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Abstract

Recently, van der Giessen and Iemhoff proved cut-admissibility for the sequent calcu-
lus GL4ip for propositional intuitionistic provability logic. To do so, they were forced
to use an indirection via the GL3ip calculus as GL4ip resists all standard direct cut-
admissibility techniques. This indirection leaves little hope for the extraction of a
comprehensible cut-elimination procedure for GL4ip from their work.
We eliminate this indirection: we prove the admissibility of additive cut for GL4ip in a
direct way by using a recently discovered proof technique which requires the existence
of a terminating backward proof-search procedure in this calculus. By formalising our
results in Coq we: (1) exhibit a successful direct proof technique for cut-admissibility
for GL4ip ; (2) extract a syntactic cut-elimination procedure for GL4ip in Haskell ; and
(3) use a local measure on sequents based on the shortlex order to show that the proof-
search terminates. Once again, we see an unusual phenomenon in that terminating
backward proof-search forms the basis for syntactic cut-elimination rather than for
semantic cut-free completeness.
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1 Introduction

Classical modal provability logics have gained a lot of attention because of the
ability to interpret the formula 2A as “A is provable in Peano Arithmetic” [12].
As usual, the completeness of the traditional sequent calculus for provability
logic with respect to the traditional Hilbert axiomatisation requires showing
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cut-admissibility. But cut-admissibility is usually not trivial because the stan-
dard double-induction on the size of the cut-formula and the height of the
derivation do not suffice. To solve this problem, Valentini [18] introduced a
third complex parameter called “width” in addition to these two traditional
induction measures. The complications in his cut-admissibility argument in a
set-based setting led to many claims and counter-claims, finally resolved thirty
years later by Goré and Ramanayake [8] in a multiset setting.

Recently, van der Giessen and Iemhoff [19] showed that the proof-theory
of intuitionistic provability logics is also complicated. They gave a cut-free
sequent calculus GL3ip for intuitionistic provability logic extending the standard
G3ip [17] calculus for intuitionistic logic with the following well known rule:

X,2X,2A ⇒ A

W,2Y,2X ⇒ 2A
(GLR)

Similarly to G3ip, the admissibility of the rules of weakening and contraction
can easily be shown for GL3ip. However, the admissibility of cut encounters the
same problems as for GL, leading van der Giessen and Iemhoff to successfully
adapt the technique developed by Valentini, thus obtaining a direct proof of
cut-admissibility for intuitionistic provability logic.

However, GL3ip cannot support a simple terminating backward proof-search
strategy because its left-implication rule, inherited from G3ip and shown below,
allows trivial cycles up the left premise as is well known:

X,A → B ⇒ A X,B ⇒ C

X,A → B ⇒ C
(→L)

To solve this problem and characterize a terminating proof-search proce-
dure, they follow Dyckhoff [6] and Hudelmaier [10] and define the calculus
GL4ip by both slightly modifying the rule (GLR) and mimicking G4ip by re-
placing (→L) with a collection of rules sensitive to the form of the formula A
in A → B. To prove cut-admissibility they show that GL3ip and GL4ip are
equivalent, in that they prove the same sequents.

They point out that although the calculus GL4ip enjoys terminating back-
ward proof-search, the existence of a direct proof of cut-admissibility is doubt-
ful: all standard methods fail, including Valentini’s. While a direct and syn-
tactic proof of cut-admissibility usually leads to a straightforward algorithm
for cut-elimination, here the only potential cut-elimination algorithm for GL4ip
is quite convoluted: (1) take a GL4ip proof containing cuts; (2) transform it
to a GL3ip proof containing cuts ; (3) apply the cut-elimination procedure for
GL3ip to obtain a cut-free GL3ip proof ; (4) transform the cut-free GL3ip proof
into a cut-free GL4ip proof. In particular, the steps from (2) to (3), which rely
on Valentini’s complicated argument, and from (3) to (4), which involve intri-
cate transformations, are anything but trivial. This indirection, coupled with
the intricacies mentioned, can only lead to a painful and obscure algorithm for
cut-elimination for GL4ip.

Naturally, the following question comes to mind: can we eliminate the
indirection from GL4ip+(cut) to GL3ip+(cut) to GL3ip to GL4ip, and obtain
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a direct cut-elimination procedure for GL4ip? Moreover, can we guarantee that
this cut-elimination proof is correct?

Here, we answer both questions positively by giving a direct syntactic proof
of cut-admissibility for GL4ip. First, we show the admissibility of the structural
rules by adapting the arguments from Dyckhoff and Negri [7]. Second, we de-
fine a proof-search procedure PSGL4ip on GL4ip. Furthermore, we develop a
thorough termination argument by defining a local measure on sequents and a
well-founded relation along which this measure decreases upwards in the proof-
search. Finally, we directly prove cut-admissibility for GL4ip using the mhd
proof technique, which makes use of the termination of PSGL4ip to attribute
a maximum height of derivations to each sequent [3]. We use this number as
an induction measure in an argument involving local and syntactic transforma-
tions, allowing us to exhibit and hence extract a cut-elimination procedure. All
of our claims have been formally verified in the interactive theorem prover Coq
(https://github.com/ianshil/CE GL4ip.git). Using the automatic program ex-
traction facilities of Coq, we extracted the formally verified computer program
for cut-elimination associated to our formalisation.

2 Preliminaries

Let V = {p, q, r . . . } be an infinite set of propositional variables. Modal formu-
lae are defined by the following grammar.

A ::= p ∈ V | ⊥ | A ∧A | A ∨A | A → A | 2A

We encode formulae as a type (MPropF V) over some parametric type (V)

of propositional variables. A list of such formulae then has the type list (

MPropF V). The usual operations on lists “append” and “cons” are respectively
represented by ++ and :: but Coq also allows us to write lists in infix notation
using ;. Thus the terms A1 :: A2 :: A3 and [A1] ++ [A2] ++ [A3] and
[A1 ; A2 ; A3] all encode the list A1, A2, A3.

Definition 2.1 The weight w(A) of a formula A is defined as follows:

w(⊥) = w(p) = 1
w(C ∨D) = w(C → D) = w(C) + w(D) + 1

w(C ∧D) = w(C) + w(D) + 2
w(2C) = w(C) + 1

We say that a formula A is a boxed formula if it has 2 as its main connective.
A boxed multiset contains only boxed formulae. For a set X = {A1, . . . , An},
define ⊠X = {A1,2A1, . . . , An,2An}. We denote the set of subformulae of a
formula A, including itself, by Sub(A). We abuse the notation to designate the
set of subformulae of all formulae in the set X by Sub(X). We use the letters
A,B,C, . . . for formulae and X,Y, Z, . . . for multisets of formulae.

The Hilbert calculus for the intuitionistic normal modal logic iK ex-
tends a Hilbert-calculus for intuitionistic propositional logic with the axiom
2(p → q) → (2p → 2q) and the inference rule of necessitation: from A in-

https://github.com/ianshil/CE_GL4ip.git
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fer 2A. Intuitionistic Gödel-Löb logic iGL is obtained by the addition of the
axiom 2(2p → p) → 2p to iK. We write A ∈ iK when A is a theorem of iK.

A sequent is a pair of a multiset of formulae and a formula, denoted X ⇒ C.
For multisets X and Y , the multiset sum X⊎Y is the multiset whose multiplic-
ity (at each formula) is a sum of the multiplicities of X and Y . We write X,Y
to mean X ⊎ Y . For a formula A, we write A,X and X,A to mean {A} ⊎X.
From the formalisation perspective, a pair of a list of formulae and a formula
has type list (MPropF V) * (MPropF V), using the Coq notation * for form-
ing pairs. The latter is the type we give to sequents in our formalisation, for
which we use the macro Seq. Thus the sequent A1, A2, A3 ⇒ B is encoded
by the term [A_1 ; A_2 ; A_3] * B, which itself can also be written as the
pair ([A_1 ; A_2 ; A_3], B). Note that [A_1 ; A_2 ; A_3] * B is differ-
ent from [A_2 ; A_1 ; A_3] * B since the order of the elements is crucial, so
our lists do not capture multisets (yet).

A sequent calculus consists of a finite set of sequent rule schemas. Each rule
schema consists of a conclusion sequent and some number of premise sequents.
If a rule schema has no premise sequents, then it is called an initial sequent.
The conclusion and premises are built in the usual way from propositional-
variables, formula-variables and multiset-variables. A rule instance is obtained
by uniformly instantiating every variable in the rule schema with a concrete
object of that type. This is the standard definition from structural proof theory.

Definition 2.2 [Derivation/Proof] A derivation of a sequent s in the sequent
calculus C is a finite tree of sequents such that (i) the root node is s; and (ii)
each interior node and its direct children are the conclusion and premise(s) of
a rule instance in C. A proof is a derivation where every leaf is an instance of
an initial sequent.

In what follows, it should be clear from context whether the word “proof”
refers to the object defined in Definition 2.2, or to the meta-level notion. We say
that a sequent is provable in C if it has a proof in C. We elide the details of the
encodings of sequent rules, collections of sequent rules and derivations as these
can be found elsewhere [4]. For a sequent calculus C we define two predicates on
sequents: C_drv for derivability in C, and C_prv for provability in C. Instances
of these predicates are GL4ip_prv, GL4ip_cut_prv or PSGL4ip_drv. We note
that our encodings primarily rely on the type Type, which bears computational
content and is crucially compatible with the extraction function of Coq while
Prop is not.

Definition 2.3 [Height] For any derivation δ, its height h(δ), is the maximum
number of nodes on a path from root to leaf.

In this article we assume some familiarity with the notions of admissibility,
invertibility, and height-preservation.

The sequent calculus GL4ip is given in Figure 1. When defining rules we
put the label naming the rule on the left of the horizontal line, while the label
appears on the right of the line in instances of rules.
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(⊥L)
⊥, X ⇒ C

(IdP)
X, p ⇒ p

X,A,B ⇒ C
(∧L)

X,A ∧B ⇒ C

X ⇒ A X ⇒ B(∧R)
X ⇒ A ∧B

X,A ⇒ C X,B ⇒ C
(∨L)

X,A ∨B ⇒ C

X ⇒ Ai(∨iR) (i ∈ {1, 2})
X ⇒ A1 ∨A2

X, p,A ⇒ C
(p→L)

X, p, p → A ⇒ C

X,A ⇒ B
(→R)

X ⇒ A → B

⊠X,2A ⇒ A W,2X,B ⇒ C
(2→L)

W,2X,2A → B ⇒ C

⊠X,2A ⇒ A
(GLR)

W,2X ⇒ 2A

X,A → (B → C) ⇒ D
(∧→L)

X, (A ∧B) → C ⇒ D

X,A → C,B → C ⇒ D
(∨→L)

X, (A ∨B) → C ⇒ D

X,B → C ⇒ A → B X,C ⇒ D
(→→L)

X, (A → B) → C ⇒ D

Fig. 1. The sequent calculus GL4ip. Here, W does not contain any boxed formula.

In (IdP), a propositional variable instantiating the featured occurrences of p
is principal. In a rule instance of (∧R), (∧L), (∨iR), (∨L) or (→R), the prin-
cipal formula of that instance is defined as usual. In a rule instance of (p→L),
both a propositional variable instantiating p and the formula instantiating the
featured p → A are principal formulae of that instance. In a rule instance
of (∧→L), (∨→L), (→→L) or (2→L), the formula instantiating respectively
(A ∧ B) → C, (A ∨ B) → C, (A → B) → C or 2A → B is the principal
formula of that instance. In a rule instance of (GLR), the formula 2A is called
the diagonal formula [14].

Example 2.4 The following are examples of derivations in GL4ip. Note that
while the first and second examples are derivations, the third is a proof.

p ⇒ q → r
⇒ p

(∨1R)
⇒ p ∨ (p → ⊥)

(IdP)
2p, p,2p ⇒ p

(GLR)
2p ⇒ 2p

Example 2.5 A special example of a derivation in GL4ip is the following:
2A → A,2(2A → A), A,A,2A,2A,2A ⇒ A 2(2A → A), A,2A,2A ⇒ A

(2→L)
2A → A,2(2A → A), A,2A,2A ⇒ A

The conclusion and left premise are identical modulo formula multiplicities, so
the rule (2→L) can be infinitely applied upwards on the left branch.

Finally, we consider the additive cut rule.

X ⇒ A A,X ⇒ C
(cut)

X ⇒ C



434 Direct elimination of additive-cuts in GL4ip: verified and extracted.

In the above, we call A the cut-formula. It is known that GL4ip+(cut) is sound
and complete w.r.t. the Hilbert calculus iGL [19] as stated next.

Theorem 2.6 For all A we have: A ∈ iGL iff ⇒ A is provable in GL4ip+(cut).

3 A path to contraction for GL4ip

As mentioned above, our formalisation encodes sequents using lists and not
multisets. Despite this distance between our formalisation and the pen-and-
paper definition, list-sequents from the former mimic multiset-sequents from
the latter. Below, exch s se encodes the fact that se is obtained from the
sequent s by permuting two sub-lists in the list representing its antecedent.

Lemma 3.1 (Admissibility of exchange) For all X0, X1, A,B and C, if
X0, A,B,X1 ⇒ C is provable in GL4ip, then so is X0, B,A,X1 ⇒ C.

Lemma GL4ip_adm_exch : forall s, (GL4ip_prv s) ->

(forall se , (exch s se) -> (GL4ip_prv se)).

Note that the admissibility of exchange is not an accident, nor is it hard-
wired as an explicit rule in Coq. That is, our encoding of the multiset-based
rules shown in Figure 1 is designed to entail exchange. For example, the con-
clusion X,A ∧ B ⇒ C of the rule (∧L) rule is encoded as the list-sequent
(X0++(And A B)::X1, C) which allows us to “slide” (And A B) to any point
in the antecedent by appropriate choices of the lists X0 and X1. The list-
encoding requires a very pedantic analysis of the position of the occurrence of
(And A B) in the antecedent of a rule instance. This is a major disadvantage
of our approach: for example, the admissibility of exchange itself requires some
5000 lines of Coq code!

Given the above lemma, we allow ourselves to consider that the left-hand
side of sequents is indeed a multiset. The remaining of this section extends the
work of Dyckhoff and Negri [7] on G4ip to the sequent calculus GL4ip. Thus, the
proofs they developed are embedded in our proofs and hence formalised. Most
lemmata are proven by straightforward inductions on the structure of formulae
or derivations, and the order in which we present them gives an account of the
dependencies between them. We omit the Coq encodings for brevity.

Lemma 3.2 (Height-preserving admissibility of weakening) For
all X,A and C, if X ⇒ C has a proof π in GL4ip, then X,A ⇒ C has a
proof π0 in GL4ip such that h(π0) ≤ h(π).

Lemma 3.3 (Height-preserving invertibility of rules) The rules (∧R),
(∧L), (∨L), (→R), (p→L), (∧→L), (∨→L) are height-preserving invertible.

Lemma 3.4 For all X and A, the sequent A,X ⇒ A has a proof.

We can show that the height-preserving invertibility of the rules (→→L)
and (2→L) holds for the right premise:

Lemma 3.5 (Height-preserving right-invertibility of rules) For all X,
A,B,D and C:
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(i) If X, (A → B) → D ⇒ C has a proof π in GL4ip, then X,D ⇒ C has a
proof π0 in GL4ip such that h(π0) ≤ h(π).

(ii) If X,2A → B ⇒ C has a proof π in GL4ip, then X,B ⇒ C has a proof π0

in GL4ip such that h(π0) ≤ h(π).

To obtain the key Lemma 3.7 for admissibility of contraction, pertaining
to the rule (→→L), we need to show that the usual left-implication rule is
admissible:

Lemma 3.6 The rule (→L) is admissible in GL4ip:
X ⇒ A X,B ⇒ C

(→L)
X,A → B ⇒ C

Lemma 3.7 For all X, A,B,D and C, if X, (A → B) → D ⇒ C is provable
in GL4ip, then X,A,B → D,B → D ⇒ C is provable in GL4ip.

We finally obtain the admissibility of contraction for GL4ip:

Lemma 3.8 (Admissibility of contraction) For all X,A and C: If
A,A,X ⇒ C is provable in GL4ip, then A,X ⇒ C is provable in GL4ip.

In the following section we introduce a second calculus PSGL4ip which em-
bodies a terminating non-deterministic backward proof-search procedure for
GL4ip. This will allow us to define the maximum height of derivations for
a sequent with respect to this procedure. Later on this will constitute the
secondary induction measure in the proof of admissibility of cut.

4 PSGL4ip: terminating backward proof-search

Given a sequent calculus C, one can define a backward proof-search procedure
on C by imposing further constraints on the backward applicability of the rules
of C. This procedure captures a subset of the set of all derivations of C, i.e. those
which are built using the restricted version of the rules of C. Consequently,
a backward proof-search procedure can be identified with the calculus PSC
consisting of these restricted rules of C, under the condition that PSC allows
to decide the provability of sequents in C.

We present such a sequent calculus for GL4ip. PSGL4ip restricts the rules
of GL4ip in the following way.

(Ident) The rule (IdP) is replaced by the identity rule (Id) on formulae of any
weight shown. Note that it is derivable in GL4ip as shown in Lemma 3.4.

(Id)
A,X ⇒ A

(NoInit) The conclusion of no rule is permitted to be an instance of either
(Id) or (⊥L).

Before commenting on the above, we note that it is straightforward to
prove that GL4ip and PSGL4ip are equivalent in the following sense: a sequent
is provable in one if it is provable in the other. So, according to the above
general description, it suffices to prove that PSGL4ip can be used to decide the
provability of sequents in GL4ip to show that the former deserves its prefix.
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Conjointly, these restrictions aim at avoiding repetitions along a branch of
a sequent which is either an identity or an instance of (⊥L), as in Example 2.5.
Restriction (NoInit) disallows the destruction of a formula upwards in presence
of a sequent which is obviously provable, while (Ident) allows to designate the
latter as provable. In fact, by showing that no loop can appear in a branch of
a PSGL4ip derivation, we concretely show that the only type of loop present in
GL4ip are loops on provable sequents.

In the remainder of this section we proceed to show that no loop can exist in
PSGL4ip. We do so by proving that each sequent has a derivation of maximum
height in PSGL4ip. The existence of such derivations is ensured by the strict
decreasing of a local measure on sequents upwards in the rules of PSGL4ip.

4.1 A well-founded order on (N× N× listN)
We define a well-founded order on triples (n,m, l) ∈ (N × N × listN) where
listN is the set of all lists of natural numbers.

In the following, we use < to mean the usual ordering on natural numbers.
Let us recall the general definition of a lexicographic order.

Definition 4.1 [Lexicographic order] Let (A1, <1), · · ·, (An, <n) be a collec-
tion of sets Ai with respective (strict total) orders <i on these sets. We de-

fine the lexicographic order <
(A1,<1),··· ,(An,<n)
lex as follows. For two n-tuples

(a1, · · · , an) and (a′1, · · · , a′n) of the Cartesian product A1 ×· · ·×An , we write

(a1, · · · , an) <(A1,<1),··· ,(An,<n)
lex (a′1, · · · , a′n) if there is a 1≤j≤n such that:

(i) ap = a′p, for all 1 ≤ p < j

(ii) aj <j a
′
j

Note that if <i is a well-founded relation for all 1 ≤ i ≤ n, then

<
(A1,<1),...,(An,<n)
lex is also well-founded [13]. If (Ai, <i) = (Aj , <j) for all

1 ≤ i, j ≤ n, then we note (Ai, <i)
n the sequence (A1, <1), ..., (An, <n). We

define the shortlex order, also called breadth-first [11] or length-lexicographic
order, over lists of natural numbers <<:

Definition 4.2 [Shortlex order] The shortlex order over lists of natural num-
bers, noted <<, is defined as follows. For two lists l0 and l1 of natural numbers,
we say that l0 << l1 whenever one of the following conditions is satisfied:

(i) length(l0) < length(l1) ;

(ii) length(l0) = length(l1) = n and l0 <
(N,<)n

lex l1 ;

Intuitively, the shortlex order is ordering lists according to their length and
follows the lexicographic order whenever length does not discriminate.

Finally, we define the order <3 on (N×N× listN) as <(N,<),(N,<),(list(N),<<)
lex .

Given that < and << are well-founded orders, we get that <3 also is.

4.2 A (N× N× listN)-measure on sequents

In what follows we use the term “measure” in an informal way. We proceed
to attach to each sequent X ⇒ C a measure Θ(X ⇒ C) which is a triple
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(α(X ⇒ C), β(X ⇒ C), γ(X ⇒ C)) ∈ (N × N × listN). For simplicity, in the
following paragraphs we consider a fixed sequent X ⇒ C for which we define
the triple, and thus erase the mention of the sequent in the measures.

First, we focus on γ. As X ⇒ C is built from a finite multiset of formulae, it
contains a topmost formula of maximal weight. Let n be that maximal weight.
We can create a list of length n such that at each positionm in the list (counting
from right to left) for 1 ≤ m ≤ n, we find the number of occurrences in X ⇒ C
of topmost formulae of weight m. Such a list gives the count of occurrences in
X ⇒ C of formulae of weight n in its leftmost (i.e. n-th) component, then of
occurrences of formulae of weight n−1 in the next (i.e. (n−1)-th) component,
and so on until we reach 1. We define γ to be this unique list. For example,
γ(p ∧ q, p ∨ q ⇒ q → p) is the list [1, 2, 0, 0] because p ∧ q is the formula of
maximum weight 4, and it is the only formula with this weight occurring in
the list, while both p ∨ q and q → p are of weight 3. Two things needs to be
noted about such lists. First, if no topmost occurrence of a formula is of weight
1 ≤ k ≤ n, then a 0 appears in position k in the list. This is the case for the
weight 2 in the example. Second, as in general no formula is of weight 0 we do
not need to dedicate a position for this particular weight in our list.

Why do we need such a list? With this list, the shortlex order becomes an
adequate substitute to the Dershowitz-Manna order [5] considered in Dyckhoff’s
work on G4ip. We recall this order, given two multisets Γ0 and Γ1, by quoting
van der Giessen and Iemhoff [19]: “Γ0 << Γ1 if and only if Γ0 is the result of
replacing one or more formulas in Γ1 by zero or more formulas of lower degree”.
As our use of the symbol << for the shortlex order suggests, the shortlex order
can replace the order given above to order finite multisets of formulae.

A similar list was independently formalised in Coq by Daniel Schepler in
the study of the calculus G4ip which he calls LJT [15], following Dyckhoff.
However, he does not involve this list in a termination argument: instead, he
uses it to show the equivalence of G4ip and the usual natural deduction system
for intuitionistic logic.

Second, we turn to β. On the contrary to the measure defined by B́ılková [1]
and used by van der Giessen and Iemhoff, which attributes a natural number
to a sequent appearing in a proof-search tree which depends on the root, we use
a local notion of “number of usable boxes” as done by Goré et al. [9].

Definition 4.3 We define:

(i) the usable boxes ub(X ⇒ C) of X ⇒ C as:

ub(X ⇒ C) := {2A | 2A ∈ Sub(X ∪ C)} \ {2A | 2A ∈ X}
(ii) the number β(X ⇒ C) of usable boxes of X ⇒ C as β(X ⇒ C) =

Card(ub(X ⇒ C)), where Card(U) is the cardinality of the set U .

Thus, the notion of usable boxes of X ⇒ C is the set of boxed subformulae
of X ⇒ C minus the topmost boxed formulae in X. Intuitively, this notion
captures the set of boxed formulae of a sequent s which might be the diagonal
formula of an instance of (GLR) in a derivation of s in PSGL4ip.



438 Direct elimination of additive-cuts in GL4ip: verified and extracted.

Third, we finally consider α. As X is a finite multiset of formulae, the
checking of whether or not X ⇒ C is an instance of the rule (Id) or (⊥L) is
decidable. So, we can constructively define the following test function:

α(X ⇒ C) =

{
0 if X ⇒ C is an instance of (Id) or (⊥L)

1 otherwise

4.3 Every rule of PSGL4ip reduces Θ upwards

We proceed to prove that the measure Θ decreases upwards through the rules
of PSGL4ip on the <3 ordering.

Lemma 4.4 For all sequents s0, s1, ..., sn and for all 1 ≤ i ≤ n, if there is an
instance of a rule r of PSGL4ip of the form below, then Θ(si) <

3 Θ(s0):

s1 . . . sn
s0

r

Note that contraction and weakening as rules allow Θ to increase upwards.
While it is rather obvious for contraction, this statement for weakening is sur-
prising. The key point here is to note that weakening allows the deletion of
boxed formulae in the antecedent of sequents, leading to a potential increase
in the number of usable boxes β: that is, weakening may remove some of the
boxes that “block” some applications of (GLR) upwards and so the number of
usable boxes increases.

4.4 The existence of a derivation of maximum height

For convenience, we define the order on sequents as follows:

s0 s1 if and only if Θ(s0) <
3 Θ(s1)

As <3 is a well-founded order, it is obvious that is so as well. As a
consequence we obtain a strong induction principle following the order.

Theorem 4.5 For any property P on sequents, to prove the statement ∀sP (s)
it is sufficient to show that every sequent s0 satisfies P under the assumption
that all its -predecessors satisfy P .

Theorem less_than3_strong_inductionT:

forall (P : Seq -> Type),

(forall s0, (forall s1, ((s1 <3 s0) -> P s1)) -> P s0)

-> forall s, P s.

If we use this principle with the previous Lemma 4.4, we can easily prove
the existence of a derivation in PSGL4ip of maximum height for all sequents.

Theorem 4.6 Every sequent s has a PSGL4ip derivation of maximum height.

Theorem PSGL4ip_termin :

forall s, existsT2 (D: PSGL4ip_drv s), (is_mhd D).

Here, D is a derivation, the existence of which is guaranteed by the con-
structive existential quantifier existsT2. This quantifier not only requires us
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to construct a witnessing term but also to provide a proof that the witness is of
the correct type. The function is_mhd returns the constructive Coq proposition
True if and only if its argument, D, is a derivation of maximum height.

As the previous lemma implies the constructive existence of a derivation δ
of maximum height in PSGL4ip for any sequent s, we are entitled to let mhd(s)
denote the height of δ. As in the work of Goré et al. [9], we later use mhd(s)
as the secondary induction measure used in the proof of admissibility of cut.

Before proving the only property we need from mhd(s), let us interpret the
previous lemma from the point of view of the proof-search procedure underlying
PSGL4ip. The existence of a derivation of maximum height for each sequent
in PSGL4ip shows that in the backward application of rules of PSGL4ip on a
sequent, i.e. the expansion of branches rooted in this sequent, a halting point
has to be encountered. As a consequence, the expansion of every branch must
meet a halting point: the proof-search procedure terminates.

While this is the essence of the content of the previous lemma, we effectively
only use the fact that mhd(s) decreases upwards in the rules of PSGL4ip.

Lemma 4.7 If r is a rule instance from PSGL4ip with conclusion s0 and s1 as
one of the premises, then mhd(s1) < mhd(s0).

5 Cut-elimination for GL4ip

To reach cut-elimination, our main theorem, we first state and prove cut-
admissibility in a purely syntactic way. More precisely, we proceed to prove
that the additive-cut rule is admissible. The latter statement, stating that the
provability of the sequents X ⇒ A and X,A ⇒ C entails the provability of
X ⇒ C, is formalised in Coq in the following way:

Theorem GL4ip_cut_adm : forall A X0 X1 C,

(GL4ip_prv (X0++X1 ,A) * GL4ip_prv (X0++A::X1,C)) ->

GL4ip_prv (X0++X1,C).

Here, the term (X0++X1,A) encodes the sequent X0, X1 ⇒ A as a pair,
thus hiding a lower level occurrence of *. Then, given that GL4ip_prv s is in
Type and not in Prop, we are required to use the constructor * for pairs at
the higher level shown instead of /\ which is the usual conjunction in Prop.
So, the existence of proofs in GL4ip for the sequent (X0++X1,A) as well as for
the sequent (X0++A::X1,C) asserted in the second line entail the existence of a
proof in GL4ip for the sequent (X0++X1,C). It is now clear that this statement
formalises the following theorem:

Theorem 5.1 The additive cut rule is admissible in GL4ip.

Proof. Let d1 (with last rule r1) and d2 (with last rule r2) be proofs in GL4ip
of X ⇒ A and A,X ⇒ C respectively, as shown below.

d1 r1
X ⇒ A

d2 r2
A,X ⇒ C

It suffices to show that there is a proof in GL4ip of X ⇒ C. We reason by strong
primary induction (PI) on the weight of the cut-formula A, giving the primary



440 Direct elimination of additive-cuts in GL4ip: verified and extracted.

inductive hypothesis (PIH). We also use a strong secondary induction (SI) on
mhd of the conclusion of a cut, giving the secondary inductive hypothesis (SIH).

We make a first case distinction: does X ⇒ C violate (NoInit)? If it is the
case, then this sequent is an instance of (Id) or (⊥L). So, we use Lemma 3.4 or
apply (⊥L) to obtain a proof of X ⇒ C. If X ⇒ C satisfies (NoInit), then it is
not an instance of (Id) or (⊥L). In this case we consider r1. In total, there are
thirteen cases to consider for r1: one for each rule in GL4ip. However, we can
gather some of the cases together and reduce the number of cases to eight. We
separate them by using Roman numerals and showcase the most interesting
ones.

(I) r1 =(→R) : Then r1 has the following form where A = B → D:

B,X ⇒ D
(→R)

X ⇒ B → D
We consider one sub-case.
(I-a) If r2 is (→→L) where the cut formula is not principal in r2, then it must
have the following form where (E → F ) → G,X0 = X:

B → D,F → G,X0 ⇒ E → F B → D,G,X0 ⇒ C
(→→L)

B → D, (E → F ) → G,X0 ⇒ C

Thus, we have that the sequents X ⇒ C and X ⇒ B → D are respectively of
the form (E → F ) → G,X0 ⇒ C and (E → F ) → G,X0 ⇒ B → D. Using the
right-invertibility of (→→L), proven in Lemma 3.5, on (E → F ) → G,X0 ⇒
B → D we obtain a proof of the sequent G,X0 ⇒ B → D. Then, we make a
case distinction on whether the sequent F → G,X0 ⇒ E → F is an instance
of (Id) or (⊥L). If it is the case, then we proceed as follows:

F → G,X0 ⇒ E → F

G,X0 ⇒ B → D B → D,G,X0 ⇒ C
SIH

G,X0 ⇒ C
(→→L)

(E → F ) → G,X0 ⇒ C

Here the left branch is obviously provable either by invoking Lemma 3.4 or by
applying (⊥L). If F → G,X0 ⇒ E → F is not an instance of these rules, then
consider the following proof of this sequent, where Lemma 3.7 deconstructs the
implication (E → F ) → G, Lemma 3.8 contracts F → G and Lemma 3.3 is the
invertibility of the rule (→R).

(E → F ) → G,X0 ⇒ B → D
Lem.3.7

E,F → G,F → G,X0 ⇒ B → D
Lem.3.8

E,F → G,X0 ⇒ B → D

B → D,F → G,X0 ⇒ E → F
Lem.3.3

B → D,E, F → G,X0 ⇒ F
SIH

E,F → G,X0 ⇒ F
(→R)

F → G,X0 ⇒ E → F

The crucial point here is to see that the use of SIH is justified, i.e. that
mhd(E,F → G,X0 ⇒ F ) < mhd((E → F ) → G,X0 ⇒ C). This is the case as
we made sure that the rule applications (→→L) and (→R) are both instances of
rules of PSGL4ip because their respective conclusions (E → F ) → G,X0 ⇒ C
and F → G,X0 ⇒ E → F are not instances of (Id) or (⊥L). So, we get that
mhd(E,F → G,X0 ⇒ F ) < mhd(F → G,X0 ⇒ E → F ) < mhd((E → F ) →
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G,X0 ⇒ C) by Lemma 4.7 hence mhd(E,F → G,X0 ⇒ F ) < mhd((E →
F ) → G,X0 ⇒ C) by transitivity of <. So, we are done. Note that the created
cut could not be justified by usual induction on height, as Lemma 3.7 is not
height-preserving.

(II) r1 =(GLR): Then A is the diagonal formula in r1:

⊠X0,2B ⇒ B
(GLR)

W,2X0 ⇒ 2B

where A = 2B and W,2X0 = X. Thus, we have that the sequents X ⇒ C and
A,X ⇒ C are respectively of the form W,2X0 ⇒ C and 2B,W,2X0 ⇒ C.
We now consider one case for r2.
(II-a) If r2 is (2→L). Then r2 is of the following form and where 2D →
E,W0 = W :

B,2B,⊠X0,2D ⇒ D E,W0,2B,2X0 ⇒ C
(2→L)

2D → E,W0,2B,2X0 ⇒ C

We proceed as follows.

π
⊠X0,2D ⇒ D

⊠X0,2B ⇒ B
(GLR)

2X0 ⇒ 2B
Lem.3.2

E,W0,2X0 ⇒ 2B E,W0,2B,2X0 ⇒ C
SIH

E,W0,2X0 ⇒ C
(2→L)

2D → E,W0,2X0 ⇒ C

where π is:
⊠X0,2B ⇒ B

(GLR)
2X0 ⇒ 2B

Lem.3.2
⊠X0,2D ⇒ 2B

⊠X0,2B ⇒ B
Lem.3.2

⊠X0,2B,2D ⇒ B B,2B,⊠X0,2D ⇒ D
PIH

⊠X0,2B,2D ⇒ D
SIH

⊠X0,2D ⇒ D

Note that both uses of SIH are justified here as the assumption (NoInit) en-
sures that the last rule in this proof is effectively an instance of (2→L) in
PSGL4ip, hence mhd(⊠X0,2D ⇒ D) < mhd(2D → E,W0,2X0 ⇒ C) and
mhd(E,W0,2X0 ⇒ C) < mhd(2D → E,W0,2X0 ⇒ C) by Lemma 4.7.
Q.E.D.

Before turning to cut-elimination let us comment on the need to use additive
cuts in the previous proof. To justify a cut through SIH, we need to link the
sequent-conclusion of the initial cut to the sequent-conclusion of the newly
created cut by a chain of rule applications which make mhd decrease upwards.
Now, contraction and weakening can increase mhd upwards. So, in the mhd
technique we cannot use contraction or weakening in the chain linking the two
sequent-conclusion, forbidding us from considering multiplicative cuts. The use
of additive cuts allows us to circumvent this difficulty. This sensitivity of the
proof technique is surprising as both calculi admit weakening and contraction,
making additive and multiplicative cuts equivalent.

It is commonly accepted that a purely syntactic proof of cut-admissibility
provides a cut-elimination procedure: eliminate topmost cuts first. So, the
above proof theoretically establishes that cuts are eliminable in the calculus
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GL4ip extended with (cut). To effectively prove this statement in Coq we
explicitly encode the additive cut rule as follows:

(X0++X1, A) (X0++A::X1, C)

(X0++X1, C)

With this rule in hand, we can encode the set of rules GL4ip_cut_rules

as GL4ip_rules enhanced with (cut), i.e. the calculus GL4ip + (cut). We can
finally turn to the elimination of additive cuts:

Theorem 5.2 The additive cut rule is eliminable from GL4ip+ (cut).

Theorem GL4ip_cut_elimination : forall s,

(GL4ip_cut_prv s) -> (GL4ip_prv s).

The above theorem shows that given a proof in GL4ip+ (cut) of a sequent,
i.e. GL4ip_cut_prv s, we can transform this proof directly to obtain a proof
in GL4ip of the same sequent. Given that this theorem is in fact a constructive
function based on elements defined on Type, we can use the extraction feature
of Coq and obtain a cut-eliminating Haskell program.

6 Discussion

The mhd proof technique for cut-admissibility, based on terminating backward
proof-search, was recently discovered by Brighton [3] and successfully applied
to the provability logic GL [2,16] by Goré et al. [9]. The novelty of this technique
consists in the binary induction measure it relies on: while the first component
is the traditional “size of the cut formula”, the second is the intriguing “maxi-
mum height of derivations”. The latter is defined using a terminating backward
proof-search procedure which allows to exhibit for a given sequent a derivation
of maximum height, hence bounding the height of all the possible derivations
of this sequent. The mhd technique is interesting for four reasons.

First, as shown by Goré et al. [9], the mhd technique gives simpler proofs
in difficult cases such as GL and we do not need Valentini’s extra measure of
width but can utilise only two measures. This advantage carries over to iGL.

Second, it reverses the usual order of cut-admissibility and termination of
backward proof-search. Indeed, we usually prove that cut is admissible, then
design a proof-search procedure on the cut-free system and show its termina-
tion. This oddity is promising for a general treatment of cut admissibility via
local transformations for calculi with a terminating backward proof-search.

Third, it is sensitive to the type of cut admitted. More precisely, this tech-
nique seems applicable only to additive cuts, in cases where weakening and
contraction are admissible in the calculus. Intuitively, the mhd technique in-
volves the backward application of rules on the conclusion of the initial cut. For
termination, it must exclude (backward applications of) contraction and weak-
ening as both can increase the termination measure upwards. But banishing
these also banishes the use of multiplicative cuts of the form below:

X0 ⇒ A X1 ⇒ C

X0, X1 ⇒ C
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Fourth, many sequent calculi for non-classical logics enjoy terminating back-
ward proof-search, and often, they are based upon G4ip. Is there a general
theory of cut-admissibility hidden inside the mhd method for these calculi?

7 Conclusion

In the conclusion of a previous work [9], we hinted at the interest of using
mhd as an induction measure to prove the admissibility of cut for a sequent
calculus for intuitionistic GL based on Dyckhoff’s terminating calculus G4ip.
Here, we ventured down this alley and obtained a cut-admissibility result for
GL4ip relying on the termination of backward proof-search. More than an
alternative proof technique, the use of mhd in the case of GL4ip is to date the
only known pathway to a direct proof of admissibility of cut: as admitted by
van der Giessen and Iemhoff [19], all other available proof techniques fail.

So, in addition to using a local measure for proving termination of proof-
search instead of B́ıková’s non-local measure [1], and formalising on the way
most of Dyckhoff and Negri’s results on G4ip, we consequently addressed van
der Giessen and Iemhoff’s issue by providing a formalised direct proof of cut-
admissibility for GL4ip. Crucially, this direct syntactic proof allows to obtain
an extractable simple cut-elimination procedure for GL4ip hardly obtainable
from the indirection in van der Giessen and Iemhoff’s work.

8 Further work

While the use of the termination of a backward proof-search procedure as a
basis for cut-elimination is an intriguing and unconventional argument, it seems
to have limitations. The calculi GLS, G4ip and GL4ip either contain no cycles or
only contain provable cycles, i.e. cycles going through a provable sequent. Thus,
the proof-search on these calculi only need to get rid of provable cycles. This is
done by imposing restrictions on the application of rules which, when violated,
entail the provability of the sequent under consideration. For example, if a
sequent violates the restrictions of the PSGL4ip calculus, then we know that
either it is an instance of (⊥L) or (Id), which entails its provability. So, for
every rule application of GL4ip we have the crucial case distinction, which we
make use of in the admissibility of cut: either it is an instance of PSGL4ip,
which makes mhd decrease, or its conclusion is obviously provable. Now, if
we face a calculus containing unprovable cycles, such as the standard ones for
modal logic K4 or S4, then a terminating proof-search on this calculus need to
involve restrictions which, when violated, do not entail the provability of the
sequent violating them. Then, the case distinction mentioned above does not
give us much when the sequent violates the restrictions of the proof-search: its
provability is not obvious. We are currently investigating further adaptations
of the technique to sequent calculi with unprovable cycles.

The Haskell program extractable from our formalisation should effectively
eliminate cuts from GL4ip+(cut) proofs, as ensured from the extraction feature
of Coq. However, we have neither tested it nor tried to optimize it. We intend
to follow D’Abrera et al. [4] by exploring both of these alleys in future works.
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Appendix

Proof. [of Lemma 4.4] We reason by case analysis on r:

(i) If r is (Id) or (⊥L), then we are done as there is no premise.

(ii) If r is (∧R), (∧L), (∨1R), (∨2R), (∨L), (→R), (p→L), (∧→L), (∨→L)
or (→→L), then we have that γ(s0) << γ(s1) and γ(s0) << γ(s2) (if it
exists), as shown by Dyckhoff and Negri [7]. It has to be noted that the
use of the different weight for the conjunction is crucial for the case where
r is the rule (∧→L). Obviously, α can only decrease upwards in these
rules, as no rule of PSGL4ip with premises can be applied to an initial
sequent. Also, it is not hard to convince oneself that the number of usable
boxes can only decrease in these rules as the boxed formulae on the left
of the sequent are preserved upwards and the set of boxed subformulae is
either stable or loses elements. So we can easily deduce that Θ decreases
on <3 from the conclusion to the premises of these rules.

(iii) If r is (GLR) then it must have the following form.

⊠X,2B ⇒ B
(GLR)

W,2X ⇒ 2B

Clearly, we have that {2A | 2A ∈ Sub(⊠X∪{2B}∪{B})} ⊆ {2A | 2A ∈
Sub(W ∪ 2X ∪ {2B})}. Also, given that we consider a derivation in
PSGL4ip, we can note that (Id) is not applicable on W,2X ⇒ 2B by
assumption, hence 2B ̸∈ 2X. Consequently, we get {2A | 2A ∈ W ∪
2X} ⊂ {2A | 2A ∈ ⊠X ∪ {2B}}. An easy set-theoretic argument
leads to ub(⊠X,2B ⇒ B) ⊂ ub(W,2X ⇒ 2B). As a consequence we
obtain β(⊠X,2B ⇒ B) < β(W,2X ⇒ 2B), hence Θ(⊠X,2B ⇒ B) <3

Θ(W,2X ⇒ 2B).

(iv) If r is (2→L) then it must have the following form.

⊠X,2A ⇒ A W,2X,B ⇒ C
(2→L)

W,2X,2A → B ⇒ C

For the right premise we can straightforwardly see that γ(W,2X,B ⇒
C) << γ(W,2X,2A → B ⇒ C), and that both α and β either are
stable or decrease upwards. So, we obtain Θ(W,2X,B ⇒ C) <3

Θ(W,2X,2A → B ⇒ C). The case of the left premise is more com-
plex but can be treated similarly to the (GLR) as follows. Note that
{2D | 2D ∈ Sub(⊠X ∪ {2A} ∪ {A})} ⊆ {2D | 2D ∈ Sub(W ∪ 2X ∪
{2A → B} ∪ {C})}. We consider two cases.
In the first case, we have that 2A ̸∈ 2X. Then as in (GLR) we obtain

{2D | 2D ∈ W ∪ 2X ∪ {2A → B}} ⊂ {2D | 2D ∈ ⊠X ∪ {2A}}
and consequently β(⊠X,2A ⇒ A) < β(W,2X,2A → B ⇒ C). So,
regardless of the value of α(⊠X,2A ⇒ A), we obtain Θ(⊠X,2A ⇒ A) <3

https://doi.org/10.1215/00294527-2021-0011
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Θ(W,2A,2X,2A → B ⇒ C).
In the second case, we have that 2A ∈ 2X. Then the rule application

is of the following form:

⊠X,2A,A,2A ⇒ A W,2A,2X,B ⇒ C
(2→L)

W,2A,2X,2A → B ⇒ C

Clearly, we get α(⊠X,2A,A,2A ⇒ A) = 0 as it is an instance of an initial
sequent, hence α(⊠X,2A,A,2A ⇒ A) < α(W,2A,2X,2A → B ⇒ C).
Consequently, we get Θ(⊠X,2A,A,2A ⇒ A) <3 Θ(W,2A,2X,2A →
B ⇒ C).

Q.E.D.

Proof. [of Theorem 4.6] We use less_than3_strong_inductionT, the strong
induction principle on from Theorem 4.5. As the applicability of the rules
of PSGL4ip is decidable, we distinguish two cases:

(I) No PSGL4ip rule is applicable to s. Then the derivation of maximum
height sought after is simply the derivation constituted of s solely, which is the
only derivation for s.

(II) Some PSGL4ip rule is applicable to s. Either only initial rules are
applicable, in which case the derivation of maximum height sought after is
simply the derivation of height 1 constituted of the application of the applicable
initial rule to s. Or, some other rules than the initial rules are applicable. Then
consider the finite list Prems(s) of all sequents sprem such that there is an
application of a PSGL4ip rule r with s as conclusion of r and sprem as premise
of r. Note that this list is effectively computable, as shown by the lemma
finite_premises_of_S in our formalisation. By Lemma 4.4 we know that
every element s0 in the list Prem(s) is such that sprem s. Consequently, the
strong induction hypothesis allows us to consider the derivation of maximum
height of all the sequents in Prem(s). As Prem(s) is finite, there must be an
element smax of Prem(s) such that its derivation of maximum height is higher
or of same height than the derivation of maximum height of all sequents in
Prem(s). It thus suffices to pick that smax, use its derivation of maximum
height, and apply the appropriate rule to obtain s as a conclusion: this is by
choice the derivation of maximum height of s. Q.E.D.

Proof. [of Lemma 4.7] As < and = are decidable relations over natural num-
bers, we can reason by contradiction. So, suppose that mhd(s1) ≥ mhd(s0).
Let δ0 be the derivation of s0 of maximal height and let δ1 be the derivation
of s1 of maximal height as guaranteed by Theorem 4.6. If r is a rule instance
from PSGL4ip with s1 as one of the premises and with conclusion s0, then δ2
as shown below is a derivation of s0 of height greater than mhd(s1) + 1:

δ1

s1 · · ·
rs0

The maximality of δ0 implies that the height of δ0 is greater than the height
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of δ2: thus mhd(s1) + 1 ≤ mhd(s0). As our initial assumption implies that
mhd(s1) + 1 > mhd(s0), we reached a contradiction. Q.E.D.

Proof. [of Theorem 5.1] As in the partial proof given in the main body of the
article, we need to show the existence of a proof in GL4ip of X ⇒ C while being
given GL4ip proofs d1 (with last rule r1) and d2 (with last rule r2) ofX ⇒ A and
A,X ⇒ C. Here again, we use the primary and secondary inductive hypothesis
PIH and SIH.

We make a first case distinction: does X ⇒ C violate (NoInit)? If it is the
case, then this sequent is an instance of (Id) or (⊥L). So, we use Lemma 3.4 or
apply (⊥L) to obtain a proof of X ⇒ C. If X ⇒ C satisfies (NoInit), then it
is not an instance of (Id) or (⊥L). In this case we consider r1. In total, there
are thirteen cases to consider for r1: one for each rule in GL4ip. However, we
can gather some of the cases together and reduce the number of cases to eight.
We separate them by using Roman numerals.
(I) r1 =(IdP) : then we have that A = p. Consequently, X ⇒ C is of the
form X0, p ⇒ C. Also, the conclusion of r2 is of the form X0, p, p ⇒ C. We
can apply the contraction Lemma 3.8 to obtain a proof of X0, p ⇒ C.
(II) r1 =(⊥L): Then r1 must have the following form.

(⊥L)
X0,⊥ ⇒ A

where X0,⊥ = X. Thus, we have that the sequent X ⇒ C is of the form
X0,⊥ ⇒ C, and is an instance of ⊥L. But this is in contradiction with (NoInit).
So we are done.
(III) r1 ∈{(∧L), (∨L), (p→L), (∧→L), (∨→L)}: In all these cases, the cut
formula is not principal in r1 so it is preserved in the premise. Given that the
rules considered are invertible, we simply take the conclusion of r2 and use
the corresponding invertibility lemma to destruct the principal formula of r1.
Then, we use SIH to cut on A in the obtained premises, and apply r1 on the
conclusion of the cut.
(IV) r1 ∈{(∧R), (∨1R), (∨2R)}: In all these cases, the cut formula is prin-
cipal in r1 so it is deconstructed in the premise. Given that the corresponding
left rules are invertible, we simply take the conclusion of r2 and use the ade-
quate invertibility lemma to destruct the cut formula. Then, we use PIH to
cut on the obtained subformulae.
(V) r1 =(→R) : Then r1 has the following form where A = B → D:

B,X ⇒ D
(→R)

X ⇒ B → D

For the cases where B → D is principal in r2 and r2 ̸= (2→L), or where
r2 ∈ {(IdP), (⊥L)}, we refer to Dyckhoff and Negri’s proof [7] as the cuts
produced in these cases involve the traditional induction hypothesis PIH. We
are left with seven sub-cases.
(V-a) If r2 is (→R) then it must have the following form.

B → D,E,X ⇒ F
(→R)

B → D,X ⇒ E → F
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where E → F = C. We can use Lemma 3.2 on the proof of X ⇒ B → D to
get a proof of E,X ⇒ B → D. Proceed as follows.

E,X ⇒ B → D B → D,E,X ⇒ F
SIH

E,X ⇒ F
(→R)

X ⇒ E → F
Note that the use of SIH is justified here as the last rule in this proof is effec-
tively an instance of (→R) in PSGL4ip, hence mhd(E,X ⇒ F ) < mhd(X ⇒
E → F ) by Lemma 4.7.
(V-b) If r2 is (∧R) or (∨iR), then we simply use cut with the premise(s) of r2
and the conclusion of r1 using SIH.
(V-c) If r2 is (∧L), (∨L), (p→L), (∨→R) or (∧→R) where the cut formula is
not principal in r2, then we use the inversion lemma for r2 on the conclusion
of r1, and then apply cut using SIH.
(V-d) If r2 is (→→L) where the cut formula is not principal in r2, then see
case (I-a) in the partial proof given in the main body of the article.
(V-e) If r2 is (2→L) with the cut formula as principal formula, then it must
have the following form, where W,2X0 = X and 2E = B.

⊠X0,2E ⇒ E D,W,2X0 ⇒ C
(2→L)

2E → D,W,2X0 ⇒ C

Thus, we have that the sequents X ⇒ C and B,X ⇒ D are respectively of the
form W,2X0 ⇒ C and 2E,W,2X0 ⇒ D. Then, we proceed as follows.

⊠X0,2E ⇒ E
GLR

2X0 ⇒ 2E
Lem.3.2

W,2X0 ⇒ 2E

2E,W,2X0 ⇒ D

D,W,2X0 ⇒ C
Lem.3.2

D,2E,W,2X0 ⇒ C
PIH

2E,W,2X0 ⇒ C
PIH

W,2X0 ⇒ C

(V-f) If r2 is (2→L) with a principal formula different from the cut formula,
then it must have the following form where 2E → F,W,2X0 = X.

⊠X0,2E ⇒ E F,B → D,W,2X0 ⇒ C
(2→L)

B → D,2E → F,W,2X0 ⇒ C

Thus, we have that X ⇒ C and X ⇒ B → D are respectively of the form
2E → F,W,2X0 ⇒ C and 2E → F,W,2X0 ⇒ B → D. Using the right-
invertibility of (2→L), proven in Lemma 3.5, on 2E → F,W,2X0 ⇒ B → D
we obtain a proof of F,W,2X0 ⇒ B → D. Then, we proceed as follows.

⊠X0,2E ⇒ E

F,W,2X0 ⇒ B → D F,B → D,W,2X0 ⇒ C
SIH

F,W,2X0 ⇒ C
(2→L)

2E → F,W,2X0 ⇒ C

Note that the use of SIH is justified here as the assumption (NoInit) ensures
that the last rule in this proof is effectively an instance of (2→L) in PSGL4ip,
hence mhd(F,W,2X0 ⇒ C) < mhd(2E → F,W,2X0 ⇒ C) by Lemma 4.7.
(V-g) If r2 is (GLR) then it must have the following form.

⊠X0,2E ⇒ E
(GLR)

W,B → D,2X0 ⇒ 2E
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where W,2X0 = X and 2E = C. In that case, note that the sequent X ⇒ C
is of the form W,2X0 ⇒ 2E. To obtain a proof of the latter, we apply the
rule (GLR) on the premise of r2 without weakening B → D:

⊠X0,2E ⇒ E
(GLR)

W,2X0 ⇒ 2E

(VI) r1 =(→→L): Then r1 is as follows, where (B → D) → E,X0 = X.

D → E,X0 ⇒ B → D E,X0 ⇒ A
(→→L)

(B → D) → E,X0 ⇒ A

Thus, we have that the sequents X ⇒ C and A,X ⇒ C are respectively of the
form (B → D) → E,X0 ⇒ C and A, (B → D) → E,X0 ⇒ C. Using the right-
invertibility of (→→L), proven in Lemma 3.5, on A, (B → D) → E,X0 ⇒ C
we obtain a proof of the sequent A,E,X0 ⇒ C. Then, we proceed as follows.

D → E,X0 ⇒ B → D

E,X0 ⇒ A A,E,X0 ⇒ C
SIH

E,X0 ⇒ C
(→→L)

(B → D) → E,X0 ⇒ C

Note that the use of SIH is justified here as the assumption (NoInit) ensures
that the last rule in this proof is effectively an instance of (→→L) in PSGL4ip,
hence mhd(E,X0 ⇒ C) < mhd((B → D) → E,X0 ⇒ C) by Lemma 4.7.
(VII) r1 =(2→L): We proceed as in (V-f).
(VIII) r1 =(GLR): Then A is the diagonal formula in r1:

⊠X0,2B ⇒ B
(GLR)

W,2X0 ⇒ 2B

where A = 2B and W,2X0 = X. Thus, we have that the sequents X ⇒ C and
A,X ⇒ C are respectively of the form W,2X0 ⇒ C and 2B,W,2X0 ⇒ C.
We now consider r2.
(VIII-a) If r2 is one of (IdP), (⊥L), (∧R), (∧L), (∨1R), (∨2R), (∨L), (→R),
(p→L), (∧→L), (∨→L) and (→→L) then proceed similarly to the cases (I),
(II), (III), (IV) and (VI), where the cut-formula is not principal in the rules
considered by using SIH.
(VIII-b) If r2 is (2→L), then see case (II-a) in the main body of the article.
(VIII-c) If r2 is (GLR). Then r2 is of the following form where 2D = C:

B,2B,⊠X0,2D ⇒ D
(GLR)

W,2B,2X0 ⇒ 2D

We proceed as follows where π is taken from the case (VIII-b):
π

⊠X0,2D ⇒ D
(GLR)

W,2X0 ⇒ 2D

Note that the use of SIH is justified here as the assumption (NoInit) ensures
that the last rule in this proof is effectively an instance of (GLR) in PSGL4ip,
hence mhd(⊠X0,2D ⇒ D) < mhd(W,2X0 ⇒ 2D) by Lemma 4.7. Q.E.D.
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