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Abstract

We prove a Goldblatt-Thomason theorem for dialgebraic intuitionistic logics, and in-
stantiate it to Goldblatt-Thomason theorems for a wide variety of modal intuitionistic
logics from the literature.

Keywords: Modal logic, intuitionistic logic, Goldblatt-Thomason theorem.

1 Introduction

A prominent question in the study of (modal) logics and their semantics is
what classes of frames can be defined as the class of frames satisfying some set
of formulae. Such a class is usually called axiomatic or modally definable. A
milestone result partially answering this question in the realm of classical nor-
mal modal logic is from Goldblatt and Thomason and dates back to 1974 [16].
It states that an elementary class of Kripke frames is axiomatic if and only if it
reflects ultrafilter extensions and is closed under p-morphic images, generated
subframes and disjoint unions. The proof in [16] relies on Birkhoff’s variety
theorem [4] and makes use of the algebraic semantics of the logic. A model-
theoretic proof was provided almost twenty years later by Van Benthem [1].

A similar result for (non-modal) intuitionistic logic was proven by Roden-
burg [30] (see also [15]), where the interpreting structures are intuitionistic
Kripke frames and models. This, of course, requires analogues of the notions
of p-morphic images, generated subframes, disjoint unions and ultrafilter ex-
tensions. While the first three carry over straightforwardly from the setting of
classical normal modal logic, ultrafilters need to be replaced by prime filters.

In recent years, Goldblatt-Thomason style theorems (which we will simply
refer to as “Goldblatt-Thomason theorems”) for many other logics have been
proven, including for positive normal modal logic [8], graded modal logic [31],
modal extensions of  Lukasiewicz finitely-valued logics [35], LE-logics [10], and
modal logics with a universal modality [32]. A general Goldblatt-Thomason
theorem for coalgebraic logics for Set-coalgebras was given in [22].

In the present paper we prove Goldblatt-Thomason theorems for modal
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intuitionistic logics. These include the extensions of intuitionistic logic with
a normal modality [36,37,38], a monotone one [14, Sec. 6], a neighbourhood
modality [11], and a strict implication modality [25,26,12]. For each we obtain:

A class K of frames closed under prime filter extensions is axiomatic if
and only if it reflects prime filter extensions and is closed under

disjoint unions, regular subframes and p-morphic images.

Instead of proving each of these results individually, we prove a more gen-
eral Goldblatt-Thomason theorem for dialgebraic intuitionistic logics, merging
techniques from [15] and [22]. We then apply this to specific instances.

Dialgebraic logic slightly generalises coalgebraic logic and was recently in-
troduced in [18]. It provides a framework where modal logics are developed
parametric in the signature of the language and a functor T : C′ → C, where
C′ is some subcategory of C. While coalgebraic logics are too restrictive to
describe modal intuitionistic logics (see e.g. [24, Rem. 8], [18, Sec. 2]), the
additional flexibility of dialgebraic logic does allow us to model a number of
them.

The paper is structured as follows. In Sec. 2 we recall a semantics for the
extension of intuitionistic logic with a normal modality from [38]. Using
this as running example, in Sec. 3 we recall the basics of dialgebraic logic
and prove the Goldblatt-Thomason theorem. In particular, this yields a new
Goldblatt-Thomason theorem for the logic and semantics from Sec. 2. In Sec. 4
we instantiate the general theorem to several more modal intuitionistic logics
from the literature to obtain new Goldblatt-Thomason theorems.

2 Normal Modal Intuitionistic Logic

For future reference, we recall the extension of intuitionistic logic with a unary
meet-preserving modality from Wolter and Zakharyaschev [37,38].

Definition 2.1 Denote the language of intuitionistic logic by L, with propo-
sition letters from some countably infinite set Prop. That is, L is generated by
the grammar

φ ::= ⊤ | ⊥ | p | φ ∧ φ | φ ∨ φ | φ→ φ,

where p ∈ Prop. Write L for its extension with a unary operator . Further,
let L be the intuitionistic propositional calculus, and let L be the logic that
arises from extending an axiomatisation for L (that we assume includes uniform
substitution) with the axioms and rule

⊤ ↔ ⊤, p ∧ q ↔ (p ∧ q), (p↔ q)/( p↔ q) (1)

We write Pos for the category of posets and order-preserving functions. In
this paper, we define an intuitionistic Kripke frame as a poset and we write Krip
for the full subcategory of Pos whose morphisms are p-morphisms [2, Sec. 2.1.1].
(Sometimes intuitionistic Kripke frames are defined to be preorders. For the
results presented in this paper there is no discernible difference.)
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Definition 2.2 A -frame is a triple (X,≤, R) where (X,≤) is an intuition-
istic Kripke frame and R is a relation on X satisfying (≤ ◦R ◦ ≤) = R.

Adding a valuation V : Prop → Up(X,≤) (= {a ⊆ X | x ∈ a and x ≤
y implies y ∈ a}) yields a -model, in which we can interpret L -formulae.
Proposition letters are interpreted via the valuation, intuitionistic connectives
are interpreted as usual in the underlying intuitionistic Kripke frame and a
state x satisfies φ if all its R-successors satisfy φ.

While morphisms are not defined in [37,38], there is an obvious choice:

Definition 2.3 A -morphism form (X,≤, R) to (X ′,≤′, R′) is a function
f : X → X ′ such that for E ∈ {≤, R} and for all x, y ∈ X and z′ ∈ X ′:

• If xEy then f(x)E′f(y);

• If f(x)E′z′ then ∃z ∈ X such that xEz and f(z) = z′.

We write WZ for the category of -frames and -morphisms.

The algebraic semantics of L is given as follows.

Definition 2.4 A Heyting algebra with operators (HAO) is a pair (A, ) of
a Heyting algebra A and a function : A → A satisfying ⊤ = ⊤ and
a ∧ b = (a ∧ b) for all a, b ∈ A. Together with -preserving Heyting

homomorphisms, these constitute the category HAO.

We briefly recall some categories, functors and natural transformations.

Definition 2.5 DL and HA denote the categories of distributive lattices and
Heyting algebras. Let up be the contravariant functor Pos → DL that sends a
poset to the distributive lattice of its upsets and an order-preserving function
f to f−1. Write pf : DL → Pos for the contravariant functor sending A ∈ DL
to the set of prime filters of A ordered by inclusion, and a homomorphism to
its inverse image. These restrict to up′ : Krip → HA and pf ′ : HA → Krip.

Let η : idPos → pf ◦up and θ : idDL → up◦pf be the natural transformations
defined by η(X,≤)(x) = {a ∈ up(X,≤) | x ∈ a} and θA(a) = {p ∈ pfA | a ∈ p}.
(These are the units of the dual adjunction between Pos and DL.) Furthermore,
θ restricts to the natural transformation θ′ : idHA → up′ ◦ pf ′.

Every -frame (X,≤, R) yields a HAO (up′(X,≤), R) (called its complex
algebra), with R(a) = {x ∈ X | xRy implies y ∈ a}. Conversely, every HAO
(A, ) gives rise to a -frame (pf ′A,⊆, R ), where pR q iff for all a ∈ A,
a ∈ p implies a ∈ q. Concatenating these constructions yields:

Definition 2.6 The prime filter extension of a -frame (X,≤, R) is the frame
(Xpe,⊆, Rpe), where Xpe is the set of prime filters on (X,≤) and Rpe is defined
by pRpeq iff for all a ∈ up′(X,≤), R(a) ∈ p implies a ∈ q.

3 A General Goldblatt-Thomason Theorem

We restrict the framework of dialgebraic logic [18] to an intuitionistic base.
Within this, we prove a Goldblatt-Thomason theorem. Throughout this sec-
tion, we show how general constructions specialise to the normal modal intu-
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itionistic logic from Sec. 2. Our focus on an intuitionistic propositional base
allows us to augment the framework of dialgebraic logic from [18] in the fol-
lowing ways:

• In [18] a logic is identified via an initial object in some category, which plays
the role of the Lindenbaum-Tarski algebra. Here we define logics explicitly,
by means of an axiomatisation.

• Whereas proposition letters in [18] are regarded as predicate liftings, here we
elevate them to a special status. This has two reasons: first, it simplifies the
connection to (frames and models for) modal intuitionistic logics from the
literature; second, they facilitate the use of Birkhoff’s variety theorem.

• We give dialgebraic definitions of subframes, p-morphic images and disjoint
unions, and corresponding preservation results.

• We give prime filter extensions for models (not just for frames).

We work towards a Goldblatt-Thomason theorem as follows. First we recall the
use of dialgebras as frames for modal extensions of intuitionistic logic (Sec. 3.1),
and we prove some invariance properties (Sec. 3.2). Then we describe algebraic
semantics and prime filter extensions dialgebraically (Sec. 3.3 and 3.4). This
culminates in the Goldblatt-Thomason theorem in Sec. 3.5.

3.1 Languages and Frames

Dialgebras were introduced by Hagino in [19] to describe data types. Here we
use them to describe frames for modal intuitionistic logics.

Definition 3.1 Let F ,G : C → D be functors. An (F ,G)-dialgebra is a pair
(X, γ) where X ∈ C and γ : FX → GX is a D-morphism. An (F ,G)-dialgebra
morphism from (X, γ) to (X ′, γ′) is a C-morphism f : X → X ′ such that
Gf ◦ γ = γ′ ◦ Ff . They constitute the category Dialg(F ,G). In diagrams:

FX FX FX ′

objects: arrows:

GX GX GX ′

γ γ

Ff

γ′

Gf

We will be concerned with two classes of dialgebras. First, (i,T )-dialgebras,
where i : Krip → Pos is the inclusion functor and T : Krip → Pos is any func-
tor, serve as frame semantics for our dialgebraic intuitionistic logics. Second,
dialgebras for functors HA → DL will be used as algebraic semantics.

Example 3.2 Let Pup : Krip → Pos be the functor that sends an intuitionistic
Kripke frame (X,≤) to its set of upsets ordered by reverse inclusion, and a p-
morphism f : (X,≤) → (X ′,≤′) to Pupf : Pup(X,≤) → Pup(X

′,≤′) : a 7→ f [a].
Then identifying a relation R on X with the map γR : (X,≤) → Pup(X,≤) :
x 7→ {y ∈ X | xRy} yields an isomorphism WZ ∼= Dialg(i,Pup) [18, Sec. 2].

Modalities for Dialg(i,T ) are defined via predicate liftings [18, Def. 5.7].

Definition 3.3 An n-ary predicate lifting for a functor T : Krip → Pos is a
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natural transformation

λ : (Up ◦ i)n → Up ◦ T .

Here Up : Pos → Set is the contravariant functor that sends a poset to its set
of upsets, and (Up ◦ i)n(X,≤) is the n-fold product of Up(i(X,≤)) in Set.

Definition 3.4 Let Prop be a countably infinite set of proposition letters. For
a set Λ of predicate liftings, define the language L(Λ) by the grammar

φ ::= ⊤ | ⊥ | p | φ ∧ φ | φ ∨ φ | φ→ φ | ♡λ(φ1, . . . , φn),

where p ranges over Prop and λ ∈ Λ is n-ary.

Definition 3.5 Let Λ be a set of predicate liftings for T : Krip → Pos.
An (i,T )-model M is an (i,T )-dialgebra X = (X,≤, γ) with a valuation
V : Prop → Up(X,≤). Truth of φ ∈ L(Λ) at x ∈ X is defined by

M, x ⊩ ⊤ always, M, x ⊩ ⊥ never, M, x ⊩ p iff x ∈ V (p)

M, x ⊩ φ ∧ ψ iff M, x ⊩ φ and M, x ⊩ ψ

M, x ⊩ φ ∨ ψ iff M, x ⊩ φ or M, x ⊩ ψ

M, x ⊩ φ→ ψ iff x ≤ y and M, y ⊩ φ imply M, y ⊩ ψ

M, x ⊩ ♡λ(φ1, . . . , φn) iff γ(x) ∈ λ(X,≤)(Jφ1KM, . . . , JφnKM)

Here JφKM = {x ∈ X | M, x ⊩ φ}. We write M ⊩ φ if M, x ⊩ φ for all x ∈ X
and X ⊩ φ if (X, V ) ⊩ φ for all valuations V for X. If Φ ⊆ L(Λ) then we say
that Φ is valid on X, and write X ⊩ Φ, if X ⊩ φ for all φ ∈ Φ. Also, let

Fr Φ = {X ∈ Dialg(i,T ) | X ⊩ Φ}.

We call a class K ⊆ Dialg(i,T ) axiomatic if K = Fr Φ for some Φ ⊆ L(Λ).

Example 3.6 Since -frames correspond to (i,Pup)-dialgebras, it is easy to
see that -models correspond to (i,Pup)-models. The modal operator can
be induced by the predicate lifting λ : Up ◦ i → Up ◦ Pup given by

λ(X,≤) : Up(i(X,≤)) → Up(Pup(X,≤)) : a 7→ {b ∈ Pup(X,≤) | b ⊆ a}.

Indeed, if M = (X,≤, R, V ) is a -model and (X,≤, γR, V ) the corresponding
(i,Pup)-model then we have x ⊩ φ iff every R-successor of x satisfies φ, i.e. iff
γR(x) ⊆ JφKM. By definition the latter is equivalent to γR(x) ∈ λ(X,≤)(JφKM).

Finally, we define morphisms between (i,T )-models.

Definition 3.7 An (i,T )-model morphism from M = (X, V ) to M′ = (X′, V ′)
is an (i,T )-dialgebra morphism f : X → X′ such that V = f−1 ◦ V ′.

Proposition 3.8 If f : M → M′ is an (i,T )-model morphism, then for all
states x of M and φ ∈ L(Λ), we have M, x ⊩ φ iff M′, f(x) ⊩ φ.
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Proof. Let M = (X,≤, γ, V ) and M′ = (X ′,≤′, γ′, V ′). The proof proceeds
by induction on the structure of φ. If φ ∈ Prop then the claim follows from
the definition of an (i,T )-model morphism. The inductive cases for proposi-
tional connectives are routine, so we focus on the modal case. We restrict our
attention to unary modalities, higher arities being similar. Compute:

M, x ⊩ ♡λφ

iff γ(x) ∈ λ(X,≤)(JφKM) (Def. 3.5)

iff γ(x) ∈ λ(X,≤)(f
−1(JφKM

′
)) (Induction hypothesis)

iff γ(x) ∈ λ(X,≤)((if)−1(JφKM
′
)) (Because if = f)

iff γ(x) ∈ (T f)−1(λ(X′,≤′)(JφKM
′
)) (Naturality of λ)

iff (T f)(γ(x)) ∈ λ(X′,≤′)(JφKM
′
)

iff γ′((if)(x)) ∈ λ(X′,≤′)(JφKM
′
) (f is a dialgebra morphism)

iff M′, f(x) ⊩ ♡λφ (Def. 3.5 and if = f)

This proves the proposition.

3.2 Disjoint Unions, Generated Subframes and p-Morphic Images

The category theoretic analogue of a disjoint union is a coproduct. For any T :
Krip → Pos the category Dialg(i,T ) has coproducts because Krip has coproducts
and i preserves them [6, Thm. 3.2.1]. So we define:

Definition 3.9 The disjoint union of a K-indexed family of (i,T )-dialgebras
Xk = (Xk,≤k, γk) is the coproduct

∐
k∈K Xk in Dialg(i,T ).

Example 3.10 Let (Xk,≤k, Rk) be a K-indexed set of -frames, and (Xk,≤k

, γk) the corresponding (i,Pup)-dialgebras. The coproduct
∐

k∈K(Xk,≤k, γk)
is given by (X,≤, γ), where (X,≤) is the coproduct of the intuitionistic Kripke
frames (Xk,≤k) (which is computed as in Set), and γ : (X,≤) → Pup(X,≤) is
given by γ(xk) = γk(xk) (for xk ∈ Xk). Transforming this back into a -frame,
we obtain (X,≤, R), with xRy iff there is a k ∈ K with x, y ∈ Xk and xRky.
So this corresponds to the expected notion of disjoint union of -frames.

Proposition 3.11 Let Xk = (Xk,≤k, γk) be a family of (i,T )-dialgebras in-
dexed by some set K. Suppose Xk ⊩ φ for all k ∈ K. Then

∐
Xk ⊩ φ.

Proof. Let V be a valuation for
∐

Xk. Define the valuation Vk for Xk by
Vk(p) = V (p) ∩ Xk. Then the coproduct inclusion maps κk : (Xk, Vk) →
(
∐

Xk, V ) are (i,T )-model morphisms, hence the assumption Xk ⊩ φ for all
k ∈ K implies that (

∐
Xk, V ) ⊩ φ. Since V was arbitrary,

∐
Xk ⊩ φ.

Definition 3.12 Let X′ = (X ′,≤′, γ′) and X = (X,≤, γ) be (i,T )-dialgebras.

(i) X′ is called a generated subframe of X if there exists a p-morphism f :
X′ → X such that f : (X ′,≤′) → (X,≤) is an embedding.

(ii) X′ is a p-morphic image of X if there exists a surjective dialgebra morphism
X → X′.
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Example 3.13 Guided by [5, Def. 2.5 and 3.13], we could define a generated
sub- -frame of a -frame (X,≤, R) as a -frame (X ′,≤′, R′) such that:

• X ′ ⊆ X and ≤′ = (≤ ∩ (X ′ ×X ′)) and R′ = (R ∩ (X ′ ×X ′));

• if x ∈ X ′ and x ≤ y or xRy, then y ∈ X ′.

With this definition, it can be shown that a -frame X′ is isomorphic to a
generated sub- -frame of a -frame X if and only if the dialgebraic rendering
of X′ is a generated subframe of the dialgebraic rendering of X (as per Def. 3.12).

Proposition 3.14 Let X be an (i,T )-dialgebra such that X ⊩ φ.

(i) If X′ is a generated subframe of X then X′ ⊩ φ.

(ii) If X′ is a p-morphic image of X then X′ ⊩ φ.

Proof. We prove the first item, the second item being similar. If X′ = (X ′,≤′

, γ′) is a generated subframe of X = (X,≤, γ) then there exists a (i,T )-dialgebra
morphism f : X′ → X that is an embedding of the underlying posets. Let V ′

be any valuation for X′. Define a valuation V ↑ for X by V ↑(p) = {x ∈ X |
∃y ∈ V ′(p) s.t. f(y) ≤ x}. Then the fact that f is an embedding implies
that V ′ = f−1V ↑, and therefore f : (X′, V ′) → (X, V ↑) is a dialgebra model
morphism. The assumption that X ⊩ φ together with Prop. 3.8 implies that
(X′, V ′) ⊩ φ. Since V ′ is arbitrary we find X′ ⊩ φ.

3.3 Axioms and Algebraic Semantics

In order to get intuition for the dialgebraic perspective of algebraic semantics,
we observe that the category HAO is isomorphic to a category of dialgebras.
In this case, we consider dialgebras for functors HA → DL. Again, one of the
functors is simply the inclusion functor, which we denote by j : HA → DL.

Example 3.15 Let K : HA → DL be the functor that sends a Heyting algebra
A to the free distributive lattice generated by { a | a ∈ A} modulo ⊤ = ⊤
and a ∧ b = (a ∧ b), where a and b range over A. The action of K on
a Heyting homomorphism h : A → A′ is defined on generators by Kh( a) =
h(a). Then HAO ∼= Dialg(K, j) [18, Exm. 3.3].

We denote generators by dotted boxes to distinguish them from the modal-
ity . Observe that the relations defining K correspond to the axioms we want
a normal box to satisfy. We investigate how to generalise this to the setting of
some arbitrary set Λ of predicate liftings for a functor T : Krip → Pos.

Definition 3.16 A rank-1 formula in L(Λ) is a formula φ such that

• φ does not contain intuitionistic implication;

• each proposition letter appears in the scope of precisely one modal operator.

A rank-1 axiom is a formula of the form φ↔ ψ, where φ,ψ are rank-1 formulae.
It is called sound if it is valid in all (i,T )-dialgebras.

Let Ax be a collection of sound rank-1 axioms. Define the logic L(Λ,Ax)
as the smallest set of L(Λ)-formulae containing Ax and an axiomatisation for
intuitionistic logic, which is closed under modus ponens, uniform substitution,
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and
φ1 ↔ ψ1 · · · φn ↔ ψn

♡λ(φ1, . . . , φn) ↔ ♡λ(ψ1, . . . , ψn)
(congruence rule).

Example 3.15 generalises as follows [18, Sec. 5].

Definition 3.17 Let Λ be a set of predicate liftings for T and Ax a set of
sound rank-1 axioms for L(Λ). For a Heyting algebra A, define L(Λ,Ax)A to

be the free distributive lattice generated by {♡λ(a1, . . . , an) | λ ∈ Λ, ai ∈ A}
modulo the axioms in Ax, where each occurrence of ♡ is replaced by the formal
generator ♡, ↔ is replaced by =, and the proposition letters range over the

elements of A. (This is well defined since the axioms in Ax are rank-1 axioms,

which result in equations constructed from elements of the form ♡(a1, . . . , an)

and distributive lattice connectives.)
If h : A → A′ is a Heyting homomorphism, define L(Λ,Ax)h : L(Λ,Ax)A →

L(Λ,Ax)A′ on generators by L(Λ,Ax)h(♡λ(a1, . . . , an)) = ♡λ(h(a1), . . . , h(an)).

Then L(Λ,Ax) : HA → DL defines a functor.

Again, we use a symbol with a dot in it to denote formal generators, and
separate them from symbols in the language.

Example 3.18 Let Λ = {λ }, where λ is the predicate lifting from Exm. 3.6,
and write instead of ♡λ . Let Ax consist of the two axioms (not the rule)
from (1), and note that these are both rank-1 axioms. Then the logic L(Λ,Ax)
coincides with L , and the functor obtained from the procedure in Def. 3.17 is
naturally isomorphic to K from Exm. 3.15. (The only difference is the symbol
used to represent the formal generators.)

The following observation allows us to use the Birkhoff variety theorem
when proving the Goldblatt-Thomason theorem below.

Lemma 3.19 Let L be obtained from predicate liftings and axioms via
Def. 3.17. Then the category Dialg(L, j) is a variety of algebras.

Proof. It is known that the category HA of Heyting algebras is a variety of
algebras. We add to its signature an n-ary operation symbol for each n-ary
predicate lifting in Λ, and to the set of equations defining HA the equations
obtained from Ax by replacing ↔ with equality and proposition letters with
variables.

We can evaluate L(Λ)-formulae in a (L(Λ,Ax), j)-dialgebra (A,α) with an
assignment of the proposition letters to elements of A. Intuitionistic connec-
tives are interpreted as in the Heyting algebra A, and the interpretation of
♡λ(φ1, . . . , φn) is given by α(♡λ(Lφ1 M, . . . , Lφn M)), where Lφi M is the interpre-

tation of φi. We say that φ is valid in (A,α), and write (A,α) |= φ, if φ
evaluates to ⊤ under every assignment of the proposition letters.

This evaluation is closely related to the interpretation of formulae in (i,T )-
dialgebras: a formula φ is valid in some (i,T )-dialgebra if and only if it is valid
in some related algebra, called the complex algebra.
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Definition 3.20 Define ρ : L(Λ,Ax) ◦ up′ → up ◦ T on generators by

ρ(X,≤)(♡λ(a1, . . . , an)) = λ(X,≤)(a1, . . . , an).

Then ρ is a well defined transformation because Ax is assumed to be sound,
and it is natural because predicate liftings are natural transformations.

It gives rise to a functor (·)+ : Dialg(i,T ) → Dialg(L(Λ,Ax), j), which sends
an (i,T )-dialgebra (X,≤, γ) to its complex algebra (up′(X,≤), γ+), given by

L(Λ,Ax)(up′(X,≤)) up(T (X,≤)) up(i(X,≤)) j(up′(X,≤)).
ρ(X,≤)

γ+

upγ

The action of (·)+ on an (i,T )-dialgebra morphism f is given by f+ = up′f .

Example 3.21 Let (X,≤, R) be a -frame and (X,≤, γ) the corresponding
(i,Pup)-dialgebra. The complex algebra of (X,≤, γ) is the (K, j)-dialgebra
(up′(X,≤), γ+), where γ+ is given by γ+( a) = γ−1(λ (a)) = {x ∈ X |
γ(x) ⊆ a}. Translating this to a HAO, we see that this corresponds precisely
to the complex algebra of (X,≤, R) in the sense of Sec. 2.

Proposition 3.22 Let X be an (i,T )-dialgebra and φ ∈ L(Λ). Then we have

X ⊩ φ iff X+ |= φ.

Proof. This follows from a routine induction on the structure of φ, where the
base case follows from the fact that valuations for X correspond bijectively to
assignments of the proposition letters to elements of X+.

3.4 Prime Filter Extensions

The proof of the Goldblatt-Thomason theorem relies on Birkhoff’s variety the-
orem and the connection between frame semantics and algebraic semantics of a
logic. As we have seen above, every -frame gives rise to a complex algebra, or,
more generally, every (i,T )-dialgebra gives rise to a (L, j)-dialgebra. To trans-
fer the variety theorem from (L, j)-dialgebras back to (i,T )-dialgebras, we need
a functor (·)+ : Dialg(L, j) → Dialg(i,T ) such that for each (i,T )-dialgebra X,

(X+)+ ⊩ φ implies X ⊩ φ. (⋆)

Assumption 3.23 Throughout this subsection, let T : Krip → Pos be a func-
tor, Λ a set of predicate liftings for T , and a set Ax of sound rank-1 axioms
from L(Λ). Abbreviate L := L(Λ,Ax) and ρ := ρ(Λ,Ax).

A functor (·)+ : Dialg(L, j) → Dialg(i,T ) arises from a natural transforma-
tion τ in the same way as ρ induced a functor from frames to complex algebras.
To stress its dependence on the choice of τ , we denote it by (·)τ instead of (·)+.

Definition 3.24 Let τ : pf ◦ L → T ◦ pf ′ be a natural transformation. Then
we define the contravariant functor (·)τ : Dialg(L, j) → Dialg(i,T ) on objects
by sending a (L, j)-dialgebra H = (H,α) to the (i,T )-dialgebra Hτ given by

i(pf ′H) pf (jH) pf (LH) T (pf ′H).
pfα τH
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For a (L, j)-dialgebra morphism h : H → H′ we define hτ = pf ′h : H′
τ → Hτ .

Naturality of τ ensures that this is well defined.

We call (X+)τ the τ -prime filter extension of an (i,T )-dialgebra X if τ
satisfies a sufficient condition that ensures that (⋆) holds (by Prop. 3.27). This
condition relies on the following variation of the adjoint mate of ρ.

Definition 3.25 Let ρ : L ◦ up′ → up ◦ T . Then we write ρ♭ for the natural
transformation defined as the composition

T ◦ pf ′ pf ◦ up ◦ T ◦ pf ′ pf ◦ L ◦ up′ ◦ pf ′ pf ◦ L,
ηT ◦pf ′ pf ρpf ′ pf (Lθ′)

where η and θ are defined as in Def. 2.5.

Definition 3.26 Let τ be a natural transformation such that ρ♭ ◦ τ = idpf ◦L.

(i) Define peτ := (·)τ ◦ (·)+ : Dialg(i,T ) → Dialg(i,T ). We call peτ X the
τ -prime filter extension of X ∈ Dialg(i,T ).

(ii) The τ -prime filter extension of a model M = (X, V ) is peτ M :=
(peτ X, V

pe), where V pe(p) = {q ∈ peτ X | V (p) ∈ q} for all p ∈ Prop.

Observe that the prime filter extension of an (i,T )-dialgebra X = (X,≤, γ)
is of the form peτ X = (Xpe,⊆, γpe), where Xpe denotes the set of prime filters
of upsets of (X,≤) and γpe is computed using both ρ and τ .

We now show that τ -prime filter extensions satisfy (⋆).

Proposition 3.27 Let τ be a natural transformation such that ρ♭ ◦τ = idpf ◦L,
X = (X,≤, γ) an (i,T )-dialgebra, M = (X, V ) a model based on X, φ ∈ L(Λ).

(i) For all prime filters q ∈ Xpe we have peτ M, q ⊩ φ iff JφKM ∈ q.

(ii) For all states x ∈ X we have M, x ⊩ φ iff peτ M, η(X,≤)(x) ⊩ φ.

(iii) If peτ X ⊩ φ then X ⊩ φ.

Proof. The proof of the proposition is given in the appendix.

Example 3.28 Returning to our example of -frames, we wish to find a nat-
ural transformation τ such that (ρ )♭ ◦ τ = idpf ◦L .

Before defining τ , let us get an idea of what (ρ )♭ looks like. Let A be a
Heyting algebra and Q ∈ pf (L A). Since Q is determined by elements of the
form a it contains, where a ∈ A, we pay special attention to these elements.
For D ∈ Pup ◦ pf ′A and a ∈ A we have

a ∈ (ρA)♭(D) iff ρpf ′A((pf (L θ′A))( a)) ∈ ηT (pf ′A)(D)

iff ρpf ′A( θ′A(a)) ∈ ηT (pf ′A)(D)

iff D ∈ ρpf ′A( θ′A(a))

iff D ⊆ θ′A(a)

Guided by this we define τ : pf ◦ L → Pup ◦ pf ′ on components by

τA : pf (L A) → Pup(pf
′A) : Q 7→ {p ∈ pf ′A | ∀a ∈ A, a ∈ Q implies a ∈ p}
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With this definition we can prove the following lemma, the proof of which can
be found in the appendix.

Lemma 3.29 τ is a natural transformation such that (ρ )♭ ◦ τ = idpf ◦L .

Now suppose (A, ) is a HAO, and A = (A,α) its corresponding (L , j)-
dialgebra (with α given by α( a) = a). We have Aτ = (pf ′A,⊆, γ), where

γ(q) = {p ∈ pf ′A | ∀a ∈ A, a ∈ α−1(q) implies a ∈ p}.

Note that a ∈ α−1(q) iff a = α( a) ∈ q. Therefore, translating γ to a
relation Rγ , we obtain: qRγp iff a ∈ q implies a ∈ p for all a ∈ A.

It follows that the (i,T )-dialgebra corresponding to the prime filter ex-
tension of a -frame (X,≤, R) (as in Sec. 2) coincides with the τ -prime filter
extension of the dialgebraic rendering of X. So, modulo dialgebraic translation,
prime filter extensions and τ -prime filter extensions of -frames coincide.

3.5 The Goldblatt-Thomason Theorem

Finally, we put our theory to work and prove a Goldblatt-Thomason theorem
for dialgebraic intuitionistic logics. We work with the same assumptions as in
Assum. 3.23. Additionally, we assume that we have a natural transformation
τ : pf ◦ L→ T ◦ pf ′ such that ρ♭ ◦ τ = idpf ◦L. This allows us to use Def. 3.26.

Definition 3.30 If Φ ⊆ L(Λ) and A ∈ Dialg(L, j) then we write A |= Φ if
A |= φ for all φ ∈ Φ. Besides, we let Alg Φ = {A ∈ Dialg(L, j) | A |= Φ} be the
collection of (L, j)-dialgebras satisfying Φ. We say that a class C ⊆ Dialg(L, j)
is axiomatic if C = Alg Φ for some collection Φ of L(Λ)-formulae.

Lemma 3.31 C ⊆ Dialg(L, j) is axiomatic iff it is a variety of algebras.

Proof. If A = {A ∈ Dialg(L, j) | A |= Φ}, then it is precisely the variety of
algebras satisfying φx ↔ ⊤, where φ ∈ Φ and φx is the formula we get from φ
by replacing the proposition letters with variables from some set S of variables.
Conversely, suppose A is a variety of algebras given by a set E of equations
using variables in S. For each equation φ = ψ in E, let (φ ↔ ψ)p be the
formula we get from replacing the variables in φ↔ ψ with proposition letters.
Then we have A = Alg{(φ↔ ψ)p | φ = ψ ∈ E}.

For a class K of (i,T )-dialgebras, write K + = {X+ | X ∈ K } for the
collection of corresponding complex algebras. Also, if C is a class of algebras,
then we write HC , SC and PC for its closure under homomorphic images,
subalgebras and products, respectively.

Lemma 3.32 A class K ⊆ Dialg(i,T ) is axiomatic if and only if

K = {X ∈ Dialg(i,T ) | X+ ∈ HSP (K +)}. (2)

Proof. Suppose K is axiomatic, i.e. K = Fr Φ. Then it follows from
Prop. 3.22 and the fact that H, S and P preserve validity of formulae that (2)
holds. Conversely, suppose (2) holds. Since HSP (K +) is a variety, Birkhoff’s
variety theorem states that it is of the from Alg Φ. It follows that K = Fr Φ.

We now have all the ingredients to prove the Goldblatt-Thomason theorem.
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Theorem 3.33 Let K ⊆ Dialg(i,T ) be closed under τ -prime filter extensions.
Then K is axiomatic if and only if K reflects τ -prime filter extensions and is
closed under disjoint unions, generated subframes and p-morphic images.

Proof. The implication from left to right follows from Sec. 3.2 and Prop. 3.27.
For the converse, by Lem. 3.32 it suffices to prove that K = {X ∈ Dialg(i,T ) |
X+ ∈ HSP (K +)}. So let X = (X, γ) ∈ Dialg(i,T ) and suppose X+ ∈
HSP (K +). Then there are Zi ∈ K such that X+ is the homomorphic image
of a sub-dialgebra A of the product of the Z+

i . In a diagram:

X+ A
∏

Z+
i

surjective injective

Since
∏

Z+
i = (

∐
Zi)

+, dually this yields

(X+)τ Aτ

((∐
Zi

)+)
τ

gen. subframe p-morphic image

We have
∐

Zi ∈ K because K is closed under coproducts, and
(
(
∐

Zi)
+
)
τ
∈

K because K is closed under prime filter extensions. Then Aτ ∈ K and
(X+)τ ∈ K because K is closed under p-morphic images and generated sub-
frames. Finally, since K reflects prime filter extensions we find X ∈ K .

Circling back to -frames, it follows from Lem. 3.29 and Thm. 3.33 that:

Theorem 3.34 Suppose K ⊆ WZ is closed under prime filter extensions.
Then K is axiomatic if and only if it reflects prime filter extensions and is
closed under disjoint unions, generated subframes and p-morphic images.

4 Applications

In each of the following subsection we recall a modal intuitionistic logic and
model it dialgebraically. We use this to derive a notion of prime filter extension
and we apply Thm. 3.33 to obtain a Goldblatt-Thomason theorem.

4.1 Goldblatt’s Geometric Modality I

The extension of intuitionistic logic with a monotone modality, here denoted
by , was first studied by Goldblatt in [14, Sec. 6]. It is closely related to its
classical counterpart [9,20,21], except that the underlying propositional logic is
intuitionistic. A dialgebraic perspective was given in [18, Sec. 8].

Let L denote the language of intuitionistic logic extended with a unary
operator , and write L for the logic obtained from extending intuitionistic
logic L with the axiom (p ∧ q) → p and the congruence rule for .

Definition 4.1 An intuitionistic monotone frame (or IM-frame) is a triple
(X,≤, N) where (X,≤) is an intuitionistic Kripke frame and N is a function
that assigns to each x ∈ X a collection of upsets of (X,≤) such that:

• if a ∈ N(x) and a ⊆ b ∈ Up(X,≤), then b ∈ N(x);

• if x ≤ y then N(x) ⊆ N(y).

An intuitionistic monotone frame morphism (IMF-morphism) from (X1,≤1

, N1) to (X2,≤2, N2) is a p-morphism f : (X1,≤1) → (X2,≤2) such that
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f−1(a2) ∈ N1(x1) iff a2 ∈ N2(f(x1)) for all x1 ∈ X1 and a2 ∈ Up(X2,≤2). We
write Mon for the category of intuitionistic monotone frames and morphisms.

An intuitionistic monotone model is a tuple M = (X,≤, N, V ) such that
(X,≤, N) is an intuitionistic monotone frame and V : Prop → Up(X,≤) is a
valuation. The interpretation of L -formulae at a state x in M is defined
recursively, where the propositional cases are as usual and M, x ⊩ φ iff
JφKM ∈ N(x). We now take a dialgebraic perspective.

Definition 4.2 For an intuitionistic Kripke frame (X,≤), define

M(X,≤) = {W ⊆ Up(X,≤) | if a ∈W and a ⊆ b ∈ Up(X,≤) then b ∈W}

ordered by inclusion. For a p-morphism f : (X1,≤1) → (X2,≤2), let

Mf : M(X1,≤1) →M(X2,≤2) : W 7→ {a2 ∈ Up(X2,≤2) | f−1(a2) ∈W}.

Then M : Krip → Pos defines a functor.

Theorem 4.3 ([18], Thm. 8.3) We have Mon ∼= Dialg(i,M).

Translating the dialgebraic notion of disjoint union to IM-frames gives:

Definition 4.4 Let {(Xk,≤k, Nk) | k ∈ K} be a K-indexed set of IM-frames.
The disjoint union

∐
k∈K(Xk,≤k, Nk) is the frame (X,≤, N) where (X,≤) is

the disjoint union of the intuitionistic Kripke frames (Xk,≤k), and N is given
by a ∈ N(xk) iff a ∩Xk ∈ Nk(xk) for all a ∈ Up(X,≤) and xk ∈ Xk.

Definition 4.5 An IM-frame X′ is a generated subframe of an IM-frame X if
there exists an IMF-morphism X′ → X that is an embedding of posets, and X′

is a p-morphic image of X if there is a surjective IMF-morphism X → X′.

The modal operator can be introduced by the predicate lifting λ :
Up ◦ i → Up ◦M given by

λ(X,≤)(a) = {W ∈M(X,≤) | a ∈W}.

With Ax = { (a∧b)∧ a↔ (a∧b)} we have L = L({λ },Ax). Its algebraic
semantics is given by (L , j)-dialgebras, where L : HA → DL is the functor
sending A to the free distributive lattice generated by { a | a ∈ H} modulo

(a ∧ b) ≤ b. The corresponding natural transformation ρ : L ◦ up′ →
up ◦M is defined on generators by ρ(X,≤)(a) = {W ∈M(X,≤) | a ∈W}.

Towards prime filter extensions and a Goldblatt-Thomason theorem we need
to define a right inverse τ of (ρ )♭. To garner inspiration we investigate what
(ρ )♭A : M(pf ′A) → pf (L A) looks like for A ∈ HA. We have

a ∈ (ρ )♭A(W ) iff ρpf ′A( θ′A(a)) ∈ ηM◦pf ′A(W ) iff θ′A(a) ∈W

for all W ∈M(pf ′A) and a ∈ A. (Recall that θ′A(a) = {q ∈ pf ′A | a ∈ q}.)

Definition 4.6 Let A ∈ HA. We call D ∈ up′(pf ′A) closed if D =
⋂
{θ′A(a) |

a ∈ A and D ⊆ θ′A(a)}, and open if D =
⋃
{θ′A(a) | a ∈ A and θ′A(a) ⊆ D}.
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(Indeed, this coincides with closed and open upsets of pf ′A, conceived of as
an Esakia space [2, Sec. 2.3.3].) Upsets of the form θ′A(a) are closed and open.

Definition 4.7 For a Heyting algebra A, define τA : pf ◦L A→M ◦ pf ′A as
follows. Let Q ∈ pf (L A) and D ∈ Up(pf ′A), and define:

• If D = θ′A(a) for some a ∈ A, then θ′A(a) ∈ τA(Q) if a ∈ Q;

• If D is closed then D ∈ τA(Q) if for all a ∈ A, D ⊆ θ′A(a) implies a ∈ Q.

• For otherD, D ∈ τA(Q) if there is a closed upset C ⊆ D such that C ∈ τA(Q).

It is easy to see that τA is an order-preserving function, i.e. a morphism in
Pos. The next lemma states that τ is a natural transformation. We postpone
the unexciting proof to the appendix.

Lemma 4.8 The transformation τ from Def. 4.7 is natural. Moreover, (ρ )♭A◦
τA = id(pf (L A)) for every Heyting algebra A.

Translating the dialgebraic definition of a prime filter extension to IM-
frames gives a definition of prime filter extension for IM-frames. We emphasise
that this definition relies on τ . In the next section we derive a different no-
tion of prime filter extension for IM-frames, with its own Goldblatt-Thomason
theorem.

Definition 4.9 The τ -prime filter extension of an IM-frame (X,≤, N) is the
IM-frame (Xpe,⊆, Npe), where Npe is given as follows. Let N (a) = {x ∈ X |
a ∈ N(x)}, and for q ∈ Xpe and D ∈ Up(Xpe,⊆) define:

• If a ∈ up′(X,≤), then θ′A(a) ∈ Npe(q) if Na ∈ q;

• If D is closed then D ∈ Npe(q) if θ′A(a) ∈ Npe(q) for all θ′A(a) containing D;

• For any D, D ∈ Npe(q) if there is a closed C ⊆ D such that C ∈ Npe(q).

Now Thm. 3.33 instantiates to:

Theorem 4.10 Suppose K is a class of IM-frames closed under τ -prime
filter extensions. Then K is axiomatic iff it reflects τ -prime filter extensions
and is closed under disjoint unions, generated subframes and p-morphic images.

4.2 Goldblatt’s Geometric Modality II

We substantiate the claim that a logic may have several notions of prime filter
extension by giving a different right-inverse of (ρ )♭ from Sec. 4.1. The setup
is the same as in Sec. 4.1, so we proceed by defining a right-inverse of (ρ )♭.

Definition 4.11 For a Heyting algebra A, define σA : pf ◦ L A → M ◦ pf ′A
by sending Q ∈ pf (L A) to σA(Q), where:

• For open upsets D, let D ∈ σA(Q) if ∃a ∈ A s.t. a ∈ Q and θ′A(a) ⊆ D;

• For any other upset D, let D ∈ σA(Q) if all open supersets of D are in σA(Q).

Similar to Lem. 4.8 we can prove the following.

Lemma 4.12 σ = (σA)A∈HA : pf ◦L →M ◦ pf ′ is a natural transformation,
and for every Heyting algebra A, we have ρ♭A ◦ σA = idpf (L A).
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Now σ yields a different notion of prime filter extension, the precise defini-
tion of which we leave to the reader. Thm. 3.33 yields a Goldblatt-Thomason
theorem with respect to this different notion of prime filter extension.

Theorem 4.13 Let K be a class of IM-frames closed under σ-prime filter
extensions. Then K is axiomatic iff it reflects σ-prime filter extensions and is
closed under disjoint unions, generated subframes and p-morphic images.

4.3 Non-Normal Intuitionistic Modal Logic

Neighbourhood semantics is used to accommodate for non-normal modal op-
erators [33,27,9,28]. Dalmonte, Grellois and Olivett recently put forward an
intuitionistic analogue [11] to interpret the extension of intuitionistic logic with
unary modalities and which a priori do not satisfy any interaction axioms.

The ordered sets underlying the neighbourhood semantics from [11] are
allowed to be preorders. Conforming to our general framework, we shall assume
them to be posets. However, as mentioned in the introduction, we can obtain
exactly the same (dialgebraic) results when replacing posets with preorders.

We use ℘ to denote the (covariant) powerset functors on Set.

Definition 4.14 A coupled intuitionistic neighbourhood frame or CIN-frame
is a tuple (X,≤, N ,N ) such that (X,≤) is an intuitionistic Kripke frame and
N ,N are functions X → ℘℘X such that for all x, y ∈ X:

x ≤ y implies N (x) ⊆ N (y) and N (x) ⊇ N (y).

A CIN-morphism f : (X,≤, N ,N ) → (X ′,≤′, N ′ , N ′ ) is a p-morphism
f : (X,≤) → (X ′,≤′) where for all N ∈ {N ,N }, x ∈ X, a′ ∈ ℘X ′,
f−1(a′) ∈ N(x) iff a′ ∈ N ′(f(x)). CIN denotes the category of CIN-frames
and -morphisms.

The language L extending the intuitionistic language with unary modal-
ities and can be interpreted in models based on CIN-frames, where

x ⊩ φ iff JφK ∈ N (x), x ⊩ φ iff X \ JφK /∈ N (x).

We now view this dialgebraically:

Definition 4.15 Define N : Krip → Pos on objects (X,≤) by N (X,≤) =
(℘℘X,⊆) × (℘℘X,⊇), and on morphisms f : (X,≤) → (X ′,≤′) by

N f(W1,W2) =
(
{a′1 ∈ ℘X ′ | f−1(a′1) ∈W1}, {a′2 ∈ ℘X ′ | f−1(a′2) ∈W2}

)
.

Theorem 4.16 We have CIN ∼= Dialg(i,N ).

Proof. The isomorphism on objects is obvious. The isomorphism on mor-
phisms follows from a computation similar to that in the proof of Thm. 4.3.

The modal operators , are induced by λ , λ : Up ◦ i → Up ◦N , where

λ(X,≤)(a) = {(W1,W2) ∈ N (X,≤) | a ∈W1}
λ(X,≤)(a) = {(W1,W2) ∈ N (X,≤) | X \ a /∈W2}
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Unravelling the definition of a disjoint union of (the dialgebraic render-
ings of) CIN-frames shows that it is computed similar to Def. 4.4. Generated
subframes and p-morphic images are defined by means of CIN-morphisms.

Since and only satisfy the congruence rule, the algebraic semantics
is given by dialgebras for the functor L : HA → DL that sends A to the
free distributive lattice generated by { a, a | a ∈ A}. The induced nat-
ural transformation ρ : L ◦ up′ → up ◦ N is defined on components
via ρ(X,≤)( a) = λ(X,≤)(a) and ρ(X,≤)( a) = λ(X,≤)(a). Akin to Sec. 4.1

we find a ∈ (ρA )♭(W1,W2) iff θ′A(a) ∈ W1 and a ∈ (ρA )♭(W1,W2) iff
pf ′A \ θ′A(a) /∈W1 for all A ∈ HA, (W1,W2) ∈ N (pf ′A) and a ∈ A.

Definition 4.17 For a Heyting algebra A, define

τA : pf (L A) → N (pf ′A) : Q 7→
(
{θ′A(a) | a ∈ Q}, {pf ′A\θ′A(a) | a /∈ Q}

)
.

Then τ = (τA)A∈HA defines a natural transformation pf ◦ L → N ◦ pf ′.
It follows from the definitions that (ρ )♭ ◦ τ = idpf ◦L . We get the following
definition of τ -prime filter extensions and Goldblatt-Thomason theorem.

Definition 4.18 The τ -prime filter extension of a CIN-frame X = (X,≤
, N ,N ) is given by peτ X = (Xpe,⊆, Npe, Npe), where for q ∈ Xpe we have

Npe(q) = {θ′up′(X,≤)(a) ∈ ℘Xpe | a ∈ up(X,≤) and N (a) ∈ q}
Npe(q) = {Xpe \ θ′up′(X,≤)(a) ∈ ℘Xpe | a ∈ up(X,≤) and N (a) ∈ q}

Here N (a) = {x ∈ X | a ∈ N (x)} and N (a) = {x ∈ X | X \ a /∈ N (x)}.

Theorem 4.19 Let K be a class of CIN-frames closed under τ -prime filter
extensions. Then K is axiomatic iff it reflects τ -prime filter extensions and is
closed under disjoint unions, generated subframes and p-morphic images.

4.4 Heyting-Lewis Logic

Finally we discuss Heyting-Lewis logic, the extension of intuitionistic logic with
a binary strict implication operator J [25,26,12].

Definition 4.20 A strict implication frame is a tuple (X,≤, Rs), where (X,≤)
is an intuitionistic Kripke frame and Rs is a relation on X such that x ≤ yRsz
implies xRsz. Morphisms between them are functions that are p-morphisms
with respect to both orders. Models are defined as expected, and J is inter-
preted via

x ⊩ φ J ψ iff for all y ∈ X, if xRsy and y ⊩ φ then y ⊩ ψ.

Strict implication frames can be modelled as (i,Ps)-dialgebras, where Ps :
Krip → Pos is the functor that sends (X,≤) to (℘X,⊆) (℘ denotes the covariant
powerset functor) and a p-morphism f to ℘f . The modality J can then be
defined via the binary predicate lifting λJ, given on components by

λJ(X,≤)(a, b) = {c ∈ Ps (X,≤) | c ∩ a ⊆ b}.
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Disjoint unions, generated subframes and p-morphic images are defined as for
-frames.

The algebraic semantics for this logic given in [12, Def. III.1] can be modelled
dialgebraically in a similar way as we have seen above. Computation of the
natural transformation ρJ is, by now, routine. Examining the proof of the
duality for Heyting-Lewis logic sketched in [12, Section III-D], we can compute
a one-sided inverse τ to (ρJ)♭. We suppress the details, but do give the resulting
notion of prime filter extension:

Definition 4.21 The prime filter extension of a strict implication frame (X,≤
, Rs) is given by the frame (Xpe,⊆, Rpe

s ), with Rpe
s defined by

pRpe
s q iff ∀a, b ∈ up(X,≤), if a JR b ∈ p and a ∈ q then b ∈ q

where a JR b = {x ∈ X | R[x] ∩ a ⊆ b}.

With this notion of prime filter extension, Thm. 3.33 instantiates to:

Theorem 4.22 A class K of strict implication frames that is closed under
prime filter extensions is axiomatic iff it reflects prime filter extensions and is
closed under disjoint unions, generated subframes and p-morphic images.

5 Conclusions

We have given a general way to obtain Goldblatt-Thomason theorems for modal
intuitionistic logics, using the framework of dialgebraic logic. Subsequently, we
applied the general result to several concrete modal intuitionistic logics. The
results in this paper can be generalised in several directions.

More applications. The general Goldblatt-Thomason theorem can also be
instantiated to -frames and -frames [38]. Using preorders instead of
posets, we can obtain Goldblatt-Thomason theorems for ((strictly) con-
densed) H -frames and H frames used by Božić and Došen [7].

More base logics. The framework of dialgebraic logic is not restricted to an
intuitionistic base. Generalising the results from this paper, we can obtain a
general Goldblatt-Thomason theorem that also covers modal bi-intuitionistic
logics [17] and modal lattice logics [3]. Moreover, this would also cover
coalgebraic logics over a classical and a positive propositional base. The
results in this paper can be generalised to dialgebraic logics for different base
logics. This would give rise to Goldblatt-Thomason

Other modal intuitionistic logics The results in the paper do not apply to
the modal intuitionistic logics investigated by Fischer Servi [13], Plotkin and
Sterling [29], and Simpson [34], because these formalisms are not covered by
the dialgebraic approach. It would be interesting to see if similar techniques
can be applied to these logics to still prove Goldblatt-Thomason theorems.

Acknowledgements. I am grateful to the anonymous reviewers for many
constructive and helpful comments.
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[7] Božić, M. and K. Došen, Models for normal intuitionistic modal logics, Studia Logica
43 (1984), pp. 217–245.

[8] Celani, S. A. and R. Jansana, Priestley duality, a Sahlqvist theorem and a Goldblatt-
Thomason theorem for positive modal logic, Logic Journal of the IGPL 7 (1999), pp. 683–
715.

[9] Chellas, B. F., “Modal Logic: An Introduction,” Cambridge University Press, Cambridge,
1980.

[10] Conradie, W., A. Palmigiano and A. Tzimoulis, Goldblatt-thomason for LE-logics (2018),
arxiv:1809.08225.

[11] Dalmonte, T., C. Grellois and N. Olivetti, Intuitionistic non-normal modal logics: A
general framework, Journal of Philosophical Logic 49 (2020), pp. 833–882.

[12] de Groot, J., T. Litak and D. Pattinson, Gödel-McKinsey-Tarski and Blok-Esakia for
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Appendix

A Omitted proofs

We use the following lemma in the proof of Prop. 3.27.

Lemma A.1 Let τ be a natural transformation such that ρ♭ ◦ τ = idpf ◦L, and
A = (A,α) ∈ Dialg(L, j). Then θ′A : A → up′(pf ′H) defines a (L, j)-dialgebra
morphism from A to (Aτ )+.

Proof. This is similar to [23, Theorem 6.4(1)]. We repeat the argument here.
Let A = (A,α) be a (L, j)-dialgebra. Then (Aτ )+ is given by the composi-

tion

L(up′(pf ′A)) up(T (pf ′A)) up(pf (LA)) up(pf (jA)) j(up′(pf ′A))
ρpf ′A upτA up◦pfα

In order to show that θ′A is a morphism from A to (Aτ )+ we need to show that
the outer shell of the following diagram commutes:

LA jA

L(up′(pf ′A)) up(T (pf ′A)) up(pf (LA)) up(pf (jA)) j(up′(pf ′A))

Lθ′A

α

θLA
jθ′A

θjA

ρpf ′A upτA up(pfα)

The right triangle commutes by definition. The middle square commutes by
naturality of θ. So we are left to prove that θLA = upτA ◦ ρpf ′A ◦ Lθ′A.

Since ρ♭◦τ = id, hence upτ◦upρ♭ = idup , it suffices to prove that upρ♭◦θLA =
ρpf ′A ◦Lθ′A. (The result then follows from composing both sides with upτA on
the left.) This is precisely the outer shell of the diagram

LA L(up′(pf ′A)) up(T (pf ′A))

up(pf (LH)) up(pf (L(up′(pf ′A)))) up(pf (up(T (pf ′A)))) up(T (pf ′A))

Lθ′A

θLA

ρpf ′A

θL(up′(pf ′A))

id

θup(T (pf ′A))

up(pf (Lθ′A))

upρ♭A

up(pf ρpf ′A) upηT (pf ′A)

Here the bottom square commutes by definition of ρ♭. The other two squares
commute by naturality of θ and the triangle on the right commutes because θ
and η are the units of a dual adjunction.

Proof of Proposition 3.27. Recall that θ′up′(X,≤)(JφKM) = {p ∈
pf ′(up′(X,≤)) | JφKM ∈ p}. So the first item is equivalent to

JφKpeτ M = θ′up′(X,≤)(JφKM),

where we view truth sets of formulae as elements in the relevant complex alge-
bras (cf. Prop. 3.22). The proof proceeds by induction on the structure of φ. If
φ = q ∈ Prop then the statement holds by definition of V pe. The cases φ = ⊤
and φ = ⊥ hold by definition of a prime filter.
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If φ is of the form φ1 ⋆φ2, where ⋆ ∈ {∧,∨,→} then we use Lem. A to find

Jφ1 ⋆ φ2Kpeτ M = Jφ1Kpeτ M ⋆ Jφ1Kpeτ M

= θ′up′(X,≤)(Jφ1KM) ⋆ θ′up′(X,≤)(Jφ2KM) (IH)

= θ′up′(X,≤)(Jφ1KM ⋆ Jφ2KM)

= θ′up′(X,≤)(Jφ1 ⋆ φ2KM)

The case where φ = ♡λ(φ1, . . . , φn) follows from a similar computation, using

the fact that θ′up(X,≤) preserves operators of the form ♡λ.

Item (ii) follows from Item (i) and the definition of η(X,≤)(x) via

M, x ⊩ φ iff x ∈ JφKM iff JφKM ∈ η(X,≤)(x) iff peτ M, η(X,≤)(x) ⊩ φ.

For Item (iii), let V be any valuation for X and x ∈ X. By assumption
(peτ X, V

pe), θ′(X,≤)(x) ⊩ φ, so by Item (ii) (X, V ), x ⊩ φ and hence X ⊩ φ.

Proof of Lemma 3.29. Let A be a Heyting algebra. Recall that θ′A(a) =
{q ∈ pf ′A | a ∈ q}. Using this we can rewrite τA : pf (L A) → Pup(pf

′A) as

τA (Q) =
⋂

{θ′A(a) | a ∈ A, a ∈ Q}. (⋆)

Since θ′A(a) is an upset of pf ′A, τA (Q) is also an upset of pf ′A, hence in
Pup(pf

′A). The elements of pf (L A) are ordered by inclusion. If Q,Q′ ∈
pf (L A) and Q ⊆ Q′ then it follows immediately that τA (Q) ⊇ τA (Q′). Since
Pup(pf

′A) is ordered by reverse inclusion, so τA is a morphism of Pos.
For naturality, let h : A→ B be a Heyting homomorphism. We need that

pf (L A) Pup(pf
′A)

pf (L B) Pup(pf
′B)

τA

τB

(L h)−1 Pup(h
−1)

commutes. Let Q ∈ pf (L B), q ∈ pf ′A, and suppose q ∈ τA (L h)−1(Q).
To show q ∈ Pup(h

−1)(τB (Q)) it suffices to find a prime filter p ∈ τB (Q)
such that h−1(p) ⊆ q, because τA (L h)−1(Q) is an upset of pf ′A. Define
F = {b ∈ B | b ∈ Q} and I = {b ∈ B | ∃a ∈ A \ q s.t. b ≤ c}. If I ∩ F ̸= ∅
then there exists b ∈ B and a ∈ A \ q such that b ≤ h(a). Since b ∈ Q
this implies h(a) ∈ Q and hence a ∈ (L h)−1(Q). But then a ∈ q because
q ∈ τA ((L h)−1(Q)), a contradiction. So I ∩ F = ∅. The prime filter lemma
then gives a prime filter p containing F and disjoint from I. This satisfies
p ∈ τB (Q) and h−1(p) ⊆ q by design.

Conversely, suppose q ∈ Pup(h
−1)(τB (Q)). Then there exists a p ∈ τB (Q)

such that q = h−1(p). We show that q ∈ τA (L h)−1(Q). Let a ∈ A and
suppose a ∈ (L h)−1(Q). Then h(a) = L h( a) ∈ Q so h(a) ∈ p. But this
implies a ∈ q = h−1(p). So by definition q ∈ τA (L h)−1(Q).
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Finally, we show that (ρA)♭ ◦ τA = idpf ◦L A for A ∈ HA. Let Q ∈ pf (L A).
Since elements of pf (L A) are determined uniquely by the generators of the
form a they contain, it suffices to show that a ∈ Q iff a ∈ (ρA)♭(τA (Q)).
Because of the computation in Exm. 3.28 this is equivalent to showing a ∈ Q
iff τA (Q) ⊆ θ′A(a). The direction from left to right follows from (⋆). For the
converse, suppose a /∈ Q. Let F = {b ∈ A | b ∈ Q} and I = {c ∈ A | c ≤ a}.
Then F is a filter and I is an ideal of A, and F ∩ I = ∅. By the prime filter
lemma we obtain some q ∈ pf ′A extending F and disjoint from I. This implies
that q ∈ τA (Q) while q /∈ θ′A(a), so that τA (Q) ̸⊆ θ′A(a).

Proof of Lemma 4.8. Throughout this proof use the fact that pf ′A forms an
Esakia space (which in particular is a Stone space), with a topology generated
by sets of the form θ′A(a) and their complements [2, Sec. 2.3.3]. Furthermore,
we note that for any Heyting homomorphism h : A→ B we have

θ′B(h(a)) = (h−1)−1(θ′A(a)) (†)

We first prove naturality of τ . Let h : A → B be a Heyting homomor-
phism. We need to show that the following diagram commutes:

pf (L A) Pup(pf
′A)

pf (L B) Pup(pf
′B)

τA

τB

(L h)−1 Pup(h
−1)

Let Q ∈ pf (L B) and D ∈ Up(pf ′A). We go by the items of Def. 4.7.

• If D = θ′A(a) for some a ∈ A then

θ′A(a) ∈ τA (L h)−1(Q) iff a ∈ (L h)−1(Q) (Def. τ )

iff (L h)( a) ∈ Q

iff h(a) ∈ Q (Def. of L )

iff θ′B(h(a)) ∈ τB (Q) (Def. of τ )

iff (h−1)−1(θ′A(a)) ∈ τB (Q) (By (†))
iff θ′A(a) ∈M(h−1)(τB (Q)) (Def. of M)

• Suppose D is closed in pf ′A. If D ∈ τA (L h)−1(Q), then for all a ∈ A,
D ⊆ θ′A(a) implies a ∈ (L h)−1(Q), i.e. h(a) ∈ Q. In order to prove that
D ∈ M(h−1)(τB (Q)), we need to show that (h−1)−1(D) ∈ τB . Since h−1 is
an Esakia morphism (hence continuous), (h−1)−1(D) is closed in pf ′B, so it
suffices to show that for all b ∈ B, (h−1)−1(D) ⊆ θ′B(b) implies b ∈ Q. Let
b ∈ B be such that (h−1)−1(D) ⊆ θ′B(b). Then since D is closed we have⋂{

(h−1)−1(θ′A(a)) | a ∈ A,D ⊆ θ′A(a)} ⊆ θ′B(b)
}
.

Using (†) and compactness of pf ′B we can find a1, . . . , an ∈ A such that

θ′B(h(a1 ∧ · · · ∧ an)) = θ′B(h(a1)) ∩ · · · ∩ θ′B(h(an)) ⊆ θ′B(b).
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As a consequence of Esakia duality it follows that h(a1 ∧ · · · ∧ an) ≤ b.
Since D ⊆ θ′A(a1 ∧ · · · ∧ an), we have (a1 ∧ · · · ∧ an) ∈ (L h)−1(Q), so

(h(a1 ∧ · · · ∧ an)) ∈ Q. Monotonicity of now implies b ∈ Q.
Conversely, if D ∈ M(h−1)(τB (Q)) then a similar but easier argument

shows that D ∈ τA (L h)−1(Q).

• Finally, suppose D is any upset. If D ∈ τA (L h)−1(Q) then there exists
a closed upset C such that C ⊆ D and C ∈ τA (L h)−1(Q). This implies
C ∈ M(h−1)(τB (Q)), so that (h−1)−1(C) ∈ τB (Q). Since (h−1)−1(C) is
closed again and (h−1)−1(C) ⊆ (h−1)−1(D) we have (h−1)−1(D) ∈ τB (Q),
and therefore D ∈M(h−1)(τB (Q)).

Conversely, suppose D ∈ M(h−1)(τB (Q)). Then there exists a closed
upset C ∈ τB (Q) such that C ⊆ (h−1)−1(D). Define C ′ = h−1[C] to
be direct image of C under h−1. Since h−1 is an Esakia morphism it
sends closed upsets to closed upsets. Furthermore C ⊆ (h−1)−1(C ′) so
C ′ ∈M(h−1)(τB (Q)). This implies C ′ ∈ τA (L h)−1(Q). By design C ′ ⊆ D,
hence D ∈ τA (L h)−1(Q).

Next we prove that (ρ )♭A ◦ τA = idpf (L A) for A ∈ HA. It follows from the

definitions of ρ♭ and τ that for any Heyting algebra A, a ∈ A and prime filter
Q ∈ pf (L A) we have θ′A(a) ∈ ρ♭A(τA(Q)) iff a ∈ τA(Q) iff θ′A(a) ∈ Q. Since
elements of pf (L A) are determined uniquely by the elements of the form a
they contain, this proves the lemma.
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