
Modal inverse correspondence via ALBA

Willem Conradie

School of Mathematics, University of the Witwatersrand, Johannesburg

Mattia Panettiere

Vrije Universiteit, Amsterdam

Abstract

We reformulate Kracht’s theory of internal descriptions in the algebraic language
of the correspondence algorithm ALBA and, within this language, we characterize
(modulo standard translation) the class of first-order correspondents of modal induc-
tive formulas as a suitable subclass of Kracht formulas for tense logic. Our result
provides an alternative strategy to Kikot’s generalization to the inductive (or ‘gen-
eralized Sahlqvist’) modal formulas of Kracht’s inverse correspondence theorem for
Sahlqvist formulas. This highlights and makes explicit the order-theoretic mecha-
nisms underlying Kracht’s algorithm and thereby paves the way to a generalization
of inverse correspondence to modal logics on non-classical base including polyadic
intuitionistic, distributive and non-distributive modal logics.

Keywords: Inverse correspondence, Unified correspondence, Kracht’s Theorem,
ALBA, Classical modal logic.

1 Introduction

Sahlqvist correspondence theory effectively connects a large, syntactically de-
fined class of modal formulas with the first-order conditions their validity im-
pose on Kripke frames. This is an immensely useful and powerful results when
one’s starting point is a logic axiomatized by modal axioms. However, when
seeking an axiomatization for a first-order definable class of frames, one needs
a result that goes in the other way, namely one that identifies a large class
of first-order conditions which are modally definable and effectively associates
them with their modal definitions. This is precisely what Kracht’s ‘inverse cor-
respondence’ theorem [17], based on his calculus of internal descriptions [16,18],
provides. The MSQIN second-order quantifier introduction algorithm [9] con-
stitutes and alternative, top-down approach to obtaining finding the modal
Sahlqvist equivalents to Kracht formulas. In [12] Goranko and Vakarelov in-
troduce the class of inductive formulas which essentially extends the class of
Sahlqvist formulas, and in [14] Kikot establishes the corresponding generalisa-
tion of Kracht’s theorem. The research programme of ‘unified correspondence’
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(see e.g. [4,5,6]) has greatly generalised Goranko and Vakarelov’s result and
has established a definition of inductive formulas which can be applied to arbi-
trary logics algebraically captured by classes of lattice expansions (LE logics)
and any relational semantics linked to these classes via an appropriate dual-
ity. This definition is based purely on the order-theoretic properties of the
algebraic operations interpreting the connectives. A core tool in this research
programme is the algorithm ALBA, which applies a set of equivalence preserv-
ing rewrite rules to transform modal formulas into ‘pure’ ones (in an extended
language with the adjoints an residuals of all connectives) by eliminating the
propositional variables in in favour of special variables, called nominals and
co-nominals, which are constrained to range over the join and meet irreducible
elements of the algebras which correspond (via duality) to first-order defin-
able subsets of the relational semantics. This brings about a modularization
of the correspondence theory, where correspondents are computed in the pure
extended algebraic language, independent of any particular choice of relational
semantics, and can thence be translated into first-order formulas via standard
translations appropriate to particular choices of dual relational semantics.

In this paper, we initiate a line of research aimed at reformulating and ex-
tending inverse correspondence from classical modal logic to general LE logics.
Key to this extension is a reformulation of the main engine of Kracht’s result
in the environment of unified correspondence which gives us access to concep-
tual and algorithmic tools developed there which, as mentioned above, apply
across signatures and relational semantics. Specifically, in this paper we focus
on the original setting of classical modal logic, where we formulate and prove
an inverse correspondence result which characterizes the class of pure formulas
in the extended modal language which can effectively be shown to correspond
to inductive formulas. The utility of this is two-fold. Firstly, this reformula-
tion helps to distil the order-theoretic information underlying the Kracht-Kikot
model-theoretic results, thus paving the way to the required generalization to
inverse correspondence for general LE logics.

Secondly, our strategy further modularizes the characterization of pure
modal (and thence first-order) correspondents of the inductive formulas: we
first characterize the pure correspondents of the Sahlqvist formulas in tense
logic and then rely on the fact that every inductive formula in the language of
classical modal logic is semantically equivalent to some scattered very simple
Sahlqvist formula in the language of tense logic (cf. Lemma 3.6). We charac-
terize the syntactic shape of such tense formulas, and suitably restrict the class
of Kracht formulas that target tense Sahlqvist formulas. Thus, our proposed
definition also features backward-looking restricted quantifiers.

Structure of the paper. In Section 2 we collect some brief preliminaries
on the languages used in the paper, Sahlqvist and inductive formulas, Kracht
formulas and the ALBA algorithm. Section 3 presents a characterization of
the very simple Sahlqvist formulas in the language of tense logic which are
equivalent to inductive formulas in the basic modal language. Our main results
are presented in Section 4 where we define Kracht MLK formulas in an extended
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pure hybrid modal language and show that they correspond on frames exactly
to the very simple scattered Sahlqvist formulas in the language of tense logic,
and then to inductive modal formulas.

2 Preliminaries

2.1 Modal languages

The basic classical modal language ML is defined using a set of propositional
variables AtProp; its well formed formulas ϕ are given by the rule

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ >−ϕ | 3ϕ | 2ϕ,
where p ranges over AtProp, and >− is co-implication. It will be convenient to
consider all the connectives as primitives. This is interpreted with the standard
Kripke semantics, and the standard algebraic semantics is based on Boolean
algebras with operators; furthermore it can be naturally expanded into the
language ML∗ with the two additional unary connectives ♦ and ■, which should
be interpreted as the adjoints of 2 and 3 respectively.

The language ML+ expands ML∗ with two sorts of variables: nominals
(usually denoted by h, i, j,k) and conominals (usually denoted by l,m,n,o).
In perfect BAOs, (co)nominals are interpreted as (co)atoms. In what follows,
we will denote ML+-terms with the lower case letters s and t.

We will often consider ML+-inequalities s ≤ t; the language of such in-
equalities is ML≤. Finally, the language for correspondence MLK is built upon
ML≤ through the following rules:

ξ ::= s ≤ t | ξ & ξ | ξ ` ξ | ∼ξ | ξ ⇒ ξ | ∀j ξ | ∀m ξ | ∃j ξ | ∃m ξ,

where & denotes conjunction, ` disjunction, ⇒ implication, and∼negation.

2.2 Kracht’s inverse correspondence

In what follows, FO denotes the frame correspondence language of classical
modal logic. An FO-formula is clean (cf. [1, Chapter 3]) if no variable occurs
both free and bound, and no two distinct (occurrences of) quantifiers bind the
same variable. The definition of Kracht FO-formulas relies on the concept of
restricted quantifier, i.e., quantifiers of the form (∀x�y)β ≡ ∀x(yRx→ β) and
(∃x � y)β ≡ ∃x(yRx ∧ β). When we wish to suppress the restrictor, we will
write ∀Rx β and ∃Rx β.

Definition 2.1 [Kracht formulas] A Kracht formula 1 is a clean FO-formula
in prenex normal form with a single free variable x0 and shape:

∀Rx1 · · · ∀RxnQR
1 y1 · · ·QR

mym β(x0, x1, . . . , xn, y1, . . . , ym) ,

where Qi ∈ {∀,∃} (for 1 ≤ i ≤ m), variables in X = {x1, . . . , xn} and
Y = {y1, . . . , ym} are called inherently universal and non-inherently univer-
sal respectively; β is an unquantified formula in DNF whose atoms are of the

1 The definition we present is commonly referred to as type 1 Kracht formula. As is well
known (cf. [1]), type 1 Kracht formulas are Kracht formulas in prenex normal form where
the matrix is rewritten in DNF.



262 Modal inverse correspondence via ALBA

form: ⊤, ⊥, uRx, xRu, x = u where x ∈ X ∪ {x0} and u ∈ X ∪ Y .

Theorem 2.2 ([1]) Any Kracht formula can be effectively shown to be the first
order correspondent of some Sahlqvist formula.

2.3 Inductive and very simple Sahlqvist inequalities

Inductive formulas are introduced by Goranko and Vakarelov in [10,11,12],and
are referred to as generalized Sahlqvist formulas by Kikot [14]. We present an
alternative definition that will be convenient for the results in this paper.

Definition 2.3 [Signed Generation Tree] The positive (resp. negative) gen-
eration tree of any ML-formula s is defined by labelling the root node of the
generation tree of s with the sign + (resp. −), and then propagating the la-
belling on each remaining node as follows: for any

• node labelled with ∨, ∧, 3 or 2 assign the same sign to its children nodes,
• ¬-node, assign the opposite sign to its child,
• →-node, assign the opposite (resp. same) sign to the left (resp. right) child,
• >−-node, assign the opposite (resp. same) sign to the right (resp. left)
child.

Nodes in signed generation trees are positive (resp. negative) if they are signed
+ (resp. −).

Signed generation trees will be used in the context of formula inequalities
s ≤ t. In this context we will typically consider the positive generation tree
+s for the left-hand side and the negative one −t for the right-hand side. In
this case we will speak of signed generation trees of inequalities. An order type
over p1, . . . , pn is a map ε : {p1, . . . , pn} → {1, ∂}. A term-inequality s ≤ t is
uniform in a given variable p if all occurrences of p in both +s and −t have
the same sign, and s ≤ t is ε-uniform in a (sub)array p of its variables if s ≤ t
is uniform in p, occurring with the sign indicated by ε, for every p in p. Given
ρ ∈ {1, ∂}, and terms s and t, the notation s ≤ρ t indicates the inequality s ≤ t
when ρ = 1, and t ≤ s otherwise.

For any term s(p1, . . . pn), any order type ε over n, and any 1 ≤ i ≤ n, an
ε-critical node in a signed generation tree of s is a leaf node +pi with εi = 1
or −pi with εi = ∂. An ε-critical branch in the tree is a branch ending in an
ε-critical node.

We will write ϕ(!x) (resp. ϕ(!x)) to indicate that the variable x (resp. each
variable x in x) occurs exactly once in ϕ. Accordingly, we will write ϕ(γ/!x)
(resp. ϕ(γ/!x)) to indicate the formula obtained from ϕ by substituting γ
(resp. each variable γ in γ) for the unique occurrence of (its corresponding
variable) x in ϕ.

Definition 2.4 [Inductive inequality] For any order type ε, and any strict or-
der <Ω on the variables (called dependency order), a formula is (Ω, ε)-inductive
if:

• every ε-critical branch is a concatenation of two (possibly empty) paths P1

and P2 from leaf to root, such that, excluding the leaf, P1 consists of PIA
nodes, i.e. nodes in {−∧,+∨,−3,+2,+ →}; and P2 consists of skeleton
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nodes, i.e. nodes in {+∧,−∨,+3,−2,− →} 2 .
• each subtree rooted in a + →, −∧, or +∨ node contains at most one
ε-critical variable p and all the other variables q in the subtree are such
that q <Ω p.

An inductive inequality is (Ω, ε)-inductive for some ε and <Ω. In what follows,
we will refer to a formula χ such that +χ (resp. −χ) consists only of skeleton
nodes as a positive (resp. negative) skeleton; and we dub formulas ζ as positive
(resp. negative) PIA if there is a path from a leaf to the root of +ζ (resp.
−ζ) consisting only of PIA nodes. For every positive (definite) PIA formula 3

φ = φ(!x, z) and negative PIA formula ψ = ψ(!x, z) where x is a leaf of a PIA-
path to the root, we define the formulas LA(φ)(u, z) and RA(ψ)(u, z) (with u
a new fresh variable) by simultaneous recursion:

LA(x) = u RA(x) = u
LA(2φ(x, z)) = LA(φ)(♦u, z) RA(3ψ, z) = RA(ψ)(■u, z)

LA(ψ(z) → φ(x, z)) = LA(φ)(ψ(z) ∧ u, z) RA(ψ(x, z) >−φ(z)) = RA(ψ)(φ(z) ∨ u, z)
LA(ψ(x, z) → φ(z)) = RA(ψ)(u→ φ(z), z) RA(ψ(z) >−φ(x, z)) = LA(φ)(ψ(z) >−u, z)
LA(ψ1(x, z) ∨ ψ2(z)) = LA(ψ1)(u >−ψ2(z)) RA(φ1(x, z) ∧ φ2(z)) = RA(φ1)(φ2(z) → u)

The definition of inductive inequality is expanded to ML∗ by adding −♦
and +■ as PIA nodes and adding +♦ and −■ as Skeleton nodes.

Example 2.5 The formula p ∧ 2(3p → 2q) ≤ 322q is inductive for εp =
εq = 1 and p <Ω q. Its signed generation tree is the following

+∧

+p +2

+ →

−3

−p

+2

+q

≤
−3

−2

−2

−p

where nodes inside a box are skeleton, nodes inside circles are PIAs, and nodes
inside double-circles are the critical occurrences of the variables. The left

2 This definition of inductive inequality is not the most general one and, in fact, refers to
definite inductive inequalities (cf. [13]). However, modulo exhaustively distributing ∨ and ∧
over the other connectives, every (general) inductive inequality is equivalent to a conjunction
of such inequalities.
3 Here definite refers to the fact that ∨ and ∧ have been exhaustively distributed over the
other connectives; therefore no −∨, nor +∧ node occurs in the PIA formula.
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adjoint of the maximal PIA formula φ(q, p) ≡ 2(3p → q) is LA(φ(q, p)) =
♦(3p ∧ ♦u).

The notion of a Sahlqvist inequality is obtained by restricting the nodes
that are allowed in the PIA parts of critical branches, while that of a very
simple Sahlqvist formula eliminates the PIA parts altogether:

Definition 2.6 [(Very simple) Sahlqvist inequalities - version 1] A Sahlqvist
inequality (in ML or ML∗) is any inductive inequality where the P1 parts of all
ε-critical branches consists only of nodes in {+∧,−∨,−3,+2}. A very simple
Sahlqvist inequality is any inductive inequality where all ε-critical branches
consists only of skeleton nodes (i.e. the P1 parts are empty).

Following [2], we will often represent (Ω, ε)-inductive inequalities as follows:

(φ ≤ ψ)[α/!x, β/!y, γ/!z, δ/!w],

where (φ ≤ ψ)[!x, !y, !z, !w] contains only skeleton nodes, is positive (resp.
negative) in !x and !z (resp. !y and !w), and it is scattered, i.e. each variable
occurs only once; each α in α (resp. β in β) is a positive (resp. negative) PIA.

Definition 2.7 [(Very simple) Sahlqvist inequality] An inductive inequality
(φ ≤ ψ)[α/!x, β/!y, γ/!z, δ/!w], is Sahlqvist 4 if every α in α and β in β con-
tains only unary connectives. It is very simple Sahlqvist if every α and β is a
propositional variable.

2.4 ALBA

ALBA is a calculus for correspondence that is based on the Ackermann lemma
and which successfully reduces all inductive inequalities [4,5,6]. (Please see
Appendix A for some more details on ALBA.) One can prove (cf. [7]) the
output of ALBA on an inductive inequality (φ ≤ ψ)[α/!x, β/!y, γ/!z, δ/!w] is

∀j∀m
(
(φ ≤ ψ)[!j/!x, !m/!y, γ

[∨
Mv(p)/p,

∧
Mv(q)/q

]
/!z, δ

[∨
Mv(p)/p,

∧
Mv(q)/q

]
/!w]

)
,

where p (resp. q) are the variables occuring in positive (resp. negative)
position, Mv(p) and Mv(q) are defined by recursion on the dependency order
as follows:
(i) for <Ω-minimal variables p and q,

• Mv(p) := {LA(αp)[jk/u],RA(βp)[mh/u] | 1 ≤ k ≤ ni1 , 1 ≤ h ≤ ni2}
• Mv(q) := {LA(αq)[jh/u],RA(βq)[mk/u | 1 ≤ h ≤ mj1 , 1 ≤ k ≤ mj2}

where, ni1 (resp. ni2) is the number of occurrences of p in αs (resp. in βs)
for every p ∈ p, and mj1 (resp. mj2) is the number of occurrences of q in
αs (resp. in βs) for every q ∈ q; the subscript p in αp denotes the only
critical occurrence under α.

(ii) for non <Ω-minimal variables p and q,

4 Analogously, this definition of Sahlqvist inequality is not the most general one and it refers
to definite Sahlqvist inequalities (cf. [13]). Again, modulo exhaustively distributing ∨ and ∧
over the other connectives, every (general) Sahlqvist inequality is equivalent to a conjunction
of such inequalities.



Conradie and Panettiere 265

• Mv(p) := {RA(αp)[jk/u,mv(p)/p,mv(q)/q],RA(βp)[mh/u,mv(p)/p,mv(q)/q] |
1 ≤ k ≤ ni1 , 1 ≤ h ≤ ni2 ,mv(p) ∈ Mv(p),mv(q) ∈ Mv(q)}

• Mv(q) := {LA(αq)[jh/u,mv(p)/p,mv(q)/q],RA(βq)[mk/u,mv(p)/p,mv(q)/q) |
1 ≤ h ≤ mj1 , 1 ≤ k ≤ mj2 ,mv(p) ∈ Mv(p),mv(q) ∈ Mv(q)}

where, ni1 (resp. ni2) is the number of occurrences of p in αs (resp. in βs)
for every p ∈ p, and mj1 (resp. mj2) is the number of occurrences of q in
αs (resp. in βs) for every q ∈ q.

3 Inductive formulas in ML as very-simple Sahlqvist
with residuals

Definition 3.1 A branch in a signed generation tree ±s is called splittable if
it is the concatenation of two paths Q1 and Q2, one of which may possibly be
of length 0, such that Q1 is a path from the leaf consisting (apart from variable
nodes) only of nodes in {+■,−♦,+∨,+ →,−∧,− >−} and Q2 consists of
(any) ML-nodes.

Definition 3.2 Given an order type ε, a strict partial order Ω on propositional
variables, a signed generation tree ±ϕ is called (Ω, ε)-unpackable if ε∂(±ϕ) and
(i) ϕ is a propositional variable or constant, or
(ii) If p0 is maximal in var(ϕ) with respect to Ω, then

(a) the path Q in ±ϕ ending in p0 is splittable, and
(b) wherever Q passes through a node in {+∨,+ →,−∧,− >−}, the

subtree ±γ corresponding to the argument through which Q does not
pass is (Ω, ε)-unpackable.

Definition 3.3 An ML∗-inequality ϕ ≤ ψ is called a crypto L-inductive if it is
a very simple ε-Sahlqvist inequality in ML∗ and in the signed generation trees
+ϕ and −ψ:
(i) All ε-critical branches contain only signed connectives from ML,
(ii) There exists a strict partial order Ω on the propositional variables occur-

ring in ϕ ≤ ψ, such that for every ε-non-critical branch the signed subtree
rooted at the topmost (closest to the root) node on the branch properly
belonging to ML∗ is (Ω, ε)-unpackable.

Proposition 3.4 Every crypto ML∗-inductive inequality is frame-equivalent
to an inductive inequality in ML.

Proof. Suppose ϕ ≤ ψ crypto ML∗-inductive and let ε and Ω be an or-
der type and a strict partial order satisfying Definition 3.3. Suppose that
var(ϕ ≤ ψ) = {p1, . . . pn}. We may assume w.l.o.g. that pi <Ω pj implies
i < j. Starting from propositional variables pi minimal with respect to Ω,
apply the inverse Ackermann rules to extract the subformulas corresponding
to the subtree rooted at the topmost (closest to the root) node on the branch
properly belonging to ML∗. This transforms ϕ ≤ ψ into a quasi-inequality of
the form

q1 ≤ α1, . . . , qm ≤ αm, βm+1 ≤ rm+1, . . . , βℓ ≤ rℓ ⇒ (ϕ′ ≤ ψ′)[q/!x, r/!y]
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where ϕ′ ≤ ψ′ contains only connectives from ML, the qi and ri are new
variables, each αi contains exactly one variable among p1, . . . pn which was Ω-
maximal in the extracted subtree from which α originates. Applying adjunction
and residuation rules this can be transformed into

LA(α1)(q1) ≤ε(pi1 )
pi1 , . . . , LA(αm)(qm) ≤ε(pim ) pim ,

pim+1
≤ε(pim+1

) RA(β1)(rm+1), . . . , piℓ ≤ε(piℓ
) RA(βℓ)(rℓ) ⇒ (ϕ′ ≤ ψ′)[q/!x, r/!y]

Note that each LA(αi)(qi) and RA(βi)(ri) is a ML-formula.
This is now in Ackermann-shape w.r.t. the variables p1, . . . pn. Applying

the Ackermann rules produces (ϕ′ ≤ ψ′)[q/!x, r/!y, ξ/p], which is an (Ω′, ε)
inductive inequality in ML where qℓ <Ω′ qj iff piℓ <Ω pij , for each ℓ and j.

2

Example 3.5 The ML∗-inequality p1 ∧ p2 ≤ 322♦(♦p2 ∧ 3p1) is crypto-
inductive for ε(p1, p2) = (1, 1) and p1 <Ω p2, and is equivalent to p1 ≤
q1,♦(♦p2 ∧ 3q1) ≤ q2 =⇒ p1 ∧ p2 ≤ 322q2, which is equivalent to
p1 ≤ q1, p2 ≤ 2(3q1 → 2q2) =⇒ p1 ∧ p2 ≤ 322q2, which becomes
q1 ∧2(3q1 → 2q2) ≤ 322q2.

Lemma 3.6 Every inductive inequality (φ ≤ ψ)[α/!x, β/!y, γ/!z, δ/!w] is
equivalent to some crypto-ML∗-inductive inequality.

Proof. Given a definite inductive formula (φ ≤ ψ)[α/x, β/y, γ/z, δ/w], an
ALBA run on it yields

∀j∀m∀i∀n
(
i ≤

γmv︷ ︸︸ ︷
γ

[∨
Mv(p)/p,

∧
Mv(q)/q

]
&

δ
mv︷ ︸︸ ︷

δ

[∨
Mv(p)/p,

∧
Mv(q)/q

]
≤ n ⇒

(φ ≤ ψ)[!j/!x, !m/!y, !i/!z, !n/!w]
)
,

Consider now the inequality(
(φ ≤ ψ)[!j/!x, !m/!y, !γmv/!z, !δ

mv
/!w]

)
[pj/j, pm/m], (1)

with pj (resp. qm) fresh variables, one for each nominal in j (resp. conominal
in m). Clearly, the inequality is very simple Sahlqvist in ML∗ for ε such that
each for each pj (resp. qm), ε(pj) = 1 (resp. ε(qm) = ∂) and some inductive
order type <Ω. More precisely, in the ALBA run each PIA in α (resp. β) is
approximated by some nominal in j (resp. m), let τ be the map that given
a variable in j and m, yields the critical variable in the corresponding PIA
formula. Let <Ω′ the inductive order used in the ALBA run. The inequality
(1) is very simple Sahlqvist for the inductive order <Ω such that for every
r, t ∈ {p, q} and u,v in j or m, ru ≤ tv iff τ(u) ≤ τ(v). It is clear how
the ε-critical branches contain only connectives in ML, as the only connec-
tives found there are the ones found in the skeleton of the original inductive
inequality. Hence, it remains to show condition (2) of Definition 3.3. We show
that every signed subtree rooted at the topmost connective properly in ML∗ is
(ε,Ω)-unpackable for the ε and Ω defined above. Since the operators properly
belonging to ML∗ can only occur in the minimal valuations, any of such nodes
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has to occur in some formula in γmv or δ
mv

inside some Mv(p) (resp. Mv(q)) for
some variable p (resp. q); hence the paths passing through these nodes ending
in <Ω-maximal variables are splittable. Suppose that one of such paths passes
through the jth coordinate of some m-ary SRR node in a non ε-critical branch
⊛(γ1, . . . , γj−1, β, γj+1 . . . , γm), and let i be any index in {1, . . . ,m}\{j}. The
subformula γi is (ε,Ω)-unpackable as it is of course splittable, and, inductively,
every topmost node not properly in ML∗ is part of some Mv(p′) (resp. Mv(q′))
for some p′ (resp. q′) preceding p (resp. q). 2

4 Inverse correspondence in ALBA

This section presents the main results of the paper. We define the Kracht MLK

formulas and show that they correspond on frames exactly to the very simple
scattered Sahlqvist formulas in the language of tense logic and, via the results
of the previous section, to inductive modal formulas. Any proofs not given in
this section can be found in the appendix.

Through the remainder of this section we will treat literals ¬m (resp. ¬j) as
nominals (resp. conominals). Let NL (resp. CNL) be the collection of nominals
(resp. conominals) and negated conominals (resp. nominals).

4.1 Original Kracht formulas in ALBA’s language

Definition 4.1 [Flat and restricting inequalities] Flat inequalities are ML+-
inequalities of the following form:

i ≤ 3v, i ≤ ♦v, 2v ≤ m, ■v ≤ m, u ≤ v, u → v ≤ n, i ≤ u >−v

where u,v ∈ NL ∪ CNL, and the two variables in the inequality are different.
Restricting inequalities are flat inequalities of the form

j ≤ 3i, j ≤ ♦i, 2n ≤ m, ■n ≤ m, i ≤ j, n ≤ m,
j ≤ i >−n, i → n ≤ m

The nominals j and conominals m are the restricting pure variables, while i
and n are the restricted pure variables.

Restricting inequalities encode the type of atoms that can appear in the
matrix of a Kracht formula. Indeed, nominals can be thought of as worlds of
the frame x, y, z, . . ., and conominals as their complements xc, yc, zc, . . .. Then,
with some abuse of notation, including omitting curly braces when writing
singletons and their complements, and reading the order ≤ as set-theoretic in-
clusion, the following equivalences hold in (complex algebras of) Kripke frames:

xRy x ≤ 3y iff 2yc ≤ xc iff y ≤ ♦x iff ■xc ≤ yc

x = y x ≤ y iff yc ≤ xc iff x ≰ yc

x = y = z x→ yc ≤ zc iff x ≤ y >−zc

Example 4.2 The inequality p ∧ 2(3p → 2q) ≤ 322q (cf. [12]) is not
Sahlqvist for any order type, but it is inductive w.r.t. the order-type ε(p, q) =
(1, 1) and p <Ω q. Running ALBA on it yields



268 Modal inverse correspondence via ALBA

∀p∀q(p ∧ 2(3p→ 2q) ≤ 322q)
iff ∀j∀m[322♦(3j ∧ ♦j) ≤ m ⇒ j ≤ m]
iff ∀j[j ≤ 322♦(3j ∧ ♦j)]

As the nominal j represents a world x of the Kripke frame, it is equivalent to:

∀x(x ∈ [[322♦(3j ∧ ♦j)]][j := x])
iff ∀x∃y(xRy & y ∈ [[22♦(3j ∧ ♦j)]][j := x])
iff ∀x∃y(xRy & ∀z(yR2z ⇒ z ∈ [[♦(3j ∧ ♦j)]][j := x]))
iff ∀x∃y(xRy & ∀z(yR2z ⇒ ∃w(wRz & wRx & xRw))).

This last condition can equivalently be rewritten in three ways:

∀x(∃y � x)(∀z1 � y)(∀z � z1)(∃w ▶ z)(wRx & xRw)
iff ∀x(∃y � x)(∀z1 � y)(∀z � z1)(∃w � x)(wRz & wRx)
iff ∀x(∃y � x)(∀z1 � y)(∀z � z1)(∃w ▶ x)(wRz & xRw),

where (∃w ▶ z) quantifies w over the predecessors of z. The second and third
ones are not Kracht formulas, as the atom wRz has no inherently universal
variables in it (the only inherently universal is x). The first one is a tense
Kracht formula. This consideration suggests that in order to express first-
order conditions in Kracht shape for an inductive formula, we need to admit
the presence of operators in the fully residuated language ML∗, thus allowing
for backwards looking restricted quantifiers.

The example above hints at the need to expand the notation for restricted
quantifiers to include the residuals ■ and ♦. Restricted quantifiers in ML∗ are
defined in the following way (β being any ML+-formula):

(∀i� j)β ≡ ∀i(j ≤ 3i ⇒ β) (∀i ▶ j)β ≡ ∀i(j ≤ ♦i ⇒ β)
(∃i� j)β ≡ ∃i(j ≤ 3i & β) (∃i ▶ j)β ≡ ∃i(j ≤ ♦i & β)

(∀n�m)β ≡ ∀n(2n ≤ m ⇒ β) (∀n ▶ m)β ≡ ∀n(■n ≤ m ⇒ β)
(∃n�m)β ≡ ∃n(2n ≤ m & β) (∃n ▶ m)β ≡ ∃n(■n ≤ m & β)

We also consider binary restricted quantifiers whose corresponding restrict-
ing inequalities (cf. Definition 4.1) contain a (co)implication.

(∀i,n�m)β ≡ ∀i∀n(i → n ≤ m ⇒ β)
(∃i,n�m)β ≡ ∃i∃n(i → n ≤ m & β)

(∀i,n� j)β ≡ ∀i∀n(j ≤ i >−n ⇒ β) (∃i,n� j)β ≡ ∃i∃n(j ≤ i >−n & β)

4.2 Kracht MLK-formulas

Definition 4.3 [Kracht disjunct] A Kracht disjunct is a formula θ(w) in MLK

defined inductively together with its main pure variable w ∈ NL ∪ CNL. It
either is:

• a flat inequality (cf. Definition 4.1) s ≤ w or w ≤ t;
• (∃ u �w)θ(u), (∀ u � ¬w)θ(¬u), (∃ u ▶ w)θ(u), or (∀ u ▶ ¬w)θ(¬u),
where θ(u) is a Kracht disjunct where w does not occur 5 ;

5 Note that the types of u and w (nominal or conominal) in these clauses are governed by
the typing conventions in the definitions of the restricted quantifiers.
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• θ(m) := (∃ i,n �m)(θ1(i) & θ2(n)) or θ(¬m) := (∀ i,n �m)(θ1(¬i) `
θ2(¬n)), where θ1(i) and θ2(n) are Kracht disjuncts such that m does not
occur in them;

• θ(m) := (∃ i,n�j)(θ1(i) & θ2(n)) or θ(¬j) := (∀ i,n�j)(θ1(¬i) ` θ2(¬n)),
where θ1(i) and θ2(n) are Kracht disjuncts such that m does not occur in
them;

• θ1(w) & θ2(w) & · · · &θn(w) where all the θi (with 1 ≤ i ≤ n) are Kracht
disjuncts

• θ1(w)` θ2(w)` · · ·` θn(w) where all the θi (with 1 ≤ i ≤ n) are Kracht
disjuncts.

Furthermore, in the generation trees of all the flat inequalities of θ(w), each
nominal (resp. conominal) different from w occurs in negative (resp. positive)
polarity if it is under the scope of an even number of universal quantifiers, the
opposite otherwise.

Definition 4.4 A Kracht antecedent in MLK is a an MLK-formula η(j,m)
which is a conjunction of inequalities of the form i ≤ h and o ≤ n, plus a single
negated inequality j ≰ m called a pivotal inequality ; the variables j and m are
the pivotal pure variables of the antecedent.

Next we introduce the notion of a Kracht MLK-formula. The reader might
find it useful to refer to Example 4.9 while reading this definition.

Definition 4.5 [Kracht MLK-formula] A closed MLK-formula is Kracht if it
is of the following shape:

∀j∀m∀h∀o∀Ri,n(η(j,m) ⇒ θ1(w1) ` · · · ` θn(wn)), (2)

where η(j,m) is a Kracht antecedent, each θi is a Kracht disjunct, and ∀Ri,n de-
notes a sequence of restricted universal quantifiers introducing the (co)nominals
in i and n. The variables quantified in the prefix are inherently universal vari-
ables. The formula also has to satisfy the following conditions:
(i) Each nominal in h (or, resp., conominal in o) must appear on the right

(resp. left) hand side of exactly one non-pivotal inequality in η(j,m) (and
nowhere else in η(j,m)).

(ii) the non-main variables (cf. Definition 4.3) in each atom in the consequent
are all inherently universal.

(iii) Quantifiers in ∀Ri,n must be of either of the following types: type 1 quan-
tifiers bind variables occurring in the consequent, but not in the antecedent
or as restrictors in the prefix; type 2 quantifiers bind variables that occur
either in the antecedent or as restrictors (exactly once) in the prefix, but
not in the consequent.

Remark 4.6 Note that the pivotal inequality in the antecedent j ≰ m is not
technically necessary as it just translates to j = ¬m; hence it is possible to
apply the same arguments to formulas with just a single pivotal nominal j and
substituting every occurrence of the related pivotal conominal with ¬j. Nev-
ertheless, we shall keep both the pivotal variables in the definition to simplify
some of the proofs in the remainder. It follows from Definitions 4.4 and 4.5(i)
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that the variables in h and o provide alternative names for either pivotal vari-
ables or restricted variables in the prefix. This is why we will sometimes refer
to them as aliases.

Henceforth, we will refer to formulas defined in Definition 4.5 as Kracht
formulas.

Lemma 4.7 Every Kracht formula is equivalent to some Kracht formula where
the pivotal variables do not occur in the consequent.

Proof. Any Kracht formula has the following form

∀j∀m∀h∀o∀Ri,n(η′ & j ≰ m ⇒ θ1(w1) ` · · · ` θn(wn)),

and hence it can be equivalently rewritten as the following Kracht formula

∀j′∀m′∀j∀m∀h∀o∀Ri,n(η′ & j′ ≤ j & m ≤ m′ & j′ ≰ m′ ⇒
θ1(w1) ` · · · ` θn(wn)),

where j′ and m′ are fresh variables, and therefore they do not occur in the
consequent. The variables j and m become part of the h and o respectively of
the new formula. 2

Lemma 4.8 Any Kracht formula is equivalent to some Kracht formula such
that each alias variable occurs in the consequent.

Proof. Suppose that an alias nominal h (resp. conominal o) does not occur in
the consequent. By definition of Kracht formulas, it occurs exactly once in the
antecedent in an inequality of shape kh ≤ h (resp. o ≤ lo). As it does not occur
in the consequent, the universal quantifier that introduces it can be rewritten
as an existential quantifier in the antecedent. Now the formula ∃h(kh ≤ h)
(resp. ∃o(o ≤ lo)) is equivalent to ⊤, and, therefore it can be eliminated from
the antecedent. 2

Thanks to Lemmas 4.7 and 4.8, we will henceforth consider only Kracht
formulas where the pivotal variables do not occur in the consequent and whose
unrestricted non-pivotal variables occur in the consequent. We will also as-
sume that the variables introduced by type 1 restricted quantifier occur in the
consequent, since, otherwise, the formula would be equivalent to the same for-
mula without those quantifiers. We refer to such formulas as refined Kracht
formulas.

Example 4.9 The following formula

∀j∀m∀h1∀h2[j ≤ h1 & j ≤ h2 & j ≰ m ⇒
(∃i1 � ¬m)(∀n1 � ¬i1)(∀n2 � n1)(∃i2 ▶ ¬n2)(i2 ≤ 3h1 & i2 ≤ ♦h2)]

is Kracht with pivotal variables j and m, aliases h1 and h2, and a single Kracht
disjunct. Indeed, in i2 ≤ 3h1 and i2 ≤ ♦h2, h1 and h2 are inherently universal
and they occur in negative polarity while being under the scope of an even
number of universal quantifiers. By Lemma 4.7 and by renaming m to o1, it
is equivalent to the following refined Kracht formula:
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∀j∀m∀h1∀h2∀o1[j ≤ h1 & j ≤ h2 & o1 ≤ m & j ≰ m ⇒
(∃i1 � ¬o1)(∀n1 � ¬i1)(∀n2 � n1)(∃i2 ▶ ¬n2)(i2 ≤ 3h1 & i2 ≤ ♦h2)]

The Kracht formula

∀j∀m∀h1∀h2(∀i1 � j)(∀n1 �m)[i1 ≤ h1 & i1 ≤ h2 & j ≰ m ⇒
¬m ≤ h2 ` (∃i2 � ¬n1)(∀n2 � ¬i2)(¬n2 ≤ 3h1)]

is equivalent to the following refined Kracht formula (introducing an alias for
m)

∀j∀m∀h1∀h2∀o1(∀i1 � j)(∀n1 �m)[i1 ≤ h1 & i1 ≤ h2 & o1 ≤ m & j ≰ m ⇒
¬o1 ≤ h2 ` (∃i2 � ¬n1)(∀n2 � ¬i2)(¬n2 ≤ 3h1)]

4.3 From Kracht to very simple Sahlqvist with residuals

In this section, we introduce an algorithm that takes refined Kracht formulas as
input, and, using ALBA rules, computes very simple Sahlqvist ML∗-formulas of
which they are first order correspondents, and which are equivalent to inductive
ML-inequalities, as discussed in Section 3.

Compaction of the non-inherently universals. By exhaustively applying
Ackermann eliminations and inverse splitting, a Kracht disjunct θ(w) is shown
to be equivalent to some inequality that has w on display.

Algorithm 1 Compaction of a Kracht disjunct θ(w).

1: procedure DisjunctCompaction(θ)
2: if θ is a flat inequality then return θ
3: else
4: Let {θ1, . . . , θn} be the set of all the direct sub-disjuncts of θ
5: Let I = [I1, . . . , In] a list of inequalities
6: for all the direct sub-disjuncts θi in θ do
7: Ii ← DisjunctCompaction(θi)
8: end for
9: if θ is a (dis/con)junction of disjuncts θi(j) then
10: Let s1, . . . , sn be formulas such that Ii is j ≤ si for i = 1, . . . , n
11: return j ≤ s1 ∧ · · · ∧ sn if conjunction, j ≤ s1 ∨ · · · ∨ sn otherwise
12: else if θ is a (dis/con)junction of disjuncts θi(m) then
13: Let s1, . . . , sn be formulas such that Ii is si ≤m for i = 1, . . . , n
14: return s1 ∨ · · · ∨ sn ≤m if conjunction, s1 ∧ · · · ∧ sn ≤m otherwise
15: else if θ has form (Q u r v)(θ1) with Q ∈ {∀, ∃} and r ∈ {�,▶} then
16: return Eliminate u via Inverse Approximation Rules
17: else if θ has form (∃i,n � m)(θ1(i) & θ2(n)) or (∀i,n � m)(θ1(¬i) ` θ2(¬n))

then
18: return Eliminate i and n via Inverse Approximation Rules
19: end if
20: end if
21: end procedure

Lemma 4.10 When applied to a Kracht disjunct θ, Algorithm 1 outputs an
inequality of shape k ≤ s (resp. s ≤ l), where k (resp. l) is the main pure
variable of θ, and it does not occur in s.

Proof. We proceed by induction on the structure of θ(w). If θ(w) is a flat
inequality, then the statement holds by definition of Kracht disjunct. If θ(w) :=
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θ1(w) & · · · & θn(w) (resp. θ(w) := θ1(w) ` · · · ` θn(w)), then the
algorithm applies inverse splittingin line 11 if w is a nominal, line 14 if it is a
conominal. As, by inductive hypothesis on each θi, w does not occur in si, it
does not occur in

∧
i si (resp.

∨
i si). Assume that θ(w) := (∃u r w)(θ1(u))

(resp. θ(w) := (∀u r ¬w)(θ1(¬u))), with r ∈ {�,▶}, i.e. θ(w) is of the form
∃u(w ≤ f(u) & θ1(u)) (resp. ∀u(¬w ≤ f(u) ⇒ θ1(¬u))) if u is a nominal,
or as ∃u(g(u) ≤ w & θ1(u)) (resp. ∀u(g(u) ≤ ¬w ⇒ θ1(¬u))) if it is a
conominal, where f ∈ {3,♦} (resp. g ∈ {2,■}). In each such case, the
induction hypothesis on θ1 ensures that θ(w) is in Ackermann shape w.r.t.
u, which can then be eliminated by applying the Ackermann rule. The cases
θ(w) := (∃i,n�w)(θ1(i) & θ2(n)) and θ(w) := (∀i,n�¬w)(θ1(¬i) ` θ2(¬n))
are treated analogously by eliminating i and n. 2

Lemma 4.11 When applied to some Kracht disjunct θ(w), Algorithm 1 pro-
duces an inequality where the nominals (resp. conominals) different from w
occur in negative (resp. positive) polarity.

Proof. By definition of Kracht disjunct, the polarity of its non-main variables
depends on the number of universal quantifiers under which they are nested.
Indeed, polarities are preserved by applications of existential inverse approx-
imation and inverse splitting rules, and are reversed by applications of the
universal inverse approximation rule. Thus, in the end nominals (resp. conom-
inals) must occur in negative (resp. positive) polarity. 2

Example 4.12 Let us apply Algorithm 1 to the consequent of the formulas in
Example 4.9. The first one is (∃i1�¬o1)(∀n1�¬i1)(∀n2�n1)(∃i2 ▶ n2)(i2 ≤
3h1 & i2 ≤ ♦h2). The innermost Kracht disjunct is a conjunction sharing
the same main variable, thus we can compact it into one inequality. We then
proceed to eliminate the restricted quantifiers: working from the inside out, we
first expand them according to their definitions (for the sake of clarity) and
then apply appropriate inverse approximation rules:

(∃i1 � ¬o1)(∀n1 � ¬i1)(∀n2 � n1)(∃i2 ▶ ¬n2)(i2 ≤ 3h1 ∧ ♦h2)
iff (∃i1 � ¬o1)(∀n1 � ¬i1)(∀n2 � n1)∃i2(¬n2 ≤ ♦i2 & i2 ≤ 3h1 ∧ ♦h2) Inv. Splitting
iff (∃i1 � ¬o1)(∀n1 � ¬i1)(∀n2 � n1)(¬n2 ≤ ♦(3h1 ∧ ♦h2)) Inv. Approx.
iff (∃i1 � ¬o1)(∀n1 � ¬i1)∀n2(2n2 ≤ n1 =⇒ ¬n2 ≤ ♦(3h1 ∧ ♦h2))

iff (∃i1 � ¬o1)(∀n1 � ¬i1)∀n2(♦(3h1 ∧ ♦h2) ≤ n2 =⇒ ¬n1 ≤ 2n2) Contrapositive
iff (∃i1 � ¬o1)(∀n1 � ¬i1)(¬n1 ≤ 2♦(3h1 ∧ ♦h2)) Inv. Approx.
iff (∃i1 � ¬o1)∀n1(2n1 ≤ ¬i1 =⇒ ¬n1 ≤ 2♦(3h1 ∧ ♦h2))
iff (∃i1 � ¬o1)∀n1(2♦(3h1 ∧ ♦h2) ≤ n1 =⇒ i1 ≤ 2n1) Contapositive
iff (∃i1 � ¬o1)(i1 ≤ 22♦(3h1 ∧ ♦h2)) Inv. Approx
iff ∃i1(¬o1 ≤ 3i1 & i1 ≤ 22♦(3h1 ∧ ♦h2))
iff ¬o1 ≤ 322♦(3h1 ∧ ♦h2) Inv. Approx.

Now for the consequent of the second formula in Example 4.9, which is

¬o1 ≤ j2 ` (∃i2 � ¬n1)(∀n2 � ¬i2)(¬n2 ≤ 3j1).

For the sake of brevity, we will not write out the expansion of bounded quan-
tifiers and contrapositive steps for this example. The first Kracht disjunct is
already flat, in the second Kracht disjunct the algorithm yields
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(∃i2 � ¬n1)(∀n2 � ¬i2)(¬n2 ≤ 3j1) iff (∃i2 � ¬n1)(i2 ≤
23j1) iff ¬n1 ≤ 323j1 .

Compaction of the antecedent. After compacting the consequent, the (re-
fined) input formula (2) has the following shape:

∀j∀m∀h∀o∀Ri,n
(
η(j,m) ⇒

¸
(k ≤ δ ` γ ≤ l)

)
, (3)

where each k (resp. l) is either an alias variable, or is bound by some type
1 quantifier. Furthermore, as the input formula is refined, each alias and
each type 1 variable occurs at least once in the consequent. Let us abbreviate
SUCC :=

˙
(k ≤ δ ` γ ≤ l).

Each restricted quantifier binds one nominal i, one conominal n, or one
nominal and one conominal; in each case, the quantifier comes equipped with
a restricting inequality in the antecedent, which has shape ki ≤ 3i in the first
case, 2n ≤ ln in the second case, and i → n ≤ ln or ki ≤ i >−n in the third
case, for some nominal ki and conominal ln. By currying, for any formula σ,

(∀i� ki)(σ ⇒ SUCC) i.e. ∀i(ki ≤ 3i ⇒ (σ ⇒ SUCC)) iff
∀i((ki ≤ 3i & σ) ⇒ SUCC),

and similarly for the other two cases. Let us apply this procedure exhaustively,
so to rewrite the antecedent of (3) by conjoining it with all the restricting
inequalities of type 2 quantifiers and of type 1 quantifiers restricted by variables
bound by type 2 quantifiers. The next lemma shows that all type 2 quantifiers
can be eliminated by proceeding from the rightmost to the leftmost via an
inverse approximation rule. We suggest that the reader glance at Example
4.16 while reading the following two lemmas.

Lemma 4.13 After exhaustively currying, the antecedent of (3) is in the right
shape for the elimination of the rightmost quantifier via inverse approximation,
and, after the elimination, it is again in the right shape for the elimination of
the successive quantifiers.

Proof. After currying, the variables i and/or n bound by a a type 2 quantifier
can either occur in the antecedent in inequalities i ≤ h (resp. o ≤ n) for
some alias variable h (resp. o), or in restricting inequalities. Notice that i
(resp. n) occurs negatively (resp. positively) only in the restricting inequality
of the quantifier that binds it (let us call it I1), and occurs in the opposite
polarity in any other restricting inequality where it is a restrictor. Therefore,
we can merge via inverse splitting all the inequalities involving aliases and
the restricting inequalities where i (resp. n) occur as restrictor, thus obtaining
an inequality I2. When eliminating the rightmost quantifier, we only have to
consider two inequalities in the antecedent, I1 and I2, which are in Ackermann
shape for the elimination of i and/or n (considering that they cannot occur in
the consequent). The variable u on display in the resulting inequality is the
restrictor of I1, and, if it is a nominal (resp. conominal) it occurs on the left
(resp. right) hand side of the inequality; furthermore it occurs only once in the
inequality. The variable u can either be a pivotal variable or a variable bound
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by another type 2 quantifiers. In the latter case, u will be eliminated in a later
stage by repeating the same procedure. At that stage, this inequality will be
merged via inverse splitting with the ones where u is on display on the left
(resp. right) hand side if it is a nominal (resp. conominal). 2

After eliminating all the variables bound by type 2 quantifiers, the shape
of the antecedent reduces to the inequality j ≰ m in conjunction with in-
equalities of the form j ≤ θ or η ≤ m, and, moreover, the remaining type
1 quantifiers can only be restricted by j and m. Hence, by expanding these
remaining quantifiers, exhaustively currying, and applying inverse splitting,
the antecedent equivalently reduces to the following conjunction of inequalities
j ≤ θ1 ∧ · · · ∧ θn & η1 ∨ · · · ∨ ηm ≤ m & j ≰ m.

Lemma 4.14 After the elimination of type 2 restricted quantifiers and the
expansion of type 1 quantifiers, the antecedent has form

j ≤
n∧

i=1

θi &

m∨
i=1

ηi ≤ m & j ≰ m, (4)

where +
∧n

i=1 θi and −
∧m

i=1 ηi are pure scattered Skeleton formulas where j and
m do not occur, and any nominal (resp. conominal) occurs in positive (resp.
negative) polarity.

Proof. It is sufficient to show that every +θi and −ηi is made of Skeleton
nodes and that each variable occurs only once, since j and m clearly cannot
occur there as they are not in h or o and they are not even restricted variables.
The conjuncts that come from the type 1 restricted quantifiers clearly satisfy
the statement, hence it remains to show that the algorithm for the elimination
of type 2 quantifiers produces conjuncts with the same property. We proceed
by induction. Let us consider the case in which we eliminate a quantifier of the
kind (∀i,n� l). Before the inverse approximation of an iteration is performed,
we have a restricting inequality i → n ≤ l and the two inequalities i ≤ φ
and ψ ≤ n. In the base case, the last two are either restricting inequalities or
inequalities without connectives nor operators; in both the cases +φ and−ψ are
skeleton nodes and each variable occurs only once, as the pure variables in h and
o occur only once in the antecedent and the variables in a restricting inequalities
of a restricted quantifier are all different. Applying inverse approximation we
have φ → ψ ≤ l, and clearly −(φ → ψ) is a scattered Skeleton formula where
the constraints on the polarity of the variables are met. In the inductive case,
we proceed in the same way noting that, by applying inductive hypothesis,
i ≤ φ or ψ ≤ n are scattered Skeleton formulas that meet the constraints on
the polarities; hence, as in the base case, also the result of inverse approximation
meets the same requirements. The remaining cases are proved similarly. 2

Remark 4.15 The variables occurring +
∧n

i=1 θi and −
∧m

i=1 ηi are exactly all
the ones in h, o and the ones bound by type 1 quantifiers. The former variables
are indeed captured because each one of them occurs at least (exactly) once in
the antecedent, whilst the latter variables are clearly captured by writing the
expansion of the quantifier.
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Example 4.16 When treating the antecedent of the first formula in Example
4.9 as further processed in Example 4.12, we do not have inherently universal
restricted quantifiers; hence this step consists in a straightforward application
of the inverse splitting rule

∀j∀m∀h1∀h2∀o1[j ≤ h1 & j ≤ h2 & o1 ≤ m & j ≰ m ⇒ ¬o1 ≤ 22♦(3h1 ∧ ♦h2)]
iff ∀j∀m∀h1∀h2∀o1[j ≤ h1 ∧ h2 & o1 ≤ m & j ≰ m ⇒ ¬o1 ≤ 22♦(3h1 ∧ ♦h2)]

As for the second formula from Examples 4.9 and 4.12, namely

∀j∀m∀h1∀h2∀o1(∀i1 � j)(∀n1 �m)[i1 ≤ h1 & i1 ≤ h2 & o1 ≤ m & j ≰ m ⇒
¬o1 ≤ h2 ` ¬n1 ≤ 323h1],

the quantifier (∀n1 � m) is of type 1, while (∀i1 � j) is of type 2. We start
by eliminating the latter and then we merge the inequalities of the antecedent
with the one of the restricted quantifier of type 1.

∀j∀m∀h1∀h2∀o1∀i1∀n1[i1 ≤ h1 & i1 ≤ h2 & j ≤ 3i1 & o1 ≤m & 2n1 ≤m & j ≰ m⇒
¬o1 ≤ h2 ` ¬n1 ≤ 323h1]

iff ∀j∀m∀h1∀h2∀o1∀i1∀n1[i1 ≤ h1 ∧ h2 & j ≤ 3i1 & o1 ≤m & 2n1 ≤m & j ≰ m⇒
¬o1 ≤ h2 ` ¬n1 ≤ 323h1]

iff ∀j∀m∀h1∀h2∀o1∀n1[j ≤ 3(h1 ∧ h2) & o1 ≤m & 2n1 ≤m & j ≰ m⇒
¬o1 ≤ h2 ` ¬n1 ≤ 323h1]

iff ∀j∀m∀h1∀h2∀o1∀n1[j ≤ 3(h1 ∧ h2) & o1 ∨ 2n1 ≤m & j ≰ m⇒
¬o1 ≤ h2 ` ¬n1 ≤ 323h1]

Elimination of pivotal variables. After the elimination of type 2 quanti-
fiers, the contrapositive of the formula is

∀j∀m∀h∀o∀i′∀n′ (δ ≤ ¬k & ¬l ≤ γ ⇒ (j ≤
∧n

i=1 θi &
∨m

i=1 ηi ≤ m ⇒ j ≤ m)
)
,

where i
′
and n′ are the variables originally introduced by type 1 restricted

quantifiers. By applying inverse approximation to eliminate j and m, and by
putting φ :=

∧n
i=1 θi and ψ :=

∧m
i=1 ηi, the formula above is equivalent to

∀h∀o∀i′∀n′ (δ ≤ ¬k & ¬l ≤ γ ⇒ φ ≤ ψ
)
.

If one of the literals in k (resp. in l) is already negated, namely it is of the
form ¬i (resp. ¬n) for some nominal i (resp. conominal n), we can just apply
self adjunction of negation to obtain a formula i ≤ θ. Hence, we apply this
procedure obtaining a formula with shape

∀h∀o∀i′∀n′
(
k′ ≤ γ′ & δ′ ≤ l′ ⇒ φ ≤ ψ

)
. (5)

We can assume that each variable in k′ (resp. l′) is different, since if it occurs
in more than one inequality, these two inequalities can be merged via inverse
splitting.

Very simple Sahlqvist in ML∗. To simplify notation, we drop the apostro-
phe in k′ and l′, and we let i (resp. n) denote all the other nominals (resp.
conominals), i.e. the ones occurring in γ and δ. The formula (5) is thus equiv-
alent to:

∀k∀l∀i∀n
(
k ≤ γ & δ ≤ l ⇒ φ ≤ ψ

)
. (6)
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By Lemma 4.14, we know that the inequality φ ≤ ψ is a scattered Skeleton
inequality containing every variable quantified in the prefix. Furthermore, each
nominal in i and k occurs in positive polarity in it, and each conominal in
n and l occurs in negative polarity; hence we may eliminate of each k and l
through inverse approximation (see [5, Section 4.2]). Therefore (6) is equivalent
to ∀i∀n

(
φ[γ/k, δ/l] ≤ ψ[γ/k, δ/l]

)
. For each (co)nominal in i (resp. in n) we

introduce a new variable pi (resp. qn). Let

φ′ :=
(
φ
[
γ/k, δ/l

]) [
pi/i, qn/n

]
ψ′ :=

(
ψ
[
γ/k, δ/l

]) [
pi/i, qn/n

]
.

By Lemma 4.11, nominals (resp. conominals) in each +γ in γ and −δ in δ occur
in negative (resp. positive) polarity; hence every +γ and −δ is an ε∂-uniform
subtree in +φ′ and −ψ′, where ε is the order type on pi and qn such that
ε(pi) = 1 and ε(qn) = ∂.

Hence, φ′ ≤ ψ′ is a scattered very simple ε-Sahlqvist inequality in ML∗,
and, moreover, ALBA reduces it to (6), as shown below ∀pi∀qn (φ′ ≤ ψ′) is
equivalent to

∀pi∀qn∀j∀m∀j′∀m′
(
j ≤ γ[pi/i, qn/n] & δ[pi/i, qn/n] ≤ m & j

′ ≤ pi & pn ≤ m′

⇒ φ[j/k,m/l] ≤ ψ[j/k,m/l]
)
,

which is equivalent to

∀j∀m∀j′∀m′
(
j ≤ γ[j

′
/i,m′/n] & δ[j

′
/i,m′/n] ≤ m ⇒ φ[j/k,m/l] ≤ ψ[j/k,m/l]

)
From the above discussion, the main result follows.

Theorem 4.17 Every (refined) Kracht MLK formula can be effectively asso-
ciated with a scattered very simple Sahlqvist inequality in ML∗ to which it is
equivalent on Kripke frames/complete and atomic BAOs.

Example 4.18 In Example 4.16 we had

∀j∀m∀h1∀h2∀o1[j ≤ h1∧h2 & o1 ≤ m & j ≰ m1 ⇒ ¬o1 ≤ 22♦(3h1∧♦h2)].

After the contrapositive step it becomes ∀h1∀h2∀o1[22♦(3h1 ∧♦h2) ≤ o1 ⇒
h1 ∧ h2 ≤ o1], which, by the previous discussion, is equivalent to the very
simple Sahlqvist formula ∀ph1

∀ph2
[ph1

∧ ph2
≤ 22♦(3ph1

∧ ♦ph2
)].

Taking the second formula in Example 4.16, i.e.

∀j∀m∀h1∀h2∀o1∀n1[j ≤ 3(h1 ∧ h2) & o1 ∨2n1 ≤ m & j ≰ m ⇒
¬o1 ≤ h2 ` ¬n1 ≤ 323h1],

after the contrapositive step we obtain ∀h1∀h2∀o1∀n1[h2 ≤ o1 & 323h1 ≤
n1 ⇒ 3(h1 ∧ h2) ≤ o1 ∨ 2n1], which in turn is equivalent to the very simple
Sahlqvist ∀ph1

∀qo1 [3(ph1
∧ qo1) ≤ qo1 ∨2323ph1

].

From inductive inequalities to Kracht MLK formulas. By applying an
ALBA inductive formula, taking the contrapositive of the resulting pure quasi-
inequality, and then applying approximation rules to obtain flat inequalities in
the whole formula, the following result can be proved.
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Theorem 4.19 Every inductive inequality is equivalent to some Kracht MLK

formula.

From Kracht MLK to inductive. As, by Lemma 3.6 and Proposition 3.4,
the class of inductive formulas is equivalent to the one of crypto ML∗-inductive,
it is sufficient to restrict ourselves to the class of Kracht MLK-formulas which
correspond to crypto-inductive formulas. To do so, it is sufficient to note that
the only condition to enforce is that the Kracht ML-disjuncts starting with an
operator in ML∗ are reduced (by Algorithm 1) to inequalities whose non-main
side is an (ε,Ω)-unpackable formula for some ε and Ω. This is easily achieved
by imposing the same restrictions as in Definition 3.2 to the operators in the
restricted quantifiers of the branch.

5 Conclusion

We have established an inverse correspondence result between the Sahlqvist
formulas in tense logic and the inductive formulas in modal logic on the one
hand, and a class of quantified pure hybrid tense formulas on the other. The
order-theoretic perspective we have introduced in the present paper lays the
groundwork for a generalization of Kracht’s and Kikot’s inverse correspondence
theory to general logics algebraically captured by classes of (distributive) lattice
expansions or (D)LE-logics (see [3]). One of the main advantages of the latter
is that it is a general, modular result which is largely independent of any
particular choice of relational semantics for a (D)LE logic but links to such
particular choices (and thence to first-order inverse correspondence) via duality
and the accompanying standard translation.

In closing, we will mention only one of the various further directions that
remain to be developed in this line of research: We have focused on correspon-
dence between first-order formulas in one free variable and modal formula, but
one may generalize this to n-correspondence between first-order formulas in n
free variables and n-tuples of modal formulas [18]. Inverse n-correspondence
is studied in [15], and a characterization is obtained of the first-order formulas
built from relational atoms using conjunction and existential quantification for
which modal n-correspondents exist. This problem is also considered in [8] from
the perspective of description logics and for, what amounts to, a more general
class of first-order formulas. In future work we will generalize and apply the
methods of the present paper to the problem of n-correspondence for general
DLE-languages.

Appendix

A The rules of ALBA

The algorithm ALBA applies a set of invertable re-write rules to transform
(while maintaining equivalence on algebras and frames) quasi-inequalities (of
formulas in LE-languages, like ML+) into sets of pure quasi-inequalities, i.e.
ones in which all propositional variables have been eliminated in favour of nom-
inals and co-nominals. We refer the reader to [5] and [6] for the full specification
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of ALBA including its rules. Because they are of particular importance to the
present paper, we here recall only the inverses of the splitting and approxima-
tion rules:

Inverse splitting rules.

α ≤ β ∧ γ
α ≤ β α ≤ γ

α ∨ β ≤ γ

α ≤ γ β ≤ γ

Inverse approximation rules. The following are special cases of the general
approximation rules given in [5] and [6]. Let Γ be an arbitrary conjunction of
ML+ inequalities and ϕ, ψ ∈ ML+ such that, in each of the following rules,
the quantified nominal or co-nominal does not in occur in the conclusion, and
3· ∈ {3,♦} and ⊡ ∈ {2,■}:

∃i(j ≤ 3· i & i ≤ ϕ & Γ)

j ≤ 3· ϕ & Γ

∃n(⊡n ≤ m & ϕ ≤ n & Γ)

⊡ϕ ≤ m & Γ

∀i(i ≤ ϕ & Γ ⇒ 3· i ≤ ψ)

Γ ⇒ 3· ϕ ≤ ψ

∀n(ϕ ≤ n & Γ ⇒ ψ ≤ ⊡n)

Γ ⇒ ψ ≤ ⊡ϕ

∀j∀m(j ≤ ϕ & ψ ≤ m & Γ ⇒ j ≤ m)

Γ ⇒ ϕ ≤ ψ

B From inductive in ML to Kracht

It is well known (cf. [7]) that an ALBA run on a definite inductive formula
(φ ≤ ψ)[α, x, β/y, γ/z, δ/w] yields

∀j∀m∀i∀n
(
i ≤

γmv︷ ︸︸ ︷
γ

[∨
Mv(p)/p,

∧
Mv(q)/q

]
&

δ
mv︷ ︸︸ ︷

δ

[∨
Mv(p)/p,

∧
Mv(q)/q

]
≤ n ⇒

(φ ≤ ψ)[!j/!x, !m/!y, !i/!z, !n/!w]
)
,

which is equivalent to its contrapositive

∀j∀m∀i∀n

(
(φ ≰ ψ)[!j/!x, !m/!y, !i/!z, !n/!w] ⇒

ņ

i=1

γmv
i ≤ ¬ii `

m̧

i=1

¬ni ≤ δmv
i

)
.

We put (φ′ ≤ ψ′) ≡ (φ ≤ ψ)[!j/!x, !m/!y, !i/!z, !n/!w], by approximating
the antecedent we have:

∀j′∀m′∀j∀m∀i∀n
(
j′ ≤ φ′ & ψ′ ≤m′ & j′ ≰ m′ ⇒

ņ

i=1

γmv
i ≤ ¬ii `

m̧

i=1

¬ni ≤ δmv
i

)
.

(B.1)

The variables j′ and m′ will be the pivotal pure variables of the inductive
Kracht formula that we will compute.

Lemma B.1 Each γmv
i ≤ ¬ii and ¬ni ≤ δmv

i in (B.1) is equivalent to some
Kracht disjunct.
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Proof. By induction on the structure of γmv
i (resp. δmv

i ). When γmv
i ≤ ¬ii

(resp. ¬ni ≤ δmv
i ) is flat inequalities, there is nothing to do. When it is not

flat, γmv
i ≤ ¬ii (resp. ¬ni ≤ δmv

i ) can be rewritten in one of the following ways:
• 2θ ≤ ¬ii (resp. ¬ni ≤ 3θ) for some formula θ. In this case we can apply
Ackermann lemma to obtain (∃l�¬ii)θ ≤ l (resp. (∃k�¬ni)k ≤ θ) with
l (resp. k) fresh.

• ■θ ≤ ¬ii (resp. ¬ni ≤ ♦θ) for some formula θ. In this case we can apply
Ackermann lemma to obtain (∃l ▶ ¬ii)θ ≤ l (resp. (∃k ▶ ¬ni)k ≤ θ) with
l (resp. k) fresh.

• θ → η ≤ ¬ii (resp. ¬ni ≤ θ − η) for some formulas θ and η. In this case
we can apply Ackermann lemma to obtain (∃k, l � ¬ii)(k ≤ θ & η ≤ l)
(resp. (∃k, l� ¬ni)(k ≤ θ & η ≤ l)) with k and l fresh.

• 3θ ≤ ¬ii (resp. ¬ni ≤ 2θ) for some formula θ. In this case we can apply
Ackermann lemma to obtain (∀k� ii)θ ≤ ¬k (resp. (∀l� ni)¬l ≤ θ) with
k (resp. l) fresh.

• ♦θ ≤ ¬ii (resp. ¬ni ≤ ■θ) for some formula θ. In this case we can apply
Ackermann lemma to obtain (∀k ▶ ii)θ ≤ ¬k (resp. (∀l ▶ ni)¬l ≤ θ) with
k (resp. l) fresh.

• θ − η ≤ ¬ii (resp. ¬ni ≤ θ → η) for some formulas θ and η. In this case
we can apply Ackermann lemma to obtain (∀l,k� ii)(¬l ≤ θ ` η ≤ ¬k)
(resp. (∀l,k� ni)(¬l ≤ θ ` η ≤ ¬k)) with k and l fresh.

• θ ∧ η ≤ ¬ii (resp. ¬ni ≤ θ ∨ η) for some formulas θ and η. In this
case we can apply Inverse splitting to obtain θ ≤ ¬ii ` η ≤ ¬ii (resp.
¬ni ≤ θ ` ¬ni ≤ η).

• θ ∨ η ≤ ¬ii (resp. ¬ni ≤ θ ∧ η) for some formulas θ and η. In this
case we can apply Inverse splitting to obtain θ ≤ ¬ii & η ≤ ¬ii (resp.
¬ni ≤ θ & ¬ni ≤ η).

As the inductive hypothesis holds on the subformulae generated either by in-
verse splitting or Ackermann lemma, the statement holds. 2

Lemma B.2 The algorithm in Lemma B.1 applied to j′ ≤ φ′ and ψ′ ≤ m′

yields only existential quantifiers and (conjunctions) of restricting inequalities.

Proof. By induction on the structure of φ′ (resp. ψ′). If either φ′ (resp. ψ′)
is a pure variable or has one single operator/connective, the statement is true
as, being positive Skeleton, the operator would either 3, ♦, or ∨ (resp. 2, ■,
→, ∧). The same thing applies to the uppermost connective in more complex
formula, which, when simplified via Ackermann lemma, yield smaller skeleton
formulas while outputting a single existential quantifier (it is sufficient to check
that the possible cases output existential quantifier). Note that the cases that
produce (meta) disjunctions can never occur, as they would require either a ∧
on the left or a ∨ on the right hand side of the inequality. 2

After both the lemmas are applied, we have a formula with a universal
prefix, an antecedent with just restricted universal quantifiers, restricting in-
equalities, and a pivotal inequality; and an inductive Kracht consequent. The
existential quantifiers in the antecedent can be rewritten as universal ones in
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the prefix: as they have been added during the procedure in Lemma B.2, they
cannot occur in the consequent. Indeed, they are exactly the type 2 quantifiers
of the formula. The remaining restricting inequalities in the antecedent can be
written directly in their corresponding quantifiers: they make up for the type 1
quantifiers of the formula as they occur in the consequent, but not in the an-
tecedent (since the skeleton in scattered, the restricting inequality originating
the quantifier can be the only one containing it). The remaining inequalities
in the antecedent do not contain operators/connectives, and the non-pivotal
variables occur exactly once (always because the skeleton is scattered). The re-
quirements on polarity do also hold as in the skeleton formula φ′ ≤ ψ′ nominals
occur in positive position and conominals in negative position due to how the
first approximation step of ALBA works. The requirement on the polarities in
the consequent is respected as universal quantifiers, as can be verified by look-
ing at the cases in Lemma B.1, flip the polarities of their maximal subformulae
(the θs and the ηs in the lemma). Therefore, the claim that every inductive
inequality is equivalent to some inductive Kracht formula readily follows from
the above discussion.
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