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Abstract

Medvedev logic ML (also known as the logic of finite problems) is an intermediate
logic firstly introduced by Yu.T. Medvedev in 1962. ML can be characterized as
the logic of the class of intuitionistic Kripke frames corresponding to finite Boolean
algebras (regarded as partially ordered structures) without their top element. Several
fundamental questions about this logic still remain open to this day, most notably
whether the set of its validities is decidable. In this work we provide an alternative
characterization of ML in terms of finite distributive lattices without top element, in
the same spirit as the characterization in terms of Boolean algebras.
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1 Introduction

Yu.T. Medvedev introduced in [10] the logic of finite problems ML, building
on the informal interpretation of intuitionistic logic as “the calculus of a con-
structive solution to problems” proposed by Kolmogorov [6]. In [11] he also
provided several results on the logic, enough to easily infer the following seman-
tic characterization: ML is the logic of the intuitionistic Kripke frames obtained
by removing the topmost element from a finite Boolean algebra—the so-called
Medvedev frames.

Medvedev further developed this framework in [12], where he proposed a
theory of “informational types and their transformations” based on the same
models used for ML (see also [20] for further discussion). These works also led to
other quite interesting logics, building on the same fundamental ideas. Among
these we find the logic of infinite problems ML1 proposed by D.P. Skvortsov [19],
a family of logics based on “informational types” proposed by V.B. Shehtman
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and Skvortsov [18] and some tense modal logics built over Medvedev frames
developed by W.H. Holliday [5].

Although the theory behind ML was a source of inspiration, not much is
known about the properties of the original logic, and the few results available
in the literature have been achieved over the span of five decades. In 1976
T. Prucnal showed that ML is structurally complete [13]. In 1979 L.L. Maksi-
mova, Skvortsov and Shehtman showed that ML is not finitely axiomatizable
[9]. In 1986 Maksimova showed that ML is maximal among the intermediate
logics with the disjunction property [8]. In 1990 Shehtman showed that, not
only the logic itself, but also its modal counterparts are not finitely axiomati-
zable [17]. In 2013, more than 20 years later, M.  Lazarz showed that ML can
also be characterized as the logic of the so-called Kubiński frames [7], obtained
by removing the topmost element from a Kubiński lattice. And these, as far as
the author knows, are the most salient results currently available.

It is surprising that, despite the amount of effort spent to study ML, several
fundamental questions about the logic still remain open to this day. For exam-
ple, the semantics characterization in terms of finite Boolean algebras readily
implies that the set of non-valid formulas of the logic is recursively axiomatiz-
able, but it is still not known whether the logic is decidable. A way to settle this
issue in the positive would be to prove that ML (the logic of finite problems)
coincides with ML1 (the logic of infinite problems); however, whether this is
the case is yet another open question. It is also worth noticing that some of
the results about ML are obtained by studying the bounded-morphic images
of Medvedev frames (compare with [9,17]), but we currently do not have a
satisfying characterization of this class of bounded-morphic images.

In this paper we make a novel contribution to the study of Medvedev logic,
by showing that ML can be characterized as the logic of the intuitionistic
Kripke frames obtained by removing the topmost element from a finite dis-
tributive lattice. 2 This characterization is very similar in spirit to the original
one presented by Medvedev in [11], as the frames considered in both cases are
obtained by removing the topmost element from a class of finite algebraic struc-
tures. Moreover, both Medvedev frames and Kubiński frames are examples of
distributive lattices without the topmost elements, which means that we found
a family extending the ones considered in [7,11], again with ML as its logic.

This characterization is an addition to the study of ML, that might help
to uncover new properties of the logic and to simplify the proofs of the re-
sults currently available. In fact, the class if finite distributive lattices without
topmost element seems more stable under basic transformations than the class
of Medvedev frames, and at the same time the structure of finite distributive
lattices is well-understood and characterized. This characterization also opens
venues for future research: following the approach of [19], we can consider
the class of distributive lattices without topmost elements, leaving aside the

2 As far as the author knows, the question whether the logic of this class of frames is ML
was firstly proposed by V. Punčochář in 2018.
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finiteness requirement. We expect the logic of this class to be ML1, the logic of
infinite problems. If this were the case, the new semantic approach to the study
of ML and ML1 based on distributive lattices could shed some light on the rela-
tion between the two logics. Another potential application of our result relates
to inquisitive semantics [3], a formalism shown to have tight connections with
Medvedev logic (see for example [2, Section 3.4]). This novel characterization
of ML could reveal new properties of different inquisitive logics, in particular
those explicitly built on algebraic structures, as for example the ones presented
in [14,15,16]. 3

The structure of the paper is as follows: In Section 2 we fix some notation
and present the basic notions used in the rest of the paper. In Section 3 we prove
the characterization of Medvedev logic in terms of finite distributive lattices,
that is, our main result. In Section 4 we provide two examples showcasing the
salient passages of the proof from Section 3.

2 Preliminaries

We assume the reader to be familiar with the basic notions on order theory,
lattices, intermediate logics and intuitionistic Kripke frames. In this section we
limit ourselves to fix some notations and recall the results used throughout the
paper. For a basic introduction on order theory and lattices see [4]. And for a
basic introduction on intermediate logics and intuitionistic Kripke frames see
[1].

2.1 Distributive lattices

Throughout the paper we use the term lattice to indicate a bounded lattice.
In particular, given a lattice ⟨L,≤⟩, we indicate with ⊤ and ⊥ respectively its
greatest and smallest elements. Given two elements a, b ∈ L, we indicate with
a ∧ b and a ∨ b respectively the meet and the join of a and b. Likewise, given
a finite set S ⊆ L we indicate with

∧
S and

∨
S respectively the meet and

the join of the elements of S (as customary, we define
∧

∅ = ⊤ and
∨

∅ = ⊥).
With a slight abuse of notation, we indicate with L both the ordered structure
⟨L,≤⟩ and its underlying set of elements.

We call a lattice L distributive if, for every choice of a, b, c ∈ L the following
two identities hold:

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

We indicate with DL the class of distributive lattices and with DLfin the class
of finite distributive lattices.

In the following section we focus on two special families of elements of finite
distributive lattices: meet-prime elements and coatoms. Given a distributive
lattice L we indicate with ML the set of its meet-prime elements, that is, the
elements p ∈ L\{⊤} satisfying the condition that, for every a, b ∈ L, if a∧b ≤ p,
then a ≤ p or b ≤ p. And we indicate with CL the set of coatoms of L, that is,

3 Thanks to V. Punčochář for pointing out this very interesting connection.
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the maximal elements of the set L\{⊤}. Notice that coatoms are in particular
meet-prime elements, so CL ⊆ ML. Moreover, a non-trivial finite lattice always
contains coatoms, thus for L ∈ DLfin we have CL ̸= ∅.

Meet-prime elements play a special role in the study of distributive lattices.
In this paper we use some well-known technical results from the literature. The
first is the following lemma. 4

Lemma 2.1 ([4, Lemma 5.11]) Consider a lattice L ∈ DL. For an element
a ∈ L \ {⊤} the following conditions are equivalent:

• a is meet-prime;

• for any b1, b2 ∈ L, if a = b1 ∧ b2 then a = b1 or a = b2;

• for any b1, . . . , bk ∈ L, if a ≥ b1 ∧ · · · ∧ bk then a ≥ bi for some 1 ≤ i ≤ k.

A fundamental result about finite distributive lattices—another essential ingre-
dient for the results of this paper—is Birkhoff’s representation theorem. Let
us indicate with P the powerset functor.

Theorem 2.2 ([4, Theorem 5.12] Birkhoff’s representation for DLfin)
Consider a lattice L ∈ DLfin. For an element a ∈ L define the set

Ma := { p ∈ ML | p ≥ a }

Then for every a, b ∈ L it holds that a =
∧

Ma and that a ≤ b iff Ma ⊇ Mb.

We refer to the set Ma as the set of meet-prime elements above a.

2.2 Intuitionistic Kripke frames and bounded morphisms

An intuitionistic Kripke frame (henceforth, just frame) is a pair F = ⟨F,≤⟩
where F is a set (the points of the frame) and ≤ is a partial order (the ac-
cessibility relation). Frames are commonly used to provide a semantics for
intuitionistic and intermediate logics. We do not spell out the definition of
this semantics—which can be found in [1, Chapter 2]—since we do not need
it to present the results of this paper. We limit ourselves to define some basic
notions about frames and their logics and to recall some basic results.

Henceforth we indicate with AP a fixed infinite set of atomic propositions,
and we focus exclusively on propositional formulas over AP, that is, formulas
generated by the following grammar:

ϕ ::= p ∈ AP | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ

Given a frame F , the logic of F is the set Log(F) of formulas valid over F .
Similarly, given a class of frames C, the logic of the class C is the collection
of formulas valid over every frame of the class, that is, the set Log(C) :=⋂

F∈C Log(F).

4 The statements in [4, Lemma 5.11, Theorem 5.12] are formulated in terms of the set J (L)
of join-prime elements of L. The formulation we employ here using meet-prime elements is
obtained by applying the duality principle for lattices (Statement 1.20, ibidem).
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{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 1. The Medvedev frame M3, represented using its Hasse diagram.

In this paper we focus on a particular family of frames, that is, Medvedev
frames. For n ∈ N a positive natural number, the Medvedev frame of order n
is defined as

Mn := ⟨ P0({1, . . . , n}), ⊇⟩

where P0({1, . . . , n}) indicates the non-empty subsets of {1, . . . , n}. Notice that
these frames—modulo isomorphism—are obtained by removing the topmost
element from a finite Boolean algebra (considered as a partial order). Medvedev
logic ML is the logic of the family of Medvedev frames, or in the notation
introduced above: ML = Log({Mn |n ≥ 1}) (compare with [10,11]). We give
a graphical representation of a Medvedev frame in Figure 1.

We also introduce bounded morphisms (also known as reductions or p-
morphisms), a powerful tool to study the logics of frames and their families.

Definition 2.3 [Bounded morphism [1, Section 2.3]] Given two frames F and
F ′ a bounded morphism from F = ⟨F,≤⟩ to F ′ = ⟨F ′,⪯⟩ is a function f : F →
F ′ satisfying the following properties.

Forth condition For every a, b ∈ F , if a ≤ b then f(a) ⪯ f(b).

Back condition For every a ∈ F and b′ ∈ F ′, if f(a) ⪯ b′ then there exists
b ∈ F such that a ≤ b and f(b) = b′.

We indicate with f : F ↠ F ′ that f is a surjective bounded morphism from F
to F ′.

Bounded morphisms allow us to compare the logics of two frames, as the fol-
lowing result shows.

Lemma 2.4 ([1, Corollary 2.16]) Let F and F ′ be two frames, and suppose
there exists f : F ↠ F ′. Then Log(F ′) ⊆ Log(F).

This is all we need about frames and their logics to prove the results of this
paper!

3 A novel class of frames for Medvedev logic

For ease of reading, in the rest of this section we indicate ML and CL simply
as M and C (omitting the subscript). Given a finite distributive lattice L, we
indicate with L− the partial order obtained by removing the topmost element
from L, that is, the set L− = L\{⊤} with the induced order. We indicate with
DL−

fin the collection of all the structures obtained this way DL−
fin := {L− |L ∈
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⊤

c

a b

⊥

c

a b

⊥

Figure 2. A distributive lattice L (on the left) and the corresponding partial order
L− (on the right), both represented using their Hasse diagrams. Recall that L− is
obtained by removing the topmost element ⊤.

DLfin}. In Figure 2 we depict a distributive lattice L and its corresponding
partial order L−. We will use it as a running example through the paper.

The aim of this paper is to provide a proof of the following theorem.

Theorem 3.1 ML = Log( DL−
fin ).

That is, we want to show that Medvedev logic can be characterized as the logic
of finite distributive lattices without their top element. The argument we use
mainly relies on the following lemma, and in fact most of this section is devoted
to its proof.

Lemma 3.2 For every finite distributive lattice L, there exists a Medvedev
frame Mn such that Mn ↠ L−.

Let us first show how to use Lemma 3.2 to prove Theorem 3.1.

Proof [Proof of Theorem 3.1] Notice that ⟨P({1, . . . , n}),⊇⟩ is a distribu-
tive lattice (since it is a boolean algebra) with topmost element ∅. Thus
⟨P({1, . . . , n}),⊇⟩− = Mn. In particular {Mn |n ≥ 1 } ⊆ DL−

fin, so

Log( DL−
fin ) ⊆ Log( {Mn |n ≥ 1 } ) = ML

As for the other inclusion, by Lemma 3.2 for every L ∈ DLfin there exists a
Medvedev frame Mn such that Mn ↠ L−. In particular by Lemma 2.4 we
have that that Log(Mn) ⊆ Log(L−), and so

ML =
⋂
n≥1

Log(Mn) ⊆
⋂

L∈DLfin

Log(L−) = Log( DL−
fin )

which concludes the proof. 2

We showed how to use Lemma 3.2 to prove Theorem 3.1, so now we are at the
hard part: proving the lemma.

To prove Lemma 3.2, given a finite distributive lattice L ∈ DLfin we need to
provide two ingredients: a Medvedev frame Mn and a surjective bounded mor-
phism from Mn to L−. For ease of presentation, we work modulo isomorphism:
we define a frame M isomorphic to a Medvedev frame and then we construct
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⊤

c

a b

⊥

{a} {c} {b}

{a, c} {a, b} {b, c}

{a, b, c}

Figure 3. On the left, the lattice L from Figure 2 where we highlighted the elements
of M. On the right, the corresponding frame M.

a surjective bounded morphism f : M ↠ L−. The desired bounded morphism
can then be obtained by composing f with an automorphism between M and
a Medvedev frame.

The frame we are going to use is M = ⟨ P0(M), ⊇⟩, that is, the frame
whose points are non-empty subsets of meet-prime elements of L ordered by
reverse inclusion. This is trivially isomorphic to the Medvedev frame M|M|,
where |M| indicates the cardinality of the set M. In Figure 3 we depict the
frame M corresponding to the running example of Figure 2.

The construction of the bounded morphism f : M ↠ L− requires the
definition of two auxiliary functions g, h : P0(M) → P(M). We start with the
former: given N ⊆ M we define the map 5

g(N) = { p ∈ M | Mp ⊆ N }
= { p ∈ M | ∀p′ ≥ p. p′ ∈ N }

So g(N) collects all the meet-prime elements p ∈ N for which p and its suc-
cessors are contained in N . In Figure 4 we represent the function g for our
running example. We collect some properties of g in the following proposition,
after recalling some basic definitions. We call U ⊆ M an upset (of M) if for
every p ∈ U and q ∈ M, if p ≤ q then q ∈ U . An upset is called principal if it
contains a minimum element, that is, if it is of the form Mq for some q ∈ M.
Finally, we indicate with Up(M) the collection of the upsets of M and with
Up0(M) the collection of non-empty subsets.

Proposition 3.3 For every N ⊆ M, g(N) is the greatest (under set-theoretic
inclusion) upset of M contained in N . In particular, the map g is monotone
and g ↾Up0(M) is the identity function.

Proof By definition, g(N) is the union of all the principal upsets contained in
N , which implies that g(N) is the greatest upset of M contained in N . Given
this, it follows trivially that g is monotone and that g(U) = U for an upset
U . 2

5 Recall that Mq := {p ∈ M | p ≥ q}, as defined in Theorem 2.2.
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{a} {c} {b}

{a, c} {a, b} {b, c}

{a, b, c}

g→

∅ {c} ∅

{a, c} ∅ {b, c}

{a, b, c}

Figure 4. Representation of the function g : P0(M) → P(M) for M the running
example from Figures 2 and 3. Recall that the points of the frame M (on the left)
are the elements of the set P0(M). On the right, we indicate for each N ∈ P0(M)
the corresponding image g(N).

The function g allows to shift our focus from the collection of non-empty sub-
sets P0(M) to the collection of upsets Up(M). And this is particularly inter-
esting since there is a natural surjective bounded morphism from the frame
⟨Up0(M),⊇⟩ to L−: ∧

: Up0(M) ↠ L−

U 7→
∧

U

Recall that
∧
U is the meet of all the elements in U , computed in the lattice L.

Notice that this map is well-defined: since U is non-empty, for a meet-prime
p ∈ U we have

∧
U ≤ p < ⊤. Moreover, the surjectiveness of this map is a

direct consequence of Theorem 2.2.
So a naive approach to define a surjective bounded morphism f : P0(M) ↠

L− would be to compose the maps
∧

and g, that is, to consider the map
N 7→

∧
g(N). However, there is a complication: the set g(N) might be empty

(for example when N does not contain any maximal element of M) and the
bounded morphism

∧
: Up0(M) → L− cannot be extended to Up(M). To avoid

this issue, we need another auxiliary function to tweak the set g(N) before we
take the meet

∧
g(N). Recall that we indicate with C the set of coatoms of the

lattice L.

Definition 3.4 [link function] Given L a finite distributive lattice, we define
a link function as a map h : M → C such that h(p) ≥ p for every p ∈ M.

So a link function is an increasing map from M to C. In particular a link
function restricted to the set C is always the identity. Notice that every element
of L− is smaller than some coatom since L is finite, so under our assumptions
link functions always exist.

In the rest of the section we work with a fixed arbitrary link function h.
With a slight abuse of notation, we indicate with the same notation also the
lifting of h to sets of meet-prime elements: h(N) = {h(p) | p ∈ N }. In Figure 5
we represent the function h for our running example. Notice that (in contrast
to the map g) for a non-empty subset N ⊆ M the image h(N) is not empty.
Moreover, h is monotone over P0(M) by definition.

Proposition 3.5 For N,N ′ ∈ P0(M) with N ⊆ N ′, it holds that h(N) ⊆
h(N ′).
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{a} {c} {b}

{a, c} {a, b} {b, c}

{a, b, c}

h→

{c} {c} {c}

{c} {c} {c}

{c}

Figure 5. The function h : P0(M) → P(M) for the running example from Figures 2
and 3. The only link function for the lattice L of Figure 2 is the constant function
with value c, that is, the function h used in this example. As in Figure 4, on the left
we depict the points of the frame M, that is, the elements of the set P0(M), and on
the right their images under h. As the map g of Figure 4, the map h is monotone.

The map h is also well-behaved when restricted to upsets, and this allows to
draw an interesting connection between g and h that will be useful later on.

Proposition 3.6 For U ∈ Up(M) it holds h(U) ⊆ U . In particular, g(U) ∪
h(U) = U .

Proof Firstly we prove that h(U) ⊆ U . Given an arbitrary p ∈ U , we have
h(p) ≥ p, and since U is an upset it follows that h(p) ∈ U . Since p was
arbitrary, it follows that h(U) ⊆ U . Given this, the identity g(U) ∪ h(U) = U
is a direct consequence of Proposition 3.3. 2

Proposition 3.6 and the previous observations on the map
∧

: Up0(M) ↠ L−

suggest the following definition for the desired bounded morphism f : P0(M) ↠
L−.

f(N) :=
∧

( g(N) ∪ h(N) )

In Figure 6 we represent the function f for our running example.
We now have our two ingredients for the proof of Lemma 3.2, that is, the

frame ⟨P0(M),⊇⟩ and the map f . What remains to be proved is that f is a
surjective bounded morphism between the structures P0(M) and L−.

Proof [Proof of Lemma 3.2] We want to show that f is well-defined, surjective
and a bounded morphism. In particular, the latter amounts to proving that
f satisfies the forth and back conditions from Definition 2.3. We show these
results separately.

f is well-defined. Given a non-empty subset N ∈ P0(M), we already noticed
that h(N) ̸= ∅. In particular, this implies that for c ∈ h(N) it holds

f(N) =
∧

( g(N) ∪ h(N) ) ≤ c < ⊤

thus f(N) is an element of L−.

f is surjective. Let b ∈ L− be an arbitrary element and recall that by Theorem
2.2 we have b =

∧
Mb. We claim that f(Mb) = b. Since b < ⊤ we have that

Mb ̸= ∅, and so Mb ∈ P0(M). By definition Mb is an upset in P0(M), thus by
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{a} {c} {b}

{a, c} {a, b} {b, c}

{a, b, c}

g ∪ h−→

{c} {c} {c}

{a, c} {c} {b, c}

{a, b, c}

↓
∧

↘ f

c

a b

⊥

Figure 6. The function f : P0(M) → L− for the running example, computed as a
composition of the functions g∪h and

∧
. The image of g∪h is depicted as in Figures

4 and 5, while the images of the functions
∧

and f are coded by the drawing styles
of the nodes (e.g., f({b, c}) = b and this is indicated in the picture by the matching
rectangular dashed nodes).

Proposition 3.6 it follows that g(Mb)∪h(Mb) = Mb, and so f(Mb) =
∧
Mb = b.

Since b was an arbitrary element in L−, this shows that f is surjective.

f respects the forth condition. That is, we want to show that for every N,N ′ ∈
P0(M), if N ⊇ N ′ then f(N) ≤ f(N ′). 6

Consider arbitrary N,N ′ ∈ P0(M) and assume that N ⊇ N ′. By Propo-
sitions 3.3 and 3.5, we know that g(N) ∪ h(N) ⊇ g(N ′) ∪ h(N ′). Thus we
have:

f(N) =
∧

( g(N) ∪ h(N) ) ≤
∧

( g(N ′) ∪ h(N ′) ) = f(N ′)

Since N,N ′ were arbitrary, the forth condition follows.

f respects the back condition. That is, we want to show that for N ∈ P0(M)
and b ∈ L−, if f(N) ≤ b then there exists N ′ ∈ P0(M) such that N ⊇ N ′ and
f(N ′) = b.

Consider arbitrary N ∈ P0(M) and b ∈ L−, and assume that f(N) ≤ b. We
aim to find a non-empty N ′ ⊆ N such that f(N ′) = b. Recall that b =

∧
Mb

by Theorem 2.2. In particular, for every p ∈ Mb we have that:

f(N) =
∧

( g(N) ∪ h(N) ) ≤ b ≤ p

By Lemma 2.1 and the previous inequality we obtain:

∀p ∈ Mb. ∃p′ ∈ g(N) ∪ h(N). p′ ≤ p (1)

6 Recall that we are considering P0(M) ordered by the relation ⊇.
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We proceed by considering the partition of the set Mb = G ∪ H, where G
contains all the p ∈ Mb such that p′ ≤ p for some p′ ∈ g(N), and H := Mb \G.
Using (1), we can give alternative characterizations of the sets G and H.

• Claim 1: p ∈ G ⇐⇒ Mp ⊆ N . Firstly suppose that p ∈ G. By definition of
G there exists p′ ∈ g(N) such that p′ ≤ p. This implies that Mp ⊆ Mp′ ⊆ N ,
where the last containment follows from the definition of g(N). Secondly,
suppose that Mp ⊆ N . Then, by definition of g(N), we have that p ∈ g(N)
and consequently p ∈ G (since we can take p′ = p).

• Claim 2: H = Mb ∩ h(N) ∩ (M \ N). We prove the two inclusions H ⊆
Mb ∩ h(N) ∩ (M \N) and Mb ∩ h(N) ∩ (M \N) ⊆ H separately.

H ⊆ Mb ∩ h(N) ∩ (M \N). We have that H ⊆ Mb by definition of H, so
we only have to show that H ⊆ h(N) and that H ⊆ M \N .

We first prove that H ⊆ h(N). By Claim 1 we have that g(N) ⊆ G, and
so by (1) and the definition of H it follows that:

∀c ∈ H. ∃c′ ∈ h(N) \ g(N). c′ ≤ c

In particular, since the elements of h(N) are coatoms, the previous property
boils down to H ⊆ h(N) \ g(N) ⊆ C, which in particular implies H ⊆ h(N).

Finally, we prove that H ⊆ M \ N . Assume towards a contradiction
that there exists c ∈ H ∩ N . Since c is a coatom, it follows that Mc =
{c} ⊆ N . Thus by definition of g(N) we have c ∈ g(N), which contradicts
H ⊆ h(N) \ g(N). So we conclude that H ∩N = ∅, that is, H ⊆ M \N .

Mb ∩ h(N) ∩ (M \N) ⊆ H. Consider an arbitrary element c ∈ Mb ∩ h(N)∩
(M \ N). c ∈ h(N) is a coatom, so we have Mc = {c} ⊈ N which in turn
implies c /∈ g(N). Since g(N) us an upset it follows that there is no p ∈ g(N)
such that c ≥ p, that is, c /∈ G. In particular, we have that c ∈ Mb \G = H.
Since c was an arbitrary element of Mb ∩ h(N) ∩ (M \N), we conclude that
Mb ∩ h(N) ∩ (M \N) ⊆ H.

Now that we have these characterizations of the sets G and H, we are ready
to define the set N ′ we are looking for. Fix an enumeration of the sets G =
{p1, . . . , pk} and H = {c1, . . . , cl}. By Claim 2, for every j ∈ {1, . . . , l} we can
fix an element p′j ∈ N such that h(p′j) = cj . We define the set N ′ as follows:

N ′ :=

(
k⋃

i=1

Mpi

)
∪ {p′1, . . . , p′l}

We need to show that N ′ ⊆ N and that f(N ′) = b. We start with the former
condition. By Claim 1, for i ∈ {1, . . . , k} we have Mpi

⊆ N . And for j ∈
{1, . . . , l} we have p′j ∈ N by definition of p′j . Combining these facts we obtain
N ′ ⊆ N .

We now show that f(N ′) = b. We firstly prove that f(N ′) ≤ b. Notice that
G = {p1, . . . , pk} ⊆ g(N ′) and that H = {c1, . . . , cl} = {h(p′1), . . . , h(p′l)} ⊆
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h(N ′). So in particular we have:

f(N ′) =
∧

( g(N ′) ∪ h(N ′) ) ≤
∧

(G ∪H) =
∧

Mb = b

As for the other inequality, consider an element q ∈ g(N ′) ∪ h(N ′). We first
show that q ≥ b. We consider two (non mutually exclusive) cases:

• If q ∈ g(N ′), by definition of g(N ′) we have that Mq ⊆ N ′ ⊆ N . We want
to show that q ∈ ∪k

i=1Mpi
. We can do it reasoning by contradiction: assume

that q = p′j for some j ∈ {1, . . . , l}. Since cj ≥ p′j and Mq is an upset, it
follows that cj ∈ Mq ⊆ N , which contradicts Claim 2. So it follows that

q ̸= p′j for every j ∈ {1, . . . , l}, and so q ∈
⋃k

i=1 Mpi . In particular, this
implies that there exists i ∈ {1, . . . , k} such that q ≥ pi ≥ b.

• If q ∈ h(N ′), by definition of h(N ′) there exists q′ ∈ N ′ such that h(q′) = q.
If q′ ∈ Mpi for some i ∈ {1, . . . , k} then q = h(q′) ≥ h(pi) ≥ pi ≥ b.
Otherwise, if q′ = p′j for some j ∈ {1, . . . , l} then q = h(q′) = h(p′j) = cj ≥ b.
In both cases we have q ≥ b.

So for every choice of q ∈ g(N ′) ∪ h(N ′) we have that q ≥ b. From this it
follows that:

f(N ′) =
∧

( g(N ′) ∪ h(N ′) ) ≥ b

Thus we conclude that f(N ′) = b. Since N ∈ P0(M) and b ∈ L− were arbitrary
elements, this shows that the back condition holds for f , thus concluding the
proof of the lemma. 2

4 Examples

In this section we showcase the construction presented in the proof of Lemma
3.2 with two examples. For reasons of layout, we move the figures to the end
of the manuscript.

We build the bounded morphisms f1 and f2 corresponding to distinct link
functions h1 and h2 over the same lattice L, depicted in Figure 7. We firstly
compute the function g, which is independent from the link functions. The
values of g are depicted in Figure 8, following the representation given in Figure
4. Henceforth, we use the same notational conventions used in the running
example from the previous section without mentioning it explicitly.

4.1 First example

Consider the link function h1 : M → C defined as h1(a) = d, h1(b) = d,
h1(d) = d and h1(e) = e. We depict the lifting of the function h1 in Figure 9
and the resulting bounded morphism f1 : M ↠ L− in Figure 10.

4.2 Second example

Consider the link function h2 : M → C defined as h2(a) = e, h2(b) = d,
h2(d) = d and h2(e) = e. We depict the lifting of function h2 in Figure 11 and
the resulting bounded morphism f2 : M ↠ L− in Figure 12.
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L

⊥

a b

c

d e

⊤

L−

⊥

a b

c

d e

M

{a} {b} {d} {e}

{a, b} {a, d}
{a, e}

{b, d}
{b, e} {d, e}

{a, b, d} {a, b, e} {a, d, e} {b, d, e}

{a, b, d, e}

Figure 7. A distributive lattice L, the partial order L− and the associated Medvedev
frame M. As we did in Figure 3, we highlighted the elements of M.

M

{a} {b} {d} {e}

{a, b} {a, d}
{a, e}

{b, d}
{b, e} {d, e}

{a, b, d} {a, b, e} {a, d, e} {b, d, e}

{a, b, d, e}

g−→

∅ ∅ {d} {e}

∅ {d}
{e}

{d}
{e} {d, e}

{d} {e} {a, d, e} {b, d, e}

{a, b, d, e}

Figure 8. Representation of the function g from the proof of Lemma 3.2, for M the
Medvedev frame in Figure 7.
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{a} {b} {d} {e}

{a, b} {a, d}
{a, e}

{b, d}
{b, e} {d, e}

{a, b, d} {a, b, e} {a, d, e} {b, d, e}

{a, b, d, e}

h1−→

{d} {d} {d} {e}

{d} {d}
{d, e}

{d}
{d, e} {d, e}

{d} {d, e} {d, e} {d, e}

{d, e}

Figure 9. Representation of the function h1 : P0(M) → P0(C).

{a} {b} {d} {e}

{a, b} {a, d}
{a, e}

{b, d}
{b, e} {d, e}

{a, b, d} {a, b, e} {a, d, e} {b, d, e}

{a, b, d, e}

g ∪ h1−→

{d} {d} {d} {e}

{d} {d}
{d, e}

{d}
{d, e} {d, e}

{d} {d, e} {a, d, e} {b, d, e}

{a, b, d, e}

↓
∧

↘ f1

⊥

a b

c

d e

Figure 10. Representation of the bounded morphism f1 : P0(M) ↠ L−.
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{a} {b} {d} {e}

{a, b} {a, d}
{a, e}

{b, d}
{b, e} {d, e}

{a, b, d} {a, b, e} {a, d, e} {b, d, e}

{a, b, d, e}

h2−→

{e} {d} {d} {e}

{d, e} {d, e}
{e}

{d}
{d, e} {d, e}

{d, e} {d, e} {d, e} {d, e}

{d, e}

Figure 11. Representation of the function h2 : P0(M) → P0(C).

{a} {b} {d} {e}

{a, b} {a, d}
{a, e}

{b, d}
{b, e} {d, e}

{a, b, d} {a, b, e} {a, d, e} {b, d, e}

{a, b, d, e}

g ∪ h2−→

{e} {d} {d} {e}

{d, e} {d, e}
{e}

{d}
{d, e} {d, e}

{d, e} {d, e} {a, d, e} {b, d, e}

{a, b, d, e}

↓
∧

↘ f2

⊥

a b

c

d e

Figure 12. Representation of the bounded morphism f2 : P0(M) ↠ L−.
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