
Algebraic Semantics for One-Variable
Lattice-Valued Logics

Petr Cintula 1

Institute of Computer Science of the Czech Academy of Sciences
Prague, Czech Republic
cintula@cs.cas.cz

George Metcalfe 2 Naomi Tokuda

Mathematical Institute, University of Bern, Switzerland
{george.metcalfe,naomi.tokuda}@unibe.ch

Abstract

The one-variable fragment of any first-order logic may be considered as a modal logic,
where the universal and existential quantifiers are replaced by a box and diamond
modality, respectively. In several cases, axiomatizations of algebraic semantics for
these logics have been obtained: most notably, for the modal counterparts S5 and
MIPC of the one-variable fragments of first-order classical logic and intuitionistic
logic, respectively. Outside the setting of first-order intermediate logics, however,
a general approach is lacking. This paper provides the basis for such an approach
in the setting of first-order lattice-valued logics, where formulas are interpreted in
algebraic structures with a lattice reduct. In particular, axiomatizations are obtained
for modal counterparts of one-variable fragments of a broad family of these logics
by generalizing a functional representation theorem of Bezhanishvili and Harding for
monadic Heyting algebras. An alternative proof-theoretic proof is also provided for
one-variable fragments of first-order substructural logics that have a cut-free sequent
calculus and admit a certain bounded interpolation property.

Keywords: Modal Logic, Substructural Logics, Lattice-Valued Logics, One-Variable
Fragment, Superamalgamation, Sequent Calculus, Interpolation.

1 Introduction

The one-variable fragment of any first-order logic — the valid formulas built
using one variable x, unary relation symbols, propositional connectives, and
quantifiers (∀x) and (∃x) — may be studied as an “S5-like” modal logic. Just
replace each occurrence of an atom P (x) with a propositional variable p, and
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(∀x) and (∃x) with 2 and 3, respectively. The first-order semantics typically
induces a relational semantics for this modal logic, but an axiomatization of
its algebraic semantics may be rather elusive; in particular, an axiomatization
of the first-order logic does not directly yield a Hilbert-style axiomatization of
(the modal counterpart of) its one-variable fragment.

Such axiomatizations have been obtained in several notable cases. Monadic
Boolean algebras [17] and monadic Heyting algebras [4, 20] correspond to the
modal counterparts S5 and MIPC of the one-variable fragments of first-order
classical logic and intuitionistic logic, respectively. More generally, varieties of
monadic Heyting algebras corresponding to modal counterparts of one-variable
fragments of first-order intermediate logics (based on frames with and without
constant domains) have been investigated in [1, 3, 5–7, 22, 24, 25]. One-variable
fragments of certain first-order many-valued logics have also been studied in
some depth. In particular, modal counterparts of the one-variable fragments
of first-order  Lukasiewicz logic and Abelian logic correspond to monadic MV-
algebras [8, 13,23] and monadic Abelian ℓ-groups [19], respectively.

In this paper, we take first steps towards a general approach to addressing
this axiomatization problem. As a starting point, we introduce in Section 2
(first-order) one-variable lattice-valued logics, where formulas are interpreted
in structures defined over complete L-lattices: algebraic structures for a given
algebraic signature L that have a lattice reduct. In Section 3, we then define
an m-L-lattice to be an L-lattice expanded with modalities 2 and 3 satisfying
certain natural equations, and for a class K of L-lattices, let mK denote the class
of m-L-lattices with an L-lattice reduct in K. (In particular, if K is the variety
of Boolean algebras or Heyting algebras, mK is the variety of monadic Boolean
algebras or monadic Heyting algebras, respectively.) Generalizing previous
results in the literature (see, e.g., [1,27]), we obtain a one-to-one correspondence
between m-L-lattices and L-lattices equipped with a subalgebra that satisfies
a certain relative completeness condition.

Given a variety V of L-lattices, equational consequence in the variety mV
always implies consequence in the one-variable lattice-valued logic based on the
complete members of V. In Section 4, we show that the converse also holds if V
admits regular completions and has the superamalgamation property. The key
tool in this proof is a generalization of Bezhanishvili and Harding’s functional
representation theorem for monadic Heyting algebras [3]. In Section 5, we
show that this theorem applies to certain varieties of FLe-algebras, yielding
axiomatizations of the modal counterparts of one-variable fragments of certain
first-order substructural logics. In Section 6, we provide an alternative proof
of these results for substructural logics by establishing a bounded interpolation
property for cut-free sequent calculi for the one-variable fragments.

Finally, in Section 7 we sketch a broader perspective for one-variable lattice-
valued logics based on an arbitrary class K of complete L-lattices, observing
that when K consists of the complete members of a variety V, the corresponding
class of m-L-lattices need not in general be mV or even a variety.
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2 One-Variable Lattice-Valued Logics

Let Ln denote the set of operation symbols of an algebraic signature L of arity
n ∈ N, and call L lattice-oriented if L2 contains distinct symbols ∧ and ∨. We
will assume throughout this paper that L is a fixed lattice-oriented signature.

An L-lattice is an algebraic structure A = ⟨A, {⋆A | n ∈ N, ⋆ ∈ Ln}⟩ such
that ⟨A,∧A,∨A⟩ is a lattice with order x ≤A y :⇐⇒ x ∧A y = x and ⋆A is an
n-ary operation on A for each ⋆ ∈ Ln (n ∈ N). As usual, we omit superscripts
when these are clear from the context.

We call A complete if its lattice reduct ⟨A,∧,∨⟩ is complete, i.e.,
∧
X and∨

X exist in A for all X ⊆ A. Given a class K of L-lattices, we denote by K the
class of its complete members and say that K admits regular completions if for
any A ∈ K, there exist a B ∈ K and an embedding f : A → B that preserves
all existing meets and joins of A.

Example 2.1 The varieties BA and HA of Boolean algebras and Heyting
algebras, respectively, are closed under MacNeille completions and hence admit
regular completions. Although these are the only two non-trivial varieties of
Heyting algebras closed under MacNeille completions [2], a broad family of
varieties that provide semantics for substructural logics (see Section 5) also have
this property [10]. Moreover, for a still broader family of varieties, including
the variety GA of Gödel algebras (Heyting algebras that satisfy the prelinearity
axiom (x→ y)∨(y → x) ≈ 1), the class of their subdirectly irreducible members
is closed under MacNeille completions [9]. Note, however, that neither the
variety MV of MV-algebras nor the class of its subdirectly irreducible members
admit regular completions [15].

First-order formulas with propositional connectives in L can be defined for
an arbitrary predicate language as usual (see, e.g., [11, Section 7.1]). We restrict
our attention here, however, to the set Fm1

∀(L) of one-variable L-formulas
φ,ψ, χ, . . . , built from a countably infinite set of unary predicates {Pi}i∈N, a
variable x, connectives in L, and quantifiers ∀,∃. Given φ,ψ ∈ Fm1

∀(L), we
refer to φ ≈ ψ as an Fm1

∀(L)-equation and let φ ≤ ψ denote φ ∧ ψ ≈ φ. 3

Let A be a complete L-lattice. An A-structure is an ordered pair S = ⟨S, I⟩
such that S is a non-empty set and I(Pi) is a map from S to A for every i ∈ N.

For each u ∈ S, we define a map ∥·∥Su : Fm1
∀(L) → A inductively as follows:

∥Pi(x)∥Su = I(Pi)(u) i ∈ N

∥⋆(φ1, . . . , φn)∥Su = ⋆A(∥φ1∥Su , . . . , ∥φn∥Su ) n ∈ N, ⋆ ∈ Ln

∥(∀x)φ∥Su =
∧

{∥φ∥Sv | v ∈ S}

∥(∃x)φ∥Su =
∨

{∥φ∥Sv | v ∈ S}.

3 To avoid confusion, let us emphasize that φ ≈ ψ is a primitive syntactic object that relates
two formulas and not terms. In some settings (e.g., first-order classical or intuitonistic logic),
the validity of φ ≈ ψ can be expressed using the validity of a formula such as φ↔ ψ and we
may define semantical consequence between formulas, but this is not always the case.
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We say that an Fm1
∀(L)-equation φ ≈ ψ is valid in S, denoted by S |= φ ≈ ψ,

if ∥φ∥Su = ∥ψ∥Su for all u ∈ S. We also say that an Fm1
∀(L)-equation φ ≈ ψ is a

(sentential) semantical consequence of a set of Fm1
∀(L)-equations T with respect

to a class K of complete L-lattices, denoted by T ⊨∀
K φ ≈ ψ, if S |= φ ≈ ψ for

any A ∈ K and A-structure S satisfying S |= φ′ ≈ ψ′ for all φ′ ≈ ψ′ ∈ T . 4

Now let Fm2(L) be the set of propositional formulas α, β, . . . constructed
using propositional variables {pi}i∈N, connectives in L, and unary connectives
2,3, and call α ≈ β an Fm2(L)-equation for any α, β ∈ Fm2(L). The standard
translation functions (−)∗ and (−)◦ between Fm1

∀(L) and Fm2(L) are defined
inductively as follows:

(Pi(x))∗ = pi p◦i = Pi(x)

(⋆(φ1, . . . , φn))∗ = ⋆(φ∗
1, . . . , φ

∗
n) (⋆(α1, . . . , αn))◦ = ⋆(α◦

1, . . . , α
◦
n) ⋆ ∈ Ln

((∀x)φ)∗ = 2φ∗ (2α)◦ = (∀x)α◦

((∃x)φ)∗ = 3φ∗ (3α)◦ = (∃x)α◦.

These translations extend in the obvious way also to (sets of) Fm1
∀(L)-equations

and Fm2(L)-equations.
Clearly (φ∗)◦ = φ for any φ ∈ Fm1

∀(L) and (α◦)∗ = α for any α ∈ Fm2(L);
hence we can alternate between first-order and modal notations as convenient.
In particular, given any class K of complete L-lattices, we obtain an equational
consequence relation on Fm2(L) corresponding to ⊨∀

K. Therefore, to find an
algebraic semantics for a one-variable lattice-valued logic, we seek a (natural)
axiomatization of a variety V of algebras in the signature of Fm2(L) such that
⊨∀
K corresponds, via the above translations, to equational consequence in V.

More precisely, let us call a homomorphism from the formula algebra with
universe Fm2(L) to A ∈ V an A-evaluation, and define for any set Σ∪{α ≈ β}
of Fm2(L)-equations,

Σ ⊨V α ≈ β :⇐⇒ f(α) = f(β) for every A ∈ V and A-evaluation f

such that f(α′) = f(β′) for all α′ ≈ β′ ∈ Σ.

Then V should satisfy for any set of Fm1
∀(L)-equations T ∪ {φ ≈ ψ},

T ⊨∀
K φ ≈ ψ ⇐⇒ T ∗ ⊨V φ

∗ ≈ ψ∗.

In Section 4, we solve this problem for the case where K consists of the complete
members of a variety of L-lattices that admits regular completions and has the
superamalgamation property (Corollary 4.2).

4 These notions can be extended to arbitrary (classes of) L-lattices by saying that ∥(∀x)φ∥Su
or ∥(∃x)φ∥Su is undefined if the corresponding infimum or supremum fails to exist and that

S is safe if ∥φ∥Su is defined for all φ ∈ Fm1
∀(L) and u ∈ S. Clearly, if K is a class of complete

L-lattices, then the two notions of semantical consequence coincide, and if K admits regular
completions, then ⊨∀

K = ⊨∀
K
.
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Example 2.2 If K is BA or HA, then ⊨∀
K is semantical consequence in the

one-variable fragment of first-order classical logic or intuitionistic logic, and
corresponds to equational consequence in monadic Boolean algebras [17] or
monadic Heyting algebras [4, 20], respectively. Similarly, if K is GA, then ⊨∀

K
is semantical consequence in the one-variable fragment of the first-order logic
of linear frames [12], which corresponds to equational consequence in prelinear
monadic Heyting algebras [6]. On the other hand, if K is the class of totally
ordered members of GA, then ⊨∀

K is semantical consequence in the one-variable
fragment of first-order Gödel logic, the first-order logic of linear frames with
constant domains, which corresponds to equational consequence in monadic
Gödel algebras, i.e., prelinear monadic Heyting algebras satisfying the constant
domain axiom 2(2x∨y) ≈ 2x∨2y [7]. Finally, semantical consequence in the
one-variable fragment of first-order  Lukasiewicz logic is obtained by taking K to
be the class of totally ordered members of MV and corresponds to equational
consequence in monadic MV-algebras [8, 13,23].

3 An Algebraic Semantics

An m-lattice is an algebraic structure ⟨L,∧,∨,2,3⟩ such that ⟨L,∧,∨⟩ is a
lattice and the following equations are satisfied:

(L12) 2x ∧ x ≈ 2x (L13) 3x ∨ x ≈ 3x
(L22) 2(x ∧ y) ≈ 2x ∧2y (L23) 3(x ∨ y) ≈ 3x ∨3y
(L32) 23x ≈ 3x (L33) 32x ≈ 2x.

Recalling that α ≤ β stands for α∧β ≈ α and implies α∨β ≈ β in any lattice,
it is easy to check that every m-lattice satisfies the following (quasi-)equations:

(L42) 22x ≈ 2x (L43) 33x ≈ 3x
(L52) x ≤ y =⇒ 2x ≤ 2y (L53) x ≤ y =⇒ 3x ≤ 3y.

Let L again be a fixed lattice-oriented signature. An m-L-lattice is an algebraic
structure ⟨A,2,3⟩ such that A is an L-lattice, ⟨A,∧,∨,2,3⟩ is an m-lattice,
and the following equation is satisfied for each ⋆ ∈ Ln (n ∈ N):

(⋆2) 2(⋆(2x1, . . . ,2xn)) ≈ ⋆(2x1, . . . ,2xn).

It follows from (⋆2), (L32), and (L33) that ⟨A,2,3⟩ also satisfies the following
equation for each ⋆ ∈ Ln (n ∈ N):

(⋆3) 3(⋆(3x1, . . . ,3xn)) ≈ ⋆(3x1, . . . ,3xn).

Given any class K of L-lattices, we let mK denote the class of all m-L-lattices
⟨A,2,3⟩ such that A ∈ K. Clearly, if K is a variety, then also mK is a variety.

Example 3.1 It is easily checked that mBA and mHA are the varieties of
monadic Boolean algebras [17] and monadic Heyting algebras [20], respectively.
Similarly, mGA is the variety of prelinear monadic Heyting algebras [6], while
the subvariety of mGA satisfying the constant domain equation is the variety of
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monadic Gödel algebras [7]. However, mMV is not the variety of monadic MV-
algebras considered in [8,13,23], which satisfy the equation 3x ·3x ≈ 3(x ·x).
To see this, consider the MV-algebra  L3 = ⟨{0, 12 , 1},∧,∨, ·,→, 0, 1⟩ (in the
language of FLe-algebras) with the usual order, where x ·y := max(0, x+y−1),
x → y := min(1, 1 − x+ y). Let 20 = 2 1

2 = 30 = 0 and 21 = 3 1
2 = 31 = 1.

Then ⟨ L3,2,3⟩ ∈ mMV, but 3 1
2 ·3 1

2 = 1 · 1 = 1 ̸= 0 = 30 = 3( 1
2 · 1

2 ).

We now establish a useful representation theorem for m-L-lattices that will
be crucial in the proof of the functional representation theorem for certain
varieties in the next section.

Lemma 3.2 Let ⟨A,2,3⟩ be any m-L-lattice. Then 2A := {2a | a ∈ A} is a
subuniverse of A satisfying 2A = 3A := {3a | a ∈ A} and for any a ∈ A,

2a = max{b ∈ 2A | b ≤ a} and 3a = min{b ∈ 2A | a ≤ b}.

We let 2A denote the subalgebra of A with universe 2A.

Proof. The fact that 2A is a subuniverse of A is a direct consequence of (⋆2),
and the fact that 2A = 3A follows from (L32) and (L33). Moreover, if b ∈ 2A
satisfies b ≤ a, then b = 2b ≤ 2a, by (L42) and (L52). But also 2a ≤ a, by
(L12), so 2a = max{b ∈ 2A | b ≤ a}. Similarly, 3a = min{b ∈ 2A | a ≤ b}. 2

A sublattice L0 of a lattice L is said to be relatively complete if for any a ∈ L,
the set {b ∈ L0 | b ≤ a} contains a maximum and the set {b ∈ L0 | a ≤ b}
contains a minimum. Equivalently, L0 is relatively complete if the inclusion
map f0 from L0 to L has left and right adjoints: that is, there exist order-
preserving maps 2 : L→ L0, 3 : L→ L0 satisfying for a ∈ L, b ∈ L0,

f0(b) ≤ a ⇐⇒ b ≤ 2a and a ≤ f0(b) ⇐⇒ 3a ≤ b.

For convenience, we also say that a subalgebra A0 of an L-lattice A is relatively
complete if this is the case for the lattice reducts. By Lemma 3.2, the subalgebra
2A of A is relatively complete for any m-L-lattice ⟨A,2,3⟩. The following
result establishes a converse.

Lemma 3.3 Let A0 be a relatively complete subalgebra of an L-lattice A, and
define 20a := max{b ∈ A0 | b ≤ a} and 30a := min{b ∈ A0 | a ≤ b} for each
a ∈ A. Then ⟨A,20,30⟩ is an m-L-lattice and 20A = 30A = A0.

Proof. It is straightforward to check that ⟨A,∧,∨,20,30⟩ is an m-lattice; for
example, it satisfies (L22), since for any a1, a2 ∈ A,

20(a1 ∧ a2) = max{b ∈ A0 | b ≤ a1 ∧ a2}
= max{b ∈ A0 | b ≤ a1 and b ≤ a2}
= max{b ∈ A0 | b ≤ a1} ∧ max{b ∈ A0 | b ≤ a2}
= 20a1 ∧20a2.

Since A0 is a subalgebra of A, clearly ⟨A,20,30⟩ also satisfies (⋆2). Hence
⟨A,20,30⟩ is an m-L-lattice and 20A = 30A = A0. 2
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Combining Lemmas 3.2 and 3.3, we obtain the following representation
theorem for m-L-lattices.

Theorem 3.4 Let K be any class of L-lattices. Then there exists a one-to-one
correspondence between the members of mK and ordered pairs ⟨A,A0⟩, where
A ∈ K and A0 is a relatively complete subalgebra of A, implemented by the
maps ⟨A,2,3⟩ 7→ ⟨A,2A⟩ and ⟨A,A0⟩ 7→ ⟨A,20,30⟩.

We now show that m-L-lattices encompass the algebraic semantics of the
one-variable lattice-valued logics defined in Section 2.

Proposition 3.5 Let A be any complete L-lattice and let W be any set. Then
⟨AW ,2,3⟩ is an m-L-lattice, where the operations of AW are defined pointwise
and for each f ∈ AW and u ∈W ,

2f(u) =
∧

v∈W

f(v) and 3f(u) =
∨

v∈W

f(v).

Moreover, if A ∈ V for some variety V of L-lattices, then ⟨AW ,2,3⟩ ∈ mV.

Proof. Since A is an L-lattice, AW , with operations defined pointwise, is also
an L-lattice. It is also easy to check that ⟨AW ,∧,∨,2,3⟩ is an m-lattice; for
example, ⟨AW ,∧,∨,2,3⟩ satisfies (L22), since for any f, g ∈ AW and u ∈W ,

2(f ∧ g)(u) =
∧

v∈W

(f ∧ g)(v) = (
∧

v∈W

f(v)) ∧ (
∧

v∈W

g(v)) = (2f ∧2g)(u).

Moreover, for any ⋆ ∈ Ln (n ∈ N), f1, . . . , fn ∈ AW , and u ∈W ,

2(⋆(2f1, . . . ,2fn))(u) =
∧

v∈W

⋆(2f1, . . . ,2fn)(v)

=
∧

v∈W

⋆(2f1(v), . . . ,2fn(v))

= ⋆(2f1(u), . . . ,2fn(u))

= ⋆(2f1, . . . ,2fn)(u),

noting that in the last-but-one equality we have used the fact that 2fi(v) =
2fi(u) for each v ∈ W and i ∈ {1, . . . , n}. Hence ⟨AW ,2,3⟩ satisfies (⋆2).
Finally, if A ∈ V for some variety V of L-lattices, then, since varieties are closed
under taking direct products, also AW ∈ V, and so ⟨AW ,2,3⟩ ∈ mV. 2

Let us call an m-L-lattice ⟨AW ,2,3⟩ defined as described in Proposition 3.5
full functional, and say that an m-L-lattice is functional if it is isomorphic to
a subalgebra of a full functional m-L-lattice. The following identification of
the semantics of one-variable lattice-valued logics with evaluations into full
functional m-L-lattices is a direct consequence of Proposition 3.5.
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Corollary 3.6 Let A be any complete L-lattice.
(a) Given any A-structure S = ⟨S, I⟩, the evaluation f for the full functional

m-L-lattice ⟨AS ,2,3⟩ defined by f(pi) := I(Pi) for each i ∈ N satisfies
for all φ,ψ ∈ Fm1

∀(L) and u ∈ S,

f(φ∗)(u) = ∥φ∥Su and S |= φ ≈ ψ ⇐⇒ f(φ∗) = f(ψ∗).

(b) Given any evaluation g for a full functional m-L-lattice ⟨AW ,2,3⟩, the
A-structure W = ⟨W,J ⟩, where J (Pi) := g(pi) for each i ∈ N, satisfies
for all φ,ψ ∈ Fm1

∀(L) and u ∈W ,

g(φ∗)(u) = ∥φ∥Wu and W |= φ ≈ ψ ⇐⇒ g(φ∗) = g(ψ∗).

Corollary 3.7 For any variety V of L-lattices and set of Fm1
∀(L)-equations

T ∪ {φ ≈ ψ},
T ∗ ⊨mV φ

∗ ≈ ψ∗ =⇒ T ⊨∀
V φ ≈ ψ.

Moreover, the converse also holds if every member of mV is functional.

4 A Functional Representation Theorem

In this section, we establish a functional representation theorem for mK when
K is a class of L-lattices satisfying certain conditions, following very closely a
proof of the same result for monadic Heyting algebras [3, Theorem 3.6].

Let K be any class of L-lattices. A V-formation in K is a 5-tuple
⟨A,B1,B2, f1, f2⟩ consisting of A,B1,B2 ∈ K and embeddings f1 : A → B1,
f2 : A → B2. An amalgam in K of this V-formation is a triple ⟨C, g1, g2⟩
consisting of C ∈ K and embeddings g1 : B1 → C, g2 : B2 → C such that
g1 ◦ f1 = g2 ◦ f2. It is called a superamalgam if for any b1 ∈ B1, b2 ∈ B2

and distinct i, j ∈ {1, 2} such that gi(bi) ≤ gj(bj), there exists an a ∈ A such
that gi(bi) ≤ gi ◦ fi(a) = gj ◦ fj(a) ≤ gj(bj). The class K is said to have the
superamalgamation property if any V-formation in K has a superamalgam in K.

Theorem 4.1 Let K be a class of L-lattices that is closed under subalgebras
and direct limits, admits regular completions, and has the superamalgamation
property. Then any member of mK is functional.

Proof. Consider any ⟨A,2,3⟩ ∈ mK. Then A ∈ K and, since K is closed
under subalgebras, also 2A ∈ K. We let W denote the set of positive
natural numbers and define inductively a sequence of L-lattices ⟨Ai⟩i∈W in
K and sequences of embeddings ⟨fi : 2A → Ai⟩i∈W , ⟨gi : A → Ai⟩i∈W , and
⟨si : Ai−1 → Ai⟩i∈W . Let A0 := A. By assumption, there exists for each
i ∈W , a superamalgam ⟨Ai, si, gi⟩ of the V-formation ⟨2A,Ai−1,A, fi−1, f0⟩,
where f0 : 2A→ A is the inclusion map and fi := si ◦ fi−1 = gi ◦ f0 = gi|2A.

Now let L be the direct limit of the system ⟨⟨Ai, si+1⟩⟩i∈W with associated
embeddings ⟨li : Ai → L⟩i∈W . Then, by assumption, L ∈ K, and there exist
a complete L-lattice L ∈ K and an embedding h : L → L that preserves all
existing meets and joins of L. We depict the first two amalgamation steps of
this construction in the following diagram:
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2A A

A A1 A2 A3

L L

· · ·

f0

f0

f1
g3g2

g1

s1 s2 s3

l1
l2

l3

h

To show that ⟨A,2,3⟩ is functional, it suffices to prove that the following map

into the full functional m-L-lattice ⟨LW
,2,3⟩ is an embedding:

f : ⟨A,2,3⟩ → ⟨LW
,2,3⟩; a 7→ ⟨h ◦ li ◦ gi(a)⟩i∈W .

It is easy to see that f is an embedding of L-lattices, so it remains to show
that f(2a) = 2f(a) and f(3a) = 3f(a) for all a ∈ A. Fix some a ∈ A.
Considering just the case of 2 (since the case of 3 is analogous), we obtain

f(2a) = ⟨h ◦ li ◦ gi(2a)⟩i∈W

(1)
= ⟨h(

∧
j∈W

lj ◦ gj(a))⟩i∈W

(2)
= ⟨

∧
j∈W

h ◦ lj ◦ gj(a)⟩i∈W

= 2⟨h ◦ li ◦ gi(a)⟩i∈W

= 2f(a).

To justify (1), it suffices to fix an i ∈W and show that li◦gi(2a) is the greatest
lower bound of the set S := {lj ◦ gj(a) | j ∈ W}. This implies that S has an
infimum and so also (2) follows by the definition of regular completions.

We start by showing that li ◦ gi(2a) = lj ◦ gj(2a) for all j ∈ W . Clearly,
this follows from the fact that for any k ∈W ,

lk ◦ gk(2a) = lk ◦ fk(2a) = lk+1 ◦ sk+1 ◦ fk(2a) = lk+1 ◦ gk+1(2a),

where the first and the last equality are due to the definition of fk and the
second is due to the definition of direct limits. Using this fact, we can easily
show that li ◦ gi(2a) is a lower bound of S: just observe that since 2a ≤ a, for
each j ∈W ,

li ◦ gi(2a) = lj ◦ gj(2a) ≤ lj ◦ gj(a).

Finally, suppose that c ∈ L is any lower bound of S. By the definition of direct
limits, there exist a k ∈W and a d ∈ Ak such that

lk+1 ◦ sk+1(d) = lk(d) = c ≤ lk+1 ◦ gk+1(a).
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Moreover, since lk+1 is an embedding, sk+1(d) ≤ gk+1(a). Therefore, because
⟨Ak+1, sk+1, gk+1⟩ is a superamalgam of the V-formation ⟨2A,Ak,A, fk, f0⟩,
there exists a b ∈ 2A such that

sk+1(d) ≤ sk+1 ◦ fk(b) = gk+1 ◦ f0(b) ≤ gk+1(a).

Since sk+1 and gk+1 are embeddings and f0 is the inclusion map, d ≤ fk(b)
and b ≤ a. The latter inequality together with b ∈ 2A entails that b ≤ 2a.
Hence also fk(b) ≤ fk(2a) = gk(2a) and, using the first inequality,

c = lk(d) ≤ lk ◦ fk(b) ≤ lk ◦ gk(2a) = li ◦ gi(2a).

So li ◦ gi(2a) is the greatest lower bound of the set S as required. 2

Combining Theorem 4.1 with Corollary 3.7 yields the following result.

Corollary 4.2 Let V be a variety of L-lattices that admits regular completions
and has the superamalgamation property. Then for any set T ∪ {φ ≈ ψ} of
Fm1

∀(L)-equations,

T ⊨∀
V φ ≈ ψ ⇐⇒ T ∗ ⊨mV φ

∗ ≈ ψ∗.

Example 4.3 The variety of lattices admits regular completions and has the
superamalgamation property [16]. Hence, by Theorem 4.1, every m-lattice is
functional, and, by Corollary 4.2, consequence in the one-variable fragment of
first-order lattice logic corresponds to equational consequence in m-lattices.

5 One-Variable Substructural Logics

In this section, we turn our attention to one-variable fragments of first-order
substructural logics. Let Ls be the lattice-ordered signature consisting of binary
connectives ∨, ∧, ·, and →, and constant symbols f and e. An FLe-algebra is an
Ls-lattice A = ⟨A,∨,∧, ·,→, f, e⟩ such that ⟨A, ·, e⟩ is a commutative monoid
and → is the residuum of ·, i.e., a · b ≤ c ⇐⇒ a ≤ b→ c for all a, b, c ∈ A.

The class of FLe-algebras forms a variety FLe that serves as an algebraic
semantics for the Full Lambek Calculus with exchange (see, e.g., [14]), and
subvarieties of FLe provide algebraic semantics for other substructural logics.
In particular, the varieties FLew and FLec consist of FLe-algebras satisfying
f ≤ x ≤ e and x ≤ x · x, respectively. The variety FLew ∩ FLec is term-
equivalent to HA (just identify · and ∧), and BA and GA are term-equivalent
to the subvarieties of FLew ∩ FLec axiomatized by (x → f) → f ≈ x and
(x → y) ∨ (y → x) ≈ e, respectively. MV is term-equivalent to the subvariety
of FLew satisfying x ∨ y ≈ (x→ y) → y.

In combination with residuation, the defining equations of m-Ls-lattices
yield further relationships between the propositional and modal connectives.

Proposition 5.1 Let A be an FLe-algebra. Then any m-Ls-lattice ⟨A,2,3⟩
satisfies the equations

(L62) 2(x→ 2y) ≈ 3x→ 2y (L63) 2(2x→ y) ≈ 2x→ 2y.

That is, ⟨A,2,3⟩ is a monadic FLe-algebra in the sense of [27, Definition 2.1].
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Proof. We just prove (L62), as the proof for (L63) is very similar. Consider
any a, b ∈ A. Since a ≤ 3a, by (L13), also 3a → 2b ≤ a → 2b. Hence, using
(L52), (L32), and (⋆2),

3a→ 2b = 23a→ 2b = 2(23a→ 2b) = 2(3a→ 2b) ≤ 2(a→ 2b).

Conversely, since 2(a → 2b) ≤ a → 2b, by (L12), it follows by residuation
that a ≤ 2(a→ 2b) → 2b and hence, using (L53), (L33), and (⋆3),

3a ≤ 3(2(a→ 2b) → 2b) = 2(a→ 2b) → 2b.

By residuation again, 2(a→ 2b) ≤ 3a→ 2b. 2

The varieties FLe, FLew, and FLec are closed under MacNeille completions
and have the superamalgamation property (see, e.g., [14]). Hence Theorem 4.1
and Corollary 4.2 yield the following result.

Theorem 5.2 Let V ∈ {FLe,FLew,FLec}.
(a) Any member of mV is functional.

(b) For any set T ∪ {φ ≈ ψ} of Fm1
∀(Ls)-equations,

T ⊨∀
V φ ≈ ψ ⇐⇒ T ⊨mV φ

∗ ≈ ψ∗.

In [10] it was proved that a variety of FLe-algebras axiomatized relative to FLe

by equations of a certain simple syntactic form (called “N2-equations”) is closed
under MacNeille completions if and only if it has an analytic sequent calculus
of a certain form. It has also been proved that many varieties of FLe-algebras
have the superamalgamation property (equivalently, the Craig interpolation
property) (see, e.g., [14, 26]), but a precise characterization is not known.

6 A Proof-Theoretic Approach

In this section, we apply proof-theoretic methods to obtain an alternative proof
of Theorem 5.2(b). Although no new results are proved, the approach described
here may be used to deal with varieties of L-lattices that either do not admit
regular completions or lack the superamalgamation property, and may also be
used to tackle decidability and complexity issues for one-variable lattice logics.

Let Fm1+
∀ (Ls) be the set of first-order Ls-formulas φ,ψ, χ, . . . constructed

inductively from unary predicates {Pi}i∈N, variables {x}∪{xi}i∈N, connectives
in Ls, and quantifiers (∀x) and (∃x) such that no variable xi is in the scope
of a quantifier. Clearly, Fm1

∀(Ls) ⊆ Fm1+
∀ (Ls). We also write φ(ȳ) to denote

that the free variables of φ ∈ Fm1+
∀ (Ls) belong to the set ȳ, recalling that a

sentence is a formula with no free variables.
For the purposes of this paper, a sequent is an ordered pair of finite multisets

of first-order Ls-formulas, denoted by Γ ⇒ ∆, such that ∆ contains a most one
Ls-formula. We also define for n ∈ N>0 and φ1, . . . , φn, ψ ∈ Fm1+

∀ (Ls),∏
(φ1, . . . , φn) := φ1 · · ·φn,

∏
() := e,

∑
(ψ) := ψ,

∑
() := f.

The (cut-free) sequent calculus ∀+1 FLe is presented in Figure 1, subject to the
following side-conditions:
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Axioms

φ⇒ φ
(id)

f ⇒
(f⇒)

⇒ e
(⇒e)

Operation Rules

Γ ⇒ ∆
Γ, e ⇒ ∆

(e⇒)
Γ ⇒
Γ ⇒ f

(⇒ f)

Γ1 ⇒ φ Γ2, ψ ⇒ ∆

Γ1,Γ2, φ→ ψ ⇒ ∆
(→⇒)

Γ, φ⇒ ψ

Γ ⇒ φ→ ψ
(⇒→)

Γ, φ, ψ ⇒ ∆

Γ, φ · ψ ⇒ ∆
(·⇒)

Γ1 ⇒ φ Γ2 ⇒ ψ

Γ1,Γ2 ⇒ φ · ψ
(⇒·)

Γ, φ⇒ ∆

Γ, φ ∧ ψ ⇒ ∆
(∧⇒)1

Γ ⇒ φ

Γ ⇒ φ ∨ ψ
(⇒∨)1

Γ, ψ ⇒ ∆

Γ, φ ∧ ψ ⇒ ∆
(∧⇒)2

Γ ⇒ ψ

Γ ⇒ φ ∨ ψ
(⇒∨)2

Γ, φ⇒ ∆ Γ, ψ ⇒ ∆

Γ, φ ∨ ψ ⇒ ∆
(∨⇒)

Γ ⇒ φ Γ ⇒ ψ

Γ ⇒ φ ∧ ψ
(⇒∧)

Γ, φ(t) ⇒ ∆

Γ, (∀x)φ(x) ⇒ ∆
(∀⇒)

Γ ⇒ ψ(y)

Γ ⇒ (∀x)ψ(x)
(⇒∀)

Γ, φ(y) ⇒ ∆

Γ, (∃x)φ(x) ⇒ ∆
(∃⇒)

Γ ⇒ ψ(t)

Γ ⇒ (∃x)ψ(x)
(⇒∃)

Fig. 1. The Sequent Calculus ∀+
1 FLe

(i) the term t occurring in (∀⇒) and (⇒ ∃) is a variable occurring in the
conclusion of the rule;

(ii) the variable y occurring in the premise of (⇒∀) and (∃⇒) does not occur
freely in the conclusion of the rule.

∀+1 FLew and ∀+1 FLec are defined as the extensions of ∀+1 FLe with, respectively,

Γ1 ⇒ ∆1

Γ1,Γ2 ⇒ ∆1,∆2
(w) and

Γ1,Γ2,Γ2 ⇒ ∆

Γ1,Γ2 ⇒ ∆
(c)

If there exists a derivation d of a sequent Γ ⇒ ∆ in a sequent calculus C, we
write either d ⊢

C
Γ ⇒ ∆ or ⊢

C
Γ ⇒ ∆, and let md(d) denote the maximum

number of applications of (∀⇒), (⇒∀), (∃⇒), (⇒∃) on a branch of d.
The next result follows directly from well-known completeness and cut-

elimination results for sequent calculi for (first-order) substructural logics.
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Proposition 6.1 ([18, 21]) Let V be FLe, FLew, or FLec, and let C be ∀+1 FLe,
∀+1 FLew, or ∀+1 FLec, respectively. For any sequent Γ ⇒ ∆ consisting only of
formulas from Fm1

∀(Ls),

⊢
C

Γ ⇒ ∆ ⇐⇒ ⊨∀
V

∏
Γ ≤

∑
∆.

We now prove that each of ∀+1 FLe, ∀
+
1 FLew, and ∀+1 FLec satisfies a certain

bounded interpolation property.

Theorem 6.2 Let C ∈ {∀+1 FLe,∀
+
1 FLew,∀

+
1 FLec}. If d ⊢

C
Γ(ȳ),Π(z̄) ⇒ ∆(z̄),

where ȳ ∩ z̄ = ∅, then there exist a sentence χ and derivations d1, d2 such that
md(d1),md(d2) ≤ md(d), d1 ⊢

C
Γ(ȳ) ⇒ χ, and d2 ⊢

C
Π(z̄), χ⇒ ∆(z̄).

Proof. We proceed by induction on the height of d and consider the last rule
applied. Note that if ȳ or z̄ are empty — in particular, if Γ(ȳ),Π(z̄) ⇒ ∆(z̄) is
an instance of an axiom — we can take χ :=

∏
Γ or χ :=

∏
Π, respectively, so

we may assume that this is not the case. Note also that the additional cases
of (w) for ∀+1 FLew and (c) for ∀+1 FLec follow directly from an application of
the induction hypothesis. We just consider here the quantifier rules (∀⇒) and
(⇒∀), dealing with the remaining rules in the appendix.

• (∀⇒): Suppose first that Γ(ȳ) is Γ′(ȳ), (∀x)φ(x) and

d′ ⊢
C

Γ′(ȳ), φ(u),Π(z̄) ⇒ ∆(z̄),

where md(d′) = md(d) − 1. For subcase (i), suppose that u ∈ ȳ. By the
induction hypothesis, there exist a sentence χ and derivations d′1, d2 such that
md(d′1),md(d2) ≤ md(d′) and

d′1 ⊢
C

Γ′(ȳ), φ(u) ⇒ χ, d2 ⊢
C

Π(z̄), χ⇒ ∆(z̄).

Using (∀⇒), there exists also a derivation d1 such that md(d1) = md(d′1)+1 ≤
md(d′) + 1 = md(d) and

d1 ⊢
C

Γ′(ȳ), (∀x)φ(x) ⇒ χ.

For subcase (ii), suppose that u ∈ z̄. By the induction hypothesis, there exist
a sentence χ′ and derivations d′1, d

′
2 such that md(d′1),md(d′2) ≤ md(d′) and

d′1 ⊢
C

Γ′(ȳ) ⇒ χ′, d′2 ⊢
C

Π(z̄), φ(u), χ′ ⇒ ∆(z̄).

We define χ := χ′ · (∀x)φ(x) and obtain derivations d1, d2 satisfying md(d1) =
md(d′1) ≤ md(d′) < md(d), md(d2) = md(d′2) + 1 ≤ md(d′) + 1 = md(d), and

d1 ⊢
C

Γ′(ȳ), (∀x)φ(x) ⇒ χ′ · (∀x)φ(x), d2 ⊢
C

Π(z̄), χ′ · (∀x)φ(x) ⇒ ∆(z̄).

Suppose next that Π(z̄) is Π′(z̄), (∀x)φ(x) and

d′ ⊢
C

Γ(ȳ),Π′(z̄), φ(u) ⇒ ∆(z̄).
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The case of u ∈ z̄ is very similar to subcase (i) above, so suppose that u ∈ ȳ.
By the induction hypothesis, there exist a sentence χ′ and derivations d′1, d

′
2

such that md(d′1),md(d′2) ≤ md(d′) and

d′1 ⊢
C

Γ′(ȳ), φ(u) ⇒ χ′, d′2 ⊢
C

Π′(z̄), χ′ ⇒ ∆(z̄).

We let χ := (∀x)φ(x) → χ′ and obtain derivations d1, d2 satisfying md(d1) =
md(d′1) + 1 ≤ md(d′) + 1 = md(d), md(d2) = md(d′2) < md(d), and

d1 ⊢
C

Γ(ȳ) ⇒ (∀x)φ(x) → χ′, d2 ⊢
C

Π′(z̄), (∀x)φ(x), (∀x)φ(x) → χ′ ⇒ ∆(z̄).

• (⇒∀): Suppose that ∆(z̄) is (∀x)φ(x) and for some variable u that does not
occur freely in Γ(ȳ),Π(z̄) ⇒ (∀x)φ(x),

d′ ⊢
C

Γ(ȳ),Π(z̄) ⇒ φ(u),

where md(d′) = md(d)−1. By the induction hypothesis, there exist a sentence
χ and derivations d1, d

′
2 such that md(d1),md(d′2) ≤ md(d′) and

d1 ⊢
C

Γ(ȳ) ⇒ χ, d′2 ⊢
C

Π(z̄), χ⇒ φ(u).

An application of (⇒∀) yields a derivation d2 satisfying md(d2) = md(d′2)+1 ≤
md(d′) + 1 = md(d) and d2 ⊢

C
Π(z̄), χ⇒ (∀x)φ(x). 2

Alternative proof of Theorem 5.2(b). The right-to-left direction follows
from Corollary 3.7. For the converse, let V be FLe, FLew, or FLec, and let C be
∀+1 FLe, ∀

+
1 FLew, or ∀+1 FLec, respectively. We note first that due to compactness

and the local deduction theorem for ⊨∀
V (see [11, Sections 4.6, 4.8]), we can

restrict to the case where T = ∅. Hence, by Proposition 6.1, it suffices to prove
that for any sequent Γ ⇒ ∆ consisting only of formulas from Fm1

∀(Ls),

d ⊢
C

Γ ⇒ ∆ =⇒ ⊨mV (
∏

Γ)∗ ≤ (
∑

∆)∗.

We proceed by induction on the lexicographically ordered pair ⟨md(d),ht(d)⟩,
where ht(d) is the height of the derivation d. The base cases are clear and all
the cases for the last application of a rule in d except (⇒∀) and (∃⇒) follow
by applying the induction hypothesis and the equations defining mV. Just
note that for each such rule, the premises contain only formulas from Fm1

∀(Ls)
with at least one fewer symbol. In particular, for (∀⇒) and (⇒∃), the term t
occurring in the premise must be x and the result follows using (L12) or (L13).

Consider now a last application of (⇒∀) in d, where ∆ is (∀x)ψ(x). Then
d′ ⊢

C
Γ ⇒ ψ(y) for some variable y that does not occur freely in Γ ⇒ (∀x)ψ(x),

where md(d′) = md(d) − 1. If y = x, then x does not occur freely in Γ and
the result follows by an application of the induction hypothesis and equations
defining mV. Suppose that y ̸= x. By Theorem 6.2, there exist a sentence
χ and derivations d1, d2 such that d1 ⊢

C
Γ ⇒ χ and d2 ⊢

C
χ⇒ ψ(y) with

md(d1),md(d2) ≤ md(d′). Since χ is a sentence and y ̸= x, we can substitute in
d2 every free occurrence of x by some new variable z, and then every occurrence
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of y by x, to obtain a derivation d′2 of χ⇒ ψ(x) with md(d′2) = md(d2). By
the induction hypothesis, ⊨mV (

∏
Γ)∗ ≤ χ∗ and ⊨mV χ∗ ≤ ψ(x)∗. Since χ is

a sentence, the equations defining mV yield also ⊨mV χ∗ ≤ ((∀x)ψ(x))∗. So
⊨mV Γ∗ ≤ ((∀x)ψ(x))∗.

Consider finally a last application of (∃⇒) in d, where Γ is Γ′, (∃x)ψ(x).
Then d′ ⊢

C
Γ′, ψ(y) ⇒ ∆ for some variable y that does not occur freely in

Γ′, (∃x)ψ(x) ⇒ ∆, where md(d′) < md(d). If y = x, then x does not occur
freely in Γ′ or ∆ and the result follows by applying the induction hypothesis
and equations defining mV. Suppose that y ̸= x. By Theorem 6.2, there
exist a sentence χ and derivations d1, d2 such that d1 ⊢

C
ψ(y) ⇒ χ and d2 ⊢

C

Γ′, χ⇒ ∆ with md(d1),md(d2) ≤ md(d′). Since χ is a sentence and y ̸= x,
we can substitute in d1 every free occurrence of x by some new variable z,
and then every occurrence of y by x, to obtain a derivation d′1 of ψ(x) ⇒ χ
with md(d′1) = md(d′). By the induction hypothesis, ⊨mV ψ(x)∗ ≤ χ∗ and
⊨mV (

∏
(Γ′, χ))∗ ≤ (

∑
∆)∗. Since χ is a sentence, the equations defining mV

yield also ⊨mV ((∃x)ψ(x))∗ ≤ χ∗. So ⊨mV (
∏

(Γ′, (∃x)ψ(x)))∗ ≤ (
∑

∆)∗. 2

7 Concluding Remarks

Let us conclude this paper by sketching a broader perspective. Given some class
K of complete L-lattices, the challenge is to find a (natural) axiomatization
of the generalized quasivariety generated by the class of full functional m-L-
lattices of the form ⟨AW ,2,3⟩ for some A ∈ K and set W . Corollary 4.2
shows that in the case where K is the class of complete members of a variety
V that admits regular completions and has the superamalgamation property,
this generalized quasivariety is in fact the variety mV. In general, however, we
may need to add further axioms to obtain a proper subvariety or even proper
subquasivariety or sub-generalized quasivariety of mV.

For example, let V be a variety of semilinear FLe-algebras, that is, algebras
that are isomorphic to a subdirect product of totally ordered FLe-algebras. In
general, such varieties may not admit regular completions (e.g., as shown in [15]
for V = MV), so Corollary 4.2 may not apply. Moreover, using the fact that V
is generated by totally ordered FLe-algebras, ⊨∀

V (∃x)φ · (∃x)φ ≈ (∃x)(φ · φ),
while, as proved in Example 3.1, if  L3 ∈ V (e.g., if V is MV or the variety of
all semilinear FLe-algebras), then ̸⊨mV 3x ·3x ≈ 3(x · x).

In fact, for a variety V of semilinear FLe-algebras, first-order semantical
consequence is typically defined with respect to the class of its complete totally
ordered members. In this case, the corresponding generalized quasivariety will
satisfy also the constant domain axiom 2(2x ∨ y) ≈ 2x ∨ 2y. Indeed, if V
is MV, this generalized quasivariety is the variety of monadic MV-algebras
axiomatized as the subvariety of mMV satisfying 3x · 3x ≈ 3(x · x) and
the constant domain axiom [23]. Interestingly, a proof of this latter result is
given in [8] using the fact that the class of totally ordered MV-algebras has the
amalgamation property (see also [19, 27] for related results), suggesting that
the approach developed in this paper can be adapted to a broader class of
one-variable lattice logics.
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[5] X. Caicedo, G. Metcalfe, R. Rodŕıguez, and J. Rogger, Decidability in order-based modal
logics, J. Comput. System Sci. 88 (2017), 53–74.
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A Missing cases for the proof of Theorem 6.2

• (∃⇒): Suppose first that Γ(ȳ) is Γ′(ȳ), (∃x)φ(x) and for some variable u that
does not occur freely in Γ′(ȳ), (∃x)φ(x),Π(z̄) ⇒ ∆(z̄),

d′ ⊢
C

Γ′(ȳ), φ(u),Π(z̄) ⇒ ∆(z̄),

where md(d′) = md(d) − 1. Let ȳ′ := ȳ ∪ {u} and Γ̂(ȳ′) := Γ′(ȳ) ∪ {φ(u)}. By
the induction hypothesis, we obtain a sentence χ and derivations d′1, d2 such
that md(d′1),md(d2) ≤ md(d′) = md(d) − 1 and

d′1 ⊢
C

Γ̂(ȳ′) ⇒ χ, d2 ⊢
C

Π(z̄), χ⇒ ∆(z̄).

The derivation d′1 together with an application of (∃⇒) yields a derivation d1
such that md(d1) = md(d′1) + 1 ≤ md(d′) + 1 = md(d) and

d1 ⊢
C

Γ′(ȳ), (∃x)φ(x) ⇒ χ.

Now suppose that Π(z̄) is Π′(z̄), (∃x)φ(x) and for some variable u that does
not occur freely in Γ(ȳ),Π′(z̄), (∃x)φ(x) ⇒ ∆(z̄),

d′ ⊢
C

Γ(ȳ),Π′(z̄), φ(u) ⇒ ∆(z̄),

where md(d′) = md(d) − 1. We let z̄′ := z̄ ∪ {u} and Π̂(z̄′) := Π′(z̄) ∪ {φ(u)}.
Note that ∆(z̄′) = ∆(z̄). By the induction hypothesis, we obtain a sentence χ
and derivations d1, d

′
2 such that md(d1),md(d′2) ≤ md(d′) = md(d) − 1 and

d1 ⊢
C

Γ(ȳ) ⇒ χ, d′2 ⊢
C

Π̂(z̄′), χ⇒ ∆(z̄′).

The derivation d′2 together with an application of (∃⇒) yields a derivation d2
such that md(d2) = md(d′2) + 1 ≤ md(d′) + 1 = md(d) and

d2 ⊢
C

Π′(z̄), (∃x)φ(x), χ⇒ ∆(z̄).

• (⇒∃): Suppose that ∆(z̄) is (∃x)φ(x) and there is a derivation d′ such that
md(d′) = md(d) − 1 and

d′ ⊢
C

Γ(ȳ),Π(z̄) ⇒ φ(u).

There are two subcases. For subcase (i), suppose that u ∈ ȳ. By the in-
duction hypothesis, there exist a sentence χ′ and derivations d′1, d

′
2 such that

md(d′1),md(d′2) ≤ md(d′) = md(d) − 1 and

d′1 ⊢
C

Π(z̄) ⇒ χ′, d′2 ⊢
C

Γ(ȳ), χ′ ⇒ φ(u).

Let χ := χ′ → (∃x)φ(x). Then d′1, together with the derivation d̂ ⊢
C

(∃x)φ(x) ⇒ (∃x)φ(x) and an application of (→⇒), yields a derivation d2, and
d′2, together with applications of (⇒ ∃) and (⇒→), yields a derivation d1,
satisfying md(d2) = md(d′1), md(d1) = md(d′2) + 1 ≤ md(d′) + 1 = md(d) and

d2 ⊢
C

Π(z̄), χ′ → (∃x)φ(x) ⇒ (∃x)φ(x), d1 ⊢
C

Γ(ȳ) ⇒ χ′ → (∃x)φ(x).
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For subcase (ii), suppose that u ∈ z̄. By the induction hypothesis, there
exist a sentence χ and derivations d1, d

′
2 such that md(d1),md(d′2) ≤ md(d′) =

md(d) − 1 and

d1 ⊢
C

Γ(ȳ) ⇒ χ, d′2 ⊢
C

Π(z̄), χ⇒ φ(u).

The derivation d′2 with an application of (⇒∃) yields a derivation d2 such that
md(d2) = md(d′2) + 1 ≤ md(d′) + 1 = md(d) and

d2 ⊢
C

Π(z̄), χ⇒ (∃x)φ(x).

• (→⇒): Suppose first that Γ(ȳ) is Γ1(ȳ),Γ2(ȳ), φ(ȳ) → ψ(ȳ) and Π(z̄) is
Π1(z̄),Π2(z̄), and

d′1 ⊢
C

Γ1(ȳ),Π1(z̄) ⇒ φ(ȳ), d′2 ⊢
C

Γ2(ȳ), ψ(ȳ),Π2(z̄) ⇒ ∆(z̄).

By the induction hypothesis, there exist sentences χ1, χ2 and derivations
d′11, d

′
12, d

′
21, d

′
22 such that

d′11 ⊢
C

Γ1(ȳ), χ1 ⇒ φ(ȳ), d′12 ⊢
C

Π1(z̄) ⇒ χ1,

d′21 ⊢
C

Γ2(ȳ), ψ(ȳ) ⇒ χ2, d′22 ⊢
C

Π2(z̄), χ2 ⇒ ∆(z̄).

Let χ := χ1 → χ2. Then the derivations d′11, d
′
21, together with applications of

(→⇒) and (⇒→), yield a derivation d1, and the derivations d′12, d
′
22, together

with an application of (→⇒) yield a derivation d2 satisfying

d1 ⊢
C

Γ1(ȳ),Γ2(ȳ), φ(ȳ) → ψ(ȳ) ⇒ χ1 → χ2,

d2 ⊢
C

Π1(z̄),Π2(z̄), χ1 → χ2 ⇒ ∆(z̄).

Clearly, the constraints on md(d1) and md(d2) are satisfied.
Now suppose that Γ(ȳ) is Γ1(ȳ),Γ2(ȳ) and Π(z̄) is Π1(z̄),Π2(z̄), φ(z̄) →

ψ(z̄), and

d′1 ⊢
C

Γ1(ȳ),Π1(z̄) ⇒ φ(z̄), d′2 ⊢
C

Γ2(ȳ), ψ(z̄),Π2(z̄) ⇒ ∆(z̄).

By the induction hypothesis, there exist sentences χ1, χ2 and derivations
d′11, d

′
12, d

′
21, d

′
22 such that

d′11 ⊢
C

Γ1(ȳ) ⇒ χ1, d′12 ⊢
C

Π1(z̄), χ1 ⇒ φ(z̄),

d′21 ⊢
C

Γ2(ȳ) ⇒ χ2, d′22 ⊢
C

Π2(z̄), ψ(z̄), χ2 ⇒ ∆(z̄).

Let χ := χ1 · χ2. Then the derivations d′11, d
′
21, together with an application

of (⇒·), and the derivations d′12, d
′
22, together with applications of (→⇒) and

(·⇒), yield derivations d1 and d2, respectively, such that

d1 ⊢
C

Γ1(ȳ),Γ2(ȳ) ⇒ χ1 · χ2,

d2 ⊢
C

Π1(z̄),Π2(z̄), φ(z̄) → ψ(z̄), χ1 · χ2 ⇒ ∆(z̄).

Again, the constraints on md(d1) and md(d2) are clearly satisfied in this case.
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• (⇒→): Suppose that ∆(z̄) is φ(z̄) → ψ(z̄) and

d′ ⊢
C

Γ(ȳ),Π(z̄), φ(z̄) ⇒ ψ(z̄).

By the induction hypothesis, there exist a sentence χ and derivations d1, d
′
2

such that

d1 ⊢
C

Γ(ȳ) ⇒ χ, d′2 ⊢
C

Π(z̄), φ(z̄), χ⇒ ψ(z̄).

The derivation d′2 with an application of (⇒→) yields a derivation d2 such that

d2 ⊢
C

Π(z̄), χ⇒ φ(z̄) → ψ(z̄).

The constraints on md(d1) and md(d2) clearly hold.

• (∨⇒): Suppose first that Γ(ȳ) is Γ′(ȳ), φ1(ȳ) ∨ φ2(ȳ) and

d′1 ⊢
C

Γ′(ȳ), φ1(ȳ),Π(z̄) ⇒ ∆(z̄), d′2 ⊢
C

Γ′(ȳ), φ2(ȳ),Π(z̄) ⇒ ∆(z̄).

By the induction hypothesis, there exist sentences χ1, χ2 and derivations
d′11, d

′
12, d

′
21, d

′
22 such that

d′11 ⊢
C

Γ′(ȳ), φ1(ȳ) ⇒ χ1, d′12 ⊢
C

Π(z̄), χ1 ⇒ ∆(z̄),

d′21 ⊢
C

Γ′(ȳ), φ2(ȳ) ⇒ χ2, d′22 ⊢
C

Π(z̄), χ2 ⇒ ∆(z̄).

Define χ := χ1 ∨ χ2. The derivations d′11, d
′
21, together with applications of

(⇒∨)1, (⇒∨)2, and (∨⇒), yield a derivation d1, and the derivations d′12, d
′
22,

together with an application of (∨⇒), yield a derivation d2, satisfying

d1 ⊢
C

Γ′(ȳ), φ1(ȳ) ∨ φ2(ȳ) ⇒ χ1 ∨ χ2, d2 ⊢
C

Π(z̄), χ1 ∨ χ2 ⇒ ∆(z̄).

The constraints on md(d1) and md(d2) clearly hold.
Suppose now that Π(z̄) is Π′(z̄), φ1(z̄) ∨ φ2(z̄) and

d′1 ⊢
C

Γ(ȳ),Π′(z̄), φ1(z̄) ⇒ ∆(z̄), d′2 ⊢
C

Γ(ȳ),Π′(z̄), φ2(z̄) ⇒ ∆(z̄).

By the induction hypothesis, there exist sentences χ1, χ2 and derivations
d′11, d

′
12, d

′
21, d

′
22 such that

d′11 ⊢
C

Γ(ȳ) ⇒ χ1, d′12 ⊢
C

Π′(z̄), φ1(z̄), χ1 ⇒ ∆(z̄),

d′21 ⊢
C

Γ(ȳ) ⇒ χ2, d′22 ⊢
C

Π′(z̄), φ2(z̄), χ2 ⇒ ∆(z̄).

Let χ := χ1 ∧ χ2. Then the derivations d′11, d
′
21, together with an application

of (⇒∧), and the derivations d′12, d
′
22, together with applications of (∧⇒)1,

(∧⇒)2, and (∨⇒), yield derivations d1 and d2, respectively, such that

d1 ⊢
C

Γ(ȳ) ⇒ χ1 ∧ χ2, d2 ⊢
C

Π′(z̄), φ1(z̄) ∨ φ2(z̄), χ1 ∧ χ2 ⇒ ∆(z̄).

The constraints on md(d1) and md(d2) again clearly hold.
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• (⇒∨)i (i ∈ {1, 2}): Suppose that ∆(z̄) is φ1(z̄) ∨ φ2(z̄) and

d′ ⊢
C

Γ(ȳ),Π(z̄) ⇒ φi(z̄).

By the induction hypothesis, there exist a sentence χ and derivations d1, d
′
2

such that
d1 ⊢

C
Γ(ȳ) ⇒ χ, d′2 ⊢

C
Π(z̄), χ⇒ φi(z̄).

The derivation d′2 together with an application of (⇒∨)i yields a derivation d2
such that

d2 ⊢
C

Π(z̄), χ⇒ φ1(z̄) ∨ φ2(z̄).

The constraints on md(d1) and md(d2) clearly hold.

• (⇒∧): Suppose that ∆(z̄) is ψ1(z̄) ∧ ψ2(z̄) and

d′1 ⊢
C

Γ(ȳ),Π(z̄) ⇒ ψ1(z̄), d′2 ⊢
C

Γ(ȳ),Π(z̄) ⇒ ψ2(z̄).

By the induction hypothesis, there exist sentences χ1, χ2 and derivations
d′11, d

′
12, d

′
21, d

′
22 such that

d′11 ⊢
C

Γ(ȳ) ⇒ χ1, d′12 ⊢
C

Π(z̄), χ1 ⇒ ψ1(z̄),

d′21 ⊢
C

Γ(ȳ) ⇒ χ2, d′22 ⊢
C

Π(z̄), χ2 ⇒ ψ2(z̄).

Let χ := χ1 ∧ χ2. Then the derivations d′11, d
′
21, together with an application

of (⇒∧), and the derivations d′12, d
′
22, together with applications of (∧⇒)1,

(∧⇒)2, and (⇒∧), yield derivations d1 and d2, respectively, such that

d1 ⊢
C

Γ(ȳ) ⇒ χ1 ∧ χ2, d2 ⊢
C

Π(z̄), χ1 ∧ χ2 ⇒ ψ1(z̄) ∧ ψ2(z̄).

Clearly, the constraints on md(d1) and md(d2) are satisfied in this case.

• (∧⇒)i (i ∈ {1, 2}): Suppose first that Γ(ȳ) is Γ′(ȳ), φ1(ȳ) ∧ φ2(ȳ) and

d′ ⊢
C

Γ′(ȳ), φi(ȳ),Π(z̄) ⇒ ∆(z̄).

By the induction hypothesis, there exist a sentence χ and derivations d′1, d2
such that

d′1 ⊢
C

Γ′(ȳ), φi(ȳ) ⇒ χ, d2 ⊢
C

Π(z̄), χ⇒ ∆(z̄).

The derivation d′1 and an application of (∧⇒)i yield a derivation d1 satisfying

d1 ⊢
C

Γ′(ȳ), φ1(ȳ) ∧ φ2(ȳ) ⇒ χ.

The constraints on md(d1) and md(d2) clearly hold.
Now suppose that Π(z̄) is Π′(z̄), φ1(z̄) ∧ φ2(z̄) and

d′ ⊢
C

Γ(ȳ),Π′(z̄), φi(z̄) ⇒ ∆(z̄).

By the induction hypothesis, there exist a sentence χ and derivations d1, d
′
2

such that
d1 ⊢

C
Γ(ȳ) ⇒ χ, d′2 ⊢

C
Π′(z̄), φi(z̄), χ⇒ ∆(z̄).

The derivation d′2 together with an application of (∧⇒)i yields a derivation d2
such that

d2 ⊢
C

Π′(z̄), φ1(z̄) ∧ φ2(z̄), χ⇒ ∆(z̄).

Again, the constraints on md(d1) and md(d2) hold.
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• (⇒ ·): Suppose that ∆(z̄) is φ(z̄) · ψ(z̄), Γ(ȳ) is Γ1(ȳ),Γ2(z̄), and Π(z̄) is
Π1(z̄),Π2(z̄), and

d′1 ⊢
C

Γ1(ȳ),Π1(z̄) ⇒ φ(z̄), d′2 ⊢
C

Γ2(ȳ),Π2(z̄) ⇒ ψ(z̄).

By the induction hypothesis, there exist sentences χ1, χ2 and derivations
d′11, d

′
12, d

′
21, d

′
22 such that

d′11 ⊢
C

Γ1(ȳ) ⇒ χ1, d′12 ⊢
C

Π1(z̄), χ1 ⇒ φ(z̄),

d′21 ⊢
C

Γ2(ȳ) ⇒ χ2, d′22 ⊢
C

Π2(z̄), χ2 ⇒ ψ(z̄).

Let χ := χ1 · χ2. Then the derivations d′11, d
′
21, together with an application

of (⇒·), and the derivations d′12, d
′
22, together with applications of (⇒·) and

(·⇒), yield derivations d1 and d2, respectively, such that

d1 ⊢
C

Γ1(ȳ),Γ2(ȳ) ⇒ χ1 · χ2, d2 ⊢
C

Π1(z̄),Π2(z̄), χ1 · χ2 ⇒ φ(z̄) · ψ(z̄).

The constraints on md(d1) and md(d2) clearly hold.

• (·⇒): Suppose first that Γ(ȳ) is Γ′(ȳ), φ(ȳ) · ψ(ȳ) and

d′ ⊢
C

Γ′(ȳ), φ(ȳ), ψ(ȳ),Π(z̄) ⇒ ∆(z̄).

By the induction hypothesis, there exist a sentence χ and derivations d′1, d2
such that

d′1 ⊢
C

Γ′(ȳ), φ(ȳ), ψ(ȳ) ⇒ χ, d2 ⊢
C

Π(z̄), χ⇒ ∆(z̄).

Then d′1 and an application of (·⇒) yield a derivation d1 such that

d1 ⊢
C

Γ′(ȳ), φ(ȳ) · ψ(ȳ) ⇒ χ.

The constraints on md(d1) and md(d2) clearly hold.
Now suppose that Π(z̄) is Π′(z̄), φ(z̄) · ψ(z̄) and

d′ ⊢
C

Γ(ȳ),Π′(z̄), φ(z̄), ψ(z̄) ⇒ ∆(z̄).

By the induction hypothesis, there exist a sentence χ and derivations d1, d
′
2

such that

d1 ⊢
C

Γ(ȳ) ⇒ χ and d′2 ⊢
C

Π′(z̄), φ(z̄), ψ(z̄), χ⇒ ∆(z̄).

Taking d′2 and applying (·⇒) then yields a derivation d2 such that

d2 ⊢
C

Π′(z̄), φ(z̄) · ψ(z̄), χ⇒ ∆(z̄).

Again, md(d1) and md(d2) satisfy the constraints.
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