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Abstract

Knowledge has long been identified as an inherent component of agents’ decision-
making in distributed systems. However, for agents in fault-tolerant distributed
systems with fully byzantine agents, achieving knowledge is, in most cases, unreal-
istic. If agents can both lie and themselves be mistaken, then a message received is
generally not sufficient to create knowledge. This problem is adequately addressed
by an epistemic modality named hope, which has already been axiomatized. In this
paper, we propose an alternative complete axiomatization for the hope modality by
removing the reliance on designated atoms denoting correctness of individual agents
and show that hope can be described as a KB4n system. This additionally brings
a more streamlined presentation of the common hope modality (the hope analog of
common knowledge). We also combine KB4n hope modalities with S5n knowledge
modalities traditionally used in the epistemic analysis of fault-free distributed systems
and present a logic enriched with both common knowledge and common hope. In
these logics we formalize as frame-characterizable axioms some of the main properties
of fully byzantine distributed systems: bounds on the number of faulty agents and
the epistemic limitations due to agents’ inability to rule out brain-in-a-vat scenarios.

Keywords: Epistemic logic, distributed systems, byzantine agents.

1 Introduction

Over at least three decades, epistemic analysis has been used as a potent
tool [7, 14] for studying distributed systems. It is often based on the runs and
systems framework that views global states of a distributed system as possible
worlds in a Kripke model. The importance of this methodology is underscored
by the broadly applicable Knowledge of Preconditions Principle [21], recently
formulated by Moses, which states that in all models of distributed systems,
if φ is a necessary condition for agent i to perform an action, then agent i
knowing φ to hold, written Kiφ, is also a necessary condition for this agent
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to perform this action. The agent’s complete reliance on its local state as the
source of information about the system naturally induces an equivalence rela-
tion on the global states, resulting in agents’ knowledge being described using
multimodal epistemic logic S5n.

This epistemic analysis via the runs and systems framework was re-
cently [15–17] extended to fault-tolerant systems with so-called byzantine
agents [18]. (Fully) byzantine agents are the worst-case faulty agents to par-
ticipate in a distributed system: not only can they arbitrarily deviate from
their respective protocols, but their perception of their own actions and the
events they observe can be corrupted, possibly unbeknownst to them, resulting
in false memories. Whether byzantine agents are actually present in a system
or not, the very possibility of their presence has drastic and debilitating effects
on the epistemic state of all agents, due to their inability to rule out so-called
brain-in-a-vat scenarios [23]. In a distributed system, a brain-in-a-vat agent is
a faulty agent with completely corrupted perceptions that provide no reliable
information about the system [16]. It has been shown that agents’ inability
to rule out being a brain in a vat precludes them from knowing many basic
facts, including their own correctness/faultiness, in both asynchronous [16] and
synchronous [25] distributed systems.

The extended runs and systems framework was used in [11] to analyze
the Firing Rebels with Relay (FRR) problem, a simplified version of the con-
sistent broadcasting primitive [26], which has been used as a pivotal building
block in distributed algorithms, e.g., for byzantine fault-tolerant clock synchro-
nization [5, 12, 24, 26, 28], synchronous consensus [27], and a general reduction
of distributed task solvability in byzantine systems to solvability in systems
with crash failures [19]. Instead of knowledge (unattainable due to brain-in-
a-vat scenarios), the analysis of FRR hinges on a weaker epistemic notion
called hope, which, in the presence of knowledge modalities, was initially de-
fined as Hiφ := correcti → Ki(correcti → φ). Without knowledge, hope was
axiomatized in [10] with the help of designated atoms correcti representing
agent i’s correctness. The special nature of these atoms precluded the logic
from being a normal modal logic.

Contributions and paper organization: In this paper, we provide an
alternative axiomatization of hope that deals away with these atoms treating
them as abbreviations correcti := ¬Hi⊥ instead. Not only does this make the
logic of hope a normal modal logic, but it turns out to coincide with multi-
modal KB4n (Sect. 2). We explore the language with both hope and knowledge
modalities by formulating a combined logic of hope and knowledge includ-
ing their interaction and showing the Kripke completeness (Sect. 3). We also
demonstrate the utility of this logic by providing frame-characterizable axioms
to represent various properties of fully byzantine agents, including brain-in-a-
vat scenarios, and system specifications, e.g., the upper bound on the number
of faulty agents (Sect. 4). Working towards the epistemic analysis of group
actions, we axiomatize the logic of common hope and common knowledge and
provide the completeness theorem (Sect. 5). In Sect. 6, we take an in-depth look
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P : all propositional tautologies
KH : Hi(φ→ ψ) ∧Hiφ→ Hiψ T ′H : correcti → (Hiφ→ φ)
4H : Hiφ→ HiHiφ F : faultyi → Hiφ
5H : ¬Hiφ→ Hi¬Hiφ H : Hicorrecti

MP :
φ φ→ ψ

ψ
NecH :

φ

Hiφ

Fig. 1. Axiom system Hco in language Lco
H = L(Prop ⊔ Co, H1, . . . , Hn) from [10]

at the related work. Finally, in Sect. 7, we provide conclusions and directions
for future work.

2 Logic of Individual Hope

We fix a finite set A = {1, . . . , n} of agents, a countably infinite set Prop
of atomic propositions (atoms), and a finite set Co := {correcti | i ∈ A} of
designated correctness atoms such that Prop ∩ Co = ∅. We will consider a
number of multimodal languages varying in modalities and atoms. Hence, it
pays off to give a general definition.

Definition 2.1 A multimodal language L(P,♡1, . . . ,♡m) with a set P of
atoms and with modalities ♡j is defined according to the following grammar:

φ ::= p | ¬φ | (φ ∧ φ) | ♡jφ

where p ∈ P and j = 1, . . . ,m. We take ⊤ to be an abbreviation for some
fixed propositional tautology, ⊥ := ¬⊤ and use standard abbreviations for the
remaining boolean connectives.

We first consider language Lco
H := L(Prop⊔Co, H1, . . . ,Hn) for hope modal-

ities Hi with n designated atoms correcti , one for each i ∈ A, intended to
mean that agent i has not deviated from its normative behavior in the system.
For instance, in Kripke models generated based on runs of a fault-tolerant dis-
tributed system with perfect recall, correcti should signify that, by the time of
evaluation, agent i has not violated its protocol and has correctly recorded its
performed actions and witnessed events. We abbreviate faultyi := ¬correcti .

Axiom system Hco is presented in Fig. 1. Here axioms P , KH , 4H , and 5H ,
along with rules MP and NecH represent standard multimodal logic K45n, in
particular, postulating positive and negative introspection for the hope modal-
ity. Axiom T ′H is factivity restricted to correct agents. Axioms H and F
represent further properties of correcti : namely, that agents always hope to
be correct and that the hopes of faulty agents are unrestricted and all encom-
passing, in particular, alongside tautologies they also hope for contradictions,
making their hopes inconsistent. Intuitively, these properties mean that an
agent can rely on its perceptions iff the agent is correct. We elaborate more on
the origins of this particular axiomatization in the next section, where hope is
related to the knowledge modality.

Definition 2.2 A Kripke frame for a language L = L(P,♡1, . . . ,♡m) is a
tuple F = (W,R1, . . . , Rm) where W ̸= ∅ is the set of worlds (or states)
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P : all propositional tautologies
KH : Hi(φ→ ψ) ∧Hiφ→ Hiψ BH : φ→ Hi¬Hi¬φ
4H : Hiφ→ HiHiφ

MP :
φ φ→ ψ

ψ
NecH :

φ

Hiφ

Fig. 2. Axiom system H in language LH = L(Prop, H1, . . . , Hn)

and Rj ⊆ W ×W is an accessibility relation for the modality ♡j . A Kripke
model for L is M = (F, π) where F is a Kripke frame and π : P → P(W ) is
a valuation function. Truth for formulas φ ∈ L in model M is defined as
follows: M,w |= p iff w ∈ π(p) for all p ∈ P , negation and conjunction behave
classically within each world, and M,w |= ♡jφ iff M, v |= φ for all v ∈ Rj(w)
where Rj(w) := {w′ | wRjw

′}. Validity in modelM , denotedM |= φ, is defined
as truth in all worlds of W . Validity in frame F , denoted F |= φ, is defined as
validity in all models (F, π). Validity in a class C of Kripke frames (models) is
defined as validity in all frames (models) of C.

A binary relation Rj is called
• transitive if wRjv whenever wRju and uRjv,
• symmetric if wRjv whenever vRjw,
• euclidean if wRjv whenever uRjw and uRjv, and
• shift serial if Rj(v) ̸= ∅ for any v ∈ Rj(w).

Class K45m (KB4m; S5m) consists of all models with m transitive and eu-
clidean (transitive and symmetric; equivalence) accessibility relations. A partial
equivalence relation is any transitive and symmetric binary relation (see [20]).

From now till the end of this section, we set m = n = |A| and use Ri = Hi

as the accessibility relation for modality ♡i = Hi.

Definition 2.3 Class K45 co
n consists of all Kripke models M =(

(W,H1, . . . ,Hn), π
)

∈ K45n such that for every i ∈ A and w,w′ ∈ W :
(i) if w ∈ π(correcti), then wHiw; (ii) if w /∈ π(correcti), then Hi(w) = ∅;
and (iii) if wHiw

′, then w′ ∈ π(correcti).

Theorem 2.4 ([10]) Hco is sound and complete with respect to K45 co
n .

Note that class K45 co
n of models is not based on any class of frames. Our

first result in this paper is an alternative axiomatization for hope that deals
away with designated atoms correcti and, hence, enables us to avoid the de-
pendency of accessibility relations Hi on valuation function π. This is achieved
by adopting the definition

correcti := ¬Hi⊥ (1)

in language LH := L(Prop, H1, . . . ,Hn) based on the view that faultyi can be
equated to the inconsistent hopes Hi⊥. It turns out that the logic of hope in
this language is the logic of class KB4n of all transitive and symmetric frames
and is axiomatized by axiom system H = KB4n presented in Fig. 2. It is well
known that
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Theorem 2.5 (Completeness for the logic of hope)
H is sound and complete with respect to KB4n.
Remark 2.6 The new axiomatization makes it easier to see how hope is dif-
ferent from the notion of belief. Indeed, belief is quite often assumed to be
consistent, i.e., satisfying axiom ¬B⊥, which fails for hope due to inconsistent
hopes of faulty agents. On the other hand, axiom BH is typically invalid for be-
lief because, together with 4H , it would preclude agents from having consistent
but false beliefs.

We now show that H is equivalent to Hco modulo abbreviation (1):

Lemma 2.7 • H ⊢ φ implies Hco ⊢ φ for any φ ∈ LH .
• Hco ⊢ φ implies H ⊢ φ†, where φ† ∈ LH is the result of replacing
each correcti in φ ∈ Lco

H with ¬Hi⊥, according to (1).

Proof.
• It is sufficient to show Hco ⊢ BH . Using the instance faultyi → Hi¬Hi¬φ
of F , by prop. reasoning, Hco ⊢ faultyi → (φ→ Hi¬Hi¬φ). On the other
hand, from the instance correcti → (Hi¬φ → ¬φ) of T ′H , by prop. rea-
soning Hco ⊢ correcti → (φ → ¬Hi¬φ). Coupling this with the instance
¬Hi¬φ → Hi¬Hi¬φ of 5H , we get Hco ⊢ correcti → (φ → Hi¬Hi¬φ).
Since faultyi ∨ correcti is a propositional tautology, Hco ⊢ φ→ Hi¬Hi¬φ
by prop. reasoning.

• It is sufficient to show that axiom 5H , as well as the †-translations of
axioms T ′H , F , and H are derivable in H . That 5H can be derived
from 4H and BH is a well-known fact (any transitive and symmetric rela-
tion is euclidean). Thus, we only discuss the axioms involving correcti .
· The †-translation of T ′H is ¬Hi⊥ → (Hiψ → ψ) for ψ = φ†. It
is sufficient to show the derivability H ⊢ ¬(Hiψ → ψ) → Hi⊥ for
the contrapositive. Firstly, H ⊢ ¬(Hiψ → ψ) → Hiψ ∧ ¬ψ is a
propositional tautology. Further, H ⊢ Hiψ → HiHiψ by 4H and
also H ⊢ ¬ψ → Hi¬Hiψ by BH . Thus, combining these together,
H ⊢ ¬(Hiψ → ψ) → HiHiψ∧Hi¬Hiψ. It remains to use the normal-
ity of Hi and prop. reasoning to replace HiHiψ ∧Hi¬Hiψ first with
Hi(Hiψ ∧ ¬Hiψ) and finally with Hi⊥.

· The †-translation of F is (modulo a double negation) Hi⊥ → Hiψ,
which follows by the normality of Hi from ⊥ → ψ.

· The †-translation of axiom H is Hi¬Hi⊥, which is easy to obtain from
the instance ¬⊥ → Hi¬Hi¬¬⊥ of BH by prop. reasoning. 2

Theorem 2.8 (Equivalence of the two logics of individual hope)
Systems H and Hco are equivalent representations of the logic of hope.

We demonstrate the utility of this reformulation of the logic of hope by
encoding a standard limitation on the number of faulty agents in a fault-tolerant
distributed system as a frame-characterizable property in logic H . It is typical
to design distributed protocols under the assumption that no more than f of
the n agents can become faulty (0 ≤ f < n). This is a natural restriction given
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that clearly no outcome of agents’ protocols can be guaranteed if, e.g., all
agents can ignore these protocols. Moreover, byzantine consensus [9, 18] and
byzantine clock synchronization [6,9], among others, are unsolvable for n ≤ 3f ,
while, e.g., consensus in asynchronous systems with the weakest failure detector
Omega is unsolvable already for n ≤ 2f [4]. We can encode such requirements
in LH by an additional axiom

Byzf :=
∨

G⊆A
|G|=n−f

∧
i∈G

¬Hi⊥.

Remark 2.9 Byz 0 =
∧

i∈A ¬Hi⊥ simply states that all n agents are correct.

Proposition 2.10 (Frame characterization of ≤ f faulty agents)
Axiom Byzf is characterized by the property of frames F = (W,H1, . . . ,Hn)

(∀w ∈W )(∃G ⊆ A)
(
|G| = n− f ∧ (∀i ∈ G)Hi(w) ̸= ∅

)
,

which we call all-but-f -seriality. In other words, each world must have outgoing
arrows for all but f agents.

Proof. Take an arbitrary frame F = (W,H1, . . . ,Hn) for language LH . We
need to show that

F |= Byzf ⇐⇒ F is all-but-f -serial.

We prove the (=⇒) direction by contrapositive. If F is not all-but-f -serial,
there is some w ∈W such that any group G ⊆ A of n−f agents has some agent
iG ∈ G such that HiG(w) = ∅. Since for all these agents, (F, π), w ̸|= ¬HiG⊥
for any π, we have (F, π), w ̸|= Byzf and, hence, F ̸|= Byzf .

For the (⇐=) direction, let F be all-but-f -serial. Take an arbitrary w ∈W .
It now follows that there is a group G ⊆ A of n−f agents such that Hi(w) ̸= ∅
for all i ∈ G. Therefore, (F, π), w |=

∧
i∈G ¬Hi⊥ and (F, π), w |= Byzf for

any π. The validity in F follows because w and π were chosen arbitrarily. 2

Definition 2.11 Class KB4n−f
n consists of all models from KB4n with all-

but-f -serial frames.

Corollary 2.12 H + Byzf is sound and complete with respect to KB4n−f
n .

3 Logic of Individual Hope and Individual Knowledge

In this section, we consider language LKH := L(Prop,K1, . . . ,Kn, H1, . . . ,Hn).
This language with both hope and knowledge modalities for each agent is ex-
pressive enough to describe most of the epistemic attitudes relevant to dis-
tributed systems and explore relationships among them. Accordingly, the se-
mantics used until the end of the paper has m = 2n = 2|A| accessibility rela-
tions where, in addition to Hi for hope modalities Hi we now use accessibility
relations Ki for knowledge modalities Ki.
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In particular, we now recall how hope was initially defined via knowledge
and the correctness atoms. The hope modality appeared in the analysis of the
Firing Rebels Problem [11], as well as in earlier works [10, 16], in the form of
derived modality Hiφ := correcti → Ki(correcti → φ), which, translated into
language LKH using (1), becomes axiom

KH := Hiφ ↔
(
¬Hi⊥ → Ki(¬Hi⊥ → φ)

)
. (2)

Our new language with hope enables us to (almost) characterize this con-
nection axiom by two frame properties for two directions of equivalence (2).

Proposition 3.1 (Characterizing knowledge-to-hope connection)
On the class of frames F = (W,K1, . . . ,Kn,H1, . . . ,Hn) with shift serial Hi,

KH← :=
(
¬Hi⊥ → Ki(¬Hi⊥ → φ)

)
→ Hiφ (3)

is characterized by frame property

HinK : Hi ⊆ Ki.

Proof. First assume that a frame F with shift serial Hi satisfies HinK and
letM = (F, π) for an arbitrary π. Let the antecedent of (3) hold at an arbitrary
world w ∈W . To show thatM,w |= Hiφ, it is sufficient to show thatM, v |= φ
for all v ∈ Hi(w). It is vacuously true if Hi(w) = ∅. Otherwise, take any such
world v. M,w |= ¬Hi⊥ because Hi(w) ̸= ∅, thus, M,w |= Ki(¬Hi⊥ → φ).
Since Hi(w) ⊆ Ki(w) due to HinK, we get M, v |= ¬Hi⊥ → φ. But Hi(v) ̸= ∅
due to the shift seriality of Hi. This is sufficient to conclude that M,v |= φ,
completing the proof that KH← is valid in F .

For the opposite direction, assume that F violates HinK, i.e., that there
are worlds w, v ∈ W with wHiv but not wKiv. Consider any model M =
(F, π) with a valuation π such that π(p) = W \ {v} for some atom p. We
have M,w |= Ki(¬Hi⊥ → p) because Ki(w) ⊆ W \ {v} = π(p). Therefore,
M,w |= ¬Hi⊥ → Ki(¬Hi⊥ → p). However, clearly M,w ̸|= Hip because of v.
Thus, we have shown that M,w ̸|= KH← for φ = p. Note that this direction
does not rely on the shift seriality of Hi. 2

Proposition 3.2 (Characterizing hope-to-knowledge connection)

KH→ := Hiφ→
(
¬Hi⊥ → Ki(¬Hi⊥ → φ)

)
(4)

for frames F = (W,K1, . . . ,Kn,H1, . . . ,Hn) is characterized by property

oneH : (∀w, v ∈W )
(
Hi(w) ̸= ∅ ∧Hi(v) ̸= ∅ ∧ wKiv =⇒ wHiv

)
.

Proof. First assume that F satisfies oneH and let M = (F, π) for an arbi-
trary π. Let M,w |= Hiφ. The case of Hi(w) = ∅ is trivial since M,w |= Hi⊥
makes the succedent of (4) true at w. Otherwise, Hi(w) ̸= ∅. Similarly, for
any v ∈ Ki(w) with Hi(v) = ∅, we have M,v |= ¬Hi⊥ → φ. Finally, for
any v ∈ Ki(w) with Hi(v) ̸= ∅, we have v ∈ Hi(w) by oneH. Hence, M, v |= φ
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P : all propositional tautologies
H† : Hi¬Hi⊥ KK : Ki(φ→ ψ) ∧Kiφ→ Kiψ

4K : Kiφ→ KiKiφ
5K : ¬Kiφ→ Ki¬Kiφ
TK : Kiφ→ φ

MP :
φ φ→ ψ

ψ
NecK :

φ

Kiφ
KH : Hiφ↔

(
¬Hi⊥ → Ki(¬Hi⊥ → φ)

)
Fig. 3. Axiom system KH in language LKH = L(Prop,K1, . . . ,Kn, H1, . . . , Hn)

and M,v |= ¬Hi⊥ → φ. We have shown that ¬Hi⊥ → φ is true in all worlds
from Ki(w) and can again conclude that the succedent of (4) is true at w. This
completes the proof that KH→ is valid in F .

For the opposite direction, assume that F violates oneH, i.e., there are
worlds w, v ∈ W with Hi(w) ̸= ∅, Hi(v) ̸= ∅, wKiv, but not wHiv. Consider
any model M = (F, π) with a valuation π such that π(p) = Hi(w) for some
atom p. Clearly, M,w |= Hip and M,w |= ¬Hi⊥. However, M,v |= ¬Hi⊥
and M, v ̸|= p. Hence, M,v ̸|= ¬Hi⊥ → p and, given wKiv, we also have
M,w ̸|= Ki(¬Hi⊥ → p). Thus, M,w ̸|= KH→ for φ = p. 2

Definition 3.3 Class KH of models for knowledge and hope consists of all
Kripke models M =

(
(W,K1, . . . ,Kn,H1, . . . ,Hn), π

)
where (i) every Ki is an

equivalence relation, (ii) every Hi is shift serial, and (iii) properties HinK and
oneH are satisfied.

Proposition 3.4 For all M =
(
(W,K1, . . . ,Kn,H1, . . . ,Hn), π

)
∈ KH, each

accessibility relation Hi is symmetric and transitive.

Proof. To prove transitivity, let wHiv and vHiu. Then wKiv and vKiu
by HinK. Therefore, wKiu by the transitivity of Ki. Hi(w) ∋ v is not empty.
Hi(u) ̸= ∅ by the shift seriality of Hi because vHiu. Hence, wHiu by oneH.

To prove symmetry, let wHiv. Then wKiv by HinK. Therefore, vKiw by
the symmetry of Ki. Hi(w) ∋ v is not empty. Hi(v) ̸= ∅ by the shift seriality
of Hi because wHiv. Hence, vHiw by oneH. 2

Remark 3.5 Hence, Hi are partial equivalence relations, so that prop-
erty oneH can be described as “no Ki-equivalence class contains more than
one Hi-partial-equivalence class.”

A natural way of obtaining the combined logic KH of hope and knowledge
would be to combine the axioms and rules for hope from Fig. 2, standard S5 ax-
ioms and rules for knowledge, and connection axiom KH . Prop. 3.4, however,
indicates that this would create redundancies. As we now show, in the presence
of axiom KH , KB4 properties of hope originate from S5 properties of knowl-
edge, albeit with the help of the translation of axiom H = Hicorrecti from Hco

into language LKH . This translation H† = Hi¬Hi⊥ can be called necessary
consistency for hope and is known to be characterized by shift seriality. The
resulting simplified axiom system is presented in Fig. 3.
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Lemma 3.6 For all i ∈ A,
(i) KH ⊢ Kiφ→ Hiφ;
(ii) KH ⊢ Hi(φ→ ψ) ∧Hiφ→ Hiψ;
(iii) if KH ⊢ φ, then KH ⊢ Hiφ.

Proof.

(i) Kiφ → Ki(¬Hi⊥ → φ) is by the normality of Ki. From prop. tautol-
ogy Ki(¬Hi⊥ → φ) →

(
¬Hi⊥ → Ki(¬Hi⊥ → φ)

)
and one direction(

¬Hi⊥ → Ki(¬Hi⊥ → φ)
)
→ Hiφ of KH , by syllogism, Kiφ→ Hiφ.

(ii) 1. Ki

(
¬Hi⊥ → (φ→ ψ)

)
→
(
Ki(¬Hi⊥ → φ) → Ki(¬Hi⊥ → ψ)

)
normality of Ki

2. Hi(φ→ ψ) →
(
¬Hi⊥ → Ki

(
¬Hi⊥ → (φ→ ψ)

))
axiom KH

3. Hiφ→
(
¬Hi⊥ → Ki(¬Hi⊥ → φ)

)
axiom KH

4. Hi(φ→ ψ) →
(
Hiφ→

(
¬Hi⊥ → Ki(¬Hi⊥ → ψ)

))
from 1.–3.

5.
(
¬Hi⊥ → Ki(¬Hi⊥ → ψ)

)
→ Hiψ axiom KH

6. Hi(φ→ ψ) → (Hiφ→ Hiψ) from 4.–5.

(iii) Easily follows from (i). 2

Remark 3.7 Given that Kiφ → Hiφ is also known to characterize frame
property HinK, one might ask whether KH← is equivalent to Kiφ→ Hiφ. The
answer is negative because KH← only characterizes HinK under the additional
assumption of Hi being shift serial. For instance, consider a model M with
W = {w, v}, Kj = W ×W for all j ∈ A, Hj = W ×W for all j ̸= i, non-
shift-serial Hi = {(w, v)}, π(p) = {w} for some atom p, and π(q) = W for
all q ∈ Prop \ {p}. Then M,w ̸|=

(
¬Hi⊥ → Ki(¬Hi⊥ → p)

)
→ Hip but

M,w |= Kip→ Hip.

Theorem 3.8 (Completeness of the logic of hope and knowledge)
KH is sound and complete with respect to KH.

Proof sketch. The soundness of KH follows because all axioms except
for KH← are frame characterizable and class KH consists of frames with
corresponding properties, one of which is shift seriality, which takes care
of the additional restriction for KH←. The normality of Hi is derived in
Lemma 3.6. This enables us to use the standard canonical model MC =(
(WC ,KC

1 , . . . ,KC
n ,HC

1 , . . . ,HC
n ), π

C
)
construction for the logic and prove the

Truth Lemma, i.e., thatMC ,Γ |= φ iff φ ∈ Γ for each maximal KH -consistent
set Γ ∈WC . It remains to show that MC ∈ KH. The argument for KC

i being
equivalence relations and for HC

i being shift serial is standard. Property HinK,
i.e., HC

i ⊆ KC
i , easily follows from KH ⊢ Kiφ → Hiφ proved in Lemma 3.6.

Thus, we only show property oneH, i.e., that ΓKC
i ∆ implies ΓHC

i ∆ whenever
HC

i (Γ) ̸= ∅ and HC
i (∆) ̸= ∅ for any maximal consistent sets Γ,∆ ∈ WC .

Assume ΓKC
i ∆, HC

i (Γ) ̸= ∅, and HC
i (∆) ̸= ∅. Note that HC

i (Ξ) ̸= ∅ implies
¬Hi⊥ ∈ Ξ due to the maximal consistency. We need to prove that Hiφ ∈ Γ
implies φ ∈ ∆. If Hiφ ∈ Γ, then Γ ⊢KH Ki(¬Hi⊥ → φ) by axiom KH and
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¬Hi⊥ ∈ Γ. Hence, Ki(¬Hi⊥ → φ) ∈ Γ and ¬Hi⊥ → φ ∈ ∆ by the definition
of KC

i . Since ¬Hi⊥ ∈ ∆, we conclude that φ ∈ ∆ as required. 2

Corollary 3.9 KH ⊢ Hiφ→ HiHiφ and KH ⊢ φ→ Hi¬Hi¬φ for i ∈ A.

Proof. It immediately follows from Theorem 3.8 and Prop. 3.4. 2

Definition 3.10 Class KHn−f consists of all Kripke models from KH that
have all-but-f -serial frames with respect to Hi relations.

Corollary 3.11 KH + Byzf is sound and complete with respect to KHn−f .

Logics KH and KH +Byzf formalize both reliable (knowledge) and unre-
liable (hope) information agents possess in fault-tolerant distributed systems,
the latter with at most f byzantine agents. The following two propositions
outline the epistemic attitudes of agents who know that they are faulty and
agents who know that they are correct.

Proposition 3.12 KH ⊢ KiHi⊥ → Hiφ for all i ∈ A.

Proof. We have Hi⊥ → Hiφ is by the normality of Hi. From Ki-factivity
KiHi⊥ → Hi⊥ we get KiHi⊥ → Hiφ by syllogism. 2

Proposition 3.13 KH ⊢ Ki¬Hi⊥ → (Hiφ↔ Kiφ) for all i ∈ A.

Proof. KH ⊢ Ki¬Hi⊥ → (Kiφ → Hiφ) is an easy corollary of Prop. 3.6.
We provide a derivation of Ki¬Hi⊥ → (Hiφ → Kiφ). Firstly, we can obtain
Ki¬Hi⊥ →

(
Hiφ→ Ki(¬Hi⊥ → φ)

)
fromKi-factivityKi¬Hi⊥ → ¬Hi⊥ and

direction Hiφ →
(
¬Hi⊥ → Ki(¬Hi⊥ → φ)

)
of axiom KH by propositional

reasoning. It remains to use KK axiom Ki(¬Hi⊥ → φ) → (Ki¬Hi⊥ → Kiφ)
to get Ki¬Hi⊥ → (Hiφ→ Kiφ) by propositional reasoning. 2

We now turn to properties relevant for analyzing distributed systems. For
instance, due to our earlier discussion of unsolvability of many distributed
problems if too many agents become faulty and in view of the Knowledge of
Preconditions Principle, it is typically necessary for agents to know that there
are at least n− f correct agents overall:

Proposition 3.14 • KH + Byzf ⊢ KiByzf for all i ∈ A.
• KHn−f |= KiByzf for all i ∈ A.

Corollary 3.15 (In fault-free systems, hope is knowledge) Recall that
axiom Byz 0 rules out the presence of faulty agents. For any i ∈ A,

KH + Byz 0 ⊢ Hiφ↔ Kiφ.

Proof. Follows from Remark 2.9 and Props. 3.13 and 3.14. 2

Prop. 3.12 can be strengthened because a faulty agent hopes for anything
even without knowing that it is faulty, i.e., KH ⊢ Hi⊥ → Hiφ. By contrast,
for Prop. 3.13, the knowledge modality cannot be dropped: for a correct agent,
hope does not yet mean knowledge, i.e., KH ⊬ ¬Hi⊥ → (Hiφ ↔ Kiφ). In-
stead, for a correct agent, hope turns out to be equivalent to another epistemic
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attitude called belief, also used in distributed computing [22]. We introduce
the following abbreviations for belief Bi, as well as for mutual knowledge EK

G ,
mutual belief EB

G , and mutual hope EH
G among a group G ⊆ A of agents:

Biφ := Ki(¬Hi⊥ → φ) EK
G φ :=

∧
i∈G

Kiφ

EB
Gφ :=

∧
i∈G

Biφ EH
Gφ :=

∧
i∈G

Hiφ

Note that this belief Bi is of type K45 rather than KD45.

Remark 3.16 It immediately follows that

KH ⊢ ¬Hi⊥ → (Hiφ↔ Biφ). (5)

Thus, it might seem that, for correct agents, the use of hope is superficial and
can be replaced by the better studied belief. The subtlety lies in the fact that
belief is actionable in the sense of the Knowledge of Preconditions Principle,
because the agent always knows its beliefs due to the positive introspection of
knowledge. The same is not true regarding hope. And while hope of a correct
agent i is equivalent to its belief, agents might not be aware of this equivalence
if they are uncertain whether i is, in fact, correct.

We now show, by purely modal means, that in distributed systems with
bounded number of faulty agents, mutual belief among a sufficiently large group
of agents can be extracted from mutual hope among all agents. This ability
to lift information received about hopes of all agents into actionable beliefs of
a critical mass of correct agents is at the core of many distributed algorithms,
including Firing Rebels [11] (albeit in a more complex temporal setting).

Proposition 3.17 KH + Byzf ⊢ EH
Aφ→

∨
G⊆A

|G|=n−f

EB
Gφ.

Proof. Follows from (5) and axiom Byzf . 2

Another indication of the independence of hope as an epistemic attitude
is the fact that hope generally creates neither knowledge of hope nor hope of
knowledge.

Proposition 3.18 (Knowledge and hope do not mix) For any i ∈ A,
• it is not the case that KH |= Hiφ→ HiKiφ for all φ ∈ LKH ,
• it is not the case that KH |= Hiφ→ KiHiφ for all φ ∈ LKH .

Proof. We use the same model to refute both statements but refute them
for different formulas φ. Let M =

(
(W,K1, . . . ,Kn,H1, . . . ,Hn), π

)
such that

W = {G,B}, Kj = W ×W for all j ∈ A, Hi = {(G,G)}, Hj = W ×W for
all j ̸= i, and π be arbitrary. Now, all Kj are equivalence relations, all Hj are
shift serial, Hj ⊆ Kj for all j ∈ A, and oneH holds. In other words, M ∈ KH.
Clearly, agent i is correct in world G, i.e., Hi(G) ̸= ∅, and faulty in world B,
i.e., Hi(B) = ∅. We now have that, M,G ̸|= Hi¬Hi⊥ → HiKi¬Hi⊥ and
M,B ̸|= Hi⊥ → KiHi⊥. 2
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Corollary 3.19 For any i ∈ A and any f > 0,
• it is not the case that KHn−f |= Hiφ→ HiKiφ for all φ ∈ LKH ,
• it is not the case that KHn−f |= Hiφ→ KiHiφ for all φ ∈ LKH .

We finish this section by showing that designated atoms correcti , which
can be defined away via the hope modality as ¬Hi⊥, are not definable in
language LK := L(Prop,K1, . . . ,Kn) with knowledge modalities only.

Definition 3.20 For a language L = L(P,♡1, . . . ,♡m), let Kripke mod-
els M =

(
(W,R1, . . . , Rm), π

)
and M ′ =

(
(W ′, R′1, . . . , R

′
m), π′

)
be given. A

non-empty relation Z ⊆ W ×W ′ is a bisimulation between M and M ′, nota-
tion Z : M↔M ′, if for all wZw′ and j ∈ {1, . . . ,m}:
atoms w ∈ π(p) iff w′ ∈ π′(p) for all p ∈ P ;

forth if wRjv, then there is a v′ ∈W ′ such that w′R′jv
′ and vZv′;

back if w′R′jv
′, then there is a v ∈W such that wRjv and vZv′.

We write M↔M ′ if there is a bisimulation Z : M↔M ′. We
write (M,w)↔(M ′, w′) if there is a bisimulation Z : M↔M ′ such that wZw′.

A restricted (to Q) bisimulation ZQ is a bisimulation that satis-
fies atoms for all atoms Q ⊆ P , notation ZQ : M↔QM ′. And, similarly,
(M,w)↔Q(M ′, w′) means that wZQw′ for some such ZQ.

Given Q ⊆ P , let us write L|Q := L(Q,♡1, . . . ,♡m) for the language
restricted to atoms from Q only. Further, let us write
• (M,w) ≡ (M ′, w′) to mean ‘for all φ ∈ L, M,w |= φ iff M ′, w′ |= φ’ and
• (M,w) ≡Q (M ′, w′) to mean ‘for all φ ∈ L|Q, M,w |= φ iff M ′, w′ |= φ.’

Theorem 3.21 ([2]) • (M,w)↔(M ′, w′) implies (M,w) ≡ (M ′, w′).
• (M,w)↔Q(M ′, w′) implies (M,w) ≡Q (M ′, w′).

In language LKH with knowledge and hope, correcti is definable as ¬Hi⊥,
making faultyi = ¬correcti equivalent to Hi⊥. More precisely, every formula
in language L(Prop ⊔ Co,K1, ...,Kn, H1, ...,Hn) is equivalent to a formula in
language LKH via the †-translation (cf. Lemma 2.7).

We now show that atoms correcti are not definable in the language with
modalities for knowledge only.

Proposition 3.22 Correctness of agents is not definable from knowledge.

Proof. We now consider languages Lco
K := L(Prop ⊔ Co,K1, ...,Kn) and

LK := Lco
K |Prop = L(Prop,K1, ...,Kn). Assume towards a contradiction

that there is a φi ∈ LK such that φi is equivalent to correcti. Now con-
sider (M,w) and (M ′, w′) (for the set Prop ⊔ Co of all propositions) such that
(M,w)↔Prop(M ′, w′) but for some agent i ∈ A we have w ∈ π(correcti) while,
at the same time, w′ /∈ π′(correcti). From Theorem 3.21 we obtain that
(M,w) ≡Prop (M ′, w′). Therefore, in particular M,w |= φi iff M ′, w′ |= φi.
This contradicts that M,w |= correcti but M

′, w′ ̸|= correcti . Thus, correcti is
not definable in LK . 2
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Note that, were the models M and M ′ above to also have hope relations,
then w ∈ π(correcti) and w′ /∈ π′(correcti) would imply that Hi(w) ̸= ∅
whereas H′i(w′) = ∅, thus, precluding their bisimilarity restricted to Prop.

4 Modal Representation of Byzantine Behaviors,
including Brain-in-a-Vat

The goal of this section is to show the utility of logic KH of hope and
knowledge by providing axiomatic and semantic descriptions of several proper-
ties that originate from earlier analyses of fully byzantine distributed systems
in [16]. Roughly speaking, an agent is called fully byzantine if neither its be-
havior nor its perceptions are restricted in any way. We already discussed ax-
iom Byzf restricting the number of such agents to at most f to ensure solvabil-
ity of distributed problems. Another important feature of distributed systems
with fully byzantine agents is that agents can never exclude the possibility of
their perceptions being completely fabricated in a so-called brain-in-a-vat sce-
nario. For details of the modeling via global runs in fault-tolerant distributed
message-passing systems, which also include a temporal component, we refer
the reader to [16]. In particular, the following properties were demonstrated:
• Agents cannot reliably establish their own correctness, as formalized by
the axiom, for all i ∈ A,

iByz := ¬Ki¬Hi⊥.

• A faulty agent lacks any reliable information about other agents. 3 In par-
ticular, we generally assume that a faulty agent has no reliable information
to decide whether any other agent is correct or faulty, as formalized by
the axiom, for all i ̸= j,

BiV := Hi⊥ → ¬KiHj⊥ ∧ ¬Ki¬Hj⊥.

From these two principles, by purely modal means, we can derive that no
agent knows whether other agents are correct or faulty, as proved in [16] by
complex manipulations of distributed system runs.

Proposition 4.1 KH +iByz+BiV ⊢ anyByz ij∧anyCor ij for all i ̸= j where

anyByz ij : ¬Ki¬Hj⊥; anyCor ij : ¬KiHj⊥.

Proof. ¬Ki¬ Hi⊥ → ¬Ki¬ ¬KiHj⊥ for any i ̸= j follows from BiV by
propositional reasoning and the normality of Ki (applied to its dual ¬Ki¬).
Hence, ¬Ki¬Hi⊥ → ¬KiHj⊥ by TK . Thus, by invoking iByz and using MP
we get ¬KiHj⊥ = anyCor ij . The argument for anyByz ij is analogous. 2

Proposition 4.2 (Frame characterization of agents’ fallibility)
Axiom iByz for i ∈ A is characterized by the i-may-aseriality property

3 An important exception here must be made for a priori knowledge of the system, e.g., log-
ical laws, physical laws, or global specifications of the distributed system.
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of frames F = (W,K1, . . . ,Kn,H1, . . . ,Hn) requiring that each world have a
Ki-indistinguishable world with no Hi-outgoing arrows:

(∀w ∈W )
(
∃w′ ∈ Ki(w)

)
Hi(w

′) = ∅.

Proof. Take an arbitrary frame F = (W,K1, . . . ,Kn,H1, . . . ,Hn). We need
to show that for i ∈ A,

F |= iByz ⇐⇒ F is i-may-aserial.

(=⇒) We prove the contrapositive. If F is not i-may-aserial, there is some
world w ∈ W such that Hi(w

′) ̸= ∅ for all w′ ∈ Ki(w). Independent of a
valuation π, for M = (F, π) we have M,w′ |= ¬Hi⊥ for all w′ ∈ Ki(w). Hence,
we get M,w |= Ki¬Hi⊥ and, hence, F ̸|= iByz for this i.
(⇐=) Let F be i-may-aserial. Take an arbitrary w ∈ W . It now follows that
there is w′ ∈ Ki(w) such that Hi(w

′) = ∅. Therefore, for M = (F, π) with
any π, we have M,w′ |= Hi⊥ and M,w |= ¬Ki¬Hi⊥. The validity of iByz
in F for this i follows because w and π were chosen arbitrarily. 2

Proposition 4.3 (Frame characterization of brain-in-a-vat)
Axiom BiV for i ̸= j is characterized by the BiValence property of
frames F = (W,K1, . . . ,Kn,H1, . . . ,Hn)

(∀w ∈W )
(
Hi(w) = ∅ =⇒

(
∃w′, w′′ ∈ Ki(w)

)(
Hj(w

′) ̸= ∅ ∧Hj(w
′′) = ∅

))
.

Proof. Take any frame F = (W,K1, . . . ,Kn,H1, . . . ,Hn). We need to show
that for i ̸= j

F |= BiV ⇐⇒ F is BiValent.

(=⇒) We prove the contrapositive. If F is not BiValent, there is some w ∈W
such that Hi(w) = ∅ but either Hj(w

′) = ∅ for all w′ ∈ Ki(w) or Hj(w
′′) ̸= ∅

for all w′′ ∈ Ki(w). Independent of a valuation π, for M = (F, π) we then have
M,w |= Ki¬Hj⊥ ∨ KiHj⊥ despite M,w |= Hi⊥, and, hence, F ̸|= BiV for
these i ̸= j.
(⇐=) Let F be BiValent. Take an arbitrary w ∈ W such that Hi(w) = ∅. It
now follows that there are w′ ∈ Ki(w) such that Hj(w

′) ̸= ∅ and w′′ ∈ Ki(w)
such that Hj(w

′′) = ∅. Therefore, forM = (F, π) with any π, we can conclude
M,w |= ¬KiHj⊥ ∧ ¬Ki¬Hj⊥ whenever M,w |= Hi⊥. The validity of BiV
in F for these i ̸= j follows because w and π were chosen arbitrarily. 2

We can also easily derive by purely modal means that brain-in-a-vat sce-
narios are not compatible with fault-free systems:

Proposition 4.4 KH + Byz 0 ⊢ ¬iByz for each i ∈ A.

Proof. By Prop. 3.14 and the normality of Ki, given that Byz 0 → ¬Hi⊥ is
a propositional tautology, we have KH + Byz 0 ⊢ Ki¬Hi⊥ for each i ∈ A.
Deriving ¬iByz is now a matter of propositional reasoning. 2

Another interesting special case is f = 1 (with n > 1). On the one hand,
half of BiV becomes derivable and, hence, redundant:
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Proposition 4.5 If any agent but no more than one can be faulty, then no
agent can establish the faultiness of other agents: for all i ̸= j ∈ A,

KH + Byz 1 + iByz ⊢ ¬KiHj⊥.

Proof. We have Hi⊥ → ¬Hj⊥ by Byz 1 for any j ̸= i. Thus, we can conclude
¬Ki¬ Hi⊥ → ¬Ki¬ ¬Hj⊥ by the normality ofKi, i.e., ¬Ki¬Hi⊥ → ¬KiHj⊥.
Since ¬Ki¬Hi⊥ is axiom iByz , we conclude ¬KiHj⊥ by MP . 2

On the other hand, the other half of BiV leads to undesirable consequences:

Proposition 4.6 For f = 1, the inability of a faulty agent to establish correct-
ness of somebody else would lead to its inability to establish its own faultiness:
for all i ̸= j ∈ A,

KH + Byz 1 + (Hi⊥ → ¬Ki¬Hj⊥) ⊢ ¬KiHi⊥.

Proof. A correct agent i considers its own correctness possible by TK ,
i.e., ¬Hi⊥ → ¬KiHi⊥. Formula Hi⊥ → ¬Ki¬Hj⊥ for at least one j ̸= i
is an assumption. At the same time, Hj⊥ → ¬Hi⊥ by Byz 1. As before,
¬Ki¬Hj⊥ → ¬KiHi⊥ follows by the normality of Ki, yielding implication
Hi⊥ → ¬KiHi⊥ by syllogism. Since we have derived ¬KiHi⊥ from both
assumptions ¬Hi⊥ and Hi⊥, we get ¬KiHi⊥ without any assumptions by
propositional reasoning. 2

Remark 4.7 Intuitively, if an agent establishes its own faultiness, which does
not run afoul of iByz and can be used, e.g., for self-repairing agents, then it
will thereby establish the correctness of all other agents. It seems wrong to
prohibit this by adopting the respective half of BiV , whereas the other half
is derivable anyway. We, therefore, propose using KH + Byzf + BiV + iByz
for f ≥ 2 but KH + Byz 1 + iByz for f = 1. (The case of f = 0, which can
be axiomatized by KH + Byz 0, is more efficiently dealt with in the standard
epistemic language.)

5 Common Hope and Common Knowledge

In this section, we introduce the common hope modality by analogy with the
common knowledge modality and explore their relationship. We start by ex-
tending language LKH with unary modal operator CH

G for common hope and
unary modal operator CK

G for common knowledge, where ∅ ̸= G ⊆ A is an arbi-
trary group of agents. We will denote this extended language by LC

KH . Similar
to common knowledge among a group G, by common hope of φ we intuitively
mean mutual hope that φ and mutual hope of mutual hope that φ, etc.:

CH
G ↭ EH

Gφ ∧ EH
GE

H
Gφ ∧ EH

GE
H
GE

H
Gφ ∧ . . .

Axiom system KH C for common knowledge and common hope consists
of all the axioms of KH (formulated for LC

KH formulas) plus the following
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axioms and inference rules for all ∅ ̸= G ⊆ A and all formulas φ,ψ ∈ LC
KH :

MixH : CH
G φ→ EH

G (φ ∧ CH
G φ); MixK : CK

G φ→ EK
G (φ ∧ CK

G φ);

IndH :
ψ → EH

G (φ ∧ ψ)
ψ → CH

G φ
; IndK :

ψ → EK
G (φ ∧ ψ)

ψ → CK
G φ

.

That common knowledge has the properties of individual knowledge is well-
known. Still, it may be surprising that common hope has the properties of
individual hope. (Recall that common belief does not have the properties of
individual KD45 belief as it lacks negative introspection.) Proofs are standard
and omitted.

Proposition 5.1 For any formulas φ,ψ ∈ LC
KH and any ∅ ̸= G ⊆ A:

KH C ⊢ CH
G (φ→ ψ) ∧ CH

G φ→ CH
G ψ KH C ⊢ CK

G (φ→ ψ) ∧ CK
G φ→ CK

G ψ

KH C ⊢ CH
G φ→ CH

GC
H
G φ KH C ⊢ CK

G φ→ CK
G C

K
G φ

KH C ⊢ ¬CK
G φ→ CK

G ¬CK
G φ

KH C ⊢ φ =⇒ KH C ⊢ CH
G φ KH C ⊢ φ =⇒ KH C ⊢ CK

G φ

KH C ⊢ φ→ CH
G ¬CH

G ¬φ KH C ⊢ CK
G φ→ φ

Proposition 5.2 KH C ⊢ CK
G φ→ CH

G φ.

Proof.
1. CK

G φ→ EK
G (φ ∧ CK

G φ) axiom MixK

2. EK
G (φ ∧ CK

G φ) → EH
G (φ ∧ CK

G φ) follows from Prop. 3.6

3. CK
G φ→ EH

G (φ ∧ CK
G φ) by syllogism from 1. and 2.

4. CK
G φ→ CH

G φ by IndH from 3.
2

Formulas of LC
KH are also evaluated on models from KH, with the new

clauses for the common knowledge and common hope added as follows:

Definition 5.3 For a model
(
(W,K1, . . . ,Kn,H1, . . . ,Hn), π

)
∈ KH, we define

KC
G :=

(⋃
i∈G

Ki

)+

, HC
G :=

(⋃
i∈G

Hi

)+

,

where R+ is the transitive (but not reflexive) closure of a relation R. Then
we define M,w |= CK

G φ iff M,v |= φ for all v ∈ KC
G(w) and M,w |= CH

G φ iff
M,v |= φ for all v ∈ HC

G(w).

Theorem 5.4 (Completeness for common hope and knowledge)
KH C is sound and complete with respect to KH.

Proof sketch. The proof uses a finite version of the canonical model con-
struction with maximal consistent sets restricted to subsets of an appropri-
ately chosen finite set cl(φ) of “extended” subformulas of a given formula φ
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(cf. Fischer–Ladner closure [8]). Apart from the choice of this closure set, the
proof is rather standard, if lengthy and technical. One shows that finite canon-
ical model MC

φ belongs to class KH. Then the Truth Lemma is established.
Finally, if KH C ⊬ φ, then {¬φ} is consistent and can be extended to a world
in MC

φ , where φ is false. The main difficulty in this proof is finding the closure
set cl(φ), hence, we provide it below.

The closure set cl(φ) for the finite canonical model is defined in several
stages. We use Lb

i ⊂ LC
KH to denote all formulas not of the form ¬Hi⊥ → ψ.

• cl0(φ) is the smallest set that (a) contains φ and Hi¬Hi⊥ for all i ∈ A,
(b) is closed under subformulas, and, for all ψ ∈ LC

KH and ∅ ̸= G ⊆ A,
(c) contains EH

G (ψ ∧ CH
G ψ) whenever CH

G ψ ∈ cl0(φ) and (d) contains
EK

G (ψ ∧ CK
G ψ) whenever C

K
G ψ ∈ cl0(φ).

• cl1(φ) := cl0(φ) ∪ {¬ψ | ψ ∈ cl0(φ)}.
• cl2(φ) := cl1(φ) ∪ {Hi(¬Hi⊥ → ψ) | Ki(¬Hi⊥ → ψ) ∈ cl1(φ)} ∪
{Ki(¬Hi⊥ → ψ) | Hi(¬Hi⊥ → ψ) ∈ cl1(φ)} ∪
{Ki(¬Hi⊥ → ψ), Hi(¬Hi⊥ → ψ),¬Hi⊥ → ψ | Hiψ ∈ cl1(φ), ψ ∈ Lb

i} ∪
{Hiψ,Ki(¬Hi⊥→ψ), Hi(¬Hi⊥→ψ),¬Hi⊥→ψ | Kiψ ∈ cl1(φ), ψ ∈ Lb

i}
• cl3(φ) := cl2(φ) ∪ {¬ψ | ψ ∈ cl2(φ)}.
• cl4(φ) := cl3(φ) ∪ {KiKiψ,HiKiψ | Kiψ ∈ cl3(φ)} ∪
{Ki¬Kiψ,Hi¬Kiψ | ¬Kiψ ∈ cl3(φ)}

• cl(φ) := cl4(φ) ∪ {¬ψ | ψ ∈ cl4(φ)}.
2

Corollary 5.5 (Decidability) KH C is conservative over KH . Both have
the finite model property (FMP) and, hence, are decidable.

Proof. If KH C ⊬ φ, the finite canonical model MC
φ from the proof of Theo-

rem 5.4 serves as a finite countermodel. Thus, KH C has the FMP. If KH ⊬ φ
for φ ∈ LKH , then KH ̸|= φ by the completeness of KH and KH C ⊬ φ by the
soundness of KH C . This proves the conservativity, which implies the FMP
for KH . 2

So far, by and large, the relationship between common knowledge and com-
mon hope exhibited the same traits as between their individual variants. But
the naive generalization of connection axiom KH is invalid for the common
modalities (for at least two agents). We recall that KH→ corresponds to prop-
erty oneH that each knowledge equivalence class contains at most one hope
partial equivalence class (Prop. 4). It is easy to see that when lifted to the
common modalities, each common knowledge equivalence class may contain
more than one common hope (partial) equivalence class, thus, invalidating the
generalization. The proof of the proposition below provides a simple four-world
countermodel to that effect:

Proposition 5.6 KH ̸|= CH
G p↔

(
¬CH

G⊥ → CK
G (¬CH

G⊥ → p)
)

if |G| ≥ 2.

Proof. To show this, we construct a countermodel from KH. Let i ̸= j ∈ G.
Consider a Kripke model M =

(
(W,K1, . . . ,Kn,H1, . . . ,Hn), π

)
∈ KH such

that
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• W = {G′,G′′,B′,B′′};
• Ki splits W into equivalence classes {G′,B′} and {G′′,B′′};
• Kj splits W into equivalence classes {G′,B′′} and {G′′,B′};
• Kl = Ki for all l ∈ G \ {i, j};
• all agents from G are faulty in bad worlds B′ and B′′ and correct in good
worlds G′ and G′′, i.e., given conditions HinK and oneH, partial equiva-
lence relations Hl = {(G′,G′), (G′′,G′′)} for all l ∈ G;

• π(p) = {G′};
• other elements are arbitrary.

We now have the following: on the one hand, M,G′ |= CH
G p because, for

any l ∈ G, the only world Hl-accessible from G′ is G′ itself.
On the other hand, M,w |= CH

G⊥ iff w ∈ {B′,B′′}. In particular, we
have M,G′ |= ¬CH

G⊥ and M,G′′ |= ¬CH
G⊥. Thus, M,G′′ ̸|= ¬CH

G⊥ → p
and, consequently, M,G′ ̸|= CK

G (¬CH
G⊥ → p). Overall, we can conclude that

M,G′ ̸|= ¬CH
G⊥ → CK

G (¬CH
G⊥ → p).

Thus, KH ̸|= CH
G p↔

(
¬CH

G⊥ → CK
G (¬CH

G⊥ → p)
)
. 2

6 Related Works

It is interesting to observe that many of the “usual suspects” for an epistemic
logic do not fit the properties of hope observed in the runs and systems modeling
of Firing Rebels with Relay [11] and derived from the properties of knowledge
in this paper. For instance, all extensions of S4n are ruled out because hope
(of faulty agents) is not factive, i.e., ̸|= Hiφ → φ. Similarly, KD45n cannot be
used because we take the inconsistency statement Hi⊥ to be the definition of
agent i’s faultiness rather than summarily ruling it out by axiom D.

It is notable that, independently, based on algebraic topological modeling,
Goubault et al. [13] proposed KB4n as an epistemic attitude for synchronous
systems where agent malfunctions are restricted to crash failures. They call
their KB4 modalities ‘knowledge,’ use Ki for them, and define a dead agent
as Ki⊥. We call our KB4 modalities ‘hope,’ use Hi for them, and define an
incorrect agent as Hi⊥, whereas ‘knowledge’ for us is a separate modality of
type S5. Our derivation of KB4 properties of hope from the standard S5 prop-
erties of knowledge helps explain the similarities between their findings for
synchronous agents with at most crash failures and the system for fully byzan-
tine asynchronous agents from [10]. This suggests KB4n to be a good epistemic
basis for studying a wide range of fault-tolerant systems.

Moses and Shoham [22] introduce three binary modal operators describing
a single agent’s beliefs as a form of knowledge relativized to an assumption
(without committing to any type of knowledge or to any particular assumption).
The most relevant of the three for us is the first one Bα

1 φ := K(α→ φ), where
α is any formula. 4 Thus, dropping the agent subscript for a single agent,
our notion of belief Bφ = K(¬H⊥ → φ), see also [11, 15–17], coincides with
their B¬H⊥1 φ.

4 Here subscript 1 means “first operator out of three” rather than agent 1.
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Bolander et al. [3] consider a version of public announcement logic (PAL),
called attention-based announcement logic, where agents need not pay attention
to a public announcement. Not being attentive could be viewed as a special
type of fault, which is modeled in [3] by designated atoms hi for each agent i.
Thus, much like the knowledge of our byzantine agents depends on whether they
are correct, i.e., whether ¬Hi⊥ is true, the knowledge of their agents after a
public announcement depends on whether hi is true. Another common concern
is agents’ introspective properties regarding their faults, with [3] considering
systems for both non-fault-introspective and fault-introspective agents, the lat-
ter stipulating the attention introspection property : an attentive agent believes
to be attentive, hi → Bihi, and an inattentive agent believes to be inattentive,
¬hi → Bi¬hi. This results in logic Kn for non-fault-introspective agents and an
extension of logic K45n for fault-introspective ones. The distinction between [3]
and our byzantine agents is their lack of axiom B corresponding to frame sym-
metry. Note that, by the very nature of their work, [3] deals with dynamic
epistemic notions. The authors also introduce an adaptation of relativized com-
mon belief [1] called attention-based relativized common belief defined as the
fixpoint of the equation x = Eχ

A(φ ∧ x), where Eχ
A :=

∧
i∈A
(
hi → Bi(χ→ φ)

)
and where χ is the relativization formula. This closely resembles our notion of
mutual hope EH

A =
∧

i∈A(¬Hi⊥ → Ki

(
¬Hi⊥ → φ)

)
.

7 Conclusion and Future Work

We provided a description of epistemic views of agents in fault-tolerant dis-
tributed systems with fully byzantine agents by means of a multimodal logic
with two types of modalities — hope and knowledge — and showed how sys-
tem specifications and properties of such agents can be represented by frame-
characterizable properties. This analysis yielded new insights, for instance,
into the distinctions between the case of fault-tolerant systems with at most
one vs. several byzantine agents. This distinction was already observed in [16]
but the newly provided axiomatic representation explains which of the general
properties of byzantine agents are violated when all but one agents are correct.

The extension of our completeness result to the case of common hope and
common knowledge is paving the way for the complete analysis of the Firing
Rebels with Relay problem, which involves a temporal dimension and relies on
a temporal generalization of mutual hope, called eventual mutual hope [11]. As
for the case of inattentive agents in [3], we also plan to introduce a dynamic
component to our logic of byzantine agents, in order to formalize how com-
munication in distributed systems affects agents’ epistemic state depending on
agents’ correctness. We would also like to describe common hope as relativized
common knowledge along the lines of [3], but the difficulty is that in our case
formula χ would have to depend on i.

All these developments and extensions will be guided by the need to repre-
sent specific types of faults commonly considered in distributed systems.
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