
Submodel Enumeration of Kripke Structures in
Modal Logic

Nicolas Fröhlich Arne Meier

Institut für Theoretische Informatik, Leibniz Universität Hannover
Appelstrasse 9A, 30167 Hannover, Germany

{nicolas.froehlich, meier}@thi.uni-hannover.de

Abstract

Enumeration complexity (Johnson et al. 1988) is about finding algorithms that pro-
duce all solutions to a given problem. Moreover, one strives for a stream of solutions
that should be as uniform as possible without much waiting time in between two out-
put solutions and avoiding duplicates. In this paper, we study the problem of model
checking in modal logic from this point of view. We consider a particular submodel
satisfaction relation that keeps the reference to the transition relation of the original
model. Then, we distinguish between enumerating subtrees and subgraphs of Kripke
structures that satisfy a modal logic formula. We devise enumeration algorithms for
both problems that sort them into the class DelayP.

Keywords: Enumeration Complexity, DelayP, Kripke Structures, Modal Logic.

1 Introduction

In software verification, one strives to know if a written program obeys the
underlying specification. It is well-known that describing software systems via
a Kripke [21] structure K, i.e., a labelled and state-based transition system,
is a profound way in practice [13,30]. For the specification, one constructs an
apropriate formula φ in some logic, e.g., temporal [29] or modal logic [3]. Af-
terwards, in the algorithmic task of model checking [7], one verifies whether K
satisfies φ or not. Initially, during the development of a system, the model does
not fit the specification yet. On the way to reaching the goal of a system that
satisfies the specification formula, considering some kind of restrictions of the
program can help in understanding the current issues of the program. Restric-
tions of the software in turn give rise to submodels of the considered structure
K. In this context, not only a particular submodel of K is of much help, as
it might be too restrictive; for instance, an empty model could be a strong
satisfaction candidate for φ, although not desired. However, a (complete) list
of satisfying submodels assists the software developer in adapting the system
into the right direction. Obtaining such a list in a systematic way then is a cru-
cial algorithmic task. Moreover, having a uniform stream of printed solutions
produced by an algorithm is a key property of a good enumeration process.

392 Submodel Enumeration of Kripke Structures in Modal Logic

Beyond the initial example from above, the described task of model enu-
meration is, even on the propositional level, very central in many areas, e.g.,
bounded model checking [2], image computation [15], system engineering [34],
and predicate abstraction [22] to name only a few. For a more elaborative view
on further applications, we confer the reader to the article of Biere, Möhle and
Sebastiani [26].

More formally, in enumeration complexity [19,33], one studies not the over-
all runtime of an algorithm alone (which often is of exponential duration) but
also its delay, i.e., an upper bound for all time intervals between two consec-
utively output solutions (as well as the time before the first and after the last
solution has been printed). Here, one strives for algorithms that solve prob-
lems within bounds of the class DelayP obeying a delay polynomial in the input
length. This class is seen to contain efficient enumeration problems. For modal
logic, to the best of the authors’ knowledge, a systematic study of enumeration
problems in this area has not been undertaken, yet. We want to solve this
gap in research, now, and initiate a study of enumeration complexity for model
checking in modal logic. We will see that, though having a decision complexity
of modal logic model checking in P [35,20], this is not a free ticket for imme-
diately obtaining efficient enumeration algorithms. That is why we start with
considering restrictions of the problems in the beginning, namely in the scope
of graph restrictions on the obtained submodels.

Contributions. We introduce a family of problems E-ML-SubTreeN that asks
for all subtrees of bounded depth N ∈ N of a given Kripke structure that satisfy
a given formula. We show that for each fixed depth N ∈ N, the problem can
be solved with a delay of O(|W |2N−2 · |SF(φ)|), where |W | is the number of
states of the given Kripke structure and |SF(φ)| the number of subformulas
of the given formula, sorting the problem into the class DelayP. We then
show how to improve this result via a recursive approach to reach a delay of
O(|W |N · |SF(φ)|). Consecutively, we tackle the more general version of this
problem where all satisfying subgraphs shall be printed. Here, we devise, again,
a recursive algorithm that is having a delay of O(|R|2 · |W |2 · |SF(φ)|), with
|R| the number of transitions in the Kripke structure. We make a rather harsh
restriction on what we consider satisfiable subtrees and subgraphs by requiring
the 2 operator to be satisfied if and only if all transitions from the original
model are present in the subtree or subgraph.

Related work. Krebs et al. [20] investigated the complexity of CTL model
checking on the level of operator fragments. This contains a classification
of the modal logic variant. There exists a line of research of enumeration
complexity in the area of so-called team logics [25,16]. These logics are not
built on Kripke but team semantics. Accordingly, their results do not directly
transfer to our setting. Capelli and Strozecki [5] study enumeration problems
obeying incremental delay which could be interesting for extended versions
of our studied problems. Also the technique of geometric amortization by
Capelli and Strozecki [6] might be helpful in this context. Furthermore, a more
fine grained enumeration complexity analysis is possible via the framework of

Fröhlich and Meier 393

parameterised enumeration [24,10,11].

Organisation. First, we will introduce the required foundations of enumera-
tion complexity and briefly present the formalities around modal logic. Then,
we will start with the task of subtree enumeration and continue with the gen-
eralisation to subgraphs. Finally, we will conclude and present some open
research questions.

2 Preliminaries

We assume basic familiarity with computational complexity [28,27].

Modal Logic. We follow the notation of Blackburn et al. [3]. Let PROP be
an infinite, countable set of propositions. The set of well-formed formulasML
is then defined via the following EBNF

φ := p | ⊥ | ⊤ | ¬φ | φ ∧ φ | φ ∨ φ | 2φ | ⋄φ,

with p ∈ PROP. Here, ⊤ is the constant true whereas ⊥ symbolises the
constant false. Let φ ∈ ML be a formula, then its length |φ| is defined as the
number of its symbols. Let us denote with SF(φ) the set of subformulas of a
given formula φ ∈ ML, containing φ as well. Observe that for every φ ∈ ML
we have that |SF(φ)| ≤ |φ|.

Now we turn to Kripke semantics. That is, let F be a pair (W,R), whereW
is a non-empty set of worlds (or states) and R ⊆W ×W is a binary transition
relation onW . The tuple F is also called a Kripke structure. We define a model
M to be a pair (F , η), where F is a Kripke structure, and η : PROP→ P(W) is
a map which assigns to each proposition p a set η(p) of states. The satisfaction
relation is then defined as follows.

Definition 2.1 Let φ,ψ ∈ ML be two modal formulas. Let M = (W,R, η)
be a model and w ∈W be a world. We inductively define the satisfaction of a
formula in the modelM in the world w:

M, w |= ⊤ always
M, w |= ⊥ never
M, w |= p iff w ∈ η(p) with p ∈ PROP
M, w |= ¬φ iffM, w ̸|= φ
M, w |= φ ∧ ψ iffM, w |= φ andM, w |= ψ
M, w |= φ ∨ ψ iffM, w |= φ orM, w |= ψ
M, w |= 2φ iff for all v ∈W with (w, v) ∈ R, we have thatM, v |= φ
M, w |= ⋄φ iff there exists a v ∈W with (w, v) ∈ R such thatM, v |= φ

Definition 2.2 Given a modal formula φ ∈ ML, we define its modal depth
md(φ) in the obvious way:

md(⊥) := md(⊤) := md(p) := 0

md(¬φ) := md(φ)

md(φ ∧ ψ) := md(φ ∨ ψ) := max{md(φ),md(ψ)}
md(2φ) := md(⋄φ) := 1 +md(φ)

394 Submodel Enumeration of Kripke Structures in Modal Logic

F :

w1 w2

w3
TF (w1)

w1

w1w2

w1w3

w1w2w3

w1w3w2

...

...

Fig. 1. Example of a computation tree.

Computation Trees. In the following, we define the concept of computation
trees that is known from the work of Schnoebelen [31]. Here, a considered
Kripke model is unfolded into a computation tree.

First, we need some basic notions. Let F = (W,R) be a Kripke frame.
Furthermore, let a path (in the Kripke frame F) π := w0, w1, . . . be a sequence
of worlds with (wi, wi+1) ∈ R for i = 0, 1, Here, πi := wi denotes the i-th
element on π, and ΠF (w) := {π | π0 = w } is the set of all paths in F that
start in world w. The following definition is comparable to tree unravelings [4,
p.15].

Definition 2.3 Let F = (W,R) be a Kripke frame and w ∈ W be a world.
The computation tree (from w in F) TF (w) := (V,E) is defined as

V :=
{
π0π1 · · ·π|π| | π ∈ ΠF (w)

}
and

E := { (π, πa) | π, πa ∈ V, a ∈W } .

By abuse of notation, if M = (F , η), we interchangeably use also the notion
TM(w) instead of TF (w).

Figure 1 depicts an example of a Kripke frame that is unfolded into a
computation tree for w1. Note that often computation trees are objects of
infinite size, but also can be finitary. Now, we turn towards the subtree notion.

Definition 2.4 Let F = (W,R) be a Kripke frame, w ∈ W a world and
TF (w) = (V,E) be the computation tree from w in F . Then, a subtree
Tn
F (w

′) := (V ′, E′) is defined as follows

• V ′ ⊆ V and E′ ⊆ E,

• Tn
F (w

′) is a tree with w′ ∈ TF (w) as root, and
• |V ′| = n ∈ N is the number of vertices in the subtree which we also call its
size (of the subtree).

By abuse of notation, we will also write Tn
F (w

′) ⊆ TF (w) for any subtrees
of TF (w). Furthermore, we write Tn

F (w
′) ⊑ TF (w), whenever we talk about

Tn
F (w

′) of maximum size.

Notice that in the definition from before, we have Tm
F (w′) ⊆ Tn

F (w) for all
m ≤ n, that is, for subtrees with fewer vertices. Also notice that Tn

F (w
′) ⊑

TF (w) uniquely determines Tn
F (w

′).

Fröhlich and Meier 395

The depth td (Tn
F) of a subtree Tn

F = (V ′, E′) (of a computation tree) then
is defined as td (Tn

F) := maxπ∈V ′(|π|), which is the length of its longest path.
The above defined subtrees are a central aspect of this work. They will

describe the expected output of the considered enumeration algorithms. We
will divide these trees into “satisfiable” and “unsatisfiable” ones. The following
satisfaction definition of subtrees will contain a reference to the transition re-
lation of the original structure for the modal operators. We give more insights
(see Example 3.7 for this) on this after the presentation of our enumeration
algorithm that is used to prove Theorem 3.5.

Definition 2.5 Let M = (W,R, η) be a model, φ ∈ ML be a formula and
Tn
M(w) = (V ′, E′) be a subtree of the computation tree in w ∈ W . Then let
Tn
M(w) |= φ be inductively defined as

Tn
M(w) |= φ iff M, w |= φ for φ ∈ {⊤,⊥} ∪ PROP,
Tn
M(w) |= ¬φ iff Tn

M(w) ̸|= φ,
Tn
M(w) |= φ ∧ ψ iff Tn

M(w) |= φ and Tn
M(w) |= ψ,

Tn
M(w) |= φ ∨ ψ iff Tn

M(w) |= φ or Tn
M(w) |= ψ,

Tn
M(w) |= ⋄φ iff ∃w0 with (w,w0) ∈ R : for Tm

M(w0) ⊑ Tn
M(w)

we have that (w,ww0) ∈ E′ and Tm
M(w0) |= φ,

Tn
M(w) |= 2φ iff ∀w0 with (w,w0) ∈ R : for Tm

M(w0) ⊑ Tn
M(w)

we have that (w,ww0) ∈ E′ and Tm
M(w0) |= φ.

Notice that for the modal operators 2/⋄, we require that for every/one
original edge in (W,R) there exists a satisfying subtree. Because of this, it is
not possible that M, w ̸|= 2ψ but a subtree satisfies 2ψ. Clearly, trying to
“hide” 2 operators with ¬3¬ does not work. The reason for that is that for
both operators the satisfaction relation for subtrees is defined with respect to
the original model. Currently, we need this restriction to limit the number of
possibilities in the constructed enumeration algorithms below. We will leave it
as a question for future research, whether there exists still a polynomial delay
algorithm solving the enumeration problem with an unrestricted satisfaction
relation for subtrees.

Enumeration Complexity. In contrast to decision problems, which ask for
the existence of solutions to a given instance, for enumeration problems one is
concerned with the output of all solutions to an instance. Since the number of
solutions is usually of exponential size, the running time between the output of
two solutions is of particular interest. This elapsed time interval is called the
delay of an enumeration algorithm and will be defined shortly.

In this context, random access machines are often chosen as the computa-
tional model. In this paper, we will use the common one [33,9]. Note that,
in this model, one can access particular parts of exponentially large priority
queues in polynomial time [19]. The definitions of enumeration problems will
follow also recent standard terminology [33,9,24].

Definition 2.6 An enumeration problem (EP) is a tuple E = (I, Sol), where

• I is the set of instances, and

396 Submodel Enumeration of Kripke Structures in Modal Logic

• Sol is a function such that for all x ∈ I the set Sol(x) is the finite set of
solutions (of x).

In this paper, the studied enumeration problems all have the property that
we always have a fixed polynomial p such that for every instance x ∈ I and
every solution y ∈ Sol(x), we have that |y| ≤ p(|x|). Such problems are often
classified by a class that is called EnumP [33]. In some sense, this class can be
seen as a natural counterpart to NP in the classical setting. Now, we are ready
to define enumeration algorithms.

Definition 2.7 Let E = (I, Sol) be an EP. An algorithm A is said to be an
enumeration algorithm (EA) for E , if for every x ∈ I the algorithm A obeys the
following two properties, where A(x) denotes the computation of A on input x:

• A(x) terminates after a finite sequence of steps.

• A(x) prints exactly Sol(x) without duplicates.

In the next result, we formally define the notion of a delay of an enumeration
algorithm.

Definition 2.8 Let E = (I, Sol) be an EP, A be an EA for E , and x ∈ I be an
instance. Then we define

• the ith delay of A(x) as the elapsed time between the output of the ith and
(i+ 1)st solution of Sol(x) by A on input x,

• the 0th delay as the precomputation time, i.e, the elapsed time before the
first output of A(x), and

• the mth delay as the postcomputation time, i.e., the elapsed time after the
last output of A(x) until it terminates.

We say that A has delay t(n), for some function t : N→ N, if for all x ∈ I and
all 0 ≤ i ≤ m the ith delay of A(x) is in O(t(|x|)).

After having defined the formalisms around the machine model of enumer-
ation complexity, we will define the complexity class that is relevant in this
paper.

Definition 2.9 Let E = (I, Sol) be an EP and A be an EA for E . If there exists
a polynomial p such that A has delay p(n), then E belongs to the complexity
class DelayP.

3 Enumeration of Subtrees

Before we consider enumeration in modal logic, we first want to take a look at
a result by Vardi [35], resp., Clarke and Allen Emerson [8], which shows that
model checking for modal formulas can be done in polynomial time.

Proposition 3.1 ([35, Prop. 2.1],[8]) Let M = (W,R, η) be a model, w ∈
W a world and φ be a modal formula. Then model checking, i.e., checking
whether (M,w) |= φ is true, can be verified in time O(|W |2 · |SF(φ)|).

Fröhlich and Meier 397

Proof. Let φ1, . . . , φm ∈ SF(φ) be the subformulas of φ, for some m ∈ N,
listed in increasing order of length, with ties broken arbitrarily. As a result,
we have that φm = φ and if φi is a proper subformula of φj , then i < j.
There are at most |φ|-many subformulas of φ, so we must have that m ≤ |φ|.
An induction over k shows that we can label each world w ∈ W with φj or
¬φj , for j = 1, . . . , k, depending on whether or not φj is true at w, in time
O(k · |W |). The only nontrivial cases are if φk+1 is of the form 2φj or ⋄φj ,
where j < k + 1. We label a world w with 2φj if and only if each world t
such that (w, t) ∈ R is labelled with φj , and with ⋄φj if and only if there is
a world t such that (w, t) ∈ R is labelled with φj . Assuming inductively that
each state has already been labelled with φj or ¬φj , this step can clearly be
carried out in time O(|W |2). The total time required is accordingly bound by
O(|W |2 · |SF(φ)|) as desired. 2

It is easy to see that this can be used to determine the satisfiability of
subtrees Tn

M(w), as they can be seen as acyclic Kripke models themselves. We
will now show that the labelling introduced above can easily be updated when
removing a leaf from a subtree.

Lemma 3.2 Let M = (W,R, η) be a model, w ∈ W be a world, and φ be a
modal formula. Given a labelling of satisfied subformulas for all nodes of a
subtree Tn

M(w) and subformulas SF(φ), we can correctly update the labelling
after removing one leaf in time O(td(Tn

M(w)) · |W | · |SF(φ)|).
Proof. Let φi or ¬φi be the labelling for each node in Tn

M(w) and subformulas
φi ∈ SF(φ). Also let ℓ = π0π1 . . . πj be the leaf removed from Tn

M(w). It should
be clear that only nodes π0π1 . . . πj−k, with 1 ≤ k ≤ j, on the path from root w
to leaf ℓ can be effected by the removal. Each of these nodes will have to update
|SF(φ)| labels and must check at most |W | nodes for labels 2φi and ⋄φi. The
maximum length of a path in Tn

M(w) cannot exceed td(Tn
M(w)). Together the

update requires a time of O(td(Tn
M(w)) · |W | · |SF(φ)|). 2

Let us start with a problem that immediately lifts model checking to the
enumeration setting.

Problem: E-ML-SubTree

Input: (M, w, φ), modelM = (W,R, η), world w ∈W , formula φ
Output: All subtrees of TM(w) that satisfy φ

Unfortunately, the next theorem shows that this problem is not an EP as
defined in Def. 2.6 as it violates the second property.

Theorem 3.3 There exists an input x := (M, w, φ) to E-ML-SubTree such
that |Sol(x)| =∞.

Proof. Consider the rather simple input

x = (({w}, {(w,w)}, η), w,⊤).

The formula φ = ⊤ is trivially satisfied in all possible subtrees of TM(w). As a

398 Submodel Enumeration of Kripke Structures in Modal Logic

result, we can construct an infinite number of subtrees Tn
M(w) ⊆ TM(w), from

which we deduce that |Sol(x)| is infinite. 2

Now, we consider a restriction of the previous problem motivated by the last
result. Notice that the depth bound N ∈ N is part of the problem definition
and not part of the instance.

Problem: E-ML-SubTreeN , where N ∈ N.

Input: (M, w, φ), modelM = (W,R, η), world w ∈W , formula φ
Output: All subtrees of TM(w) with td (Tn

M(w)) ≤ N that satisfy φ

We want to mention that on the level of debugging, as explained in the
introduction, one usually has that φ is not satisfied byM in w. This would be
a different enumeration problem which asks for falsifying subtrees (to satisfy the
formula again which was initially not satisfied). Asking for falsified submodels
intuitively makes the problem much harder as we have no real limit on the
search space. That is why we currently do not consider this problem and leave
this question for future research.

In the following, we show how utilising a priority queue will lead to an
enumeration algorithm obeying a polynomial delay. Note that the technique
of priority queues goes back to Johnson, Papadimitriou and Yannakakis [19].
As this approach has recurred, the question arose whether the downside of a
possibly exponential space can be circumvented [5,6]. The technique of geo-
metric amortization suggested by Capelli and Strozecki [6] can find here an
application as well.

Theorem 3.4 For all fixed N ∈ N, we have that E-ML-SubTreeN ∈ DelayP.
More precisely, there exists an enumeration algorithm for E-ML-SubTreeN hav-
ing a delay of O(|W |2N−2 · |SF(φ)|), where (W,R, η) is the input model and φ
is the given formula.

Proof. Algorithm 1 uses a priority queue to systematically process the largest
subtrees first and avoid printing duplicates. Note, that the largest subtree is
uniquely determined.

Let us first turn towards the correctness of the algorithm. Clearly, the algo-
rithm only outputs subtrees which satisfy φ, since only such subtrees are added
into the priority queue. In case that the largest subtree Tn

M(w) with depth N
does not satisfy φ, the algorithm already does not enter the if -condition in
line 3 and outputs nothing. Since the size of subtrees added to Q decreases
monotonically the algorithm will eventually terminate when there are no more
leaves to cut. In line 9, we also only insert subtrees into Q which we have
not seen already preventing outputting duplicates. Lastly, the algorithm will
reach all eligible subtrees, because it only stops to consider subtrees, that do
not satisfy φ. Notice that subtrees of already unsatisfiable subtrees cannot be-
come satisfiable by removing additional nodes (confer Def. 2.5). To summarise,
the algorithm will terminate, output all satisfiable subtrees, and avoid printing
duplicates.

Fröhlich and Meier 399

Now, we classify the delay of the algorithm. Initialising the priority queues
S and Q requires constant time. The number of nodes in the largest subtree
Tn
M(w) with depth N is bound by

∑N−1
i=0 |W |i. This bound is reached only for

fully connected Kripke structures. In that case, each world has |W | outgoing
relations. As a result, the computation tree consists of a root with |W | children,
each having |W | children and so forth. The total sum of nodes in such a subtree,
with depth N is, accordingly,

|W |0 + |W |1 + · · ·+ |W |N−1 =

N−1∑
i=0

|W |i = |W |
N − 1

|W | − 1
∈ O(|W |N−1).

Since worlds in not fully connected Kripke structures have fewer outgoing tran-
sitions, their computation trees and subtrees will consist of even less nodes. In
the worst case, the time required to create the largest subtree Tn

M(w) with
depth N in line 2 is thereby bounded by O(|W |N−1). The model checking
task requires polynomial time (see Prop. 3.1) and line 3 can be done in time
O(|W |N−1 · |W | · |SF(φ)|), with |SF(φ)| the number of labels per node, |W |N−1

the total number of nodes, and |W | the maximum number of worlds consid-
ered for subformulas 2φi or ⋄φi. The delay between two consecutively output
solutions is now determined by the time of each while-iteration. Extracting,
outputting, and adding a subtree to S can all be done in time O(|W |N−1). The
number of leaves with a maximum depth N is equal to or less than |W |N−1,
therefore line 7 loops for ≤ |W |N−1 times. In each iteration, we have to
model check the new subtree and Lemma 3.2 shows that the time needed in
O(N · |W | · |SF(φ)|). Note that N is not part of the input and can therefore be
omitted in the following. Checking Tn−1

M ̸∈ Q ∪ S and potentially adding to Q
will still require a time of O(|W |N−1). Together, we have an upper bound of

O(|W | · |SF(φ)|+ |W |N−1) ⊆ O(|W |N−1 · |SF(φ)|)

for one iteration of the for-loop.
Overall the delay is in

O
(
|W |N−1 · |W |N−1 · |SF(φ)|

)
= O

(
|W |2N−2 · |SF(φ)|

)
,

which shows the desired DelayP result. 2

In the next step, we will explain how to improve the algorithm from before
yielding an EA with a faster delay.

Theorem 3.5 For all N ∈ N, there exists an enumeration algorithm for
E-ML-SubTreeN having a delay of O(|W |N · |SF(φ)|), where (W,R, η) is the
input model and φ is the given formula.

Proof. In the following, we will explain how Alg. 2 achieves the desired im-
provement. Let Tn

M(w) be the largest subtree given a modelM and world w.
Furthermore, let Tm

M(w) be any subtree of Tn
M(w) that satisfies Tm

M(w) |= φ
for a given modal formula φ. Now, we define the set M as follows:

M := { k | k is a node in Tn
M(w), but not in Tm

M(w) }.

400 Submodel Enumeration of Kripke Structures in Modal Logic

Algorithm 1: Enumeration algorithm for E-ML-SubTreeN .

Input: ModelM = (W,R, η), world w ∈W and formula φ
1 initialise priority queues S ← ∅ and Q← ∅
2 add largest subtree Tn

M(w) ⊑ TM(w) with td (Tn
M(w)) ≤ N to Q

3 if Tn
M(w) |= φ then

4 while Q ̸= ∅ do
5 extract largest subtree Tn

M(w) from Q
6 output Tn

M(w) and add it to S

7 for all Tn−1
M ⊆ Tn

M(w) do
8 if Tn−1

M (w) |= φ and Tn−1
M (w) /∈ Q ∪ S then

9 insert Tn−1
M (w) into Q

10 terminate

Algorithm 2: Direct enumeration for E-ML-SubTreeN .

Input: ModelM = (W,R, η), world w ∈W and formula φ
1 determine the largest subtree Tn

M(w) ⊑ TM(w) with td(Tn
M(w)) ≤ N

2 label nodes in Tn
M(w) in BFS order

3 if Tn
M(w) |= φ then

4 Output Tn
M(w)

5 for all leaves ℓ in Tn
M(w) do

6 EnumSubtreeRec(Tn
M(w), φ, ℓ)

7 Function EnumSubtreeRec(T (w), φ, k):
8 remove leaf k from T (w)
9 if T (w) |= φ then

10 Output T (w)
11 for all leaves ℓ in T (w) with ℓ <BFS k in descending order do
12 EnumSubtreeRec(T (w), φ, ℓ)

The elements in M are the leaves removed by the recursive calls of Enum-
SubtreeRec. Because leaves are only removed in descending order there is a
unique path from Tn

M(w) to Tm
M(w). Also, if we have that Tm

M(w) |= φ, then
the same is true for all subtrees between Tn

M(w) and Tm
M(w), as adding nodes

cannot make a subtree falsifying.
Now, we measure the delay of Alg. 2. First, the algorithm constructs the

largest subtree Tn
M(w) with depth N , in line 1, which we have seen in the

proof of Theorem 3.4 to be bounded by O(|W |N−1). Likewise, the labelling of
nodes (line 2) and outputting (line 4) can be done in time O(|W |N−1), while
checking satisfiability (line 3) requires a time of O(|W |N · |SF(φ)|). Because we
immediately output a subtree, if it is satisfiable, the worst delay occurs when
iterating over unsatisfiable subtrees. The maximum number of unsatisfiable

Fröhlich and Meier 401

T 6
M(1) : 1

2 3

4 5 6

T 3
M(1) : 1

3

5

Fig. 2. M = {6, 4, 2}

subtrees will be in the initial for-loop in line 5, with no more than |W |N−1

iterations. For each examined subtree we need to check, if it is still satisfiable
after removing a leaf in line 8. We have shown in Lemma 3.2 that this can be
achieved for each subtree in time O(N · |W | · |SF(φ)|), and again we can omit
the N since it is not part of the input. It is also not necessary to consider the
depth of recursion here, because if we would find satisfiable subtrees Tm

M(w), all
subtrees Tn

M(w) with Tm
M(w) ⊆ Tn

M(w) would be guarantied to be satisfiable
and thus reduce the delay. Together the delay of Algorithm 2 is

O(|W |N−1 · |W | · |SF(φ)|) = O(|W |N · |SF(φ)|),

which shows the desired result. 2

The next example illustrates Alg. 2 and the proof of Theorem 3.5.

Example 3.6 In Figure 2, we can see a simplified versions of the subtree
T 6
M(1) and of its subtree T 3

M(1). The nodes 6, 4, 2 are missing from T 3
M(w)

and are collected in the setM . The elements fromM in descending order show
the corresponding calls to EnumSubtreeRec(6), EnumSubtreeRec(4) and
EnumSubtreeRec(2) to go from T 6

M(1) to T 3
M(w).

The following example gives more justification for our decision on incorpo-
rating the reference to the original transition relation in Definition 2.5. Intu-
itively, allowing to cut subtrees opens the (problematic) possibility that too
many subtrees have to be considered (for instance, in case a clique appears
here) that all are not satisfying until the dead-end for the 2 is reached.

Example 3.7 LetM = (W,R, η) be a model with

W := {w,w0} ∪ {wi | 1 ≤ i ≤ k},
R := {(w,w0), (w0, w1)} ∪ {(wi, wj) | 1 ≤ i, j ≤ k},
η := {x 7→ {w}}.

Let φ := 2x, and replace in Def. 2.5 the semantics of subtree satisfaction for
the modal operators with the following

Tn
M(w) |= ⋄φ iff ∃w0 with (w,ww0) ∈ E′ : for Tm

M(w0) ⊑ Tn
M(w)

we have that Tm
M(w0) |= φ,

Tn
M(w) |= 2φ iff ∀w0 with (w,ww0) ∈ E′ : for Tm

M(w0) ⊑ Tn
M(w)

we have that Tm
M(w0) |= φ,

402 Submodel Enumeration of Kripke Structures in Modal Logic

where Tn
M(w) = (V ′, E′).

Then, Algorithm 2 is no enumeration algorithm, as it does not consider the
subtree where Tm

M(w0) is cut off. The reason for that is found in line 3 and 9
as without cutting off Tm

M(w0), the subtree is not satisfying, yet.
Further notice that analysing the delay of a modification of Algorithm 2

without the restrictions in line 3 and 9 and instead applying the requirement
of satisfiability only onto line 4 and 10 directly to prevent printing unsatisfi-
able subtrees, also does not perform as desired. To see this, first notice that
Tn
M(w) ̸|= φ unless Tm

M(w0) ⊑ Tn
M(w) is cut from it, because w0 ̸∈ η(x).

Also consider that our algorithm starts with the largest possible subtree and
successively removes leaves. Since w0 is the root of Tm

M(w0) it will naturally
be removed last. We therefore have to look at the number of unsatisfiable
subtrees the algorithm considers before w0 becomes a leaf. Observe that
{wi | 1 ≤ i ≤ k } and { (wi, wj) | 1 ≤ i, j ≤ k } result in a fully connected
subgraphs with k worlds. This will create a full k-ary subtree, which the algo-
rithm as to iterate through. The number of full k-ary trees is recursively given
by a(n+1) = a(n)k+1, with a(0) = 0 (this bound follows by a straightforward
inductive proof on n and k). It follows that for a(3) = 2k + 1 the number
of subtrees is already exponentially in the input size, namely the number of
worlds |W | ofM which results in a delay between the largest subtree and the
first satisfiable subtree, yielding an exponential delay.

4 Enumeration of subgraphs

Finally, we consider generalising the problem E-ML-SubTreeN to arbitrary sub-
graphs that do not necessarily have to be trees and also remove the depth
bound. By this, we also leave the notion of computation trees that talk about
unfolding of a Kripke structure as for the subtree notion. Given a Kripke frame
F = (W,R), a subgraph SF (R

′) of (W,R) is simply considered with respect to
subsets of the edge set R′ ⊆ R. Furthermore, similar as in Def. 2.5, we de-
fine satisfaction of subgraphs. Note that, here again, we need the property
regarding modality-prefixed formulas that refer back to the original transition
relation R.

Problem: E-ML-SubGraph

Input: (M, w, φ),M = (W,R, η) model, φ formula
Output: All subgraphs ofM that satisfy φ

Theorem 4.1 E-ML-SubGraph ∈ DelayP.

Proof. Algorithm 3 enumerates all solutions of a model by recursively remov-
ing transitions until a resulting subgraphs no longer satisfies the given formula
φ. Labelling the transitions uniquely allows us to guarantee no duplicate out-
puts. As a result, the algorithm is assured to visit each subgraph ofM at most
once, analogically to the proof of Theorem 3.5. Subgraphs are not visited, only
if a subgraph before already does not satisfy φ, which means that unvisited
subgraphs cannot satisfy φ, too. This results in an output of all subgraphs of

Fröhlich and Meier 403

Algorithm 3: Subgraph enumeration.

Input: ModelM = (W,R, η) and formula φ
1 label transitions r ∈ R uniquely
2 if SM(R) |= φ then
3 Output SM(R)
4 for all transitions r ∈ R do
5 EnumSubgraphRec(M, φ, {r})

6 Function EnumSubgraphRec(M, φ,R′):
7 if SM(R \R′) |= φ then
8 OutputM
9 for all transitions r0 ∈ R \R′ with r0 < r do

10 EnumSubgraphRec(M, φ,R′ ∪ {r0})

M that satisfy φ without duplicates.
We have already established, that model checking can be done in polynomial

time (see Prop. 3.1). Outputting and modifying subgraphs can all be done in
linear time, with respect to the size of the initial model. (For the following worst
case estimation, also see Example 4.2 below.) The worst case happens if firstly
a sequence of EnumSubgraphRec calls all result in subgraphs, that satisfy φ,
which can be at most |R|, whereM = (W,R, η) is the input instance. Secondly,
all remaining calls of EnumSubgraphRec in all prior recursion steps result
in subgraphs not satisfying φ, which is bounded by the maximum recursion
depth |R| and the number of possible subgraphs at each step which is |R| − d
for d the current depth of the recursion. Together, we have that the number
of unsatisfying subgraphs to be checked before we can terminate has to be less
than

|R|∑
i=0

|R| − i = |R|
2 + |R|
2

∈ O(|R|2)

Each subgraph has to be model checked, which is done in time O(|W |2 ·
|SF(φ)|) each, resulting in a total delay of

O(|R|2 · |W |2 · |SF(φ)|).

With this we have shown that the delay of Alg. 3 is requiring polynomial time
and, accordingly, E-ML-SubGraph ∈ DelayP is true. 2

Example 4.2 Let M be a Kripke structure with R = {r0, r1, r2, r3} the set
of transitions labelled by their index. Each edge in Fig. 3 represents a call
to EnumSubgraphRec, and nodes are labelled with the transitions of the
current subset. The algorithm firstly finds a sequence of satisfiable models
going deeper in its recursion until it reaches only unsatisfiable models. It then
has to model check all remaining candidates which totals in

7 < 10 =
|R|2 + |R|

2
.

404 Submodel Enumeration of Kripke Structures in Modal Logic

{r0, r1, r2, r3}

{r0, r1, r2} {r0, r1, r3} {r0, r2, r3} {r1, r2, r3}

{r0, r1} {r0, r2} {r1, r2}

{r0} {r1}

{}

Fig. 3. Recursive calls to EnumSubgraphRec and their resulting transition sets.
Nodes marked by a thicker border are satisfiable, while thin borders denote unsatis-
fiable ones.

This is obviously less than our given upper bound in the proof of Theorem 4.1.

5 Conclusion

In this paper, we classified the enumeration complexity of two problems located
in modal logic. First, we studied the family of problems E-ML-SubTreeN that
asks, for each N ∈ N, to print all satisfying subtree models restricted to a depth
N of a given Kripke model and showed that this can be efficiently done with
a polynomial delay, placing the enumeration problem in the class DelayP. In
particular, we showed two algorithmic ways to obtain this result and eventu-
ally presented a more efficient version which has a delay of O(|W |N · |SF(φ)|),
where W is the set of worlds of the given Kripke model and SF(φ) are the
subformulas of the given modal formula. In this context, it might be worth
studying the framework of parameterised complexity [11,10,24] to find more
efficient algorithms under possibly the tree-width [12, Cha. 7] parameterisa-
tion. Particularly, space-efficient algorithms could be of interest here and plac-
ing such problems into classes with very efficient space notions would be very
tempting [17]. Another possibility would be to utilise the framework of hard
enumeration [9] to show negative answers to this question. Also, a completely
different angle on the problems studied here is on the level of parameterised
counting [23,14].

Second, we considered a generalisation of this problem, removing the fixed
depth bound and asking for satisfying subgraphs (that do not necessarily need
to be trees). We showed that an enumeration algorithm exists with a delay of
O(|R|2 · |W |2 · |SF(φ)|).

Fröhlich and Meier 405

An obvious next step would be to investigate ways to weaken our restriction
on the satisfiability of the modal operators in subtrees and subgraphs and then
still obtain an enumeration algorithm without exponential delay. Also taking a
look at other problems, e.g., submodels on the level of subsets of the labelling
function η as well as practical implementations and integrations into recent
model checkers [18,32,1] might yield interesting insights and results.

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments.

References

[1] Bengtsson, J., K. G. Larsen, F. Larsson, P. Pettersson and W. Yi, UPPAAL - a tool
suite for automatic verification of real-time systems, in: Hybrid Systems, Lecture Notes
in Computer Science 1066 (1995), pp. 232–243.

[2] Biere, A., A. Cimatti, E. M. Clarke, O. Strichman and Y. Zhu, Bounded model checking,
Adv. Comput. 58 (2003), pp. 117–148.

[3] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge Tracts in
Theoretical Computer Science 53, Cambridge University Press, 2001.

[4] Blackburn, P. and J. van Benthem, Modal logic: a semantic perspective, in: P. Blackburn,
J. F. A. K. van Benthem and F. Wolter, editors, Handbook of Modal Logic, Studies in
logic and practical reasoning 3, North-Holland, 2007 pp. 1–84.
URL https://doi.org/10.1016/s1570-2464(07)80004-8

[5] Capelli, F. and Y. Strozecki, Incremental delay enumeration: Space and time, Discret.
Appl. Math. 268 (2019), pp. 179–190.

[6] Capelli, F. and Y. Strozecki, Geometric amortization of enumeration algorithms, CoRR
abs/2108.10208 (2021).

[7] Clarke, E. M., The birth of model checking, in: 25 Years of Model Checking, Lecture
Notes in Computer Science 5000 (2008), pp. 1–26.

[8] Clarke, E. M. and E. A. Emerson, Design and synthesis of synchronization skeletons
using branching-time temporal logic, in: Logic of Programs, Lecture Notes in Computer
Science 131 (1981), pp. 52–71.

[9] Creignou, N., M. Kröll, R. Pichler, S. Skritek and H. Vollmer, A complexity theory for
hard enumeration problems, Discret. Appl. Math. 268 (2019), pp. 191–209.

[10] Creignou, N., R. Ktari, A. Meier, J. Müller, F. Olive and H. Vollmer, Parameterised
enumeration for modification problems, Algorithms 12 (2019), p. 189.

[11] Creignou, N., A. Meier, J. Müller, J. Schmidt and H. Vollmer, Paradigms for
parameterized enumeration, Theory Comput. Syst. 60 (2017), pp. 737–758.

[12] Cygan, M., F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk
and S. Saurabh, “Parameterized Algorithms,” Springer, 2015.

[13] Fix, L., Fifteen years of formal property verification in Intel, in: 25 Years of Model
Checking, Lecture Notes in Computer Science 5000 (2008), pp. 139–144.

[14] Flum, J. and M. Grohe, The parameterized complexity of counting problems, in: FOCS
(2002), p. 538.

[15] Gupta, A., Z. Yang, P. Ashar and A. Gupta, Sat-based image computation with
application in reachability analysis, in: FMCAD, Lecture Notes in Computer Science
1954 (2000), pp. 354–371.

[16] Haak, A., A. Meier, F. Müller and H. Vollmer, Enumerating teams in first-order team
logics, CoRR abs/2006.06953 (2020).

[17] Haak, A., A. Meier, O. Prakash and B. V. R. Rao, Parameterised counting in logspace,
in: STACS, LIPIcs 187 (2021), pp. 40:1–40:17.

[18] Holzmann, G. J., “The SPIN Model Checker - primer and reference manual,” Addison-
Wesley, 2004.

https://doi.org/10.1016/s1570-2464(07)80004-8

406 Submodel Enumeration of Kripke Structures in Modal Logic

[19] Johnson, D. S., C. H. Papadimitriou and M. Yannakakis, On generating all maximal
independent sets, Inf. Process. Lett. 27 (1988), pp. 119–123.

[20] Krebs, A., A. Meier and M. Mundhenk, The model checking fingerprints of CTL
operators, Acta Informatica 56 (2019), pp. 487–519.

[21] Kripke, S., Semantical considerations on modal logic, Acta Philosophica Fennica 16
(1963), pp. 83–94.

[22] Lahiri, S. K., R. Nieuwenhuis and A. Oliveras, SMT techniques for fast predicate
abstraction, in: CAV, Lecture Notes in Computer Science 4144 (2006), pp. 424–437.

[23] McCartin, C., Parameterized counting problems, in: MFCS, Lecture Notes in Computer
Science 2420 (2002), pp. 556–567.

[24] Meier, A., “Parametrised enumeration,” 2020, habilitation thesis, Leibniz Universität
Hannover, https://doi.org/10.15488/9427.

[25] Meier, A. and C. Reinbold, Enumeration complexity of poor man’s propositional
dependence logic, in: FoIKS, Lecture Notes in Computer Science 10833 (2018), pp.
303–321.

[26] Möhle, S., R. Sebastiani and A. Biere, On enumerating short projected models, CoRR
abs/2110.12924 (2021).

[27] Papadimitriou, C. H., “Computational complexity,” Academic Internet Publ., 2007.
[28] Pippenger, N., “Theories of computability,” Cambridge University Press, 1997.
[29] Pnueli, A., The temporal logic of programs, in: FOCS (1977), pp. 46–57.
[30] Pnueli, A. and A. Zaks, On the merits of temporal testers, in: 25 Years of Model

Checking, Lecture Notes in Computer Science 5000 (2008), pp. 172–195.
[31] Schnoebelen, P., The complexity of temporal logic model checking, in: Advances in Modal

Logic (2002), pp. 393–436.
[32] Schwarick, M., M. Heiner and C. Rohr, MARCIE - model checking and reachability

analysis done efficiently, in: QEST (2011), pp. 91–100.
[33] Strozecki, Y., Enumeration complexity, Bull. EATCS 129 (2019).
[34] Sullivan, A., D. Marinov and S. Khurshid, Solution enumeration abstraction: A modeling

idiom to enhance a lightweight formal method, in: ICFEM, Lecture Notes in Computer
Science 11852 (2019), pp. 336–352.

[35] Vardi, M., Why is modal logic so robustly decidable?, Descriptive Complexity and Finite
Models DIMACS Series in Discrete Mathematics and Theoretical Computer Science
(1997), p. 149–183.

https://doi.org/10.15488/9427

	Introduction
	Preliminaries
	Enumeration of Subtrees
	Enumeration of subgraphs
	Conclusion
	References

