [10, Theorem 1]. 2

4.2 HK3,HK3′: Beth semantics

Definition 4.6 [Beth semantics for HK3] Beth semantics for HK3 is mostly
identical to that of HK2′. We need an extra condition that ∀b, b′ ∈ B(bSb′ ⇒
∃α ∋ b′∀c ∈ α(c ⪰ b′ ⇒ bSc)). Possibility has the next condition in ⊩bq :

b ⊩bq 3A iff ∀α ∋ b∃b′ ∈ α∃cS−1b′(c ⊩bn A).

We shall write ⊨bq for the validity with respect to this semantics.

Definition 4.7 [Beth semantics for HK3′] We define Beth semantics for
HK3′ in a similar way as that of HK2. We have the following condition
on the accessibility relation:

∀b, b′ ∈ B(b ⪯S b′ ⇒ ∃α ∋ b∀c ∈ α(c S⪰ b′))

In addition, we again require that ∀b, b′ ∈ B(bSb′ ⇒ ∃α ∋ b′∀c ∈ α(c ⪰ b′ ⇒
bSc)). The forcing ⊩bo has the next clause for impossibility.

b ⊩bo 3′A iff ∀b′S−1b(b′ ⊮bo A).

We shall then denote the validity in the semantics by ⊨bo.

Remark 4.8 As we shall see, the condition we added for the above two seman-
tics is required to show the Beth soundness. The additional condition ensures
that all Beth frames behave like the ones obtained from Kripke frames; this
allows us to overcome the difference in the two semantics.

Proposition 4.9 (Covering property) For x ∈ {q, o}, the following hold.
(i) b ⊩bx A if and only if ∀α ∋ b∃b′ ∈ α(b′ ⊩bx A).
(ii)b ⊩bx A and b′ ⪰ b implies b′ ⊩bx A.

Proof. Analogous to the cases for HK2′ and HK2, respectively. 2

Let us denote by ⊨bq′ and ⊨bo′ the validity with respect to Beth se-
mantics for HK3 and HK3′ minus the condition that ∀b, b′ ∈ B(bSb′ ⇒
∃α ∋ b′∀c ∈ α(c ⪰ b′ ⇒ bSc)). Then we observe that they fail one of the
axiom schemata of the corresponding system.

Proposition 4.10
(i) ⊭bq′ 3(A ∨B) → (3A ∨3B).
(ii) ⊭bo′ (3

′A ∧3′B) → 3′(A ∨B).
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Proof. Let (B,⪯) be a tree defined from two paths α1 = (g, b1, b2, . . .) and
α2 = (g, b′1, b

′
2, . . .) branching at g.

For (i), we set a Beth frame F = (B,⪯, S) with S = {(g, g)}. Then define
a Beth model M = (F ,V) where V(p) = {bi : i ∈ N} and V(q) = {b′i : i ∈ N}.
Then it is straightforward to check that M satisfies the covering property, and
so is well-defined. Now, since g ⊩bq′ p∨ q and gSg it holds that g ⊩bq′ 3(p∨ q).
On the other hand, for any b ∈ α1 we have b ⊮bq′ 3p and b ⊮bq′ 3q, because
the only world accessible by S is g, which neither forces p nor q. Hence g ⊮bq′

3p ∨3q and so g ⊮bq′ 3(p ∨ q) → (3p ∨3q).
For (ii), we use the same tree and V but define F with S = {(b, g) : b ∈ B}.

Then we have to check that b ⪯S b′ ⇒ ∃α ∋ b∀c ∈ α(c S⪰ b′). This is not
difficult to see, as the premise holds precisely for arbitrary b and b′ = g, and
taking any α ∋ b allows us to reach the conclusion. Thus the model is again well-
defined. Now we readily observe that g ⊩bo′ 3

′p∧3′q, but as g ⊩bo′ p∨q we have
to conclude that g ⊮bo′ 3

′(p ∨ q). Therefore g ⊮bo′ (3
′p ∧3′q) → 3′(p ∨ q).2

The same thing does not happen for the models we defined earlier. For
soundness and completeness, again we leave them to Appendix.

Theorem 4.11 (Beth soundness of HK3,HK3′)
(i) If ⊢HK3 A then ⊨bq A.
(ii) If ⊢HK3′ A then ⊨bo A.

Theorem 4.12 (Beth completeness of HK3,HK3′)
(i) If ⊨bq A then ⊢HK3 A.
(ii) If ⊨bo A then ⊢HK3′ A.

Remark 4.13 The acceptability of 3(A ∨ B) → (3A ∨ 3B) in intuitionis-
tic modal logic has been questioned by some authors [1,33] on computational
grounds. K. Kojima [21] points out that whether to admit the formula depends
on the viewpoint one takes for a Kripke model. One viewpoint is that of an
external observer, who can check all worlds in a model. For such an observer,
assuming 3(A ∨ B) at a world gives an accessible world in which the disjunc-
tion holds. Then he can look at the world in question to find out which of the
disjuncts holds there, and thereby conclude 3A ∨ 3B. Another viewpoint is
that of an internal observer, who is confined to a world and only has incom-
plete information for other worlds. Such an agent cannot ascertain which of
the disjuncts is the case in the accessible world, and so cannot assert 3A∨3B.
Hence the formula is not acceptable for an internal observer.

5 Beth frame conditions for HK2 and HK2′

In this section, we shall consider a few modal principles for necessity and non-
necessity, as a first step to see what kind of frame conditions correspond to
them in Beth semantics. Correspondence theory for Beth semantics is already
undertaken for some intermediate logics by B. de Beer [9]. He worked with
the version of Beth semantics based on posets, and the frame conditions are
quite complex compared with the frame conditions for Kripke semantics. Our
version of Beth semantics is based on trees, which should simplify the matter
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to a certain extent: nonetheless, as we shall see, the conditions are still more
complex 7 than those of intuitionistic Kripke semantics in [10,11,12,13].

We shall focus on relatively simple frame conditions in Kripke semantics,
namely the reflexivity and symmetry for the relation R≤ . They correspond
to different formulas in HK2 and HK2′. We shall show how even in these
simple cases, the frame conditions for the formulas diverge in Beth semantics.

In what follows, S⪯ in some of the conditions can in fact be replaced with
S; nonetheless we use the first relation to make the comparison clearer.

5.1 Correspondence for HK2

Let us start with the case for necessity. It is shown in [11] that the reflexivity
and symmetry for R≤ correspond to the validity of 2A → A and A∨2¬2A,
respectively. For the first schema, the corresponding Beth-frame condition is
still relatively straightforward. The condition may be seen to generalise the
notion of reflexivity to each path.

Proposition 5.1 Let F = (B,⪯, S) be a Beth frame for HK2. Then the
following are equivalent.
(i) F ⊨bp 2A → A for all A.
(ii) ∀α ∋ b∃b′ ∈ α(b S⪯ b′).

Proof. From (i) to (ii), we argue by contradiction. Suppose for some b, there
is α ∋ b s.t. for all b′ ∈ α, it is not the case that b S⪯ b′ 8 . Then let V(p) = {b′ :
∀β ∋ b′∃c ∈ β(b S⪯ c)}. In order to see that V satisfies the covering property,
assume ∀α ∋ c∃c′ ∈ α(c′ ∈ V(p)). Then ∀α ∋ c∃c′ ∈ α∀β ∋ c′∃d ∈ β(b S⪯ d).
So taking β = α allows us to conclude c ∈ V(p). Now if bSb′ then
∀β ∋ b′∃c ∈ β(b S⪯ c). So b′ ⊩bp p and thus b ⊩bp 2p. On the other hand, if
b ⊩bp p then ∀β ∋ b∃c ∈ β(b S⪯ c), contradicting our initial supposition. Thus
b ⊮bp p and so F ⊭bp 2p → p.

From (ii) to (i), if for some b and b′ ⪰ b we have b′ ⊩bp 2A, then
∀cS−1b′(c ⊩bp A). By the assumption, in any α ∋ b′ there is c ∈ α such
that b′Sc′ and c′ ⪯ c for some c′. This means c′ ⊩bp A and so c ⊩ A. Thus
∀α ∋ b′∃c ∈ α(c ⊩bp A). Hence by the covering property, b′ ⊩bp A and so
b ⊩bp 2A → A for all b ∈ B. 2

The case for the second schema is a bit more involved because it contains a
disjunction. Like the previous case, there is a flavour of symmetry in the con-
dition, but one has to come back only to the original path, and not necessarily
to the same world.

Proposition 5.2 Let F = (B,⪯, S) be a Beth frame for HK2. Then the
following are equivalent.
(i) F ⊨bp A ∨2¬2A for all A.
(ii) ∀α ∋ b∃b′ ∈ α∀c(b′ S⪯ c ⇒ ∃d ∈ α(c S⪯ d)).

7 Note however that CS4-modalities in the setting of Goldblatt [19] have simple conditions.
8 That is to say, ¬(b S⪯ b′).
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Proof. From (i) to (ii), we argue by contraposition. Suppose for some b, there
exists α ∋ b such that ∀b′ ∈ α∃c(b′ S⪯ c and ∀d ∈ α(¬(c S⪯ d))). Then define
a set Σ = {c : ∃b′ ∈ α(b′ S⪯ c) and ∀d ∈ α(¬(c S⪯ d))} and let V(p) = {d :
∀γ ∋ d∃d′ ∈ γ∃c ∈ Σ(c S⪯ d′)}. We can check that V satisfies the covering
property similarly to Proposition 5.1. Now for any b′ ∈ α, if b′ ⊩bp p then
∃d′ ∈ α∃c ∈ Σ(c S⪯ d′). However any c ∈ Σ cannot access any d ∈ α via S⪯ ,
a contradiction. So b′ ⊮bp p. Also if b′ ⊩bp 2¬2p, then we first infer from our
initial supposition that there is c such that b′ S⪯ c and ∀d ∈ α(¬(c S⪯ d)).
This means c ∈ Σ, which implies that c ⊩bp 2p. But as b′ S⪯ c, by the upward
closure we have c ⊩bp ¬2p as well, a contradiction. Hence b′ ⊮bp 2¬2p as well
for any b′ ∈ α. Therefore b ⊮bp p ∨2¬2p and so F ⊭bp p ∨2¬2p.

From (ii) to (i), suppose for α ∋ b we have b′ ⊮bp A for any b′ ∈ α. By
assumption, there is c ∈ α s.t. for all c′, c S⪯ c′ implies c′ S⪯ d for some d ∈ α.
We claim c ⊩bp 2¬2A. If c S⪯ c′, then c′ ⊮bp 2A because d ∈ α accessible
from c′ via S⪯ does not force A. It then follows that c ⊩bp 2¬2A. Therefore
b ⊩bp A ∨2¬2A for all b. 2

5.2 Correspondence for HK2′

We now move on to the cases for non-necessity. It does not seem to be treated
explicitly by Došen, but it is apparent from the results in [13,29] for related
systems that the reflexivity of R≤ in Kripke semantics should correspond to
an analogue of the law of excluded middle for non-necessity.

Proposition 5.3 Let F = (K,≤, R) be a Kripke frame for HK2′. Then the
following are equivalent.
(i) F ⊨kn A ∨2′A for all A.
(ii) k R≤ k.

Proof. See Appendix. 2

Now, the frame condition for Beth semantics can be calculated as follows.
It can still be seen as a generalisation of reflexivity, but is more complex than
the condition for necessity.

Proposition 5.4 Let F = (B,⪯, S) be a Beth frame for HK2′. Then the
following are equivalent.
(i) F ⊨bn A ∨2′A for all A.
(ii) ∀α ∋ b∃b′ ∈ α∀β ∋ b′∃c ∈ β∃c′ ∈ α(c S⪯ c′).

Proof. From (i) to (ii), we show the contrapositive. Suppose for some b ∈ B,

∃α ∋ b∀b′ ∈ α∃β ∋ b′∀c ∈ β∀c′ ∈ α(¬(c S⪯ c′))

Then we let M = (F ,V) be a model such that b′ ∈ V(p) ⇔ b′ /∈ α. We need to
check that V satisfies the covering property. If ∀β ∋ b′∃c ∈ β(c ∈ V(p)), then
we have that b′ ∈ α implies ∃c ∈ α(c /∈ α), a contradiction. Hence b′ /∈ α, and
so b′ ∈ V(p). Thus the model satisfies the covering property.

Now for b′ ∈ α, on one hand if b′ ⊩bn p then b′ /∈ α, a contradiction. Hence
b′ ⊮bn p. On the other hand, b′ ⊩bn 2′p implies ∀β ∋ b′∃c ∈ β∃c′S−1c(c′ ∈ α).
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But by our supposition, ∃β ∋ b′∀c ∈ β∀c′ ∈ α(¬(c S⪯ c′)), a contradiction.
Thus ∀b′ ∈ α(b′ ⊮bn p and b′ ⊮bn 2′p). So b ⊮bn p ∨ 2′p. Therefore
F ⊭bn p ∨2′p.

From (ii) to (i), assume that F satisfies (ii) and let M be a model and
suppose b ⊮bn A ∨2′A. Then

∃α ∋ b∀b′ ∈ α(b′ ⊮bn A and b′ ⊮bn 2′A).

The latter conjunct means ∀b′ ∈ α∃β ∋ b′∀c ∈ β∀c′S−1c(c′ ⊩bn A). But as
c′ ∈ α ⇒ c′ ⊮bn A by the first conjunct, it follows that

∀b′ ∈ α∃β ∋ b′∀c ∈ β∀c′S−1c(c′ /∈ α).

However, this contradicts the assumption that

∃b′ ∈ α∀β ∋ b′∃c ∈ β∃c′ ∈ α(c S⪯ c′),

because d ⪯ c′ and c′ ∈ α implies d ∈ α. Thus b ⊩bn A∨2′A and as the model
was arbitrary, we conclude F ⊨bn A ∨2′A. 2

The second principle we shall consider is the analogue of double negation
elimination 2′2′A → A which corresponds Kripke-semantically to the sym-
metry of R≤ .

Proposition 5.5 Let F = (K,≤, R) be a Kripke frame for HK2′. Then the
following are equivalent.
(i) F ⊨kn 2′2′A → A for all A.
(ii) k R≤ k′ ⇒ k′ R≤ k.

Proof. From (i) to (ii), we argue by contradiction. If there are k, k′ with
k R≤ k′ but not k′ R≤ k, then take V s.t. V(p) = {l : k′ R≤ l}. Then k ⊩kn

2′2′p but k ⊮kn p. Hence F ⊭kn 2′2′p → p. From (ii) to (i), if k′ ⊩kn 2′2′A
for some k and k′ ≥ k, then there is a world l accessible from k′, all of whose
accessible worlds force A. But by the frame condition, there must be a world
l′ s.t. lRl′ and l′ ≤ k′. Thus k′ ⊩kn A. Therefore F ⊨kn 2′2′A → A. 2

The frame condition for Beth semantics is on the other hand rather involved.

Proposition 5.6 Let F = (B,⪯, S) be a Beth frame for HK2′. Then the
following are equivalent.
(i) F ⊨bn 2′2′A → A for all A.
(ii) ∀α ∋ b∃β ∋ b∀b′ ∈ β∀c(b′ S⪯ c ⇒ ∀γ ∋ c∃c′ ∈ γ∃d ∈ α(c′ S⪯ d)).

Proof. From (i) to (ii), we show the contrapositive. Assume for some b ∈ B,

∃α ∋ b∀β ∋ b∃b′ ∈ β∃c(b′ S⪯ c and ∃γ ∋ c∀c′ ∈ γ∀d ∈ α(¬(c′ S⪯ d))).

We then fix, for each β ∋ b, worlds b′β ∈ β , cβ ⪰S−1 b′β and a path γβ ∋ cβ
s.t. ∀c′ ∈ γβ∀d ∈ α(¬(c′ S⪯ d)). We define a model M = (F ,V) by choosing
V such that:

x ∈ V(p) ⇔ ∀δ ∋ x∃β ∋ b∃y ∈ γβ∃z ∈ δ(y S⪯ z).
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In order to check that V satisfies the covering property, suppose
∀α ∋ x∃y ∈ α(y ∈ V(p)) but x /∈ V(p). Then there is δ ∋ x such that
for all β ∋ b, y ∈ γβ and z ∈ δ, it is not the case that y S⪯ z. But by our
supposition, there is x′ ∈ δ such that x′ ∈ V(p). So for some β0 ∋ b, y0 ∈ γβ0

and z0 ∈ δ, we have y0 S⪯ z0. Hence we obtain a contradiction, which allows
us to conclude x ∈ V(p), as desired.

Now, for each β ∋ b, if c′Sd for some c′ ∈ γβ , then d ⊩bn p because for
each δ ∋ d, d itself is an element accessible from c′. Hence cβ ⊮bn 2′p for each
β ∋ b. Therefore b ⊩bn 2′2′p. On the other hand, by assumption, for any
β ∋ b and c′ ∈ γβ , there is no d ∈ α such that c′ S⪯ d. So b ⊮bn p and thus
F ⊭bn 2′2′p → p.

From (ii) to (i), let M = (F ,V) be a model and suppose b′ ⊩bn 2′2′A for
some b and b′ ⪰ b. This is equivalent to saying that

∀β ∋ b′∃c ∈ β∃c′S−1c∃γ ∋ c′∀d ∈ γ∀d′S−1d(d′ ⊩bn A).

Now take α ∋ b′. then by our assumption, there is β ∋ b′ satisfying

⊛ : ∀c ∈ β∀c′(c S⪯ c′ ⇒ ∀γ ∋ c′∃d ∈ γ∃d′ ∈ α(d S⪯ d′)).

Also by the equivalence above, there is c0 ∈ β, c′0 satisfying c0 S⪯ c′0 and γ ∋ c′0
such that ∀d ∈ γ∀d′S−1d(d′ ⊩bn A). With respect to this γ, it holds from ⊛
that ∃d ∈ γ∃d′ ∈ α(d S⪯ d′). Hence d′ ∈ α and d′ ⊩bn A for such d′. Therefore
∀α ∋ b′∃d′ ∈ α(d′ ⊩bn A). Then by the covering property, we infer b′ ⊩bn A.
Consequently b ⊩bn 2′2′A → A; so F ⊨bn 2′2′A → A for all A. 2

6 An application to paraconsistent logic

In what follows, we shall utilise the frame conditions we discovered to obtain the
completeness of a paraconsistent logic called CCω. This system is formulated
in [29] as an extension of N.C.A. da Costa’s system Cω [6] by (RC). CCω

can be extended to both TCCω and the logic daC of dual negation by G.
priest [26]: see [24,25] for more details. Like empirical negation, the forcing
conditions for negation in these systems define different systems depending
on which semantics (Kripke/Beth) is used. Indeed, empirical negation itself
can be obtained as an extension from these systems [8,16]. In order to better
understand this phenomenon, it would be desirable to have a characterisation
of its basis in terms of Beth semantics. Beth completeness of CCω is therefore
expected to provide us insights into the difference between the semantics.

Let us first look at the axiomatic system for CCω and its Kripke semantics.
For the sake of consistency, we will keep using the symbol 2′ to denote the
negation of the system.

Definition 6.1 [CCω] We define the system CCω by adding to HK2′ the
next axiom schemata.

A ∨2′A (LEM) 2′2′A → A (DNE)
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System (a) (b) (c)
HK2 + − −
HK2′ − + −
HK3 − + +
HK3′ + − +

Table 1
differences among the semantics

It is known that (N1) becomes redundant in CCω. To see this, we note
2′(2′A ∨ 2′B) → 2′2′A ∧ 2′2′B is derivable in HK2′ without appealing
to (N1). Then use (DNE), (RC) and (DNE) again to obtain 2′(A ∧ B) →
2′A ∨2′B.

Definition 6.2 [Kripke semantics for CCω] A Kripke frame F for CCω is a
triple (K,≤, R) where (K,≤) is as before, and R ⊆ K ×K is a reflexive and
symmetric relation such that ≥R ⊆ R. (This corresponds to the ‘condensed’
relation R2′ in [10, p.11].) Then the notions of Kripke models and validity
are defined analogously to the ones in HK2′. We will use ⊩kc etc. as the
notations.

Theorem 6.3 (Kripke soundness and completeness of CCω)
⊢CCω

A if and only if ⊨kc A.

Proof. See [29, p.56]. 2

Applying the results from the preceding subsection, we shall define the Beth
semantics of CCω in the following manner.

Definition 6.4 [Beth semantics for CCω] We define a Beth frame F for CCω

as the ones of HK2′ which satisfies the following conditions.

• ∀α ∋ b∃b′ ∈ α∀β ∋ b′∃c ∈ β∃c′ ∈ α(c S⪯ c′).

• ∀α ∋ b∃β ∋ b∀b′ ∈ β∀c(b′ S⪯ c ⇒ ∀γ ∋ c∃c′ ∈ γ∃d ∈ α(c′ S⪯ d))

Otherwise, the notions of Beth models and validity are defined as in the ones
for HK2′. We shall use the notation ⊩bc etc.

Then as for Beth completeness, we shall again argue via an embedding of
Kripke models into Beth models: see Appendix for the details.

Theorem 6.5 (Beth soundness and completeness of CCω)
⊢CCω

A if and only if ⊨bc A.

7 Conclusion

In this paper, we investigated intuitionistic modal logics in terms of Beth se-
mantics. In the Božić-Došen style of Kripke semantics for intuitionistic modal
logic, modal operators are incorporated by means of a frame condition express-
ing the interaction between the intuitionistic ordering and the accessibility
relation. We observed that the situation is rather different in Beth semantics.
The semantics for the operators differ on whether (a) there is a frame condition
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ensuring upward closure; (b) the forcing condition is altered to satisfy the cov-
ering property; and (c) it has an extra condition to keep the soundness. Table
1 summarises the properties of each semantics according to these criteria.

The divergence suggests that we have to make different types of assump-
tions on the notion of growth of knowledge in Beth semantics, depending on
which modality is considered. Beth semantics therefore appears more advan-
tageous than Kripke semantics in capturing the particularity of each modal
notion. In addition, the Beth forcing condition for non-necessity and possibil-
ity might be seen as more natural or preferable in that they allow one to assert
a non-necessity (possibility) even when currently accessible worlds say other-
wise. Furthermore, some people may see the condition in (a) and its Kripke
counterpart as rather ad hoc; so it is perhaps more satisfying that the Beth
semantics for non-necessity and possibility does not endorse it.

For future works, a natural direction is to explore more fully the correspon-
dence theory of Beth semantics for each of the modal operators. In particular,
the frame conditions for the axiom schemata extending CCω are of interest
for gaining more insights into the difference between Kripke and Beth seman-
tics. Another important direction would be to study the precise relationship
between the semantics of this paper and that of Goldblatt. Finally, we only
considered one operator at a time, but it should offer new insights into Beth
semantics to study the interaction of different operators in a system, as Božić
and Došen already did for Kripke semantics.

Appendix

Proof of Theorem 2.8

Proof. By induction on the depth of derivation. Here we look at the cases for
(P1), (P2) and (RM). For (P1), if b′ ⊩bs 2A∧2B for b′ ⪰ b, then for all cS−1b′,
it holds that c ⊩bp A ∧ B. So, b′ ⊩bp 2(A ∧ B). Thus b ⊩bp (2A ∧ 2B) →
2(A ∧B). For (P2), we have b′ ⊩ A → A for any b′S−1b. So b ⊩bp 2(A → A).

For (RM), if b′ ⊩bp 2A for any b and b′ ⪰ b, then ∀cS−1b′(c ⊩bp A). Also,
by I.H. ⊨bp A → B. Thus ∀cS−1b′(c ⊩bp B). Hence b′ ⊩bp 2B. Consequently
b ⊩bp 2A → 2B; so ⊨bp 2A → 2B. 2

Proof of Theorem 2.9

Proof. We argue via Kripke completeness. If ⊬HK2 A, then by Theorem
2.5 there is a Kripke model Mk = ((K,≤, R),VK) such that k ⊮kp A for some
k ∈ K. Then we construct a Beth model Mb = ((B,⪯, S),VB) by the following
clauses.

• B = {(k1, . . . , kn) : ki ∈ K and k1 ≤ . . . ≤ kn} ∪ {g}.
(i) (k1, . . . , kn) ⪯ (k′1, . . . , k

′
m) iff n ≤ m and ki = k′i for i ≤ n.

(ii) g ⪯ b for all b ∈ B and b ⪯ g ⇒ b = g.

(i) (k1, . . . , kn)S(k
′
1, . . . , k

′
m) iff knRk′m.

(ii) gS(k1, . . . , kn) iff k′Rkn for some k′ ∈ K.
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(iii) ¬(bSg) for all b ∈ B.

(i) (k1, . . . , kn) ∈ VB(p) iff kn ∈ VK(p).
(ii) g ∈ VB(p) iff k ∈ VK(p) for all k ∈ K.

Then it is straightforward to see that MB is a Beth model: in particular, if
∀α ∋ b∃b′ ∈ α(b′ ∈ VB(p)), then for b = (k1, . . . , kn) we look at

α = (g, (k1), . . . , (k1, . . . , kn), (k1, . . . , kn, kn), . . .).

Then k′ ∈ VK(p) for some k′ ≤ kn, hence kn ∈ VK(p) and so (k1, . . . , kn) ∈
VB(p). For b = g, for each k ∈ K we look at α = (g, (k), (k, k), . . .) to conclude
k ∈ VK(p); it then follows that g ∈ VB(p).

We also have to check that S satisfies the condition that for all b, b′ ∈ B:

b ⪯S b′ ⇒ ∃α ∋ b∀c ∈ α(c S⪯ b′).

If b ⪯S b′, then note that b′ ̸= g; so suppose b′ = (k′1, . . . , k
′
m). We first

consider the case when b = g. Then for some c, we have b ⪯ c and cSb′. Now,
regardless of whether c = g, there is a world (k′′1 , . . . , k

′′
l ) such that k′′l Rk′m.

Take α = (g, (k′′l ), (k
′′
l , k

′′
l ), . . .). Then if c′ ∈ α, either c′ = g or c′ ends with

k′′l . In each case, we have c′Sb′. Therefore ∃α ∋ b∀c ∈ α(c S⪯ b′), as required.
Next, for the case when b = (k1, . . . , kn), first we observe that there is a world
(k1, . . . , kn, . . . , kl) such that klRk′m and consequently gSb′. For the path, we
take α = (g, (k1), . . . , (k1, . . . , kn), (k1, . . . , kn, kn), . . .). Suppose now c ∈ α. If
c = g, then it is immediate from the above observation that c S⪯ b′. Otherwise,
c ends with kn′ ≤ kn which satisfies kn′ ≤R k′m. Then by the frame condition
on R, we infer kn′ R≤ k′m. Consequently c S⪯ k′m. Thus ∃α ∋ b∀c ∈ α(c S⪯ b′)
in this case as well.

We next claim that the following equivalences hold between the two models.

k ⊩kp A ⇐⇒ (k1, . . . , k) ⊩bp A.

Mk ⊨kp A ⇐⇒ g ⊩bp A.

We shall establish this by induction on the complexity of A. The case A ≡ p
follows by above. The cases when A ≡ B ∧C,B → C are straightforward. The
case when A ≡ B ∨C is similar to the case for non-necessity we shall see later.

When A ≡ 2B, then for the first equivalence, if k ⊩kp 2B then
∀k′R−1k(k′ ⊩kp B). Then by the I.H. ∀bS−1(k1, . . . , k)(b ⊩bp B), because g
is not accessible from any worlds. Hence (k1, . . . , k) ⊩bp 2B. The converse di-
rection is similarly shown. For the second equivalence, note that Mk ⊨kp 2B
is equivalent to ∀k(∃k′(k′Rk) ⇒ k ⊩kp B). By the I.H. and the definition of S,
this is further equivalent to ∀b(gSb ⇒ b ⊩bp B), and so to g ⊩bp 2B. (We are
again using the fact that g is not accessible from any world.)

Now since k ⊮kp A, the above equivalence implies (k) ⊮bp A. Therefore
⊭bp A. 2

Proof of Theorem 3.10
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Proof. By induction on the depth of derivation. Here we look at the cases for
(N1),(N2) and (RC). For (N1), if b′ ⊩bn 2′(A∧B) for some b and b′ ⪰ b, then
∀α ∋ b′∃c ∈ α∃c′S−1c(c′ ⊮bn A ∧B). So,

∀α ∋ b′∃c ∈ α(∃c′S−1c(c′ ⊮bn A) or ∃c′S−1c(c′ ⊮bn B)).

Consequently it follows that

∀α∈b′∃c∈α(∀β∈c∃c′∈β∃dS−1c′(d ⊮bn A) or ∀β∈c∃c′∈β∃dS−1c′(d ⊮bn B)).

That is to say, ∀α ∋ b′∃c ∈ α(c ⊩bn 2′A or c ⊩bn 2′B). Thus b′ ⊩bs 2
′A∨2′B

and therefore b ⊩bn 2′(A ∧B) → (2′A ∨2′B).
For (N2), suppose b′ ⊩bn 2′(A → A) for some b and b′ ⪰ b. Consider any

α ∋ b′. Then there has to be c ∈ α and c′S−1c such that c′ ⊮bn A → A, a
contradiction. Thus b ⊩bn 2′(A → A) → B.

For (RC), if b′ ⊩bn 2′B for some b and b′ ⪰ b, then
∀α ∋ b′∃c ∈ α∃c′S−1c(c′ ⊮bn B). Also, by I.H. ⊨bn A → B. Thus
∀α ∋ b′∃c ∈ α∃c′S−1c(c′ ⊮bn A). Hence b′ ⊩bn 2′A. Consequently b ⊩bn

2′B → 2′A; so ⊨bn 2′B → 2′A. 2

Proof of Theorem 3.11

Proof. We argue via Kripke completeness. If ⊬HK2′ A, then by Theorem 3.5
there is an HK2′-Kripke model Mk = ((K,≤, R),VK) such that k ⊮ks A for
some k ∈ K. Then we construct an HK2′-Beth model Mb = ((B,⪯, S),VB)
in almost the same way as Theorem 2.9, except that:

(i) gS(k′1, . . . , k
′
m) iff kRk′m for all k ∈ K.

(ii) (k1, . . . kn)Sg iff knRk for all k ∈ K.

(iii) (gSg) iff kRk′ for all k, k′ ∈ K.

Because there is no condition on S this time, it is immediate that Mk is a Beth
model for HK2′.

We again need to check that the next equivalences hold between the models.

k ⊩kn A ⇐⇒ (k1, . . . , k) ⊩bn A.

Mk ⊨kn A ⇐⇒ g ⊩bn A.

When A ≡ 2′B, if k ⊩kn 2′B, then ∃k′R−1
k k(k′ ⊮kn B). By I.H. this is

equivalent to ∃(k′1, . . . , k′)S−1(k1, . . . , k)((k
′
1, . . . , k

′) ⊮bn B). Thus we can
infer that for any α ∋ (k1, . . . , k) there is a node b in the path such that
∃(k′1 . . . , k′)S−1b((k′1, . . . , k

′) ⊮bn B). Hence (k1, . . . , k) ⊩bn 2′B.
For the converse direction, if (k1, . . . , k) ⊩bn 2′B then it follows that

∀α ∋ (k1, . . . k)∃b ∈ α∃b′S−1b(b′ ⊮bn B). We then choose the path α =
(g, (k1), . . . , (k1, . . . , k), (k1, . . . , k, k), . . .). Then there are four possibilities, de-
pending on whether b = g and b′ = g. If b = g, then gSb′ implies kRk0 for
some k0 s.t. k0 ⊮kn B, in both of the cases b′ = g and b′ ̸= g. If b ̸= g,
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then b = (k1, . . . , k
′) for some k′ ≤ k such that k′Rl for some l with l ⊮kn B,

independent of whether b′ = g. Then k ≥R l, so by the frame condition
for Kripke frames we infer k R≤ l. Hence there is l′ such that kRl′ and
l′ ⊮kn B. Thus in all case ∃k′R−1k(k′ ⊮bn B) and so k ⊩kn 2′B. The case for
Mk ⊨kn 2′B ⇐⇒ g ⊩bn 2′B is analogous.

Now, since k ⊮kn A, the above equivalence implies (k) ⊮bn A. Thus ⊭bn A.2

Proof of Theorem 4.11

Proof. For (i), we need to check the cases for (Q1),(Q2) and (RM2). To see
that (Q1) is valid, suppose b′ ⊩bq 3(A ∨ B) for some b and b′ ⪰ b. Then
∀α ∋ b′∃c ∈ α∃c′S−1c(c′ ⊩bq A∨B). So for any β ∋ c′ there is d ∈ β such that
d ⊩bq A or d ⊩bq B. Note that we can assume d ⪰ c′ without loss of generality
because of the upward closure. Then by the frame condition added for HK3, it
holds that cSd for such d with respect to some β ∋ c′. Consequently c ⊩bq 3A
or c ⊩bq 3B. Therefore b′ ⊩bq 3A ∨ 3B; so b ⊩bq 3(A ∨ B) → (3A ∨ 3B).
The cases for (Q2) and (RM2) are straightforward.

For (ii), we use the same construction of Beth model as HK2′. We need
then to check first that the condition ∀b, b′ ∈ B(bSb′ ⇒ ∃α ∋ b′∀c ∈ α(c ⪰
b′ ⇒ bSc)) is satisfied. If b′ = (k1, . . . , km), then we can take the path
α = (g, (k1), . . . , (k1, . . . , km), (k1, . . . , km, km), . . .). If b′ = g, then bSc for
any c ∈ B, so we can take an arbitrary α. We furthermore need to show
that the equivalences between Kripke and Beth forcings; These can be shown
analogously to the cases for HK2′. 2

Proof of Theorem 4.12

Proof. For (1), we need to check the cases for (O1),(O2) and (RC2). To see
that (O1) is valid, suppose b′ ⊩bo 3′A ∧3′B for some b and b′ ⪰ b. Then b′Sc
implies c ⊮bo A and c ⊮bo B. Now if c′ ⊩bo A∨B for some c′S−1b′, then by the
added frame condition there is α ∋ c′ s.t. b′Sd for all d ∈ α satisfying d ⪰ c′.
So no world in α can force A nor B, a contradiction. Thus b′ ⊩bo 3′(A ∨ B)
and so b ⊩bo (3′A ∧ 3′B) → 3′(A ∨ B). The cases for (O2) and (RC2) are
simple.

For (ii), the condition ∀b, b′ ∈ B(bSb′ ⇒ ∃α ∋ b′∀c ∈ α(c ⪰ b′ ⇒ bSc)) can
be checked as in (i), but notice that the case b′ = g does not apply. Then
we can show ∀b, b′ ∈ B(b ⪯S b′ ⇒ ∃α ∋ b∀c ∈ α(c S⪰ b′)) analogously to the
respective condition for HK2. Similarly for the equivalences of the forcings.2

Proof of Proposition 5.3

Proof. From (i) to (ii), we argue by contradiction. Suppose there is k s.t.
¬(k R≤ k). Choose V s.t. V(p) = {k′ : k R≤ k′}. V(p) is upward closed, and
k ⊮kn p ∨ 2′p. Hence F ⊭kn p ∨ 2′p. From (ii) to (i), suppose k ⊮kn 2′A.
Then all worlds accessible from k force A. In particular, by the frame condition
there is k′ s.t. kRk′ and k′ ≤ k. So k ⊩kn A. 2
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Proof of Theorem 6.5

Proof. The soundness direction follows immediately from Theorem 3.10,
Proposition 5.4 and 5.6.

For completeness, the outline is identical to the proof of Theorem 3.11. As
we noted, the Kripke semantics for CCω has the condition ≥R ⊆ R rather
than ≥R ⊆ R≤ used for HK2′. The latter condition is used in establishing
the equivalence of valuation for non-necessity, but it is straightforward to check
that the former condition works as well.

We need to check that the Beth model constructed out of a Kripke model
satisfies the conditions corresponding to (LEM) and (DNE). For the con-
dition of (LEM), if b = (k1, . . . , k) ̸= g and α ∋ b, take b′ = b. Then
given β ∋ b′, we note kRk by reflexivity and so b S⪯ b and b ∈ α. Thus
∃c ∈ β∃c′ ∈ α(c S⪯ c′), as desired. If b = g, then for α = (g, (k), . . .) take
b′ = (k); we can then argue in the same manner to obtain the same conclu-
sion. For the condition of (DNE), given b = (k1, . . . k) ̸= g and α ∋ b, we take
β = (g, (k1), . . . , (k1, . . . , k), (k1, . . . , k, k), . . .). Suppose b

′ ∈ β, c ⪰ c′S−1b′ and
γ ∋ c. If b′ ̸= g, then b′ = (k1, . . . , k

′) for k′ ≤ k. When c′ = (l1, . . . , l) ̸= g,
we then have k′Rl and so kRl from the frame condition that ≥R ⊆ R. So by
symmetry lRk, which means c′S ⪯ b. Consequently, (noting c′ ∈ γ) we have
∃c′ ∈ γ∃d ∈ α(c′ S⪯ d). When c′ = g, then k′Rl for all l ∈ K and so is k by the
frame condition. Thus by symmetry lRk for all l ∈ K, which implies c′S ⪯ b
again. If b′ = g then b′Sc′ means either: there is l ∈ K which is accessible from
k (if c′ ̸= g), or every point is accessible from k (if c′ = g). In both case we can
use symmetry to conclude c′S ⪯ b. Finally, if b = g, then for α = (g, (k), . . .)
take β = (g, (k), (k, k), . . .). The rest is analogous. 2

References

[1] Alechina, N., M. Mendler, V. de Paiva and E. Ritter, Categorical and Kripke semantics
for constructive S4 modal logic, in: International Workshop on Computer Science Logic,
Springer, 2001, pp. 292–307.

[2] Artemov, S. and T. Protopopescu, Intuitionistic epistemic logic, The Review of Symbolic
Logic 9 (2016), pp. 266–298.

[3] Beth, E. W., semantic construction of intuitionistic logic, (Mededelingen van de)
Koninklijke Nederlandse Akademie van Wetenschappen (Afdeling Letteren) (Nieuwe
Reeks) 19 (1956), pp. 357–388.

[4] Bezhanishvili, G. and W. H. Holliday, A semantic hierarchy for intuitionistic logic,
Indagationes Mathematicae 30 (2019), pp. 403–469.
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