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Abstract

We define a family of propositional constructive modal logics corresponding each to
a different classical modal system. The logics are defined in the style of Wijesek-
era’s constructive modal logic [38], and are both proof-theoretically and semantically
motivated. On the one hand, they correspond to the single-succedent restriction of
standard sequent calculi for classical modal logics. On the other hand, they are ob-
tained by incorporating the hereditariness of intuitionistic Kripke models into the
classical satisfaction clauses for modal formulas. We show that, for the considered
classical logics, the proof-theoretical and the semantical approach return the same
constructive systems.

Keywords: Constructive modal logic, intuitionistic modal logic, sequent calculus,
neighbourhood semantics.

1 Introduction

Constructive or intuitionistic modal logics are extensions of intuitionistic logic
with modalities 2 and 3. The motivations for the study of modalities with an
intuitionistic basis are manifold, but they can be schematically classified into
two kinds. On the one hand, from a theoretical perspective, it comes natural
to combine intuitionistic and modal logic [35], considering in particular that
both of them can be semantically arranged in terms of possible world models.
In addition, the rejection of classical equivalences can allow for a finer analysis
of the modalities. On the other hand, intuitionistic or constructive modal
logics can be motivated by specific applications in computer science, such as
type-theoretic interpretations, verification, and knowledge representation.

A peculiar feature of intuitionistic modal logics is that, similarly to the in-
tuitionistic connectives, 2 and 3 are not interdefinable. This allows for the
definition of systems in which 2 and 3 satisfy distinct principles. At the same
time, it makes possible to define different intuitionistic or constructive coun-
terparts of the same classical logic, as it is testified by the several intuitionistic
versions of classical K which have been proposed in the literature (see [35] for
a survey).

Intuitionistic modal logics have been formulated as monomodal (with
only 2 or only 3) or bimodal (with both 2 and 3) systems. Consider-
ing logics including both modalities, two intuitionistic versions of K have
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been mostly considered: so-called Intuitionistic K (IK) and Constructive K
(CK). The first system was introduced by Fischer Servi [13], Ploktin and
Stirling [33], and Ewald [12], and can be defined as the set of formulas
whose standard translation is derivable in first-order intuitionistic logic [35,40].
The second system, which is weaker that IK, was introduced by Bellin, de
Paiva and Ritter [6], and was motivated by type-theoretic interpretations
of the modalities and categorical semantics, but also by contextual reason-
ing [26,28]. Both the semantics [13,33,12,35,5,26,2,9,29,1] and the proof the-
ory [3,36,14,19,25,24,23,6,4,27,10] of IK and CK have been extensively investi-
gated, in particular significant consideration has been devoted to their exten-
sions with standard modal axioms D, T , B, 4, and 5, so that entire families of
intuitionistic and constructive modal logics are now available in the literature.

An additional bimodal constructive version of K was proposed by Wije-
sekera [38]. Wijesekera’s logic aimed at representing reasoning with partial
information about the states of concurrent transition systems, and was intro-
duced as a modal extension of first-order intuitionistic logic. If we restrict
our attention to its propositional fragment, Wijesekera’s logic is intermediate
between CK and IK. In particular, Wijesekera’s logic (we call it WK) can be
defined by extending (any axiomatisation of) intuitionistic propositional logic
(IPL) with the following modal axioms and rules: 1

Anec
2A

K2 2(A ⊃ B) ⊃ (2A ⊃ 2B) N3 ¬3⊥
K3 2(A ⊃ B) ⊃ (3A ⊃ 3B)

Then CK can be obtained by dropping ¬3⊥, whereas IK is obtained by extend-
ing WK with the axioms 3(A∨B) ⊃ 3A∨3B and (3A ⊃ 2B) ⊃ 2(A ⊃ B).
The interest of WK is not limited to its intended interpretation: this logic also
exhibits an elegant relation with classical K, both from a semantical and from
a proof-theoretical perspective. We now illustrate this relation.

Semantics for intuitionistic modal logics are typically defined by combining
intuitionistic Kripke models and possible-world models for modal logics. A
crucial requirement is that the resulting models must preserve the hereditary
property of intuitionistic models, meaning that if a formula is true in a world
w, then it is true also in all worlds reachable from w through the intuitionistic
order ≤. Such a requirement can be fulfilled essentially in two ways. First, one
can establish suitable combinations between ≤ and the modal relation R, as it
is done for instance in the semantics for IK. Alternatively, one can build the
hereditariness into the satisfaction clauses for modal formulas by requiring that
the standard clauses hold for all ≤-successors. This is the strategy adopted by
Wijesekera [38] who presents models with two relations ≤ and R without any
specific combination between them, where the modalities are interpreted in the
following way: 2

1 Wijesekera [38] includes also the axiom 2A∧3(A ⊃ B) ⊃ 3B which is derivable from the
others.
2 The semantics of CK is similar but it also requires ‘fallible’ worlds satisfying ⊥ (cf. [26]).
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M, w ⊩ 2A iff for all v ≥ w, for all u, if vRu, then M, u ⊩ A.
M, w ⊩ 3A iff for all v ≥ w, there is u such that vRu and M, u ⊩ A.

Wijesekera [38] also provides a sequent calculus for WK, which is defined
by extending a suitable calculus for IPL with the following modal rules (where
|Γ| ≥ 0 and 0 ≤ |∆| ≤ 1):

Γ ⇒ A
Ki
2 2Γ ⇒ 2A

Γ, A ⇒ ∆
Ki
3 2Γ,3A ⇒ 3∆

Gentzen [15] showed that, given a suitable sequent calculus for classical
logic, its restriction to single-succedent sequents (i.e., sequents with at most
one formula in the consequent) provides a sequent calculus for intuitionistic
logic. Interestingly, Wijesekera’s logic can be seen as the system obtained by
restricting to single-succedent sequents a standard sequent calculus for classical
K (formulated with explicit 2 and3), 3 so that this correspondence is preserved
at the modal level. We then observe that WK displays a clear and elegant
relation with classical K, both semantically and proof-theoretically:

• semantically, WK is obtained simply by incorporating hereditariness into
the modal satisfaction clauses of K;

• proof-theoretically, it is obtained by restricting a standard sequent calculus
for K to single-succedent sequents.

Despite its interest, Wijesekera’s logic has received significantly less consid-
eration than CK and IK. In particular, while alternative semantics and proof
systems for WK have been studied [39,18,9,10], no systematic investigation of
Wijesekera-style systems has been carried out so far.

Filling this gap is precisely the aim of this paper: we define a family of
Wijesekera-style logics corresponding each to a different classical modal logic
(for lack of a better name we call them W-logics), adopting as a guideline for
the definition of these systems the semantical and proof-theoretical relation
between WK and K just described. In particular, in Sec. 2 we present standard
sequent calculi and semantics for a family of classical modal logics. Then we
define constructive counterparts of these logics by (i) restricting the calculi to
single-succedent sequents (Sec. 3), and (ii) expressing the classical satisfaction
clauses for modal formulas over intuitionistic Kripke models, building hered-
itariness into these conditions (Sec. 4). The main contribution of this paper
consists in showing that, despite being mutually independent, for a wide fam-
ily of classical modal logics the semantical and the proof-theoretical approach
return exactly the same constructive systems.

2 Preliminaries on classical modal logics

Let L be a propositional modal language based on a set Atm of countably
many propositional variables p1, p2, p3, ...; the well-formed formulas of L are

3 Wijesekera [38] considers a multi-succedent calculus for IPL, however an equivalent calculus
can be given by adding Wijesekera’s modal rules to a single-succedent calculus (cf. [9] and
Sec. 3 in this paper).
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Anec
2A

K2 2(A ⊃ B) ⊃ (2A ⊃ 2B) T2 2A ⊃ A
K3 2(A ⊃ B) ⊃ (3A ⊃ 3B) T3 A ⊃ 3A

A ⊃ Bmon2
2A ⊃ 2B

C2 2A ∧2B ⊃ 2(A ∧B) D 2A ⊃ 3A
C3 3(A ∨B) ⊃ 3A ∨3B P2 ¬2⊥

A ⊃ Bmon3
3A ⊃ 3B

N2 2⊤ P3 3⊤
N3 ¬3⊥

dual 2A ⊃⊂ ¬3¬A dual∧ ¬(2A ∧3¬A) dual∨ 2A ∨3¬A

Fig. 1. Modal axioms and rules.
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Fig. 2. Dyagram of classical modal logics.

generated by the following grammar, where pi is any element of Atm:

A ::= pi | ⊥ | A ∧A | A ∨A | A ⊃ A | 2A | 3A.

We also define ⊤ := ⊥ ⊃ ⊥, ¬A := A ⊃ ⊥, and A ⊃⊂ B := (A ⊃ B)∧(B ⊃ A).
We aim at enriching the family of Wijesekera-style propositional modal log-

ics by defining constructive counterparts of well-known classical modal logics.
We consider the following classical systems, which are defined in the language
L extending (any axiomatisation of) classical propositional logic (CPL) with
the following modal axioms and rules from Fig. 1:

M := dual + mon2 MNP := MN + P2 MT := M + T2

MN := M + N2 MD := M + D MNT := MN + T2

MC := M + C2 MND := MN + D MCT := MC + T2

K := M + N2 + C2 MCD := MC + D KT := K + T2

MP := M + P2 KD := K + D

The considered axiomatisation of K is equivalent to the more standard one with
nec and K2 (cf. e.g. [8]). The above list contains logics stronger than K as well
as weaker (i.e., non-normal) systems. Note that given the duality between 2

and 3, the above systems can be equivalently defined by replacing mon2, N2,
C2, T2, and P2, with their 3-versions mon3, N3, C3, T3, P3 (Fig. 1). The
relations among the classical systems are displayed in Fig. 2 (MCP and KP are
not considered in the list as they coincide with MCD and KD).

We will define constructive counterparts of classical modal logics by re-
stricting suitable sequent calculi for the classical systems. We consider to this
purpose the calculi for classical modal logics defined by the rules in Fig. 3. As
usual, we call sequent any pair Γ ⇒ ∆, where Γ and ∆ are finite, possibly
empty multisets of formulas of L. A sequent Γ ⇒ ∆ is interpreted as a formula
of L as

∧
Γ ⊃

∨
∆ if Γ is non-empty, and it is interpreted as

∨
∆ if Γ is empty,

where
∨
∅ is interpreted as ⊥. For every multiset Γ = A1, ..., An, we denote
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Propositional rules init Γ, p ⇒ p,∆ ⊥L Γ,⊥ ⇒ ∆

Γ ⇒ A,∆ Γ, B ⇒ ∆⊃L
Γ, A ⊃ B ⇒ ∆

Γ, A ⇒ B,∆⊃R
Γ ⇒ A ⊃ B,∆

Γ ⇒ A,∆ Γ ⇒ B,∆∧R
Γ ⇒ A ∧B,∆

Γ, A,B ⇒ ∆∧L
Γ, A ∧B ⇒ ∆

Γ ⇒ A,B,∆∨R
Γ ⇒ A ∨B,∆

Γ, A ⇒ ∆ Γ, B ⇒ ∆∨L
Γ, A ∨B ⇒ ∆

Modal rules

A ⇒ B
M2

Γ,2A ⇒ 2B,∆
A ⇒ B

M3
Γ,3A ⇒ 3B,∆

Γ, A ⇒ B,∆
C2

Γ′,2Γ,2A ⇒ 2B,3∆,∆′

A,B ⇒
∧-dualM

Γ,2A,3B ⇒ ∆

Γ, A ⇒ B,∆
C3

Γ′,2Γ,3A ⇒ 3B,3∆,∆′
A ⇒ B

D
Γ,2A ⇒ 3B,∆

⇒ A,B
∨-dualM

Γ ⇒ 2A,3B,∆

Γ, A,B ⇒
∧-dualC

Γ′,2Γ,2A,3B ⇒ ∆

A,B ⇒
D2

Γ,2A,2B ⇒ ∆

⇒ A,B,∆
∨-dualC

Γ ⇒ 2A,3B,3∆,∆′
Γ ⇒ A,∆

K2
Γ′,2Γ ⇒ 2A,3∆,∆′

⇒ A,B
D3

Γ ⇒ 3A,3B,∆

Γ, A ⇒ ∆
K3

Γ′,2Γ,3A ⇒ 3∆,∆′
⇒ A

N2
Γ ⇒ 2A,∆

A ⇒
N3

Γ,3A ⇒ ∆
A ⇒

P2
Γ,2A ⇒ ∆

⇒ A
P3

Γ ⇒ 3A,∆

Γ,2A,A ⇒ ∆
T2

Γ,2A ⇒ ∆

Γ ⇒ A,3A,∆
T3

Γ ⇒ 3A,∆

Γ ⇒ ∆
CD

Γ′,2Γ ⇒ 3∆,∆′

Fig. 3. Sequent rules for classical modal logics (where |Γ|, |Γ′|, |∆|, |∆′| ≥ 0).

with 2Γ and 3Γ the multisets 2A1, ...,2An and 3A1, ...,3An, respectively.
We consider G3-style calculi with all structural rules admissible (cf. [37, Ch. 3]).
Moreover, we consider a formulation of the calculi in which both 2 and 3 occur
explicitly, this formulation will be needed to handle the constructive systems,
where the modalities are not interdefinable (for a sequent calculus with explicit
2 and 3 see e.g. [37, Ch. 9], for sequent calculi for non-normal modal log-
ics see [20,21]). For each logic L, the corresponding calculus S.L contains the
propositional rules and the following modal rules:

S.M := M2 + M3 + ∧-dualM + ∨-dualM S.MP := S.M + P2 + P3

S.MN := S.M + N2 + N3 S.MNP := S.MN + P2 + P3

S.MC := C2 + C3 + ∧-dualC + ∨-dualC
S.K := K2 + K3

S.MD := S.M + D + D2 + D3 + P2 + P3 S.MT := S.M + T2 + T3

S.MND := S.MN + D + D2 + D3 + P2 + P3 S.MNT := S.MN + T2 + T3

S.MCD := S.MC + CD S.MCT := S.MC + T2 + T3

S.KD := S.K + CD S.KT := S.K + T2 + T3

Each calculus contains two duality rules ∧-dual and ∨-dual (in S.K and its
extensions they are obtained as the particular cases of K3 and K2 with |∆| = ∅,
respectively |Γ| = ∅). The duality rules allow one to derive the Hilbert-style
rules

¬(A ∧B)
Rdual∧ ¬(2A ∧3B)

A ∨BRdual∨
2A ∨3B
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which are classically equivalent to dual∧ and dual∨ (Fig. 1), and taken together
are equivalent to dual. The rules C2 and C3 can be seen as the generalisa-
tion of M2 and M3 to n-principal formulas in the antecedent, respectively in
the consequent. Differently from M2, the rule C2 involves also 3-formulas,
similarly C3 involves also 2-formulas, this is needed in order to preserve the
admissibility of cut in the calculus. Note also that C2 and C3 are distinct from
K2 and K3, since C2 and C3 are applicable only to sequents with non-empty
antecedent, respectively non-empty consequent, while this is not required for
K2 and K3. Finally, the calculi S.MD and S.MND contain also the rules P2

and P3, this is needed to ensure admissibility of contraction [11,31], and is
consistent with the fact that the axioms P2 and P3 are derivable in MD. Each
calculus S.L is a calculus for the corresponding logic L in the following sense:

Theorem 2.1 For every considered classical modal logic L, S.L ⊢ Γ ⇒ ∆ if
and only if L ⊢

∧
Γ ⊃

∨
∆.

We now move to the semantics. Since non-normal logics do not have a
(simple) relational semantics, 4 we consider a neighbourhood semantics that
uniformly covers all considered systems.

Definition 2.2 A neighbourhood model is a tuple M = ⟨W,N ,V⟩, where W
is a non-empty set of worlds, N is a function P(W) −→ P(P(W)), called
neighbourhood function, and V is a valuation function Atm −→ P(W). The
forcing relation M, w ⊩ A is inductively defined as follows:

M, w ⊩ p iff w ∈ V(p).
M, w ̸⊩ ⊥.
M, w ⊩ B ∧ C iff M, w ⊩ B and M, w ⊩ C.
M, w ⊩ B ∨ C iff M, w ⊩ B or M, w ⊩ C.
M, w ⊩ B ⊃ C iff M, w ̸⊩ B or M, w ⊩ C.
M, w ⊩ 2B iff there is α ∈ N (w) s.t. for all v ∈ α, M, v ⊩ B.
M, w ⊩ 3B iff for all α ∈ N (w), there is v ∈ α s.t. M, v ⊩ B.

We consider the following properties on neighbourhood models:

(C) If α, β ∈ N (w), then α ∩ β ∈ N (w). (N) N (w) ̸= ∅.
(D) If α, β ∈ N (w), then α ∩ β ̸= ∅. (P) ∅ /∈ N (w).
(T) If α ∈ N (w), then w ∈ α.

We say that M is a model for a logic L if it satisfies the condition (X) for every
modal axiom X2 of L (among C2, N2, T2, D, P2). As usual, we say that a
formula A is valid in a model M, written M |= A, if M, w ⊩ A for every world
w of M.

In the following we simple write w ⊩ A when M is clear from the context.
We also use the following abbreviations:

α ⊩∀ A := for all w ∈ α, w ⊩ A; α ⊩∃ A := there is w ∈ α s.t. w ⊩ A.

4 Cf. [7] for multi-relational semantics for non-normal modal logics, and [34,11] for relational
semantics with “non-normal” worlds for the logics containing C2 but not N2.
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Propositional rules initi Γ, p ⇒ p ⊥i
L Γ,⊥ ⇒ ∆

Γ, A ⊃ B ⇒ A Γ, B ⇒ ∆
⊃i

L Γ, A ⊃ B ⇒ ∆

Γ, A ⇒ B
⊃i

R Γ ⇒ A ⊃ B

Γ ⇒ A Γ ⇒ B∧i
R Γ ⇒ A ∧B

Γ, A,B ⇒ ∆
∧i

L Γ, A ∧B ⇒ ∆

Γ ⇒ Ai∨i
R (i ∈ {1, 2})

Γ ⇒ A1 ∨A2

Γ, A ⇒ ∆ Γ, B ⇒ ∆
∨i

L Γ, A ∨B ⇒ ∆

Modal rules

Γ, A ⇒ B
Mi

2 Γ,2A ⇒ 2B

Γ, A ⇒ B
Mi

3 Γ,3A ⇒ 3B

A,B ⇒
∧-dualiM Γ,2A,3B ⇒ ∆

⇒ A
Ni

2 Γ ⇒ 2A

Γ, A ⇒ B
Ci
2

Γ′,2Γ,2A ⇒ 2B

Γ, A ⇒ B
Ci
3

Γ′,2Γ,3A ⇒ 3B

Γ, A,B ⇒
∧-dualiC Γ′,2Γ,2A,3B ⇒ ∆

A ⇒
Ni

3 Γ,3A ⇒ ∆
Γ ⇒ A

Ki
2

Γ′,2Γ ⇒ 2A

Γ, A ⇒ B
Ki

3
Γ′,2Γ,3A ⇒ 3B

Γ ⇒ A
Ti

3 Γ ⇒ 3A

Γ, A ⇒
∧-dualiK Γ′,2Γ,3A ⇒ ∆

Γ,2A,A ⇒ ∆
Ti

2 Γ,2A ⇒ ∆

A ⇒
Pi
2 Γ,2A ⇒ ∆

⇒ A
Pi
3 Γ ⇒ 3A

A ⇒ B
Di

Γ,2A ⇒ 3B

A,B ⇒
Di

2 Γ,2A,2B ⇒ ∆

Γ ⇒ A
CDi

Γ′,2Γ ⇒ 3A

Γ ⇒
CDi

2
Γ′,2Γ ⇒ ∆

Fig. 4. Sequent rules for W-logics (where |Γ|, |Γ′| ≥ 0, and 0 ≤ |∆| ≤ 1).

Using these abbreviations, the satisfaction clauses for modal formulas can be
equivalently written as

w ⊩ 2B iff there is α ∈ N (w) such that α ⊩∀ B.
w ⊩ 3B iff for all α ∈ N (w), α ⊩∃ B.

The following holds (cf. e.g. [8,32]).

Theorem 2.3 For every considered classical modal logic L, L ⊢ A if and only
if M |= A for all neighbourhood models M for L.

3 Single-succedent calculi and W-logics

We now define a family of Wijesekera-style constructive modal logics corre-
sponding to the classical logics considered in Sec. 2. In particular, we firstly
define constructive modal calculi by restricting the classical calculi from Sec. 2
to single-succedent sequents, and study their structural properties. Then we
define equivalent axiomatic systems, and prove some fundamental properties
of them.

The rules obtained by restricting sequents to at most one formula in the
consequent are displayed in Fig. 4. This restriction modifies the classical modal
rules in two ways: first, the rules ∨-dualM, ∨-dualR, and D3 are dropped because
they require at least two formulas in the consequent of sequents. Second, the
right context is deleted from all rules with a principal formula in the consequent
of sequents, namely T3, C2, C3, and K2. Note in particular that3∆ is removed
from C2, C3, and K2, moreover 3A is removed from the premiss of Ti

3 (the
copy of 3A into the premiss of T3 is needed in the classical calculus in order
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to ensure admissibility of right contraction, which is not expressible in the
intuitionistic calculus). Note also that K3 and CD are split into two rules,
respectively Ki

3 and ∧-dualiK, and CDi and CDi
2, which correspond to the cases

in which the consequent of the premiss of K3 or CD is or is not empty. Finally,
note that Ci

2 and Ki
2 become equivalent. Concerning the propositional rules,

⊃L is modified as usual by copying the principal implication into the left premiss
in order to ensure admissibility of contraction [37], and ∨R is replaced by its
single-succedent version. All other rules remain unchanged. The resulting
calculi S.WL are defined by extending the set of intuitionistic propositional
rules with the following modal rules:

S.WM := Mi
2 + Mi

3 + ∧-dualiM S.WMP := S.WM + Pi
2 + Pi

3

S.WMN := S.WM + Ni
2 + Ni

3 S.WMNP := S.WMN + Pi
2 + Pi

3

S.WMC := Ci
2 + Ci

3 + ∧-dualiC
S.WK := Ki

2 + Ki
3 + ∧-dualiK

S.WMD := S.WM + Di + Di
2 + Pi

2 + Pi
3 S.WMT := S.WM + Ti

2 + Ti
3

S.WMND := S.WMN + Di + Di
2 + Pi

2 + Pi
3 S.WMNT := S.WMN + Ti

2 + Ti
3

S.WMCD := S.WMC + CDi + CDi
2 S.WMCT := S.WMC + Ti

2 + Ti
3

S.WKD := S.WK + CDi + CDi
2 S.WKT := S.WK + Ti

2 + Ti
3

Note that the modal rules of S.WK coincide with those of Wijesekera [38]
(except that they have side context in the conclusion in order to embed weak-
ening in their application). S.WK coincides with the calculus G.CCDLp for WK
proposed in [9].

From the point of view of the derivable principles, we observe two main
consequences of the restriction of the calculi to single-succedent sequents. First,
the rule Rdual∨ is no longer derivable in the calculi. This is due to the absence
of ∨-dualM and ∨-dualC, and the elimination of 3-formulas from the conclusion
of Ki

2. Second, C3 is not derivable in S.WMC, S.WK and their extensions, this
is due to the restriction of Ci

3 and Ki
3 to only one 3-formula in the right-hand

side of the conclusion. By contrast, all other modal principles from Fig. 1 are
still derivable in the corresponding calculi (cf. derivations in Fig. 5).

In the following, we denote with S.W∗ any constructive calculus defined
above. As usual, we say that a rule is admissible in S.W∗ if whenever the
premisses are derivable, the conclusion is also derivable, and that a single-
premiss rule is height-preserving admissible if whenever the premiss is derivable,
the conclusion is derivable with a derivation of at most the same height. We
now prove that the calculi S.W∗ enjoy admissibility of structural rules and cut,
then we present equivalent axiomatic systems.

Proposition 3.1 (Admissibility of structural rules) The following rules
are height-preserving admissible in S.W∗:

Γ ⇒ ∆
Lwk

Γ, A ⇒ ∆
Γ ⇒

Rwk
Γ ⇒ A

Γ, A,A ⇒ ∆
ctr

Γ, A ⇒ ∆
.

Proof. Height-preserving admissibility of Lwk, Rwk, and ctr is proved by in-
duction on the height of the derivation of their premiss, taking into account
the last rule applied in the derivation. For Lwk and Rwk the proof is straight-
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A,A ⊃ ⊥ ⇒ A A,⊥ ⇒
⊃i

LA,A ⊃ ⊥ ⇒
∧-dualiM

2A,3(A ⊃ ⊥) ⇒ ⊥
∧i

L
2A ∧3(A ⊃ ⊥) ⇒ ⊥

⊃i
R⇒ 2A ∧3(A ⊃ ⊥) ⊃ ⊥

A,B ⇒ A A,B ⇒ B
∧i

RA,B ⇒ A ∧B
Ci
2

2A,2B ⇒ 2(A ∧B)
∧i

L
2A ∧ 2B ⇒ 2(A ∧B)

⊃i
R⇒ 2A ∧ 2B ⊃ 2(A ∧B)

A ⊃ B,A ⇒ A B,A ⇒ B
⊃i

LA ⊃ B,A ⇒ B
Ci
2

2(A ⊃ B),2A ⇒ 2B
⊃i

R
2(A ⊃ B) ⇒ 2A ⊃ 2B

⊃i
R⇒ 2(A ⊃ B) ⊃ (2A ⊃ 2B)

A ⊃ B,A ⇒ A B,A ⇒ B
⊃i

LA ⊃ B,A ⇒ B
Ci
3

2(A ⊃ B),3A ⇒ 3B
⊃i

R
2(A ⊃ B) ⇒ 3A ⊃ 3B

⊃i
R⇒ 2(A ⊃ B) ⊃ (3A ⊃ 3B)

⊥ ⇒ ⊥ ⊃i
R⇒ ⊥ ⊃ ⊥
Ni

2⇒ 2(⊥ ⊃ ⊥)

⊥ ⇒
Ni

33⊥ ⇒ ⊥ ⊃i
R⇒ 3⊥ ⊃ ⊥

2A,A ⇒ A
Ti

22A ⇒ A ⊃i
R⇒ 2A ⊃ A

A ⇒ A
Ti

3A ⇒ 3A ⊃i
R⇒ A ⊃ 3A

A ⇒ A
Di

2A ⇒ 3A ⊃i
R⇒ 2A ⊃ 3A

⊥ ⇒
Pi
22⊥ ⇒ ⊥ ⊃i

R⇒ 2⊥ ⊃ ⊥

⊥ ⇒ ⊥ ⊃i
R⇒ ⊥ ⊃ ⊥
Pi
3⇒ 3(⊥ ⊃ ⊥)

Fig. 5. Derivations of the modal axioms.

forward, we consider some examples for ctr involving the modal rules. The
derivations on the left are converted into the derivations on the right, which
include applications of ctr which are height-preserving admissible by i.h.:

A,A ⇒
Di

2 Γ,2A,2A ⇒ ∆
;

A,A ⇒
ctr

A ⇒
Pi
2Γ,2A ⇒ ∆

Γ,2A,2A,A ⇒ ∆
Ti

2 Γ,2A,2A ⇒ ∆
;

Γ,2A,2A,A ⇒ ∆
ctr

Γ,2A,A ⇒ ∆
Ti

2Γ,2A ⇒ ∆

Γ, A,A,B ⇒ C
Ci
3

Γ′,2Γ,2A,2A,3B ⇒ 3C
;

Γ, A,A,B ⇒ C
ctr

Γ, A,B ⇒ C
Ci
3

Γ′,2Γ,2A,3B ⇒ 3C

Γ, A,B ⇒ C
Ci
3

Γ′,2A,2Γ,2A,3B ⇒ 3C
;

Γ, A,B ⇒ C
Ci
3

Γ′,2Γ,2A,3B ⇒ 3C

In the last example, one occurrence of 2A is introduced by the first appli-
cation of Ci

3 as part of the side context, while this is not the case in the second
application of Ci

3. 2

Theorem 3.2 (Cut admissibility) The following cut rule is admissible in
S.W∗:

Γ ⇒ A Γ′, A ⇒ ∆
cut

Γ,Γ′ ⇒ ∆
.

Proof. By induction on lexicographically ordered pairs (c, h), where c is the
complexity of the cut formula (i.e., the number of binary connectives or modal-
ities occurring in it), and h = h1 + h2, called cut height, is the sum of the
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heights of the derivations of the premisses of cut. As usual, we distinguish
some cases according to whether the cut formula is or not principal in the last
rules applied in the derivation of the premisses of cut. For the cases where the
last rules applied in the derivation of the premisses of cut are propositional we
refer to [37, Ch. 4]. Here we only show a few most relevant cases involving
modal rules, the other cases are similar.

(i) The cut formula is not principal in the last rule application in the deriva-
tion of the left premiss of cut. We consider the following two examples,
where the derivation on the left is converted into the derivation on the
right:

A,B ⇒
∧-dualiM Γ,2A,3B ⇒ C Γ′, C ⇒ ∆

cut
Γ,Γ′,2A,3B ⇒ ∆

;
A,B ⇒

∧-dualiMΓ,Γ′,2A,3B ⇒ ∆

Γ,2A,A ⇒ B
Ti

2 Γ,2A ⇒ B Γ′, B ⇒ ∆
cut

Γ,Γ′,2A ⇒ ∆

;

Γ,2A,A ⇒ B Γ′, B ⇒ ∆
cut

Γ,Γ′,2A,A ⇒ ∆
Ti

2
Γ,Γ′,2A ⇒ ∆

(ii) The cut formula is not principal in the last rule application in the deriva-
tion of the right premiss of cut. We consider the following example:

Γ ⇒ A

Γ′′, B ⇒ C
Ci
3

Γ′, A,2Γ′′,3B ⇒ 3C
cut

Γ,Γ′,2Γ′′,3B ⇒ 3C

;
Γ′′, B ⇒ C

Ci
3

Γ,Γ′,2Γ′′,3B ⇒ 3C

(iii) The cut formula is principal in the last rule application in the derivations
of both premisses of cut. We consider the following three examples, where
R∗ denotes multiple applications of the rule R:

(Ci
3; ∧-dualiC)

Γ, A ⇒ B
Ci
3

Γ′,2Γ,3A ⇒ 3B

Γ′′, C,B ⇒
∧-dualiCΓ′′′,2Γ′′,2C,3B ⇒ ∆
cut

Γ′,Γ′′′,2Γ,2Γ′′,2C,3A ⇒ ∆

;

Γ, A ⇒ B Γ′′, C,B ⇒
cut

Γ,Γ′′, C,A ⇒
∧-dualiCΓ′,Γ′′′,2Γ,2Γ′′,2C,3A ⇒ ∆

(Ti
3; C

i
3)

Γ ⇒ A
Ti

3 Γ ⇒ 3A

Γ′, A ⇒ B
Ci
3

Γ′′,2Γ′,3A ⇒ 3B
cut

Γ,Γ′′,2Γ′ ⇒ 3B

;

Γ ⇒ A Γ′, A ⇒ B
cut

Γ,Γ′ ⇒ B
Ti

3
Γ,Γ′ ⇒ 3B

Ti
2
∗

Γ,2Γ′ ⇒ 3B
Lwk∗

Γ,Γ′′,2Γ′ ⇒ 3B
(Ni

2; D
i)

⇒ A
Ni

2 Γ ⇒ 2A

A ⇒ B
Di

Γ′,2A ⇒ 3B
cut

Γ,Γ′ ⇒ 3B

;

⇒ A A ⇒ B
cut⇒ B

Pi
3

Γ,Γ′ ⇒ 3B
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WM

WMN

WMC

WK

WMP

WMNP

WMD

WMND

WMCD

WKD

WMT

WMNT

WMCT

WKT

Fig. 6. Dyagram of constructive modal logics.

2

3.1 Axiom systems

For each constructive calculus S.WL, we now define an equivalent axiomatic
system. The logics WL are defined in the language L extending (any axioma-
tisation of) IPL with the following modal axioms and rules from Fig. 1:

WM := dual∧ + mon2 + mon3 WMND := WMN + D
WMN := WM + N2 WMCD := WMC + D + P3

WMC := WM + C2 + K3 WKD := WK + D
WK := WMC + N2 WMT := WM + T2 + T3

WMP := WM + P3 WMNT := WMN + T2 + T3

WMNP := WMN + P3 WMCT := WMC + T2 + T3

WMD := WM + D + P3 WKT := WK + T2 + T3

In the following, we will refer to these systems as W-logics. Moreover,
we denote W∗ any W-logic, and we denote WC∗, resp. WD∗, resp. WT∗ any
W-logic with axioms C2 and K3, resp. with axiom D, resp. with axioms T2

and T3. As usual, we say that A is a theorem of W∗, written W∗ ⊢ A, if
there is a finite sequence of formulas ending with A in which every formula is
an axiom of W∗, or it is obtained from previous formulas by the application
of a rule of W∗. Moreover, we say that A is deducible in W∗ from a set of
formulas Σ, written Σ ⊢W∗ A, if there is a finite set {B1, ..., Bn} ⊆ Σ such that
⊢W∗ B1 ∧ ... ∧ Bn ⊃ A. Furthermore, given two axiomatic systems L1 and L2,
we say that L1 is included in L2 if L1 ⊢ A entails L2 ⊢ A for all A ∈ L, and that
L1 and L2 are equivalent if they derive exactly the same theorems.

Concerning W-logics specifically, note that C3 is not an axiom of WMC
because it is not derivable in S.WMC, C3 must be replaced by K3 which
is instead derivable in the calculus. Note also that P3 must be included in
the axiomatisation of WMD and WMCD as it is not derivable from D in the
intuitionistic systems. The relations among the W-logics are displayed in Fig. 6.

We prove some basic results about W-logics.

Proposition 3.3 (i) WM ⊢ Rdual∧. (ii) WMN ⊢ nec. (iii) WMN ⊢ N3. (iv)
WMC ⊢ K2. (v) WMP ⊢ P2. (vi) WMND ⊢ P3.

Proof. (i) From ¬(A ∧ B), by IPL we obtain B ⊃ ¬A, then by mon3, 3B ⊃
3¬A, thus ¬3¬A ⊃ ¬3B. Moreover from dual∧ we have 2A ⊃ ¬3¬A, thus
2A ⊃ ¬3B, therefore ¬(2A∧3B). (ii) From A, by IPL we have ⊤ ⊃ A, then
by mon2, 2⊤ ⊃ 2A, then by N2, 2A. (iii) By Rdual∧, 2⊤ ⊃ ¬3⊥, then by
N2, ¬3⊥. (iv) By C2, 2(A ⊃ B) ∧ 2A ⊃ 2((A ⊃ B) ∧ A), and by mon2,
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2((A ⊃ B) ∧ A) ⊃ 2B, thus by IPL, 2(A ⊃ B) ⊃ (2A ⊃ 2B). (v) By dual∧,
3⊤ ⊃ ¬2⊥, then by P3, ¬2⊥. (vi) By D, 2⊤ ⊃ 3⊤, then by N2, 3⊤. 2

We recall that Wijesekera’s original axiomatisation of WK [38] was given by
IPL+ nec+K2 +K3 +N3. It is easy to verify that dual∧, mon2, mon3, C2,
and N2 are all derivable in Wijesekera’s original system. Then from Proposi-
tion 3.3 it follows in particular that the axiomatisation of WK considered here
is equivalent to Wijesekera’s one.

We now prove that the systems W∗ are equivalent to the corresponding
calculi.

Theorem 3.4 S.W∗ ⊢ Γ ⇒ ∆ if and only if W∗ ⊢
∧

Γ ⊃
∨

∆.

Proof. From right to left, it is easy to see that all modal axioms are derivable
in the corresponding calculi (cf. derivations in Fig. 5), observing that initial
sequents init can be generalised as usual to arbitrary formulas A. For mon2,
from ⇒ A ⊃ B and A ⊃ B,A ⇒ B, by cut (which has been proved admissible)
we obtain A ⇒ B, then by Mi

2, 2A ⇒ 2B, and by ⊃i
R, ⇒ 2A ⊃ 2B. mon3

is derived similarly. The derivations of the intuitionistic axioms are standard,
moreover modus ponens is simulated by cut in the usual way.

For the other direction, we can consider standard derivations of the propo-
sitional rules. Here we show that for every modal sequent rule of S.W∗ with
premiss Γ ⇒ ∆ and conclusion Γ′ ⇒ ∆′, the Hilbert-style rule

∧
Γ ⊃

∨
∆ /∧

Γ′ ⊃
∨
∆′ is derivable in the corresponding system W∗. We only consider

some relevant examples, the other derivations are similar.

(Ci
2) From

∧
Γ∧A ⊃ B, by mon2 we get 2(

∧
Γ∧A) ⊃ 2B, moreover by C2,∧

2Γ ∧2A ⊃ 2(
∧
Γ ∧A), then

∧
Γ′ ∧

∧
2Γ ∧2A ⊃ 2B.

(Ci
3) From

∧
Γ ∧ A ⊃ B, we get

∧
Γ ⊃ (A ⊃ B), then by mon2, 2

∧
Γ ⊃

2(A ⊃ B). By C2 we have
∧
2Γ ⊃ 2(A ⊃ B), then by K3,

∧
2Γ ⊃

(3A ⊃ 3B), thus
∧
Γ′ ∧

∧
2Γ ∧3A ⊃ 3B.

(∧-dualiC) From
∧
Γ ∧ A ∧ B ⊃ ⊥, we get

∧
Γ ∧ A ⊃ ¬B, then by mon2,

2(
∧
Γ∧A) ⊃ 2¬B, and by C2,

∧
2Γ∧2A ⊃ 2¬B. Moreover by dual∧,

2¬B ⊃ ¬3B, thus
∧
Γ′ ∧

∧
2Γ ∧2A ∧3B ⊃ C for any C.

(CDi) If Γ ̸= ∅, then from
∧
Γ ⊃ B, by mon2 we get 2

∧
Γ ⊃ 2B, then by

C2,
∧
2Γ ⊃ 2B, and by D,

∧
2Γ ⊃ 3B, thus

∧
Γ′ ∧

∧
2Γ ⊃ 3B. If

Γ = ∅, then from B we get ⊤ ⊃ B, then by mon3, 3⊤ ⊃ 3B, and by
P3, 3B, thus

∧
Γ′ ⊃ 3B.

(CDi
2) From

∧
Γ ⊃ ⊥ we get

∧
Γ′′ ⊃ ¬B for some B ∈ Γ and Γ′′ = Γ \ B.

Then by mon3, 3
∧
Γ′′ ⊃ 3¬B, thus by D, 2

∧
Γ′′ ⊃ 3¬B, by C2,∧

2Γ′′ ⊃ 3¬B, and by dual∧,
∧
2Γ′′ ⊃ ¬2B, thus

∧
Γ′ ∧

∧
2Γ ⊃ C for

any C.
2

3.2 Some properties of W-logics

Cut-free sequent calculi are a very powerful tool for the analysis of logical
systems. In this subsection, we present some fundamental properties of W-
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logics that easily follow from those of their sequent calculi.
We start considering the following result, which establishes how classical

and Wijesekera-style modal logics are related from the point of view of the
axiomatic systems.

Theorem 3.5 Let L be any classical modal logic from Sec. 2, and WL be the
corresponding W-logic. Then L is equivalent to WL+A ∨ ¬A+2A ∨3¬A.

Proof. From left to right, it is easy to verify that all axioms of WL, as well as
A ∨ ¬A and 2A ∨3¬A, are derivable in L. For the opposite direction, adding
A∨¬A one derives as usual all theorems of CPL, while adding 2A∨3¬A one
derives dual. 2

Note that WL+ A ∨ ¬A+ 2A ∨3¬A is a proper extension of WL, as it is
stated by the following proposition.

Proposition 3.6 For every W-logic W∗, W∗ ̸⊢ p ∨ ¬p and W∗ ̸⊢ 2p ∨3¬p.

Proof. If W∗ ⊢ p ∨ ¬p, then by Theorem 3.4, S.W∗ ⊢ ⇒ p ∨ ¬p. The only
rule of S.W∗ with a consequence of the form ⇒ p ∨ ¬p is ∨i

R, thus ∨i
R must

be the last rule applied in the derivation, with premiss either ⇒ p or ⇒ ¬p.
However, by inspecting the rules of S.W∗ it is easy to verify that S.W∗ ̸⊢ ⇒ p
and S.W∗ ̸⊢ ⇒ ¬p, therefore W∗ ̸⊢ p ∨ ¬p. W∗ ̸⊢ 2p ∨3¬p is proved similarly,
observing that S.W∗ ̸⊢ ⇒ 2p and S.W∗ ̸⊢ ⇒ 3¬p. 2

In a similar way we can prove that W-logics satisfy the disjunction property.

Proposition 3.7 (Disjunction property) For all W-logics W∗ and all for-
mulas A, B of L, if W∗ ⊢ A ∨B, then W∗ ⊢ A or W∗ ⊢ B.

Proof. If W∗ ⊢ A ∨B, then by Theorem 3.4, S.W∗ ⊢ ⇒ A ∨B. The only rule
of S.W∗ with a consequence of the form ⇒ A ∨ B is ∨i

R, thus ∨i
R must be the

last rule applied in the derivation, with premiss either ⇒ A or ⇒ B. Then
S.W∗ ⊢ ⇒ A or S.W∗ ⊢ ⇒ B, therefore W∗ ⊢ A or W∗ ⊢ B. 2

Furthermore, we can prove that derivability in W-logics is decidable. To
this aim, observe that for every rule R of S.W∗, the premisses of R have a
smaller complexity than its conclusion, with the only exceptions of ⊃L and Ti

2

which copy the principal formula into one premiss. It follows that bottom-
up proof search in S.W∗ is not strictly terminating, however, similarly to [37,
Ch. 4], termination can be gained by controlling the applications of ⊃L and Ti

2

with a simple loop-checking in order to avoid redundant applications of these
rules, preserving at the same time the completeness of the calculi. Adopting
this restriction, it turns out that every proof tree for a root sequent Γ ⇒ ∆ is
finite, moreover there are only finitely many distinct proof trees for it. Then,
given the equivalence between S.W∗ and W∗, it follows that derivability of A in
W∗ is decidable for any A: the decision procedure trivially consists in checking
all possible derivations of ⇒ A in S.W∗.

Theorem 3.8 (Decidability) Given a W-logic W∗ and a formula A of L, it
is decidable whether A is derivable in W∗.
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Finally, we can prove that all W-logics enjoy Craig interpolation. For every
formula A of L and every multiset Γ = B1, ..., Bn, we define var(A) = {⊥} ∪
{p ∈ Atm | p occurs in A}, and var(Γ) = var(B1) ∪ ... ∪ var(Bn). Then Craig
interpolation amounts to the following property.

Definition 3.9 A logic W∗ enjoys Craig interpolation if for all A,B ∈ L, if
W∗ ⊢ A ⊃ B, then there is C ∈ L such that W∗ ⊢ A ⊃ C, W∗ ⊢ C ⊃ B, and
var(C) ⊆ var(A) ∩ var(B).

The proof of Craig interpolation is based on the following lemma.

Lemma 3.10 For every calculus S.W∗, if S.W∗ ⊢ Γ1,Γ2 ⇒ ∆, then there
is C ∈ L such that S.W∗ ⊢ Γ1 ⇒ C, S.W∗ ⊢ C,Γ2 ⇒ ∆, and var(C) ⊆
var(Γ1) ∩ var(Γ2,∆).

Proof. By induction on the height h of the derivation of Γ1,Γ2 ⇒ ∆, taking
into account the last rule applied in the derivation. If h = 0 or the last rule
applied is propositional we refer to [30]. Here we consider just one significant
case involving a modal rule, for the other rules the proof is analogous.

Let Ci
3 be the last rule applied in the derivation. Then Γ1,Γ2 ⇒ ∆ has

the form Γ′
1,2Γ,3A,Γ′

2 ⇒ 3B and it is obtained from the premiss Γ, A ⇒ B.
There are four possible partitions of Γ′

1,2Γ,3A,Γ′
2 into Γ1,Γ2.

(i) Γ1 = Γ′
1 and Γ2 = 2Γ,3A,Γ′

2. Then ⊤ is an interpolant: Γ′
1 ⇒ ⊤ is

derivable, and from Γ, A ⇒ B, by Ci
3 we obtain ⊤,2Γ,3A,Γ′

2 ⇒ 3B.

(ii) Γ1 = Γ′
1,2Γ,3A and Γ2 = Γ′

2. By i.h., there is C such that Γ, A ⇒ C and
C ⇒ B are derivable, and var(C) ⊆ var(Γ, A) ∩ var(B). Then by Ci

3 we
obtain Γ′

1,2Γ,3A ⇒ 3C and 3C,Γ′
2 ⇒ 3B. Since var(3C) = var(C),

3C is an interpolant.

The following two partitions are possible if Γ = D1, ..., Dn and n ≥ 2.

(iii) Γ1 = Γ′
1,2D1, ...,2Dk and Γ2 = 2Dk+1, ...,2Dn,3A,Γ′

2 (for 1 ≤ k < n).
By i.h., there is C such that D1, ..., Dk ⇒ C and C,Dk+1, ..., Dn, A ⇒ B
are derivable, and var(C) ⊆ var(D1, ..., Dk) ∩ var(Dk+1, ..., Dn, A,B).
Then by Ci

2, Γ′
1,2D1, ...,2Dk ⇒ 2C is derivable, and by Ci

3,
2C,2Dk+1, ...,2Dn,3A,Γ′

2 ⇒ 3B is derivable. Then 2C is an inter-
polant.

(iv) Γ1 = Γ′
1,2D1, ...,2Dk,3A and Γ2 = 2Dk+1, ...,2Dn,Γ

′
2 (for 1 ≤ k < n).

By i.h., there is C such that D1, ..., Dk, A ⇒ C and C,Dk+1, ..., Dn ⇒ B
are derivable, and var(C) ⊆ var(D1, ..., Dk, A) ∩ var(Dk+1, ..., Dn, B).
Then by Ci

3, Γ
′
1,2D1, ...,2Dk,3A ⇒ 3C and 3C,2Dk+1, ...,2Dn,Γ

′
2 ⇒

3B are derivable. Then 3C is an interpolant.
2

Theorem 3.11 Every W-logic W∗ enjoys Craig interpolation.

Proof. Suppose that W∗ ⊢ A ⊃ B. Then S.W∗ ⊢ A ⇒ B. By Lemma 3.10,
there is C ∈ L such that var(C) ⊆ var(A) ∩ var(B), S.W∗ ⊢ A ⇒ C, and
S.W∗ ⊢ C ⇒ B, thus W∗ ⊢ A ⊃ C and W∗ ⊢ C ⊃ B. 2
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4 Semantics

We now define constructive neighbourhood models (CNMs) that characterise
the constructive modal logics defined in Sec. 3. CNMs are defined analogously
to Wijesekera’s relational models [38]: we enrich intuitionistic Kripke models
with a neighbourhood function (rather than a binary relation as in Wijesekera’s
models), moreover we generalise the classical satisfaction clauses for modal
formulas to all ≤-successors, so that hereditariness is built into the clauses:
in order that w satisfies 2A, we require that for all successors of w there is
a neighbourhood α such that α ⊩∀ A, and similarly for 3A. We show that,
for every classical logic characterised by neighbourhood models satisfying some
conditions from Def. 2.2, the corresponding W-logic is characterised by the
CNMs satisfying exactly the same conditions. CNMs are defined as follows.

Definition 4.1 A constructive neighbourhood model (CNM) is a tuple M =
⟨W,≤,N ,V⟩, where W is a non-empty set of worlds, ≤ is a preorder on W,
N : P(W) −→ P(P(W)) is a neighbourhood function, and V : Atm −→ P(W)
is a hereditary valuation function (i.e., if w ∈ V(p) and w ≤ v, then v ∈ V(p)).
The forcing relationM, w ⊩ A is defined as in Def. 2.2 forA = p,⊥, B∧C,B∨C,
otherwise it is as follows:

M, w ⊩ B ⊃ C iff for all v ≥ w, M, v ⊩ B implies M, v ⊩ C.
M, w ⊩ 2B iff for all v ≥ w, there is α ∈ N (v) such that α ⊩∀ B.
M, w ⊩ 3B iff for all v ≥ w, for all α ∈ N (v), α ⊩∃ B.

We consider the following properties on CNMs:

(C) If α, β ∈ N (w), then α ∩ β ∈ N (w). (N) N (w) ̸= ∅.
(D) If α, β ∈ N (w), then α ∩ β ̸= ∅. (P) ∅ /∈ N (w).
(T) If α ∈ N (w), then w ∈ α.

We say that M is a model for a logic W∗, or is a W∗-model, if for every modal
axiom X of W∗ (among C2, N2, T2, D, P3), M satisfies the corresponding
condition (X).

CNMs represent the simplest way of combining intuitionistic Kripke models
and neighbourhood models. From the definition of V and of the satisfaction
clauses, it immediately follows that CNMs enjoy the hereditary property.

Proposition 4.2 (Hereditary property) For all A ∈ L and all CNMs M,
if M, w ⊩ A and w ≤ v, then M, v ⊩ A.

Proof. By induction on the construction of A. We only consider the inductive
cases A = 2B,3B as the other cases are standard. (A = 2B) If w ⊩ 2B, then
for all u ≥ w, there is α ∈ N (u) such that α ⊩∀ B, then for all u ≥ v, there is
α ∈ N (u) such that α ⊩∀ B, thus v ⊩ 2B. (A = 3B) If w ⊩ 3B, then for all
u ≥ w, for all α ∈ N (u), α ⊩∃ B, then for all u ≥ v, for all α ∈ N (u), α ⊩∃ B,
thus v ⊩ 3B. 2

We show that, for any classical modal logic characterised by neighbour-
hood models satisfying some conditions among (C), (N), (T), (D), (P), the
corresponding W-logic is characterised by the CNMs satisfying the same con-
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ditions. We first show that W-logics are sound with respect to their classes of
CNMs, then prove their completeness by a canonical model construction.

Theorem 4.3 (Soundness) For every W-logic W∗, if W∗ ⊢ A, then M |= A
for all W∗-models M.

Proof. As usual, we need to show that the axioms of W∗ are valid in all W∗-
models, and that the rules of W∗ preserve the validity in W∗-models.

(M2) Assume that M |= A ⊃ B and w ⊩ 2A. Then for all v ≥ w, there is
α ∈ N (v) such that α ⊩∀ A. If follows that α ⊩∀ B. Therefore w ⊩ 2B.

(M3) Assume that M |= A ⊃ B and w ⊩ 3A. Then for all v ≥ w, for all
α ∈ N (v), α ⊩∃ A. If follows that α ⊩∃ B. Therefore w ⊩ 3B.

(dual∧) Assume that w ⊩ 2A ∧ 3¬A. Then for all v ≥ w, there is α ∈
N (v) such that α ⊩∀ A, and for all β ∈ N (v), β ⊩∃ ¬A. Thus there
is γ ∈ N (w) such that γ ⊩∃ A ∧ ¬A, which is impossible. Therefore
M |= ¬(2A ∧3¬A).

(C2) Assume that M satisfies condition (C) and w ⊩ 2A ∧ 2B. Then for all
v ≥ w, there is α ∈ N (v) such that α ⊩∀ A, and there is β ∈ N (v) such
that β ⊩∀ B. By (C), α ∩ β ∈ N (v), moreover α ∩ β ⊩∀ A ∧ B. Thus
w ⊩ 2(A ∧B).

(K3) Assume by contradiction that M satisfies (C), w ⊩ 2(A ⊃ B), w ⊩ 3A
and w ̸⊩ 3B. By w ̸⊩ 3B, there are v ≥ w and α ∈ N (v) such
that α ̸⊩∃ B. Then by w ⊩ 2(A ⊃ B), there is β ∈ N (v) such that
β ⊩∀ A ⊃ B. Thus by (C), α ∩ β ∈ N (v). It follows α ∩ β ̸⊩∃ B and
α ∩ β ⊩∀ A ⊃ B. However by w ⊩ 3A, α ∩ β ⊩∃ A, thus α ∩ β ⊩∃ B,
which gives a contradiction.

(N2) If M satisfies the condition (N), then for all w there is α ∈ N (w).
Moreover, α ⊩∀ ⊤, therefore M |= 2⊤.

(P3) If M satisfies the condition (P), then for all w and all α ∈ N (v), α ̸= ∅,
thus α ⊩∃ ⊤. Therefore M |= 3⊤.

(D) Assume by contradiction that M satisfies the condition (D), w ⊩ 2A,
and w ̸⊩ 3A. Then there are v ≥ w and α ∈ N (v) such that α ̸⊩∃ A.
Moreover, there is β ∈ N (v) such that β ⊩∀ A. By (D), there is u ∈ α∩β.
Thus u ̸⊩ A and u ⊩ A. Therefore w ⊩ 3A.

(T2, T3) Suppose that M satisfies the condition (T). Then if w ⊩ 2A, there
is α ∈ N (w) such that α ⊩∀ A. By (T), w ∈ α, thus w ⊩ A. Moreover,
if w ⊩ A, then by Prop. 4.2, v ⊩ A for all v ≥ w. By (T), v ∈ α for all
α ∈ N (v), thus α ⊩∃ A. Therefore w ⊩ 3A.

2

4.1 Completeness

We now prove that W-logics are complete with respect to the corresponding
classes of CNMs. As usual, for every logic W∗, we call W∗-prime any set Σ
of formulas of L such that Σ ̸⊢W∗ ⊥ (consistency), if Σ ⊢W∗ A, then A ∈ Σ
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(closure under derivation), and if A∨B ∈ Σ, then A ∈ Σ or B ∈ Σ (disjunction
property). Moreover, for every set of formulas Σ, we denote 2−Σ the set
{A | 2A ∈ Σ}. One can prove in a standard way the following lemma.

Lemma 4.4 (Lindenbaum) If Σ ̸⊢W∗ A, then there is a W∗-prime set Π
such that Σ ⊆ Π and A /∈ Π.

We also consider the following notion of segment (we adopt the terminology
of [38]), and prove the subsequent lemma that will be needed in the following.

Definition 4.5 For every logic W∗, a W∗-segment is a pair (Σ,C ), where Σ is
a W∗-prime set, and C is a class of sets of W∗-prime sets such that:

• if 2A ∈ Σ, then there is U ∈ C such that for all Π ∈ U , A ∈ Π; and

• if 3A ∈ Σ, then for all U ∈ C , there is Π ∈ U such that A ∈ Π.

WC∗-, WD∗- and WT∗-segments must satisfy also the following conditions:
(WC∗) If U ,U ′ ∈ C , then U ∩U ′ ∈ C . (WD∗) If U ,U ′ ∈ C , then U ∩U ′ ̸= ∅.
(WT∗) For all U ∈ C , Σ ∈ U .

Lemma 4.6 For every W∗-prime set Σ, there exists a W∗-segment (Σ,C ).

Proof. Given a W∗-prime set Σ, we construct a W∗-segment (Σ,C ) as follows.
If there is no 2A ∈ Σ, we put C = ∅. If there is no 3A ∈ Σ, we put C = {∅}.
Otherwise we distinguish two cases.

(i) W∗ does not contain C2, K3. Let 2A,3B ∈ Σ. Then A,B ̸⊢W∗ ⊥
(otherwise by Rdual∧, 2A,3B ⊢W∗ ⊥, against the consistency of Σ).
Then by Lemma 4.4, there is Σ′

AB W∗-prime such that A,B ∈ Σ′
AB . For

all 2A ∈ Σ, we define UA = {Σ′
AB | 3B ∈ Σ} if W∗ does not contain T2,

and UA = {Σ′
AB | 3B ∈ Σ} ∪ {Σ} if it contains T2. Moreover we define

C = {UA | 2A ∈ Σ}. Then (Σ,C ) is a W∗-segment: if 2A ∈ Σ, then
UA ∈ C and for all Σ′ ∈ UA, A ∈ Σ′. If 3B ∈ Σ, then for all UA ∈ C ,
there is Σ′

AB ∈ UA such that B ∈ Σ′
AB . Moreover for WD∗, if UA,UB ∈

C , UA ̸= UB , then 2A,2B ∈ Σ, then by axiom D, 3A,3B ∈ Σ, thus
Σ′

AB ∈ UA ∩ UB .

(ii) W∗ contains C2, K3. Let 3B ∈ Σ. Then 2−Σ ∪ {B} ̸⊢W∗ ⊥ (otherwise
by Rdual∧ and C2, Σ ⊢W∗ ⊥). Then by Lemma 4.4, there is Σ′

B W∗-prime
such that 2−Σ ⊆ Σ′

B and B ∈ Σ′
B . We define U = {Σ′

B | 3B ∈ Σ} if
W∗ does not contain T2, and U = {Σ′

B | 3B ∈ Σ} ∪ {Σ} if it contains
T2. Moreover we define C = {U }. It is easy to verify that (Σ,C ) is a
WC∗-segment.

2

We consider the following definition of canonical model.

Definition 4.7 For every logic W∗, the canonical model for W∗ is the tuple
M = ⟨W,≤,N ,V⟩, where:

• W is the class of all W∗-segments;

• (Σ,C ) ≤ (Σ′,C ′) if and only if Σ ⊆ Σ′;
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• for every set U of W∗-prime sets, αU = {(Σ,C ) | Σ ∈ U };
• αU ∈ N ((Σ,C )) if and only if U ∈ C ;

• (Σ,C ) ∈ V(p) if and only if p ∈ Σ.

We prove the following two lemmas which entail completeness of W∗-logics.

Lemma 4.8 The canonical model for W∗ is a CNM for W∗.

Proof. We show that the canonical model for W∗ satisfies the conditions of
CNMs for W∗. (C), (D), (T) and hereditariness of V are immediate by Defs. 4.5
and 4.7. (N) For all WN∗-prime sets Σ, 2⊤ ∈ Σ, then for all WN∗-segments
(Σ,C ), C ̸= ∅, thus N ((Σ,C )) ̸= ∅. (P) For all WP∗-prime sets Σ, 3⊤ ∈ Σ,
then for all WP∗-segments (Σ,C ), for all U ∈ C , U ̸= ∅, thus ∅ /∈ N ((Σ,C )).2

Lemma 4.9 Let W∗ be a W-logic, and M = ⟨W,≤,N ,V⟩ be the canonical
model for W∗. Then for all (Σ,C ) ∈ W, (Σ,C ) ⊩ A if and only if A ∈ Σ.

Proof. By induction on the construction of A. If A = p or A = ⊥, the
proof is immediate by definition of V or by consistency of Σ, moreover for
A = B∧C,B∨C the proof is immediate by applying the inductive hypothesis.
We consider the remaining cases.

• A = B ⊃ C: If B ⊃ C ∈ Σ, then suppose (Σ,C ) ≤ (Σ′,C ′) and (Σ′,C ′) ⊩ B.
Then Σ ⊆ Σ′, thus B ⊃ C ∈ Σ′. Moreover by i.h., B ∈ Σ′, then C ∈ Σ′,
thus by i.h., (Σ′,C ′) ⊩ C. Therefore (Σ,C ) ⊩ B ⊃ C. If instead B ⊃ C /∈ Σ,
then Σ ̸⊢ B ⊃ C, thus Σ ∪ {B} ̸⊢ C. By Lemma 4.4, there is Σ′ W∗-prime
such that Σ ∪ {B} ⊆ Σ′ and C /∈ Σ′. Then by Lemma 4.6 and Def. 4.7, there
is a W∗-segment (Σ′,C ′) ∈ W. By definition, (Σ,C ) ≤ (Σ′,C ′), and by i.h.,
(Σ′,C ′) ⊩ B and (Σ′,C ′) ̸⊩ C. Therefore (Σ,C ) ̸⊩ B ⊃ C.

• A = 2B: If 2B ∈ Σ, then for all (Σ′,C ′) ≥ (Σ,C ), 2B ∈ Σ′. By definition
of segment, there is U ′ ∈ C ′ such that for all Σ′′ ∈ U ′, B ∈ Σ′′. Then
αU ′ ∈ N ((Σ′,C ′)), moreover by i.h., (Σ′′,C ′′) ⊩ B for all (Σ′′,C ′′) ∈ αU ′ .
Therefore (Σ,C ) ⊩ 2B. Now suppose that 2B /∈ Σ. If there is no 2C ∈ Σ,
then (Σ, ∅) is a W∗-segment, moreover (Σ,C ) ≤ (Σ, ∅) and N ((Σ, ∅)) = ∅, thus
(Σ,C ) ̸⊩ 2B. If instead there is 2C ∈ Σ, we distinguish two cases:

(i) W∗ does not contain C2, K3. Then for all 2D ∈ Σ, D ̸⊢ B (otherwise by
mon2, 2D ⊢ 2B, whence 2B ∈ Σ). Then there is Σ′

D W∗-prime such that
D ∈ Σ′

D and B /∈ Σ′
D. Moreover, for all 3C ∈ Σ, C,D ̸⊢ ⊥ (otherwise by

Rdual∧, 3C,2D ⊢ ⊥, whence ⊥ ∈ Σ). Then there is Σ′
CD W∗-prime such

that C,D ∈ Σ′
CD. For all 2D ∈ Σ, we define U ′

D = {Σ′
D} ∪ {Σ′

CD | 3C ∈
Σ} if W∗ does not contain T2, and U ′

D = {Σ′
D} ∪ {Σ′

CD | 3C ∈ Σ} ∪ {Σ}
if it contains T2. Moreover, we define C ′ = {U ′

D | 2D ∈ Σ}. It is easy to
verify that (Σ,C ′) is a W∗-segment. Moreover, for all U ′

D ∈ C ′, Σ′
D ∈ U ′

D

and B /∈ Σ′
D, thus by i.h., (Σ′

D,C ′′) ̸⊩ B for any (Σ′
D,C ′′) ∈ W. It follows

that for all αU ∈ N ((Σ,C ′)), αU ̸⊩∀ B. Thus (Σ,C ′) ̸⊩ 2B, and since
(Σ,C ) ≤ (Σ,C ′), (Σ,C ) ̸⊩ 2B.

(ii) W∗ contains C2, K3. Then 2−Σ ̸⊢ B (otherwise by mon2 and C2,
Σ ⊢ 2B), then there is Σ′ WC∗-prime such that 2−Σ ⊆ Σ′ and B /∈ Σ′.
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Moreover, for all 3C ∈ Σ, 2−Σ ∪ {C} ̸⊢ ⊥, then there is Σ′
C WC∗-prime

such that 2−Σ ⊆ Σ′
C and C ∈ Σ′

C . We define U ′ = {Σ′}∪{Σ′
C | 3C ∈ Σ}

if WC∗ does not contain T2, and U ′ = {Σ′} ∪ {Σ′
C | 3C ∈ Σ} ∪ {Σ} if

it contains T2. Moreover, we define C ′ = {U ′}. It is easy to verify that
(Σ,C ′) is a WC∗-segment. Moreover, since B /∈ Σ′, by i.h., (Σ′,C ′′) ̸⊩ B
for any (Σ′,C ′′) ∈ W, it follows that for all αU ∈ N ((Σ,C ′)), αU ̸⊩∀ B.
Thus (Σ,C ′) ̸⊩ 2B, and since (Σ,C ) ≤ (Σ,C ′), (Σ,C ) ̸⊩ 2B.

• A = 3B: If 3B ∈ Σ, then for all (Σ′,C ′) ≥ (Σ,C ), 3B ∈ Σ′. By definition
of segment, for all U ′ ∈ C ′, there is Σ′′ ∈ U ′ such that B ∈ Σ′′. Then for all
αU ′ ∈ N ((Σ′,C ′)), there is (Σ′′,C ′′) ∈ αU ′ such that B ∈ Σ′′, thus by i.h.,
(Σ′′,C ′′) ⊩ B. It follows that (Σ,C ) ⊩ 3B. Now suppose that 3B /∈ Σ. If
there is no 3C ∈ Σ, then (Σ, {∅}) is a W∗-segment, moreover (Σ,C ) ≤ (Σ, {∅})
and N ((Σ, {∅})) = {∅}, thus (Σ,C ) ̸⊩ 3B. If instead there is 3C ∈ Σ, we
distinguish two cases:

(i) W∗ does not contain C2, K3. Then for all 3C ∈ Σ, C ̸⊢ B (otherwise
by mon3, 3C ⊢ 3B, whence 3B ∈ Σ). Then there is Σ′

C W∗-prime such
that C ∈ Σ′

C and B /∈ Σ′
C . Moreover, for all 2D ∈ Σ, C,D ̸⊢ ⊥ (otherwise

by Rdual∧, 3C,2D ⊢ ⊥, whence ⊥ ∈ Σ). Then there is Σ′
CD W∗-prime

such that C,D ∈ Σ′
CD. If in addition W∗ does not contain T2, we define

U ′ = {Σ′
C | 3C ∈ Σ}, and for all 2D ∈ Σ, U ′

D = {Σ′
CD | 3C ∈ Σ};

otherwise we define U ′ = {Σ′
C | 3C ∈ Σ} ∪ {Σ}, and for all 2D ∈ Σ,

U ′
D = {Σ′

CD | 3C ∈ Σ} ∪ {Σ}. Moreover, we define C ′ = {U ′} ∪ {U ′
D |

2D ∈ Σ}. It is easy to verify that (Σ,C ′) is a W∗-segment: for instance
for WD∗, if U ′

D,U ′
E ∈ C ′, then U ′

D ∩ U ′
E ̸= ∅ (cf. proof of Lemma 4.6),

moreover by P3, 3⊤ ∈ Σ, thus for every 2D ∈ Σ, Σ′
⊤D ∈ U ′

D ∩ U ′, then
U ′

D ∩ U ′ ̸= ∅. In addition, by definition we have αU ′ ∈ N ((Σ,C ′)), and
for all Σ′ ∈ U ′, B /∈ Σ′ (in particular, by T3, B /∈ Σ). Thus by i.h., for all
Σ′ ∈ U ′ and all (Σ′,C ′′) ∈ W, (Σ′,C ′′) ̸⊩ B, then αU ′ ̸⊩∃ B. Therefore
(Σ,C ′) ̸⊩ 3B, and since (Σ,C ) ≤ (Σ,C ′), (Σ,C ) ̸⊩ 3B.

(ii) W∗ contains C2, K3. Then for all 3C ∈ Σ, 2−Σ ∪ {C} ̸⊢ B (otherwise
by mon2, C2 and K3, Σ ⊢ 3B). Then there is Σ′

C WC∗-prime such
that 2−Σ ∪ {C} ⊆ Σ′

C and B /∈ Σ′
C . We define U ′ = {Σ′

C | 3C ∈ Σ}
if WC∗ does not contain T2, and U ′ = {Σ′

C | 3C ∈ Σ} ∪ {Σ} if it
contains T2. Moreover we define C ′ = {U ′}. It is easy to verify that
(Σ,C ′) is a WC∗-segment. Moreover, for all Σ′ ∈ U ′, B /∈ Σ′, then by
i.h., for all (Σ′,C ′′) ∈ W, (Σ′,C ′′) ̸⊩ B, thus αU ′ ̸⊩∃ B. It follows that
(Σ,C ′) ̸⊩ 3B, and since (Σ,C ) ≤ (Σ,C ′), (Σ,C ) ̸⊩ 3B.

2

Theorem 4.10 (Completeness) For every W-logic W∗, if M |= A for all
W∗-models M, then W∗ ⊢ A.

Proof. Suppose that W∗ ̸⊢ A. Then by Lemma 4.4, there is a W∗-prime set
Σ such that A /∈ Σ, thus by Lemma 4.6, there exists a W∗-segment (Σ,C ). By
Def. 4.7, (Σ,C ) belongs to the canonical modelM forW∗. Then by Lemma 4.9,
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(Σ,C ) ̸⊩ A, and by Lemma 4.8, M is a W∗-model. Therefore A is not valid in
all W∗-models. 2

5 Discussion and future work

In this paper, we have defined a family of 14 constructive modal logics both
proof-theoretically and semantically motivated, corresponding each to a differ-
ent classical modal logic. On the one hand, the logics correspond to the single-
succedent restriction of standard sequent calculi for classical modal logics. On
the other hand, the same logics are obtained by considering over intuitionistic
Kripke models a natural generalisation of the classical satisfaction clauses for
modal formulas in the neighbourhood semantics. The main result of this paper
is that, despite being mutually independent, for the considered logics the two
approaches return exactly the same systems.

In addition, we have provided some preliminary analysis of W-logics. First,
we have shown how W-logics are related to the corresponding classical modal
logics from the point of view of the axiomatic systems: each classical modal
logic considered in this paper can be obtained by extending the corresponding
W-logic with both excluded middle A∨¬A and disjunctive duality 2A∨3¬A.
Moreover, basing on their sequent calculi we have proved some fundamental
properties of W-logics, such as the disjunction property, decidability and Craig
interpolation.

Simpson [35, Ch. 3] listed some requirements that one expects to be satisfied
by any intuitionistic modal logic: they must be conservative over IPL; they must
contain all axioms of IPL (over the whole language) and be closed under modus
ponens; they must satisfy the disjunction property; the modalities must be
independent; the addition of the axiom A∨¬A must yield a standard classical
modal logic. Basing on the results presented in this paper, it is easy to verify
that all W-logics satisfy the first four requirements, by contrast they do not
satisfy the last one. 5 However, it comes natural to ask whether there could
be some modal principle, additional to excluded middle, that distinguishes
between constructive and classical modalities. As a matter of fact, it is easy
to identify such a principle for W-logics: as we observed above this principle is
precisely 2A ∨3¬A.

This relation between classical and W-logics is not entirely trivial. For
instance, the same relation does not hold between CK and K, in particular
CK must be extended also with ¬(2A ∧3¬A) (or equivalently with ¬3⊥) in
order to obtain classical K. Moreover, we believe that failure of 2A ∨ 3¬A
is justifiable from a constructive perspective, as it can be seen as a modalised
form of excluded middle.

Concerning the semantics of W-logics, the choice of considering neighbour-
hood models is motivated by the possibility to uniformly cover all considered
logics, which include both normal and non-normal systems. However, WK,

5 This requirement has been sometimes criticised as being too strong, see [22] for an argument
against this requirement based on negative translations.
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WKD and WKT have an equivalent characterisation in terms of constructive
bi-relational models [38], and we conjecture that an analogous characterisation
can be given for WMC and its extensions in terms of relational models with
non-normal worlds (cf. e.g. [34]). As a byproduct of this work, we have pro-
vided a new semantics for WK alternative to its original relational semantics
[38] and to the neighbourhood semantics in [18,9].

The possibility to define constructive counterparts of both normal and non-
normal classical logics can be seen as providing additional justification for the
present approach. To make a comparison, it is not obvious how to extend the
family of intuitionistic modal logics (IK and extensions) to non-normal systems,
given that their definition ultimately relies on the standard translation of modal
formulas into first-order sentences, which in turn is based on the relational
semantics. Interestingly, the constructive counterparts of non-normal logics
that we have obtained are not entirely new. In particular, WM and WMN
coincide with the logics IM and IMN2 introduced in [9], where they are given
an alternative semantics with distinct neighbourhood functions for 2 and 3.
By contrast, WMC is not equivalent to IMC in [9], since WMC contains K3

which is not a theorem of IMC.
The results presented in this paper can be extended in several directions.

In future work we plan to study the complexity of W-logics, possibly extending
some optimal calculi for IPL (G3-style calculi are not adequate to establish good
complexity bounds for constructive logics). Moreover, we would like to study
whether Iemhoff’s proof-theoretical method for proving uniform interpolation
[16] can be adapted to W-logics. We would also like to define calculi for W-
logics that allow for a direct extraction of countermodels from failed proofs,
along the lines of [17,10,11].

Furthermore, one can extend the present analysis to further classical modal
logics in order to enrich the family of W-logics, but also to inspect the limits of
our approach. An obvious limit concerns the logics for which no standard cut-
free Gentzen calculi exist, such as S5. For these logics one can study whether
a similar analysis could be based on alternative kinds of calculi, like hyper- or
nested sequent calculi. At the same time, it is known that incorporating hered-
itariness into the satisfaction clauses is not sufficient to provide a semantics for
some constructive systems, this is the case for instance of the logics with axiom
4 [2]. Concerning instead weaker systems, it seems that for non-normal logic E
[8] this approach returns a very weak form of duality analogous to the one of
IE1 in [9], but this requires further study.
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