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Abstract

This paper provides an axiomatic characterization of Galois connections by means of
a sound and complete system for a multi-modal language. Semantically, our frames
consist of families of partially ordered sets (posets) which are (possibly) related by
Galois connections. Syntactically, we use a language containing two types of modali-
ties: One to move around inside each poset and the other to jump functionally from
one poset to another. The completeness proof follows a step-by-step argument with
some interesting particularities.

Keywords: Galois connections, modal logic, temporal×modal logic, multi-modal
logic, step-by-step, completeness

1 Introduction

Galois connections are a very well-known concept within diverse areas of math-
ematics such as algebra, geometry and topology (see [8] for a monograph).
Roughly speaking, a Galois connection is a couple of order-preserving or order-
inverting maps between two ordered sets. This tool has also been extensively
used in theoretical computer science, as it plays a fundamental role in the de-
velopment of diverse theories with immediate applications (see [18]), Formal
Concept Analysis (FCA) [11] being one of the most notable.
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Concurrently, multi-modal logics are an excellent tool for studying proper-
ties of mathematical theories (with [12,16,17] as pioneering works in this field).
Hence, it is unsurprising that, during the last few years, there has been a grow-
ing interest in the analysis of the links between (multi-)modal logics and Galois
connections (e.g., [14,15,19,20,22]).

This paper is inserted in the previous tradition. However, and in contrast to
the quoted approaches, our main objective is not to introduce operators which,
due to its behaviour, form a Galois connection, nor to extend logics with new
operators and to structure their semantics using Galois connections. Rather, we
aim at characterising axiomatically what a Galois connection is. This objective
is pursued through the development of a multi-modal logic, which we denote as
LGP .

4 In other words, our main goal is to define a multi-modal logic provided
with a Kripke semantics in which frames are partially ordered sets which are in
turn related by means of Galois connections, and to give a sound and complete
axiomatic system for such a logic.

As we will see, our representation naturally calls for the use of two types
of modal operators: One of them is used to move forward and back inside
each poset, while the other one connects these posets functionally. In this
sense, our framework builds on the spirit and style of [4,3,5,6], where a very
similar setting is used to axiomatise different properties of functions between
linear orders. Moreover, and differently to what is usually done, (i) we use
partial functions instead of total functions; and (ii) we study Galois connections
between arbitrary families of posets, instead of restricting our attention to a
finite number of them (usually one or two).

The rest of this paper is organised as follows. Section 2 presents the needed
mathematical background. In particular, we recall the notion of Galois con-
nections for partial functions. In Section 3, we introduce the language and
semantics of our logic LGP . We present and comment on our axiomatisation
in Section 4. The main technical contributions of the paper are contained in
Section 5, where we provide a completeness proof for the mentioned axiom sys-
tem following an elaborated step-by-step construction. In Section 6, we briefly
discuss some closely related work. Finally, we close the paper in Section 7 by
depicting open paths for future work. Some of the proofs are to be found in
the Appendix.

2 Mathematical Preliminaries

In this section, we provide the necessary ingredients for a proper understanding
of our semantics. Essentially, we introduce (alternative characterisations of)
the notion of a Galois connection for partial functions. Although this notion
makes sense for weaker order-theoretic structures, such as preorders (see e.g.,
[8, Chapter 1]), we restrict our attention to the most common case of partially
ordered sets. So, let us first of all recall the definition.

Definition 2.1 Given a non-empty set A and a binary relation R on A, we

4 As an acronym of “L”ogic of “G”alois connections between “P”osets.
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say that (A,R) is a partially ordered set (poset, for short) if R is reflexive,
antisymmetric and transitive.

Notation: In what follows we shall use the following notation: If (A,≤A) is a
poset and a ∈ A:

(i) a↑= {a′ ∈ A | a ≤A a′}; (ii) a↓= {a′ ∈ A | a′ ≤A a}.

We adopt the following definition of a Galois connection, which generalises
the usual one from total functions to partial ones: 5

Definition 2.2 Let (A,≤A) and (B,≤B) be two posets and f : (A,≤A) −→
(B,≤B), g : (B,≤B) −→ (A,≤A) be partial functions. We say that the pair
(f, g) is a Galois connection (between (A,≤A) and (B,≤B)) iff:

1.1 Im(f) ⊆ Dom(g) and Im(g) ⊆ Dom(f); and

1.2 For all a ∈ Dom(f) and for all b ∈ Dom(g), we have that:

a ≤A g(b) if and only if f(a) ≤B b.

Given a Galois connection (f, g), we say that f is a residuated function
(sometimes denoted by f→) and g is called its residual function (sometimes
denoted by f←).

Our definition is well-behaved since, once item 1.1 is assumed, then a typi-
cal, alternative characterisation of Galois connections is equivalent to 1.2. Let
us introduce a couple of preliminary, needed notions.

Definition 2.3 Let (A,≤A) and (B,≤B) be posets and f : A → B a partial
function. We say that f is monotone if, for all a1, a2 ∈ Dom(f), we have
that, if a1 ≤A a2, then f(a1) ≤B f(a2).

Definition 2.4 Let (A,≤) be a poset and f : A → A a partial function. We
say that f is inflationary if for all a ∈ Dom(f) we have that a ≤ f(a). We
say that f is deflationary if for all a ∈ Dom(f), we have that f(a) ≤ a

Proposition 2.5 Let (A,≤A) and (B,≤B) be two posets and f : (A,≤A) −→
(B,≤B) a partial function. Then, the following conditions are equivalent:

1. There exists a partial function g : (B,≤B) −→ (A,≤A) s.t. (f, g) is a
Galois connection.

2. f : (A,≤A) −→ (B,≤B) is monotone and there exists monotone g :
(B,≤B) −→ (A,≤A) s.t.

2.1 Im(f) ⊆ Dom(g) and Im(g) ⊆ Dom(f).
2.2 g ◦ f is inflationary and f ◦ g is deflationary.

Remark 2.6 [Lack of uniqueness of residual partial functions] In Galois con-
nections for total functions, each residuated function uniquely determines its
residual (see e.g., [10]). Interestingly, this property is lost when our definition
for partial function is adopted. Figure 1 provides an example of two different
Galois connections between posets P0 = (A0,≤0) and P1 = (A1,≤1) which,

5 See [21] for further generalizations of the notion.
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however, have the same resituated function. Each element of ≤0 and ≤1 is
represented as a simple, directed arrow, except for reflexive arrows, which have
been omitted for the sake of clarity. Residuated functions are depicted as dou-
ble arrows, while residual functions are depicted as dashed, double arrows.

00 10

01 11

P0

P1

00 10

01 11

P0

P1

Fig. 1. Counterexample to uniqueness of residual partial functions.

Example 1 (Concept forming operators in FCA) In Formal Concept
Analysis (FCA) [11], a formal context is a tuple (O,A,R) where O is a set
of objects, A is a set of attributes and R ⊆ O × A is a relation among ob-
jects and attributes. The concept forming operator ↑R: 2O −→ 2A is defined
as ↑R (O) = {a ∈ A | ∀o ∈ O, (o, a) ∈ R} for any O ⊆ O (and something
analogous is done for ↓R: 2A −→ 2O). These operators are used to set up the
notion of a formal concept, i.e., a pair (O,A) s.t. ↑R (O) = A and ↓ (A) = O.
As it has been thoroughly exploited within FCA, we have that (↑R, ↓R) is a
Galois connection between (2O,⊆) and (2A,⊇).

3 The logic LGP

In this section we introduce the multi-modal logic LGP . We start by introducing
the language of this logic, and then move to define an adequate class of models
for it.

3.1 Syntax

We assume a denumerable set of atoms V as fixed from now on. The language
LGP is the one generated by the following grammar:

A ::=⊥| p | ¬A | (A ∧A) | FA | PA | ⟨ i j→⟩A | ⟨ i j←⟩A
where p ranges over V, and both i and j range over N.

FA reads “A is true at a state of the current poset which is ≤-accessible
from the current state”, while PA reads “A is true at a state of the cur-

rent poset from which the current state is ≤-accessible”. Moreover, ⟨ i j→⟩A
reads “we are at the state si of poset Pi and A is true at the image of si in

poset Pj (by a residuated function)”, while the meaning of ⟨ i j←⟩A is “we are
at the state sj of poset Pj and A is true at the image of sj in poset Pi (by
a residual function)”. The rest of Boolean connectives are defined and read

as usual. The duals of F, P, ⟨ i j→⟩, ⟨ i j←⟩ are denoted G,H, [
i j→ ], [

i j← ] and defined

¬F¬,¬P¬,¬⟨ i j→⟩¬,¬⟨ i j←⟩¬ respectively. The need of taking into account both
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⟨ i j→⟩ and ⟨ i j←⟩ as primitive operators will be clear when we define the semantics
of LGP in Section 3.2.

We also introduce the notion of the Galois mirror image of a formula.
If A is a formula, its Galois mirror image is a formula A′ obtained from A

by replacing in A each occurrence of P, F,H,G, ⟨ i j→⟩, ⟨ i j←⟩, [ i j→ ] and [
i j←] by

F, P,G,H, ⟨ i j←⟩, ⟨ i j→⟩, [ i j←] and [
i j→ ] respectively.

Example 2 The Galois mirror image of [
0 1→]H p ∨ ⟨2 1←⟩ q is [

0 1←]Gp ∨ ⟨2 1→⟩ q.

3.2 Semantics of LGP

As announced, the skeleton of our models consists of a family of posets con-
nected by residuated and residual functions. A formal definition follows below:

Definition 3.1 A Galois frame for LGP is a tuple Σ = (Λ, Poset,F) s.t.:
(i) ∅ ̸= Λ ⊆ N, whose elements are called labels.

(ii) Poset = {(Pi,≤i) | i ∈ Λ} is a non-empty set of pairwise disjoint posets
s.t. Pi ̸= ∅ for every label i ∈ Λ.

The elements of the disjoint union SΛ =
⊔
i∈Λ

Pi, denoted by s, s′, etc., are

called states. If we want to specify that a state s belongs to a poset Pi

we denote it by si.

(iii) F ⊆ {f : Pi −→ Pj | i, j ∈ Λ} is a set of partial functions s.t.:
(a) for each f ∈ F , we have that Dom(f) ̸= ∅.
(b) for an arbitrary pair i, j ∈ Λ, it holds that:
• if i ̸= j, then there is at most one function f ∈ F s.t. f : Pi −→ Pj .
• if i = j, then there are at most two functions f, f ′ ∈ F s.t. f : Pi −→
Pj and f ′ : Pi −→ Pj .

(c) for every f ∈ F , f is either a residuated function or its residual. If
f is a residuated function from Pi to Pj , then we denote it as f→ij
and its residual as f←ij . Moreover, for every i, j ∈ Λ, we have that
f→ij ∈ F if and only if f←ij ∈ F . In the special case where f, f ′ ∈ F ,
f : Pi −→ Pj and f ′ : Pj −→ Pi and both (f, f ′) and (f ′, f) are Galois
connections (e.g., when f is an isomorphism and f ′ = f−1), then we
have to explicitly indicate which of the two functions is considered
residuated and which one is considered residual.

Definition 3.2 A Galois model for LGP is a tupleM = (Σ, h), where Σ =
(Λ, Poset,F) is a Galois frame and h is a function, called an interpretation,
assigning to each atom p ∈ V a subset of SΛ. An interpretation h is recursively
extended to a function (still denoted by h) defined for every formula of LGP , by
interpreting Boolean constants and connectives in a standard way and satisfying
the following conditions:

• h(FA) = {s ∈ SΛ | s↑ ∩ h(A) ̸= ∅}
• h(PA) = {s ∈ SΛ | s↓ ∩h(A) ̸= ∅}
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• h(⟨ i j→⟩A)={si ∈ Pi | f→ij ∈ F , si ∈ Dom(f→ij ) and f→ij (si) ∈ h(A)}

• h(⟨ i j←⟩A)={sj ∈ Pj | f←ij ∈ F , sj ∈ Dom(f←ij ) and f←ij (sj) ∈ h(A)}
Hence, we can deduce the semantics of non-primitive connectives:

• h(GA) = {s ∈ SΛ | s↑⊆ h(A)}
• h(HA) = {s ∈ SΛ | s↓⊆ h(A)}

• h( [
i j→ ]A)={si ∈ Pi | If f→ij ∈ F and si ∈ Dom(f→ij ), then

f→ij (si) ∈ h(A)} ∪ {sk ∈ Pk | k ̸= i}

• h( [
i j←]A)={sj ∈ Pj | If f←ij ∈ F and sj ∈ Dom(f←ij ), then

f←ij (sj) ∈ h(A)} ∪ {sk ∈ Pk | k ̸= j}
The class of all Galois-models is denoted by MGP . The semantic notions of
satisfiability, validity and related ones are defined as usual (see e.g., [1]).

Example 3 Figure 2 depicts a Galois frame with three posets, (P0,≤0),
(P1,≤1) and (P2,≤2). Each element of ≤i is represented as a simple, directed
arrow, except for reflexive and transitive arrows, which have been omitted for
the sake of clarity. Residuated functions are depicted as double arrows, while
residual functions are depicted as dashed, double arrows.

00 10

1′0

20 30

P0

01 11 21 31P1

02 12

22

P2

Fig. 2. Galois frame of Example 3.

Let us now define a model based on the previous Galois frame by adding
the interpretation h defined as follows h(p) = {10, 11, 21, 31, 12} and h(q) =
P0 ∪ P1 ∪ P2 (for all q ̸= p). Let us evaluate some formulae in this model:

Formula True at Formula True at

⟨0 1→⟩ p 10, 1
′
0, 20 ⟨1 2←⟩ p none

[
0 1→] p every state except 00 ⟨2 2←⟩p 22

⟨0 1←⟩¬p 01, 11, 21 PF ⟨0 1←⟩⟨0 1→⟩ p 01, 11, 21, 31

[
1 2→] p every state F ⟨0 1→⟩H[

0 1←]¬p 00, 10, 1
′
0, 20
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4 An axiom system for LGP

We now introduce an axiomatic calculus intended to produce as theorems all
formulae that are valid in MGP . We denote this axiom system by SGP . In
what follows, we will use the symbol λ to denote a finite sequence (included
the empty one) of the operators F and P .

Axiom schemata

1. A, where A is a truth-functional tautology

2. Axiom schemata for non-indexed connectives:
2.1 G(A→ B)→ (GA→ GB)
2.2 A→ GPA
2.3 GA→ GGA
2.4 GA→ A
2.5 The Galois mirror images of 2.1–2.4

3. Axiom schemata for indexed connectives: For each i, j ∈ N,
3.1 [

i j→ ](A→ B)→ ([
i j→ ]A→ [

i j→ ]B)

3.2 ⟨ i j→⟩A→ [
i j→ ]A

3.3 For all i, j, k, l ∈ N:

3.3.1 ⟨ i j→⟩λ⟨k l←⟩⊤ → ⊥, if j ̸= l

3.3.2 ⟨ i j→⟩λ⟨k l→⟩⊤ → ⊥ if j ̸= k

3.3.3 ⟨ i j←⟩λ⟨k l←⟩⊤ → ⊥ if i ̸= l

3.3.4 ⟨ i j←⟩λ⟨k l→⟩⊤ → ⊥ if i ̸= k
3.3.5 (⟨ i j→⟩⊤ ∧ λ⟨k l←⟩⊤)→ ⊥ if i ̸= l

3.3.6 (⟨ i j→⟩⊤ ∧ λ⟨k l→⟩⊤)→ ⊥ if i ̸= k

3.3.7 (⟨ i j←⟩⊤ ∧ λ⟨k l←⟩⊤)→ ⊥ if j ̸= l

3.4 For all i, j ∈ N: ⟨ i j→⟩⊤ → ⟨ i j→⟩⟨ i j←⟩⊤

3.5 For all i, j ∈ N: ⟨ i j→⟩F ⟨ i j←⟩A→ FA

3.6 The Galois mirror images of 3.1, 3.2, 3.4 and 3.5.

3.7 For all i, j ∈ N: (⟨ i j→⟩⊤ ∧ λ⟨ j i←⟩⊤)→⊥ if i ̸= j

4 Duality axioms: ♦A ↔ ¬■¬A where ♦ ∈ {F, P, ⟨ i j→⟩, ⟨ i j←⟩} and ■ denotes

the dual of ♦ (e.g., if ♦ = ⟨ i j→⟩, then ■ = [
i j→ ])

Inference rules

(MP ) :
A, A→ B

B
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(N G) :
A
GA

(N H):
A
HA

(N [
i j→ ]) :

A

[
i j→ ]A

(N [
i j←]):

A

[
i j←]A

(for all i, j ∈ N)

Remark 4.1 Let us comment a bit on some of the schemata.
Schemata 2.1–2.5 conform the standard axiomatisation of posets in a tem-

poral modal language (see e.g., [2]).
Schema 3.2 expresses the fact that each f→ij is a partial function. The same

happens with f←ij and the Galois mirror image of 3.2.
Schemata 3.3.1–3.3.7 captures the fact that labels are unique for each poset,

so that the same poset is not named twice.
Schema 3.4. and its Galois mirror image express the required conditions in

item 1.1 of Definition 2.2. Specifically, they express Im(f→ij ) ⊆ Dom(f←ij ) and
Im(f←ij ) ⊆ Dom(f→ij ), respectively.

Schema 3.5 and its Galois mirror image express the two implications con-
tained in item 1.2 of Definition 2.2. More in detail, they capture, respec-
tively, (a) if f→ij (si) ≤j sj , then si ≤i f

←
ij (sj), and (b) if si ≤i f

←
ij (sj), then

f→ij (si) ≤j sj .
Finally, schema 3.7 tells us that, given two different indices i, j, we cannot

have at the same time a resituated function and a residual from i to j.

5 Soundness and completeness of SGP

This section contains the main technical results of the paper. The notions
of proof in SGP and theorem of SGP (noted ⊢ φ) are standard (see, e.g., [1,
Chapter 1]). Let us first formally state the soundness of our axiom system:

Theorem 5.1 (Soundness) SGP is sound w.r.t.MGP , that is, every formula
A of LGP that is provable in SGP is valid inMGP .

More interestingly, our system is complete w.r.t.MGP .

Theorem 5.2 (Completeness) SGP is complete w.r.t. MGP , that is, every
formula A of LGP that is valid inMGP is provable in SGP .

The rest of this section is devoted to the proof of this theorem, which
is based on the step-by-step method (see e.g., [2] or [1, Chapter 4.6] for an
introduction to this kind of constructions). In short, we will build, through a
sequence of steps, a model satisfying each consistent formula A. At each step
we will have a finite frame that does not necessarily satisfy all the properties of
a Galois frame. However, this process approaches to a limit satisfying all the
desired requirements. Moreover, at each step we have a frame which is “good
enough”. The step-by-step method is useful for dealing with frame properties
that are not definable in the entertained modal language. In our case, the need
of the method is ultimately triggered by the antisymmetry of each poset within
a Galois frame, which is clearly not definable with the operators we take into
account. Moreover, the idiosyncrasy of our frames makes the main argument
a bit more elaborated since we have to take care that indexed modalities are
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well-behaved through the construction.
The proof is structured as follows. We first present a couple of theorems

of SGP that will be useful for the rest of the work (Proposition 5.3). After
that, we will state and prove some properties of maximally consistent sets of
formulae which are specific to our system. Finally, we will proceed to build our
step-by-step model.

Proposition 5.3 The following formulae are theorems of SGP :

T1. (⟨ i j→⟩A ∧ ⟨ i j→⟩B)→ ⟨ i j→⟩(A ∧B)

T2. (⟨ i j←⟩A ∧ ⟨ i j←⟩B)→ ⟨ i j←⟩(A ∧B)

Results about maximal consistent sets

The syntactical notions of consistency of a set of formulae Γ (denoted Γ ⊬⊥) and
maximal consistency of Γ in SGP are defined in the usual way. Familiarity with
basic properties of maximally consistent sets (mc-sets, for short) is assumed
(see [1, Chapter 4]). We denote byMC the class of all mc-sets in SGP .

Definition 5.4 Let Γ1,Γ2 ∈MC, and i, j ∈ N. Then we define:

(a) Γ1 ⪯P Γ2 iff {A | GA ∈ Γ1} ⊆ Γ2.

(b) Γ1 ≺→ij Γ2 iff ∅ ̸= {A | ⟨ i j→⟩A ∈ Γ1} ⊆ Γ2.

(c) Γ1 ≺←ij Γ2 iff ∅ ̸= {A | ⟨ i j←⟩A ∈ Γ1} ⊆ Γ2.

As a consequence of this definition we have:

Proposition 5.5 Let Γ1,Γ2 ∈MC, and i, j ∈ N. Then:

(i) Γ1 ⪯P Γ2 iff {FA | A ∈ Γ2} ⊆ Γ1 iff {A | HA ∈ Γ2} ⊆ Γ1 iff {PA | A ∈
Γ1} ⊆ Γ2.

(ii) Γ1 ≺→ij Γ2 iff {A | [ i j→ ]A ∈ Γ1} ⊆ Γ2 iff {⟨ i j→⟩A | A ∈ Γ2} ⊆ Γ1.

(iii) Γ1 ≺←ij Γ2 iff {A | [ i j←]A ∈ Γ1} ⊆ Γ2 iff {⟨ i j←⟩A | A ∈ Γ2} ⊆ Γ1.

We move to state some typical basic results. Namely, the Lindenbaum’s
Lemma, the so-called Existence Lemma for each of our diamond modalities, and
the definability of reflexivity and transitivity in the basic temporal language.

Proposition 5.6 The following properties are satisfied:

1. (Lindenbaum’s Lemma) Any consistent set of formulae in SGP can be
extended to a mc-set in SGP .

2. (Existence Lemmas) Let Γ1 ∈MC and i, j ∈ N, then we have:
(a) If FA ∈ Γ1, then there exists Γ2 ∈MC s.t. Γ1 ⪯P Γ2 and A ∈ Γ2.
(b) If PA ∈ Γ1, then there exists Γ2 ∈MC s.t. Γ2 ⪯P Γ1 and A ∈ Γ2.

(c) If ⟨ i j→⟩A ∈ Γ1, then there exists Γ2 ∈MC s.t. Γ1 ≺→ij Γ2 and A ∈ Γ2.

(d) If ⟨ i j←⟩A ∈ Γ1, then there exists Γ2 ∈MC s.t. Γ1 ≺←ij Γ2 and A ∈ Γ2.

3. (⪯P is a preorder) Let Γ1,Γ2,Γ3 ∈MC. Then we have:
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(a) Γ1 ⪯P Γ1.

(b) If Γ1 ⪯P Γ2 and Γ2 ⪯P Γ3, then Γ1 ⪯P Γ3.

The following proposition states that the relations between mc-sets, ≺→ij
and ≺←ij , satisfy condition 1.1 of Definition 2.2.

Proposition 5.7 Let Γ1,Γ2 ∈MC and i, j ∈ N. Then we have:

(i) If Γ1 ≺→ij Γ2, then there exists Γ3 ∈MC s.t. Γ2 ≺←ij Γ3.

(ii) If Γ1 ≺←ij Γ2, then there exists Γ3 ∈MC s.t. Γ2 ≺→ij Γ3.

The following proposition states that the relations between mc-sets, ≺→ij
and ≺←ij , satisfy property 1.2 of Definition 2.2.

Proposition 5.8 Let Γ1,Γ2,Γ3,Γ4 ∈MC and i, j ∈ N. Then:

(i) If Γ1 ≺→ij Γ2, Γ2 ⪯P Γ3 and Γ3 ≺←ij Γ4, then Γ1 ⪯P Γ4.

(ii) If Γ1 ≺←ij Γ2, Γ3 ⪯P Γ2 and Γ3 ≺→ij Γ4, then Γ4 ⪯P Γ1.

Step-by-step method

It is now time to make formally precise what does it mean that, at each step of
our construction, although our frame might not be a Galois frame, it is “good
enough”:

Definition 5.9 Let (A,≤A) and (B,≤B) be two posets and f : (A,≤A) −→
(B,≤B), g : (B,≤B) −→ (A,≤A) a pair of partial functions. We say that
the pair (f, g) is a quasi-Galois connection if for all a ∈ Dom(f) and for
all b ∈ Dom(g), we have that a ≤A g(b) iff f(a) ≤B b. If (f, g) is a quasi-
Galois connection, we call f quasi-residuated, and denote it by fq,→, and
the function g is called the quasi-residual of f , and denoted by fq,←.

Remark 5.10 Since the previous definition does not require that Im(f) ⊆
Dom(g) and Im(g) ⊆ Dom(f), then by Definition 2.2 we have that a quasi-
Galois connection, (f, g), is not always a Galois connection. Moreover, accord-
ing to the proof of Proposition 2.5, neither have we assured that f and g are
monotone; nor, likewise, that g ◦ f is inflationary and f ◦ g deflationary.

Definition 5.11 A quasi-Galois frame for LGP is a tuple Σ = (Λ, Poset,F)
where every component is just as in a Galois frame (Definition 3.1) except for
F , where the condition (iii)(c) of Definition 3.1 is replaced by:

(c’) for every f ∈ F , it is either a quasi-residuated function or its quasi-residual.
If f is a quasi-residuated function from Pi to Pj , then we denote it by f

q,→
ij ,

and we use f
q,←
ij to denote its quasi-residual.

Note that, unlike what we did in (iii)(c) (Definition 3.1), we do not require
fq,→ ∈ F iff fq,← ∈ F for quasi-Galois frames.

In our construction, the quasi-Galois frame entertained at each step will be
an extension of the previous one. Let us make this notion precise:

Definition 5.12 Let Σ1 = (Λ1,Poset1,F1) and Σ2 = (Λ2,Poset2,F2) be a pair
of quasi-Galois frames. We say that Σ2 is an extension of Σ1 if the following
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conditions hold:

(i) Λ1 ⊆ Λ2.

(ii) for any (Pi,≤i) ∈ Poset1, the poset (P′i,≤′i) ∈ Poset2 satisfies:
• Pi ⊆ P′i;
• ≤i=≤′i ∩ (Pi × Pi).

We also define a special type of quasi-Galois frame that will be useful in
the construction.

Definition 5.13 Given k ∈ N, a simple quasi-Galois frame at k is
a quasi-Galois frame Σk = (Λ,Poset,F) where F = ∅, Λ = {k}, and
Poset = {(Pk,≤k)}. Given j ∈ N, we say that a simple quasi-Galois frame
is a j-renamed frame of Σk, denoted Σj/k, if it is obtained by replacing in
Σk every occurrence of k by j.

As usual in the step-by-step completeness method, we introduce a function
(called trace) that associates elements ofMC to states of a quasi-Galois frame.

Definition 5.14 Let Σ = (Λ,Poset,F) be a quasi-Galois frame for LGP . A
trace of Σ is a function ΦΣ : SΛ → MC. Moreover, if Σk is a simple quasi-
Galois frame and ΦΣk is a trace of it, the renamed trace ΦΣj/k is obtained
by replacing all occurrences of k in the domain of ΦΣk by j.

We now introduce the desired properties of a trace:

Definition 5.15 Let ΦΣ be a trace of a quasi-Galois frame Σ = (Λ,Poset,F).
Then ΦΣ is called:

• nominally-coherent, if for all s ∈ SΛ and i, j ∈ N we have that:

(nc1) : if λ⟨
i j→⟩A ∈ ΦΣ(s), then s = si.

(nc2) : if λ⟨
i j←⟩A ∈ ΦΣ(s), then s = sj .

• poset-coherent, if for all s, s′ ∈ SΛ we have that:
if s′ ∈ s↑, then ΦΣ(s) ⪯P ΦΣ(s

′).

• functionally-coherent, if for all si, sj ∈ SΛ with i, j ∈ Λ we have that:
(fc1) : if sj = f→ij (si), then ΦΣ(si) ≺→ij ΦΣ(sj).
(fc2) : if si = f←ij (sj), then ΦΣ(sj) ≺←ij ΦΣ(si).

• ↑-projectable if for all A ∈ LGP and s ∈ SΛ we have that:
if FA ∈ ΦΣ(s), there exists s′ ∈ s↑ s.t. A ∈ ΦΣ(s

′).

• ↓-projectable if for all A ∈ LGP and s ∈ SΛ we have that:
if PA ∈ ΦΣ(s), there exists s′ ∈ s↓ s.t. A ∈ ΦΣ(s

′).

• ⟨→⟩-projectable if for all A ∈ LGP , i, j ∈ N and sk ∈ SΛ we have that:

if ⟨ i j→⟩A ∈ ΦΣ(sk), then there exists sj = f→kj (sk) s.t. A ∈ ΦΣ(sj).

• ⟨←⟩-projectable if for all A ∈ LGP , i, j ∈ N and sk ∈ SΛ we have that:

if ⟨ i j←⟩A ∈ ΦΣ(sk), then there exists si = f←ik (sk) s.t. A ∈ ΦΣ(si).

• quasi-coherent if it is poset-coherent, functionally-coherent (but not nec-
essarily nominally-coherent).
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• coherent if it is nominally-coherent, poset-coherent and functionally-
coherent.

• full if it is coherent, ↑-projectable, ↓-projectable, ⟨→⟩-projectable, and ⟨←⟩-
projectable.

Remark 5.16 It is worth noting the following consideration in the definition

of the nominally-coherent condition: If λ⟨ i j→⟩A ∈ ΦΣ(s), then any formula in

ΦΣ(s) other than λ⟨ i j→⟩A of the form λ′⟨k l→⟩B implies i = k and of the form

λ′⟨k l←⟩B implies i = l (by axioms 3.3.5 and 3.3.6 and the fact that ΦΣ(s) is an

mc-set). Similar considerations can be done if λ⟨ i j←⟩A ∈ ΦΣ(s).

Remark 5.17 We will refer to the conditionals introduced in the previous
definition (e.g., in the definition of ↑-projectable trace) just as we refer to a trace
ΦΣ that satisfies them. In general, we will also use the expression “conditional
for ΦΣ” to mean that it is a ↑-projectable (↓-projectable, ⟨→⟩-projectable or
⟨←⟩-projectable) conditional for ΦΣ. Moreover, given a conditional (α) for ΦΣ,
if we replace the index Σ′ by Σ, where Σ′ is an extension of Σ, then (α) is a
conditional for Φ′Σ, but we can say that we refer to the same conditional in
both cases.

Definition 5.18 Let ΦΣ be a trace of a quasi-Galois frame.

• Consider a ↑-projectable conditional:

“If FA ∈ ΦΣ(s), then there exists s′ ∈ s ↑ s.t. A ∈ ΦΣ(s
′)”

We say that it is active for ΦΣ if FA ∈ ΦΣ(s), but there is no s′ ∈ s ↑
s.t. A ∈ ΦΣ(s

′). On the other hand, we say that it is exhausted for ΦΣ

if there exists a state s′ s.t. s′ ∈ s ↑ and A ∈ ΦΣ(s
′).

The notions of activeness and exhaustedness are defined in a similar
way for ↓-projectable conditionals.

• Consider a ⟨→⟩-projectable conditional:

“If ⟨ i j→⟩A ∈ ΦΣ(sk), then there exists sj = f→kj (sk) s.t. A ∈ ΦΣ(sj).”

We say that it is active for ΦΣ if ⟨ i j→⟩A ∈ ΦΣ(sk), but there is no sj =
f→kj (sk) s.t. A ∈ ΦΣ(sj). On the other hand, the conditional is exhausted
for ΦΣ if there exists sj = f→kj (sk) s.t. A ∈ ΦΣ(sj).

The notions of activeness and exhaustedness are defined in a similar
way for ⟨←⟩-projectable conditionals.

Lemma 5.19 (Truth) Let ΦΣ be a full trace of a Galois frame Σ. Let h be an
interpretation assigning to each propositional variable p the set h(p) = {s ∈ SΣ |
p ∈ ΦΣ(s)}. Then, for any formula A, we have h(A) = {s ∈ SΣ | A ∈ ΦΣ(s)}.

As we will see, at every stage of the step-by-step construction, the trace
of the constructed quasi-Galois frame is quasi-coherent or coherent. However,
this is not necessarily so for the projectable properties, which are only satisfied
at the end of the process. Let us then state the lemmas that allow exhausting
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active conditionals at each step.

Lemma 5.20 (Basic exhausting lemma) Let ΦΣk be a quasi-coherent trace
of a simple quasi-Galois frame Σk and let (α) be an active conditional for ΦΣk ,
then:

(i) If (α) is a ⟨→⟩-(⟨←⟩-)conditional, then there is i ∈ N s.t. ΦΣi/k is coherent.

(ii) If (α) is a ↑-(↓-)conditional, then there is an extension of Σk, Σk
1 , and a

quasi-coherent trace ΦΣk
1
of Σk

1 s.t. ΦΣk
1
⊆ ΦΣk and (α) is exhausted for

ΦΣk
1
. Moreover, if ΦΣk was coherent, then ΦΣk

1
is coherent.

Lemma 5.21 (General exhausting lemma) Let ΦΣ1
be a coherent trace of

a finite quasi-Galois frame Σ1 and let (α) be an active conditional for ΦΣ1
.

Then there is a finite quasi-Galois frame Σ2, which is an extension of Σ1, and
a coherent trace ΦΣ2 of Σ2 s.t. ΦΣ1 ⊆ ΦΣ2 and (α) is exhausted for ΦΣ2 .

We are finally able to give a proof of Theorem 5.2:

Proof. [Sketch] By a standard argument, it suffices to show that given a
consistent formula A, this formula is satisfiable. In order to do so, we will
build a model M = (Σ, h) where Σ = (Λ,Poset,F) is a Galois frame. Given
that A is consistent, there exists a mc-set Γ0 containing A (Lindenbaum’s
Lemma). We start our construction with the finite simple quasi-Galois frame
Σ0 = ({0}, {{{s0}, {(s0, s0)}}},∅). The corresponding trace ΦΣ0 is defined as
ΦΣ0

(s0) = Γ0. It is straightforward to show that ΦΣ0
is quasi-coherent. Now,

we aim at constructing:

• a denumerable sequence, Σ0,Σ1, . . . ,Σn . . ., of finite quasi-Galois frames
whose union will be a Galois frame, and

• a denumerable sequence of the corresponding quasi-coherent or coherent
traces, ΦΣ0 , ΦΣ1 , . . . , ΦΣn , . . ..

In order to do so, let A0, A1, . . . be an enumeration of all the existential
formulae of the language 6 in which every formula occurs infinitely many times.
Assume that Σn = (Λn,Posetn ,Fn) and ΦΣn (with n ≥ 0) are given and take
the existential formula An of the above enumeration. Consider the finite set
SΣn

and S ⊆ SΣn
the set of all states s.t. for every s ∈ S, “An ∈ ΦΣn

(s)” is
the antecedent of an active conditional. Let us now define Σn+1 inductively:

(A) If S = ∅, then we establish Σn+1 = Σn and ΦΣn+1 = ΦΣn , and con-
tinue the process considering the existential formula An+1. Clearly, if ΦΣn

is (quasi-)coherent, then so it is ΦΣn+1
.

(B) If S ̸= ∅, Λn = {0} and An is of the form ⟨ i j→⟩B or ⟨ j i←⟩B with i ̸= 0,
then we apply Lemma 5.20.(i) by setting Σn+1 = Σi/0, and we reconsider
An, so that we reconfigure the enumeration of existential formulae by setting
An+1 7→ An, An+2 7→ An+1,... It is easy to see that Σn is quasi-coherent but

6 These are formulae with the prefixes F , P , ⟨i j→⟩ or ⟨i j←⟩ (for i, j ∈ N).
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not coherent, and Σn+1 is coherent.

(C) If S ̸= ∅, Λn = {0} and An is of the form FB or PB, then, by several
applications of Lemma 5.20.(ii), we can obtain a sequence, Σn1 , . . ., Σnm ,
of finite, simple quasi-Galois frames s.t. each of them is an extension of
the previous one, and a corresponding sequence of (quasi-)coherent traces
ΦΣn1

, . . . ,ΦΣnm
s.t. ΦΣn

= ΦΣn1
⊆ . . . ⊆ ΦΣnm

, so that each active condi-
tional (α)i (for 1 ≤ i < m) with antecedent An ∈ ΦΣni

(s) is exhausted for
ΦΣni+1

. Moreover, we set Σn+1 = Σnm and ΦΣn+1 = ΦΣnm
.

(D) If S ̸= ∅ and either (i) Λn ̸= {0} or (ii) Λn = {0} and An is of the form

⟨0 j→⟩B or ⟨j 0←⟩B, then we can guarantee that ΦΣn
is coherent, so that we can

do the same as in the previous case, but applying Lemma 5.21. Moreover,
the coherence of ΦΣn+1 is also ensured.

Finally, we define Σ = (Λ,Poset,F) with Λ =
⋃

n∈ω Λn, Poset =⋃
n∈ω Posetn , where

⋃
n∈ω Posetn means the pointwise union of all posets with

the same index, and F =
⋃

n∈ω Fn. Let us show that Σ is a Galois frame. If
F = ∅, then this is trivial. Otherwise:

• Conditions (i), (ii) and (iii)(a) of Definition 3.1 are straightforwardly guaran-
teed by construction. As for condition (iii)(b), details are left to the reader,
but note that for each state s ∈ Λ and each i, j ∈ N with i ̸= j we found
at most one active ⟨→⟩-(⟨←⟩-)conditional during the construction process
–axiom 3.7. is needed to show this– (and at most two when i = j).

• Regarding condition (iii)(c), we have to show that Σ satisfies both require-
ments of Definition 2.2 (1.1 and 1.2) and that a residuated function is defined
in F if and only if its residual is also in F (in symbols, f→ij ∈ F iff f←ij ∈ F).
In effect, assume that, at a given step of the construction, we have a quasi-
residuated function f

q,→
ij with f

q,→
ij (si) = sj , but f

q,←
ij (sj) does not exist,

so that Im(f
q,→
ij ) ̸⊆ Dom(f

q,←
ij ). Then at a later step we will create a

new point f
q,←
ij (sj) where f

q,←
ij (sj) will be associated with a new mc-set.

It occurs similarly if we consider a quasi-residual function. Both cases are
justified by Proposition 5.7 and the construction. This ensures property 1.1.
Moreover, this argument also guarantees that f→ij ∈ F iff f←ij ∈ F . Finally, Σ
satisfies property 1.2 of Definition 2.2, because all members of the sequence
of quasi-Galois frames satisfy that property.

Let us now show that ΦΣ is coherent. If ΦΣ0
is coherent, then it is clear

that coherence is preserved through the construction. If ΦΣ0
is not coherent,

then it is not nominally coherent which means that there exists some formula

in ΦΣ0
(s0) of the form λ⟨ i j→⟩A or ⟨ j i←⟩A (with i ̸= 0). Hence, (B) is reached at

some point of the construction, so that we obtain a coherent trace (by Lemma
5.20.(i)), and this is preserved through the rest of the construction. Note that
(B) is reached at most once in the whole process. Furthermore, by lemmas
5.20.(ii) and 5.21, each active conditional for a given ΦΣn is exhausted sooner
or later for a given ΦΣm

. Thus ΦΣ is full.
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Finally, we can define a Galois model (Σ, h) where h(p) = {s ∈ SΣ | p ∈
ΦΣ(s)} for every propositional variable p. So, by the Truth Lemma (5.19), A
is satisfiable. 2

6 Related work

The current paper can be understood as an integration of two different lines
of research: the modal study of Galois connections (e.g., [13,15,19,22]) and
the investigation of temporal×modal functional frames (e.g., [3,4,5,6]). Let us
comment briefly on both, focusing on how they compare to our approach.

In the first place, there are several works in the literature looking at some
interactions between modal operators and Galois connections (among oth-
ers, [7,19,20,14,22,15,13]). In general, these works are based on the identi-
fication of a certain Galois connection within a standard Kripke frame (i.e.,
a pair (W,R) where W ̸= ∅ and R is a relation on W ), usually followed
by a deep algebraic analysis (e.g., in [22,19,13]). Such identifications have
been used with diverse particular purposes. For instance, [15] presents the
Information Logic of Galois Connections (ILGC) as a means for reasoning
about approximate information (represented mathematically as rough sets).
ILGC is essentially the basic tense logic Kt taking F and H as primitive op-
erators. The axiomatisation of ILGC is based on the fact that, when inter-
preted on Kripke frames, F and H form a Galois connection. More precisely,
given a Kripke frame (W,R), we can look at F and H as semantic operators
2W −→ 2W by setting F (X) = {w ∈ W | ∃u.(w, u) ∈ R and u ∈ X} and
H(X) = {w ∈W | ∀u, (u,w) ∈ R implies u ∈ X}; and it is clear that (F,H)
is a Galois connection in (2W ,⊆). In [13], the author does something similar,
but using two-sorted Kripke frames (frames where the domain and range of the
relation R are disjoint and form a partition of W ). As a third example, [19]
uses these sorted frames, which are nothing but formal contexts, in order to
provide a logical tool for Formal Concept Analysis (see Example 1).

The second line of research is the one initiated in [4], where functional
temporal×modal frames are introduced, and later developed in a series of pa-
pers ([3,5,6] among others). Our language is essentially the one used in [6]
for the axiomatisation of surjective functions. The changes in the semantics
of both works can be identified at first sight, the most important being the
addition of condition (iii) in our definition of frame (Definition 3.1), and in the

semantic clause for ⟨ i j←⟩.
By integrating both branches of research, we generalize existing frameworks

for the modal study of Galois connections in at least three well-differentiated
aspects. First, we consider Galois connections for partial functions, instead
of the more usual and restricted definition that looks only at total functions.
Second, our frames take into account connections among an arbitrary num-
ber of posets, instead of considering a single connection among two (possibly
different) posets. Third, these frames can accommodate the representation of
any poset (Pi,≤i), while in the quoted works these are always the complete
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lattice generated by a power set of worlds and the set inclusion relation among
them (2W ,⊆). Moreover, the pre-orders ≤i are first-class citizen in our seman-
tics, described in turn with the temporal modalities F and P , while the subset
inclusion among sets of worlds is left implicit in the logical treatment of the
quoted papers.

7 Future work

Let us just mention three open lines for future work. First, computational
aspects of reasoning tasks associated to SGP , e.g., decidability and complexity
of the provability problem, have been left out of this work. We believe, however,
that the logic is indeed decidable. This would open the door to using our
results as a first step towards an automated modal prover for the study of
Galois connections. Second, as mentioned elsewhere in this paper, the notion
of a Galois connection makes also sense among pre-ordered sets (sets endowed
with a reflexive and transitive relation), hence a natural extension of our work
consists in relaxing our set of assumptions on ≤i and studying the resulting
logic. Finally, the link between our approach and Gaggle theory [9], a natural
generalisation of Galois connections that has been shown very fruitful for logic,
remains to be studied too.
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Appendix

In this section, we shall use the following conventions: by PC (Propositional
Calculus), we denote proofs in the classical logic; and by ML we denote proofs
in the basic multi-modal logic.

[Proposition 2.5]

Proof. For 1 ⇒ 2: Let g be the function whose existence is affirmed in item
1.

• Let us see that g◦f is inflationary. In effect, given that for all a ∈ Dom(f) we
have that f(a) ≤B f(a) and, by hypothesis, we have that Im(f) ⊆ Dom(g),
item 1 ensures that a ≤A g(f(a)).

• Let us see that f ◦g is deflationary. In effect, given that for all b ∈ Dom(g) we
have that g(b) ≤A g(b) and, by hypothesis, we have that Im(g) ⊆ Dom(f),
item 1 guarantees that f(g(b)) ≤B b.

• Let us see that f is monotone. Let a1, a2 ∈ Dom(f) be s.t. a1 ≤A a2,
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since g ◦ f is inflationary we obtain a2 ≤A g(f(a2)) and, as a consequence,
a1 ≤A g(f(a2)). Now, the hypothesis ensures that f(a1) ≤B f(a2).

• Let us see that g is monotone. Let b1, b2 ∈ Dom(g) be s.t. b1 ≤B b2, since
f ◦ g is deflationary, we have that f(g(b1)) ≤B b1 and, as a consequence,
f(g(b1)) ≤B b2. Now, the hypothesis ensures that g(b1) ≤A g(b2).

As for 2 ⇒ 1: Let us see that for all b ∈ Dom(g) we have that f−1(b ↓) =
g(b)↓ ∩Dom(f) where g is the function whose existence is affirmed in item 2.

Assume a ∈ f−1(b↓). Then f(a) ≤B b. Since g is monotone, (g◦f)(a) is de-
fined (given that Im(f) ⊆ Dom(g)) and b ∈ Dom(g), we have that g(f(a)) ≤A

g(b). Now, since g ◦ f is inflationary, we obtain a ≤A g(f(a)) ≤A g(b), that is,
a ∈ g(b)↓.

Reciprocally, assume that a ∈ g(b)↓ ∩Dom(f), that is, a ≤A g(b). Since f
is monotone, a ∈ Dom(f) and Im(g) ⊆ Dom(f), we have that f(a) ≤B f(g(b))
and given that f ◦g is deflationary we obtain f(a) ≤B f(g(b)) ≤B b. Therefore,
f(a) ∈ b↓ and a ∈ f−1(b↓).

Let us see that a ≤A g(b) if and only if f(a) ≤B b.

• Assume a ≤A g(b), that is, a ∈ g(b) ↓ ∩Dom(f) = f−1(b ↓) and, as a
consequence, f(a) ≤B b.

• Assume f(a) ≤B b, that is, f(a) ∈ b↓. Now, given that the function f−1 :
(2B ,⊆) −→ (2A,⊆) defined by f−1(Y ) = {a ∈ A | f(a) ∈ Y } is monotone
we obtain a ∈ f−1(f(a)) ⊆ f−1(b↓) = g(b)↓ ∩Dom(f) and, as a consequence,
a ≤A g(b).

2

[Theorem 5.1]

Proof. Soundness follows SGP from a standard inductive argument on the
length of derivations. Let us just show, as an illustration, the validity of schema

3.3.1: ⟨ i j→⟩λ⟨k l←⟩⊤ → ⊥, where j ̸= l.
Let (Λ, Poset,F , h) be a Galois model, s ∈ SΛ and j ̸= l. Suppose, for the

sake of contradiction, that s ∈ h(⟨ i j→⟩λ⟨k l←⟩⊤), which implies that there is an

f→ij ∈ F s.t. f→ij (s) ∈ h(λ⟨k l←⟩⊤). Since f→ij (s) ∈ h(λ⟨k l←⟩⊤), there is a sj ∈ Pj

s.t. sj ∈ h(⟨k l←⟩⊤) (this can be shown by induction on the length of λ). But

then, by the semantic clause for ⟨k l←⟩, there is an f←kl ∈ F s.t. sj ∈ Dom(f←kl ),
which in turn implies that sj ∈ Pl (with j ̸= l), and this is absurd. 2

[Proposition 5.3]

Proof. We only prove T1 (T2 is its Galois mirror image):



172 A multi-modal logic for Galois connections

1. ⟨ i j→⟩A→ [
i j→ ]A Axiom 3.2

2. ⟨ i j→⟩B → [
i j→ ]B Axiom 3.2

3. (⟨ i j→⟩A ∧ ⟨ i j→⟩B)→ ([
i j→ ]A ∧ [

i j→ ]B) from 1, 2 by PC

4. ([
i j→ ]A ∧ [

i j→ ]B)→ [
i j→ ](A ∧B) ML

5. (⟨ i j→⟩A ∧ ⟨ i j→⟩B)→ [
i j→ ](A ∧B) from 3, 4 by PC

6. (⟨ i j→⟩A ∧ ⟨ i j→⟩B ∧ [
i j→ ](A ∧B))→ ⟨ i j→⟩(A ∧B) ML

7. (⟨ i j→⟩A ∧ ⟨ i j→⟩B)→ ⟨ i j→⟩(A ∧B) from 5, 6 by PC
2

[Proposition 5.5]

Proof. The proof of (i) is standard in modal logic. With respect to (ii) we

first show that Γ1 ≺→ij Γ2 iff {A | [ i j→ ]A ∈ Γ1} ⊆ Γ2.

The left-to-right direction is proved as follows: Assume Γ1 ≺→ij Γ2 and also

[
i j→ ]A ∈ Γ1. We have to show that A ∈ Γ2. Now suppose the contrary, i.e.,

A /∈ Γ2. Hence ⟨ i j→⟩A /∈ Γ1, because Γ1 ≺→ij Γ2 iff ∅ ̸= {A | ⟨ i j→⟩A ∈ Γ1} ⊆ Γ2

by Definition 5.4(b), and so [
i j→ ]¬A ∈ Γ1 by ML, hence [

i j→ ]⊥ ∈ Γ1 by ML

again (since [
i j→ ]A ∈ Γ1). Since the set {A | ⟨ i j→⟩A ∈ Γ1} is non-empty, it

should be clear that ⟨ i j→⟩⊤ ∈ Γ1 which, by ML, leads to a contradiction.

For the right-to-left direction, suppose {A | [ i j→ ]A ∈ Γ1} ⊆ Γ2 (†). We first

show that {A | ⟨ i j→⟩A ∈ Γ1} ̸= ∅. Assume the contrary, then we have that

⟨ i j→⟩⊤ /∈ Γ1, hence [
i j→ ]⊥ ∈ Γ1 by ML, so ⊥ ∈ Γ2 by (†), and Γ2 would be

inconsistent, which is impossible. Now we shall show that {A | ⟨ i j→⟩A ∈ Γ1} ⊆
Γ2. Consider ⟨

i j→⟩A ∈ Γ1, given axiom 3.2 we obtain [
i j→ ]A ∈ Γ1, so by (†) we

get A ∈ Γ2. This completes the proof of that direction. Moreover, the proof of

{A | [ i j→ ]A ∈ Γ1} ⊆ Γ2 iff {⟨ i j→⟩A | A ∈ Γ2} ⊆ Γ1 is standard in modal logic.
The proof of item (iii) is similar to that of (ii). 2

[Proposition 5.7]

Proof. For (i), assume Γ1 ≺→ij Γ2. All we have to prove is that the set {A |
[
i j←]A ∈ Γ2} is consistent. If not, then there are formulae A1, . . . , An such that

[
i j←]A1, . . . [

i j←]An ∈ Γ2 and ⊢ ¬(A1 ∧ . . .∧An). Then, by ML, ⊢ ([
i j←]A1 ∧ . . .∧

[
i j←]An−1) → [

i j←]¬An. Therefore [
i j←]¬An ∈ Γ2, hence [

i j←]⊥ ∈ Γ2 using ML

again (since [
i j←]An ∈ Γ2). Now, given Γ1 ≺→ij Γ2, we obtain ⟨ i j→⟩[ i j←]⊥ ∈ Γ1

(using [
i j←]⊥ ∈ Γ2 and Proposition 5.5(ii)). Moreover, by the assumption and

Definition 5.4(b), we also obtain ⟨ i j→⟩⊤ ∈ Γ1 (because ⊤ ∈ Γ2). So, by axiom

3.4, we get ⟨ i j→⟩⟨ i j←⟩⊤ ∈ Γ1. Thus, by T1. of Proposition 5.3 and the fact that

⟨ i j→⟩[ i j←]⊥ ∈ Γ1, we get ⟨ i j→⟩(⟨ i j←⟩⊤ ∧ [
i j←]⊥) ∈ Γ1 and so ⟨ i j→⟩⟨ i j←⟩⊥ ∈ Γ1, by
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ML, which leads to a contradiction using items 2(c) and 2(d) of Proposition 5.6,
since there would then exist an mc-set Γ such that ⊥ ∈ Γ, which is impossible.
The proof of item (ii) is similar. 2

[Proposition 5.8]

Proof. We shall prove item (i). Assume Γ1 ≺→ij Γ2, Γ2 ⪯P Γ3 and Γ3 ≺←ij Γ4

and GA ∈ Γ1. We will show that A ∈ Γ4. Now, the axiom 3.5 establish that

⟨ i j→⟩F ⟨ i j←⟩X → FX, so, from GA ∈ Γ1 we obtain that [
i j→ ]G[

i j←]A ∈ Γ1 (by

ML). Since Γ1 ≺→ij Γ2, from Proposition 5.5(ii), we get G[
i j←]A ∈ Γ2, and from

Γ2 ⪯P Γ3, by Definition 5.4(a), we obtain [
i j←]A ∈ Γ3. Finally, since Γ3 ≺←ij Γ4,

by Proposition 5.5(iii), we get A ∈ Γ4 as required. Thus Γ1 ⪯P Γ4.
The proof of item (ii) is similar. 2

[Lemma 5.20]

Proof. For item (i), let λ⟨ i j→⟩B ∈ ΦΣk(s) (resp. λ⟨ j i←⟩ ∈ ΦΣk(s)) the an-
tecedent of (α), then the renaming we are looking for is just Σi/k. Item (ii) is
proved using the standard construction for temporal logic [2]. 2

[Lemma 5.21]

Proof. Let ΦΣ1 be a coherent trace of a finite quasi-Galois frame Σ1 =
(Λ1,Poset1 ,F1), and let (α) be an active conditional for ΦΣ1

. We want to
construct an extension of Σ1, call it Σ2, together with a coherent trace ΦΣ2

s.t.
ΦΣ1

⊆ ΦΣ2
and (α) is exhausted for ΦΣ2

.
In order to do so, if (α) is either a ↑-projectable or a ↓-projectable condi-

tional, then such a construction is carried out following the standard way in
temporal logic (see e.g., [2] or [1, Chapter 4.6]). So, let us consider only the
case in which (α) is a ⟨→⟩-projectable conditional.

Hence, assume i, j ∈ N and let (α) be the following active ⟨→⟩-projectable
conditional for ΦΣ:

“If ⟨ i j→⟩A ∈ ΦΣ1
(si), then there exists sj = f→ij (si) such that A ∈ ΦΣ1

(sj)”
7

Thus, we have that ⟨ i j→⟩A ∈ ΦΣ1
(si), but there is no sj = f→ij (si) s.t. A ∈

ΦΣ1
(sj). Moreover, by item 2(c) of Proposition 5.6, there exists an mc-set,

Γ, s.t. ΦΣ1(si) ≺→ij Γ and A ∈ Γ. Furthermore, as ⟨ i j→⟩A ∈ ΦΣ1(si), we have
i ∈ Λ1, so we continue by cases:

Case 1: j /∈ Λ1.

Then, we need a new poset labelled with j, namely Pj , which requires extending
Λ1 and which contains one element, called sj , associated with Γ. We also need
to introduce a new function, fq,→

ij , extending F1 so that sj is the image of si
in Pj . That is, we define Σ2 = (Λ2,Poset2 ,F2), an extension of Σ1, and ΦΣ2 ,
an extension of ΦΣ1 , as follows:

7 The match between the indices in the formula ⟨i j→⟩A and the state si are guaranteed by
the assumptions that (α) is active and ΦΣ1

is coherent.
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• Λ2 = Λ1 ∪ {j};
• Poset2 = Poset1 ∪ {(Pj ,≤j)}, where Pj = {sj} and ≤j= {(sj , sj)};
• F2 = F1 ∪ {fq,→

ij }, where fq,→
ij = {(si, sj)};

• ΦΣ2
= ΦΣ1

∪ {(sj ,Γ)}.
It should be clear that Σ2, as defined, is a quasi-Galois-frame, given that

Σ1 is a quasi-Galois frame. Let us show that ΦΣ2 preserves coherency.

• ΦΣ2
is poset-coherent by Proposition 5.6(3).

• Moreover, taking into account the definition of ΦΣ2
, it is easy to see that it

is functionally-coherent.

• As for the preservation of nominal coherence, the only new element in the
frame Σ2 is sj , therefore we will focus our attention exclusively on it. The

fact that ⟨ i j→⟩A∈ ΦΣ1(si) together with axioms 3.3.1, 3.3.2, 3.3.5 and 3.3.6

prevent that a formula of the form λ⟨k l→⟩⊤ or of the form λ⟨ l k←⟩⊤ (being
k ̸= j) appears in ΦΣ1(sj)(= Γ), hence ΦΣ2 is nominally coherent too.

The fact that ⟨ i j→⟩A∈ ΦΣ1
(si) and the comments of Remark 5.16 ensure

us that ΦΣ2
is nominally coherent too.

Case 2: j ∈ Λ1.

We distinguish two relevant subcases:

Case 2.1: fq,←
ij ̸∈ F1.

We define Σ2 = (Λ2,Poset2 ,F2) analogously to what we did in Case 1. How-
ever, we do not need to create a new poset Pj , because it already exists, but
just to introduce a new point sj that will be the f

q,→
ij -image of si. So, we

define:

• Λ2 = Λ1;

• Poset2 = (Poset1 \ {(Pj ,≤j)}) ∪ {(P′j ,≤′j)} where P′j = Pj ∪ {sj} and
≤′j = ≤j ∪ {(sj , sj)};

• F2 =


(F1 \ {f

q,→
ij }) ∪ {f ′q,→ij }, where f

′q,→
ij = f

q,→
ij ∪ {(si, sj)}

if f
q,→
ij ∈ F1;

F1 ∪ {f
q,→′

ij }, where f
q,→′

ij = {(si, sj)}
otherwise.

• ΦΣ2
= ΦΣ1

∪ {(sj ,Γ)}.
It is easy to check that Σ2 is a quasi-Galois frame. Note that we don’t have

to check that (f
′q,→
ij , f

′q,←′

ij ) form a quasi-Galois connection, because f
′q,←′

ij

does not exist by hypothesis. Moreover, it is also easy to check that ΦΣ2
is

coherent.

Case 2.2: fq,←
ij ∈ F1.

Let us define the set:
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X = {s ∈ Dom(fq,←
ij ) | fq,←

ij (s) ∈ si ↑}.
Now, we define Σ2 = (Λ2,Poset2 ,F2) and ΦΣ2

, where Λ2, F2, and ΦΣ2
are

just as in Case 2.1, and Poset2 = (Poset1 − {(Pj ,≤j)}) ∪ {(P ′j ,≤′j)}, where
P′j = Pj ∪{sj} and ≤′j is the transitive closure of the relation ≤j ∪{(sj , sj)} ∪
{(sj , s) | s ∈ X}.

The frame so defined is a quasi-Galois frame. It suffices to show that
(f ′q,→ij , f ′q,←ij ) form a quasi-Galois connection. So let xi ∈ Dom(f ′q,→ij ), xj ∈
Dom(f ′q,←ij ), we need to show that

xi ≤′i f
′q,←
ij (xj) iff f ′q,→ij (xi) ≤′j xj .

For the left-to-right direction, suppose xi ≤′i f
′q,←
ij (xj). We analyse two cases.

First, if xi ̸= si, then we have xi ≤i fq,←
ij (xj) (because f ′q,←ij = fq,←

ij ), and
then fq,→

ij (xi) ≤j xj (because (fq,→
ij , fq,←

ij ) is a quasi-Galois connection, by

hypothesis), which implies f ′q,→ij (xi) ≤′j xj (because f
q,→
ij ⊆ f ′q,→ij and ≤j ⊆ ≤′j

by construction). If xi = si, then f ′q,→ij (xi) ≤′j xj follows immediately by
definition of ≤′j (because xj ∈ X). The right-to-left direction is analogous.

As for the treatment of ⟨←⟩-projectable conditionals, it is similar to the
previous case. However, it is worth noticing that when we arrive to the case

that is analogous to Case 2.2 above (i.e., fq,→
ij ∈ F1, with ⟨

i j←⟩A ∈ ΦΣ(sj)

and si = f ′q,←ij (sj)) we have to consider the set Y = {s ∈ Dom(fq,→
ij ) |

fq,→
ij (s) ∈ sj ↓} instead of X. Moreover, ≤′i is the transitive closure of the
relation ≤i ∪{(si, si)} ∪ {(s, si) | s ∈ Y }. 2
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