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Abstract

In this paper we show that the intuitionistic monotone modal logic iM has the uniform
Lyndon interpolation property (ULIP). The logic iM is a non-normal modal logic on
an intuitionistic basis, and the property ULIP is a strengthening of interpolation in
which the interpolant depends only on the premise or the conclusion of an implication,
respecting the polarities of the propositional variables. Our method to prove ULIP
yields explicit uniform interpolants and makes use of a terminating sequent calculus
for iM that we have developed for this purpose. As far as we know, the results that
iM has ULIP and a terminating sequent calculus are the first of their kind for an
intuitionistic non-normal modal logic. However, rather than proving these particular
results, our aim is to show the flexibility of the constructive proof-theoretic method
that we use for proving ULIP. It has been developed over the last few years and
has been applied to substructural, intermediate, classical (non-)normal modal and
intuitionistic normal modal logics. In light of these results, intuitionistic non-normal
modal logics seem a natural next class to try to apply the method to, and we take
the first step in that direction in this paper.

Keywords: intuitionistic monotone modal logic, uniform interpolation, uniform
Lyndon interpolation.

1 Introduction

Over the last years a method to prove uniform (Lyndon) interpolation has been
developed by the authors that applies to various (intuitionistic) modal and
intermediate logics [9,10,12,1,2,3]. Uniform interpolation is a strengthening
of interpolation in which the interpolant depends only on the premise or the
conclusion of an implication. It is Lyndon whenever the interpolant in addition

1 Support by the Netherlands Organisation for Scientific Research under grant 639.073.807
and by the FWF project P 33548 is gratefully acknowledged.
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respects the polarities of the propositional variables involved. Our method to
prove the property is based on sequent calculi for the given logics. Until now,
it has been applied to classical modal logics, normal as well as non-normal,
but in the intuitionistic setting only to intermediate logics and to intuitionistic
modal logics that are normal.

In this paper, we try to show the general applicability of the method by
applying it to a well-known intuitionistic non-normal modal logic namely the
intuitionistic monotone modal logic iM, which is axiomatized over intuitionistic
propositional logic IPC by the following axiom and rule [5]:

2(φ ∧ ψ) → 2φ ∧2ψ
φ→ ψ ψ → φ

E
2φ→ 2ψ

The axiom is one direction of the principle 2(φ∧ψ) ↔ 2φ∧2ψ that holds in
every normal modal logic. We show that iM has uniform Lyndon interpolation,
which, to our knowledge, is the first result of this kind, meaning the first result
stating that an intuitionistic non-normal modal logic has uniform (Lyndon)
interpolation. Our method is effective in that it provides explicit (existential
and universal) interpolants and it makes use of a terminating sequent calculus
for the logic. The calculus is an extension of the calculus G4ip, which has been
introduced by Dyckhoff as a variant of G3ip in which proof search terminates
(without extra conditions on the search) [6]. The terminating calculus that we
develop here seems to be the first terminating calculus for the logic iM. Our
method to prove uniform interpolation is inspired by the first syntactic proof of
uniform interpolation, given by Pitts for intuitionistic propositional logic [18].

As can be seen from [5], the semantics for intuitionistic non-normal modal
logic that combines the semantics of intuitionistic logic and classical non-normal
modal logic is not simple. In this light it is somewhat surprising that the proof-
theoretic method developed in this paper is essentially not more complicated
than the one for its normal counterpart, that, we have to admit, is already
quite complicated in itself.

In the literature there are many syntactic proofs of Craig interpolation,
most of them connected in some way or another to the well-known syntactic
Maehara method [16]. Proofs of uniform interpolation are less common, and
syntactic proofs of uniform interpolation even more so. Most of the existing
proofs are inspired by Pitts’ syntactic proof of uniform interpolation for IPC
[18] mentioned earlier. Some proof systems seem to lend themselves better for
syntactic proofs of (uniform) interpolation than others. Especially for nested
sequents there are several syntactic results. There are nested sequent systems
for certain tense logics and bi-intuitionistic logic that allow for a syntactic
proof of Craig interpolation [15]. A similar statement holds for various modal
and intermediate logics, although in this case the method is no longer purely
syntactical but also contains semantic elements [7,13].

Uniform interpolation has applications in computer science, in particular in
description logics [14], but our interest in the property stems from a project in
universal proof theory where we aim to develop methods to prove that certain
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(classes of) logics cannot have certain well-behaved proof systems, in our case
sequent calculi [3,10]. Here we make use of the fact that uniform interpolation
seems to be a rare property among logics. For example, only seven intermediate
logics have this property [8,17]. In fact, in this case also only seven intermediate
logics have Craig interpolation, but in modal logics these two properties in
general do not coincide. And while in this class the property is equivalent to
interpolation, this is certainly not the case for modal logics. The logics K4
and S4 are examples of logics that have Craig interpolation but not uniform
interpolation [4,8]. The result in this paper is meant as a first step to also
consider the class of intuitionistic non-normal modal logics in the project. The
reason that we only treat one logic in that class and only prove that it has
uniform Lyndon interpolation without taking the further generalization steps
needed for the project, is more for reasons of space than anything else. We
hope to take these further steps and cover more intuitionistic non-normal modal
logics in the future.

This paper is built up as follows. Section 2 contains the preliminaries, in
which the interpolation properties, the intuitionistic non-normal modal logic
iM, and the sequent calculi G3iMw and G4w are defined. In Section 3, the
terminating calculus G4iM is introduced and is shown to be equivalent to
G3iMw, which implies that it is a terminating calculus for iM. In Section 4,
it is proved that iM has uniform Lyndon interpolation property.

2 Preliminaries

The language we use is L = {∧,∨,→,2,⊥}, and ⊤ is an abbreviation for
⊥ → ⊥, as usual. We use small Roman letters p, q, . . . for atomic formulas, small
Greek letters φ,ψ, . . . to denote formulas, and capital Greek letters Σ,∆, . . . and
also φ̄, ψ̄, . . . to denote finite multisets of formulas. The weight of a formula is
defined as follows, which is a combination of the definitions given in [4] and [6]:
w(p) = w(⊥) = w(⊤) = 1, for any atomic formula p, w(φ⊙ψ) = w(φ)+w(ψ)+
1, for ⊙ ∈ {∨,→}, w(φ ∧ ψ) = w(φ) + w(ψ) + 2, and w(2φ) = w(φ) + 1. This
weight function induces an ordering on the multisets: Γ ≺ ∆ if Γ is obtained
from ∆ by replacing one or more formulas of ∆ by zero or more formulas, each
of which is of a strictly lower weight. Note that this order is well-founded.

Definition 2.1 The sets of positive and negative variables of a formula φ ∈ L,
denoted by V +(φ) and V −(φ), respectively, are defined recursively by:

• V +(p) = {p},V −(p) = V +(⊤) = V −(⊤) = V +(⊥) = V −(⊥) = ∅ for atom p,

• V +(φ⊙ψ) = V +(φ)∪V +(ψ), V −(φ⊙ψ) = V −(φ)∪V −(ψ), for ⊙ ∈ {∧,∨},
• V +(φ→ ψ) = V −(φ) ∪ V +(ψ) and V −(φ→ ψ) = V +(φ) ∪ V −(ψ),

• V +(2φ) = V +(φ) and V −(2φ) = V −(φ).

Define V (φ) as V +(φ) ∪ V −(φ) and set V +(Γ) =
⋃
γ∈Γ V

+(γ) and V −(Γ) =⋃
γ∈Γ V

−(γ), for a multiset Γ. For an atomic formula p, a formula φ is called

p+-free (p−-free), if p /∈ V +(φ) (p /∈ V −(φ)). It is called p-free if p /∈ V (φ).
Note that a formula is p-free iff p does not occur anywhere in the formula.
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We will need the following notations: if we want to refer to both V +(φ) and
V −(φ), we use V †(φ), with the condition “for any † ∈ {+,−}”. When we want
to refer to both V +(φ) and V −(φ) but also to their duals, we use the notation
V ◦(φ) for the one we intend and V ⋄(φ) 2 for its dual, respectively. Therefore,
by the sentence ‘if p ∈ V ◦(φ), then p /∈ V ⋄(φ), for any ◦, ⋄ ∈ {+,−}’, we mean
‘if p ∈ V +(φ), then p /∈ V −(φ) and if p ∈ V −(φ), then p /∈ V +(φ)’.

Definition 2.2 A logic L is a set of formulas of L extending the set of in-
tuitionistic tautologies, IPC, and closed under substitution and modus ponens
φ,φ→ ψ ⊢ ψ.
Definition 2.3 A logic L has the Lyndon interpolation property (LIP) if for
any formulas φ,ψ ∈ L such that L ⊢ φ→ ψ, there is a formula θ ∈ L such that
V †(θ) ⊆ V †(φ) ∩ V †(ψ), for any † ∈ {+,−} and L ⊢ φ→ θ and L ⊢ θ → ψ. A
logic has Craig interpolation (CIP) if it has the above properties, omitting all
the superscripts † ∈ {+,−}.
Definition 2.4 A logic L has the uniform Lyndon interpolation property
(ULIP) if for any formula φ ∈ L, atom p, and ◦ ∈ {+,−}, there are p◦-free
formulas, ∃◦pφ and ∀◦pφ, such that V †(∃◦pφ) ⊆ V †(φ) and V †(∀◦pφ) ⊆ V †(φ),
for any † ∈ {+,−} and

(i) L ⊢ φ→ ∃◦pφ, and
(ii) for any p◦-free formula ψ if L ⊢ φ→ ψ then L ⊢ ∃◦pφ→ ψ,

(iii) L ⊢ ∀◦pφ→ φ,

(iv) for any p◦-free formula ψ if L ⊢ ψ → φ then L ⊢ ψ → ∀◦pφ,
A logic has uniform interpolation property (UIP) if it has all the above proper-
ties, omitting the superscripts ◦, † ∈ {+,−}, everywhere. Note that although
the interpolants are indicated by expressions that contain symbols that do not
belong to L, they do stand for formulas in the language L.
Theorem 2.5 If a logic L has ULIP, then it has both LIP and UIP.

Proof. For UIP, define ∀pφ = ∀+p∀−pφ and ∃pφ = ∃+p∃−pφ. We will show
that ∀pφ acts as the uniform interpolant for φ. The case for ∃pφ is similar. By
definition, V †(∀+p∀−pφ) ⊆ V †(∀−pφ) ⊆ V †(φ), for any † ∈ {+,−}. Therefore,
V (∀pφ) ⊆ V (φ). Moreover, ∀+p∀−pφ is p+-free, by definition. Suppose p ∈
V −(∀+p∀−pφ). Then, p ∈ V −(∀−pφ), which is a contradiction, as ∀−pφ is
p−-free. Hence, ∀pφ is p-free.

Condition (iii) is easy, as we have L ⊢ ∀+p∀−pφ→ ∀−pφ and L ⊢ ∀−pφ→
φ, by Definition 2.4. Therefore, L ⊢ ∀pφ → φ. For condition (iv), let ψ
be a p-free formula such that L ⊢ ψ → φ. Then, as ψ is p−-free, we have
L ⊢ ψ → ∀−pφ and as ψ is p+-free, we get L ⊢ ψ → ∀+p∀−pφ.

For LIP, assume L ⊢ φ → ψ. Define θ = ∃+P+∃−P−φ, where P † =
V †(φ)− [V †(φ) ∩ V †(ψ)], for any † ∈ {+,−} and by ∃†{p1, . . . , pn}† we mean

∃p†1 . . . ∃p†n. Since θ is p†-free for any p ∈ P † and any † ∈ {+,−}, we have

2 The superscript ⋄ has nothing to do with the usual modality 3.
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Γ, p⇒ p Ax Γ,⊥ ⇒ φ L⊥
Γ, φ, ψ ⇒ θ

L∧
Γ, φ ∧ ψ ⇒ θ

Γ ⇒ φ Γ ⇒ ψ
R∧

Γ ⇒ φ ∧ ψ
Γ, φ⇒ θ Γ, ψ ⇒ θ

L∨
Γ, φ ∨ ψ ⇒ θ

Γ ⇒ φi
R∨ (i = 0, 1)

Γ ⇒ φ0 ∨ φ1

Γ, φ→ ψ ⇒ φ Γ, ψ ⇒ θ
L→

Γ, φ→ ψ ⇒ θ

Γ, φ⇒ ψ
R→

Γ ⇒ φ→ ψ
φ⇒ ψ

Mseq
2

Γ,2φ⇒ 2ψ

Fig. 1. The sequent calculus G3iMw. In Ax, p must be an atom.

V †(θ) ⊆ V †(φ)−P † ⊆ V †(φ)∩ V †(ψ). For the other condition, it is clear that
L ⊢ φ→ θ and as ψ is p†-free, for any p ∈ P †, we have L ⊢ θ → ψ. 2

2.1 Sequent calculi

A sequent S is any expression of the form Γ ⇒ ∆, where Γ and ∆ are two
multisets of formulas called the antecedent and the succedent of the sequent,
denoted by Sa and Ss, respectively. A sequent is called single-conclusion if its
succedent has at most one formula. The multiplication of the sequents S and
T is defined by S · T = (Sa ∪ T a) ⇒ (Ss ∪ T s). The set of positive variables
(V +) and the set of negative variables (V −) of a sequent S are defined by
V ◦(S) = V ⋄(Sa) ∪ V ◦(Ss), for any ◦ ∈ {+,−} and V (S) = V (Sa) ∪ V (Ss).
In case it is clear from the notation which set we mean we omit the words
“positive” and “negative”. The ordering ≺ can be extended to sequents by
S ≺ T := Sa ∪ Ss ≺ T a ∪ T s. If S ≺ T , we say that S is lower than T .
Sequents and multisets can also be compared with each other in an expected
way. For instance, Σ ≺ S means Σ ≺ (Sa ∪ Ss). A rule is an expression of the

form
S1 . . . Sn

S
where S1, . . . , Sn, and S are sequents called the premises

and the conclusion of the rule, respectively. If a sequent S is the conclusion
of an instance of a rule, we say that the rule is backward applicable to S. A
sequent calculus is a set of rules. In this paper, we consider single-conclusion
sequent calculi, where only single-conclusion sequents are allowed.
Let us introduce three sequent calculi that we need throughout the paper. The
first is the sequent calculus G3iMw 3 presented in Figure 1. The system was
introduced in [5] under the name G.2− IM. The logic of G3iMw, i.e., the
set of all formulas such that (⇒ φ) is derivable in G3iMw, is called iM, the
intuitionistic monotone modal logic. The second system is G4ip, a sequent
calculus for IPC presented in Figure 2 and introduced in [6]. If we add the
following weakening rules to G4ip, we get the third system G4w:

Γ ⇒ ∆
Lw

Γ, φ⇒ ∆
Γ ⇒

Rw
Γ ⇒ φ

3 The use of superscript w becomes clear in the next section.
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Γ, p⇒ p Ax Γ,⊥ ⇒ φ L⊥
Γ, φ, ψ ⇒ ∆

L∧
Γ, φ ∧ ψ ⇒ ∆

Γ ⇒ φ Γ ⇒ ψ
R∧

Γ ⇒ φ ∧ ψ
Γ, φ⇒ ∆ Γ, ψ ⇒ ∆

L∨
Γ, φ ∨ ψ ⇒ ∆

Γ ⇒ φi
R ∨i (i = 0, 1)

Γ ⇒ φ0 ∨ φ1

Γ, p, ψ ⇒ ∆
Lp→

Γ, p, p→ ψ ⇒ ∆

Γ, φ1 → (φ2 → ψ) ⇒ ∆
L∧→

Γ, (φ1 ∧ φ2) → ψ ⇒ ∆

Γ, φ1 → ψ,φ2 → ψ ⇒ ∆
L∨→

Γ, φ1 ∨ φ2 → ψ ⇒ ∆

Γ, φ⇒ ψ
R→

Γ ⇒ φ→ ψ

Γ, φ2 → ψ ⇒ φ1 → φ2 Γ, ψ ⇒ ∆
L→→

Γ, (φ1 → φ2) → ψ ⇒ ∆

Fig. 2. The sequent calculus G4ip from [6]. In Ax and (Lp→), p is an atom.

The weakening rules are admissible in G4ip and hence there is no need to
include them explicitly. However, as we will work with an extension of the
system G4ip, we will need the explicit weakening rules later.

As the final part of this section, let us mention some of the properties of
the rules in G4w that we will need later. First, note that in any of the rules
of G4w, Γ and ∆ are free for any multiset substitution. We call this property
the free-context property. For later reference, we call any premise of a rule with
∆ in its succedent contextual and the other premises non-contextual. Second,
if we denote the set of rules in G4w minus the rule (Lp→) by G4w−, then all
the rules of G4w−, have one of the following general forms:

{Γ, φ̄i ⇒ δ̄i}i∈I {Γ, ψ̄j ⇒ ∆}j∈J
Γ, φ⇒ ∆

{Γ, φ̄i ⇒ δ̄i}i∈I
Γ ⇒ φ

where I and J are some finite (possibly empty) sets, Γ and ∆ are free for
any multiset substitution and φ̄i’s, ψ̄i’s and δ̄i’s are (possibly empty) multisets
of formulas, where δ̄i’s are either empty or a singleton. The formula φ is
called the main formula and the formulas in φ̄i, ψ̄j , and δ̄i are called the active
formulas of the rule. If the main formula is in the antecedent (succedent),
the rule is called a left (right) rule. Third, notice that each rule in G4w−

enjoys the local variable preserving property, i.e., given ◦ ∈ {+,−}, for the left
rule, we have

⋃
i

⋃
θ∈φ̄i

V ◦(θ)∪
⋃
j

⋃
θ∈ψ̄j

V ◦(θ)∪
⋃
i

⋃
θ∈δ̄i V

⋄(θ) ⊆ V ◦(φ), and

for the right one,
⋃
i

⋃
θ∈φ̄i

V ⋄(θ) ∪
⋃
i

⋃
θ∈δ̄i V

◦(θ) ⊆ V ◦(φ). This property

ensures the crucial condition
⋃n
i=1 V

◦(Si) ⊆ V ◦(S), for any instance of the rule
S1 · · · Sn

S
in G4w− and any ◦ ∈ {+,−}. We call this weaker property

the variable preserving property. Note that the rule (Lp→) also enjoys this
property. Finally, notice that in any rule in G4w, each of the premises is lower
than the conclusion in the order ≺.
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3 A Terminating sequent calculus

In this section, we provide a terminating single-conclusion sequent calculus for
iM. Define the system G4iM as G4w extended by the following rules:

φ⇒ ψ
M

2φ⇒ 2ψ

φ⇒ ψ Γ,2φ, θ ⇒ ∆
LM→

Γ,2φ,2ψ → θ ⇒ ∆

Note that each premise of any rule in G4iM is lower than the conclusion.
Consequently, G4iM is terminating, i.e., any proof search terminates.

The remainder of this section is devoted to the proof that G3iMw and
G4iM are equivalent, the main part of which consists of a proof that G3iMw

and G4iMw are equivalent. This proof is an adaptation of a similar result for
G3i and G4i in [6]. We start with some preliminaries.

3.1 Strict proofs in G3iMw

Lemma 3.1 All rules in G3iMw except R∨ and L → are invertible, and
G3iMw is closed under weakening, contraction and implication inversion, i.e.
the following rule is admissible:

Γ, φ→ ψ ⇒ ∆

Γ, ψ ⇒ ∆

Proof. Closures under the structural rules and implication inversion are
proved with induction to the depth of the derivation. 2

A multiset is irreducible if it has no element that is a disjunction or a
conjunction or falsum and for no atom p does it contain both p→ ψ and p. A
sequent S is irreducible if Sa is. A proof is sensible if its last inference does not
have a principal formula on the left of the form p → ψ for some atom p and
formula ψ. 4 A proof in G3iMw is strict if in the last inference, in case it is an
instance of L→ with principal formula 2φ → ψ, the left premise is an axiom
or the conclusion of an application of the modal rule.

Lemma 3.2 Every irreducible sequent that is provable in G3iMw has a sen-
sible strict proof in G3iMw.

Proof. This is proved in the same way as the corresponding lemma (Lemma
1) in [6]. Arguing by contradiction, assume that among all provable irreducible
sequents that have no sensible strict proofs, S is such a sequent with the shortest
proof, D, where the length of a proof is the length of its leftmost branch. Thus
the last inference in the proof is an application

D1

Γ, φ→ ψ ⇒ φ
D2

Γ, ψ ⇒ ∆

Γ, φ→ ψ ⇒ ∆

of L→, where φ is an atom or a modal formula. Since Sa is irreducible, ⊥ ̸∈ Sa

and if φ is an atom, φ ̸∈ Sa. Therefore the left premise cannot be an instance

4 In [11] the requirement that the principal formula be on the left was erroneously omitted.
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of an axiom and hence is the conclusion of a rule, say R. Since the succedent
of the conclusion of R consists of an atom or a modal formula, R is a left rule
or a right modal rule. The latter case cannot occur, since the proof then would
be strict and sensible. Thus R is a left rule.

We proceed as in [6]. Sequent (Γ, φ → ψ ⇒ φ) is irreducible and has
a shorter proof than S. Thus its subproof D1 is strict and sensible. Since
the sequent is irreducible and φ is an atom or a pure modal formula, the last
inference of D1 is L→ with a principal formula φ′ → ψ′ such that φ′ is not an
atom. Let D′ be the proof of the left premise (Γ, φ → ψ ⇒ φ′). Thus the last
part of D looks as follows, where Π, φ′ → ψ′ = Γ.

D′

Π, φ→ ψ,φ′ → ψ′ ⇒ φ′
D′′

Π, φ→ ψ,ψ′ ⇒ φ

Π, φ→ ψ,φ′ → ψ′ ⇒ φ
D2

Π, ψ, φ′ → ψ′ ⇒ ∆

Π, φ→ ψ,φ′ → ψ′ ⇒ ∆

Consider the following proof of S.

D′

Π, φ→ ψ,φ′ → ψ′ ⇒ φ′

D′′

Π, φ→ ψ,ψ′ ⇒ φ
D′′′

Π, ψ, ψ′ ⇒ ∆

Π, φ→ ψ,ψ′ ⇒ ∆

Π, φ→ ψ,φ′ → ψ′ ⇒ ∆

The existence of D′′′ follows from Lemma 3.1 and the existence of D2. The
obtained proof is strict and sensible: In case φ′ is not a modal formula, this
is straightforward. In case φ′ is a modal formula, it follows from the fact that
was observed above, namely that D1 is strict and sensible. 2

Theorem 3.3 G3iMw and G4iMw are equivalent (derive exactly the same
sequents).

Proof. The proof is an adaptation of the proof of Theorem 3.4 in [11], which
again is an adaptation of Theorem 1 in [6]. Under the assumptions in the
theorem we have to show that for all sequents S: ⊢G3iMw S if and only if
⊢G4iMw S.

The proof of the direction from right to left is straightforward because
G3iMw is closed under the structural rules. For weakening and contraction
this is easy to see, and cut-elimination for G3iMw is proved in [5]. For details,
see [11]

The other direction, left to right, is proved by induction on the order ≪
with respect to which G4iMw is terminating, in a similar manner as in [11]. So
suppose G3iMw ⊢ S. Sequents lowest in the order do not contain connectives
or modal operators by definition of the weight function underlying ≪. Thus
such sequents have to be instances of axioms, and since G3iMw and G4iMw

have the same axioms, S is provable in G4iMw.
We turn to the case that S is not the lowest in the order. If Sa contains a

conjunction, say S = (Γ, φ1∧φ2 ⇒ ∆), then S′ = (Γ, φ1, φ2 ⇒ ∆) is provable in



Akbar Tabatabai, Iemhoff and Jalali 85

G3iMw by Lemma 3.1. As G4iMw contains L∧ and G4iMw is terminating,
S′ ≪ S follows. Hence S′ is provable in G4iMw by the induction hypothesis.
Thus so is (Γ, φ1 ∧φ2 ⇒ ∆). A disjunction in Sa as well as the case that both
p and p→ φ belong to Sa, can be treated in the same way.

Thus only the case that S is irreducible remains, and by Lemmas 3.1 and 3.2
we may assume its proof in G3iMw to be sensible and strict. The irreducibility
of S implies that the last inference of the proof is an application of a rule,
R, that is either a nonmodal right rule, a modal rule or L →. In the first
two cases, R belongs to both calculi and the fact that G4iMw is terminating
implies that the premise(s) of R is lower in the order ≪ than S. Thus the
induction hypothesis implies that the premise(s) is derivable in G4iMw, and
since R belongs to G4iMw, the conclusion S is derivable in G4iMw as well.

We turn to the third case. Suppose that the principal formula of the last
inference is (γ → ψ) and S = (Γ, γ → ψ ⇒ ∆). Since the proof is sensible, γ is
not atomic. We distinguish according to the main connective of γ.

If γ = ⊥, then Γ ⇒ ∆ is derivable in G3iMw because of the closure under
cut: G3iMw derives ( ⇒ ⊥ → ψ), and so the cut

⇒ ⊥ → ψ Γ,⊥ → ψ ⇒ ∆

Γ ⇒ ∆

shows that Γ ⇒ ∆ is derivable in G3iMw. Since (Γ ⇒ ∆) ≪ S, it follows
that Γ ⇒ ∆ is derivable in G4iMw by the induction hypothesis. As G4iMw

is closed under weakening, S is derivable in G4iMw too.
If γ = φ1 ∧ φ2, then the fact that S is derivable in G3iMw implies the

same for S′ = (Γ, φ1 → (φ2 → ψ) ⇒ ∆), as G3iMw is closed under cut.
The fact that G4iMw is terminating and contains L∧→ implies S′ ≪ S.
Hence S′ is derivable in G4iMw by the induction hypothesis. Thus so is
Γ, φ1 ∧ φ2 → ψ ⇒ ∆ by an application of L∧→. The case that γ = φ1 ∨ φ2 is
analogous.

If γ = φ1 → φ2, then because γ → ψ is the principal formula, both premises
S1 = (Γ, ψ ⇒ ∆) and Γ, γ → ψ ⇒ γ are derivable in G3iMw. Thus so is
Γ, γ → ψ,φ1 ⇒ φ2 by the invertibility of R→ (Lemma 3.1). It is not hard
to see that Γ, φ2 → ψ,φ1, φ1 → φ2 ⇒ ψ is derivable in G3iMw. Hence so is
Γ, φ2 → ψ,φ1 ⇒ γ → ψ. Together with Γ, γ → ψ,φ1 ⇒ φ2 and the fact that
G3iMw is closed under cut, this gives the derivability of Γ, φ2 → ψ,φ1 ⇒ φ2

in G3iMw, which implies that S2 = Γ, φ2 → ψ ⇒ γ is derivable in G3iMw.
Since S1 and S1 are the premises of L→→ with conclusion S in G4iMw,

they both are lower in the order ≪ than S. Therefore they are derivable in
G4iMw by the induction hypothesis. And thus so is S by an application of
L→→.

If γ = 2φ, then the fact that the proof is strict and S is irreducible implies
that the left premise is the conclusion of the modal rule R with premises χ⇒ φ.
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Thus the derivation looks as follows:

D0

χ⇒ φ

Γ,2φ→ ψ,2χ⇒ 2φ

D2

Γ,2χ, ψ ⇒ ∆

Γ,2φ→ ψ,2χ⇒ ∆

Observe that G4iMw contains the rule

χ⇒ φ Γ,2χ, ψ ⇒ ∆

Γ,2φ→ ψ,2χ⇒ ∆

Since G4iMw is terminating, it follows that both premises are below S in the
ordering. By the induction hypothesis they are derivable in G4iMw, say with
derivations D′

0 and D′
2. Then the following is a proof of S in G4iMw:

D′
0

χ⇒ φ

D′
2

Γ,2χ, ψ ⇒ ∆

Γ,2φ→ ψ,2χ⇒ ∆

2

Lemma 3.4 G4iMw is closed under the structural rules, including cut.

Theorem 3.5 The systems G3iMw and G4iM are equivalent.

Proof. To show that G3iMw and G4iM are equivalent, it suffices to show
that G4iMw and G4iM are equivalent. That every sequent derivable in
G4iMw is derivable inG4iM is clear. For the other direction it suffices to show
that weakening is admissible in G4iMw which already has been investigated.2

4 Uniform Lyndon interpolation

In this section, we will prove that the logic iM enjoys ULIP. To this end, we
will provide a stronger variant of ULIP for the sequent calculus G4iM and
prove that the system has that property. From now on, when we say a sequent
is derivable, we mean it is derivable in G4iM, unless specified otherwise.

Theorem 4.1 G4iM has ULIP, i.e., for any sequent S, multiset Σ, atom p,
and ◦ ∈ {+,−}, there exist formulas ∀◦pS and ∃◦pΣ such that:

(var) ∀◦pS and ∃◦pΣ are p◦-free and V †(∀◦pS) ⊆ V †(S) and V †(∃◦pΣ) ⊆
V †(Σ), for any † ∈ {+,−},
(i) Σ ⇒ ∃◦pΣ is derivable,

(ii) for any sequent C̄ ⇒ D̄ where D̄ has at most one formula and p /∈ V ◦(C̄ ⇒
D̄) if Σ, C̄ ⇒ D̄ is derivable, then (∃◦pΣ, C̄ ⇒ D̄) is also derivable.

(iii) S · (∀◦pS ⇒) is derivable,

(iv) for any multiset C̄ such that p /∈ V ◦(C̄) if S · (C̄ ⇒) is derivable, then
(C̄,∃⋄pSa ⇒ ∀◦pS) is also derivable,

∀◦pS (resp., ∃◦pΣ) is called a uniform ∀◦p-interpolant of S (resp., uniform ∃◦p-
interpolant of Σ).
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Let us first derive the main result of the paper as an immediate corollary.

Corollary 4.2 iM has ULIP. Hence, it also has UIP and LIP.

Proof. By Theorem 4.1, G4iM has ULIP. Hence, for Σ = ∅, by (i), we know
that (⇒ ∃◦p∅) is derivable. Therefore, ∃◦p∅ is provably equivalent to ⊤. Now,
set ∀◦pA = ∀◦p(⇒ A) and ∃◦pA = ∃◦p{A}. First, by (iii), we know that
∀◦p(⇒ A) ⇒ A is derivable. Hence, iM ⊢ ∀◦pA→ A. Secondly, for any p◦-free
formula B, if iM ⊢ B → A, then B ⇒ A is derivable in G4iM. Therefore,
by (iv), when C̄ = {B}, we get the derivability of B, ∃⋄p∅ ⇒ Ap(⇒ A).
Since ∃⋄p∅ is provably equivalent to ⊤, we get B ⇒ ∀◦p(⇒ A) and hence,
iM ⊢ B → ∀◦pA. Therefore, ∀◦pA satisfies the conditions in Definition 2.4.
The case for ∃◦pA is easier and will be skipped here. The second part of the
corollary is a result of Theorem 2.5. 2

Now, to prove Theorem 4.1, we need the following lemma.

Lemma 4.3 G4iM enjoys ULIP with respect to the axioms, i.e., for any
sequent S, multiset Σ, atom p, and ◦ ∈ {+,−}, there exist formulas ∀◦axpS and
∃◦axpΣ such that they satisfy conditions (var), (i), and (iii) in Theorem 4.1 and

(ii′) for any sequent C̄ ⇒ D̄ such that p /∈ V ◦(C̄ ⇒ D̄), if Σ, C̄ ⇒ D̄ is an
axiom in G4iM then (∃◦axpΣ, C̄ ⇒ D̄) is derivable,

(iv′) for any multiset C̄ such that p /∈ V ◦(C̄), if S · (C̄ ⇒) is an axiom in
G4iM then (C̄ ⇒ ∀◦axpS) is derivable.

Proof. Define ∃◦axpΣ as the conjunction of all p◦-free formulas in Σ and ∀◦axpS
as the following: if S is provable, define it as ⊤, otherwise, define ∀◦axpS as
the disjunction of all p◦-free formulas in Ss. We will show that ∃◦axpΣ and
∀◦axpS satisfy the conditions (var), (i) and (iii) of Theorem 4.1, and condition
(ii′) and (iv′). Clearly, ∃◦axpΣ and ∀◦axpS are p◦-free, V †(∃◦axpΣ) ⊆ V †(Σ) and
V †(∀◦axpS) ⊆ V †(S), for any † ∈ {+,−} and Σ ⇒ ∃◦axpΣ and S · (∀◦axpS ⇒ )
are derivable.

For (ii′), if Σ, C̄ ⇒ D̄ is an axiom, it is either of the form Γ, q ⇒ q, where
q is an atom, or Γ,⊥ ⇒ ∆. In the first case, as D̄ = {q}, the atom q is p◦-free.
If q ∈ C̄, then C̄,∃◦axpΣ ⇒ D̄ is an instance of (Ax) and hence provable. If
q ∈ Σ, then q appears as a conjunct in ∃◦axpΣ and C̄,∃◦axpΣ ⇒ D̄ is provable.
If Σ, C̄ ⇒ D̄ is of the form Γ,⊥ ⇒ ∆, then if ⊥ ∈ C̄, then C̄,∃◦axpΣ ⇒ D̄ is
an instance of (L⊥) and provable. If ⊥ ∈ Σ, then ⊥ appears as a conjunct in
∃◦axpΣ and hence C̄,∃◦axpΣ ⇒ D̄ is provable.

For (iv′), suppose a p◦-free multiset C̄ is given such that S · (C̄ ⇒) is an
axiom in G4iM. If S is provable, then as ∀◦axpS = ⊤, we have C̄ ⇒ ∀◦axpS. If S
is not provable, then there are two cases to consider. First, suppose S · (C̄ ⇒)
is of the form Γ, q ⇒ q, where q is an atom. If q /∈ C̄, then q ∈ Sa which
implies that S is provable. Therefore, q ∈ C̄. Hence q is p◦-free and appears as
a disjunct in ∀◦axpS. Therefore, as q ∈ C̄, we get C̄ ⇒ ∀◦axpS. Second, suppose
S · (C̄ ⇒) is of the form Γ,⊥ ⇒ ∆. If ⊥ ∈ Sa, then S is provable. Therefore,
⊥ /∈ Sa. Hence, ⊥ ∈ C̄ which implies C̄ ⇒ ∀◦axpS. 2
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Proof. [of Theorem 4.1] Let us fix some notations. Let Sψ denote (⇒ ψ). We
use Σq,ψ(respectively Σ2ψ,θ) to denote the multiset obtained from Σ by replac-
ing one instance of q → ψ (respectively 2ψ → θ) in Σ by ψ (respectively θ). Ac-
cordingly, for S = (Σ ⇒ ∆), define Sq,ψ = (Σq,ψ ⇒ ∆) and S2ψ,θ = (Σ2ψ,θ ⇒
∆). Define I◦at(Σ) = {(q, ψ) | q → ψ ∈ Σ and q is an atom and p◦-free} and
Im(Σ) = {(φ,ψ, θ) | 2φ,2ψ → θ ∈ Σ and G4iM ⊢ φ ⇒ ψ}. Here are some
remarks:

(R1) If q → ψ ∈ Σ (resp. 2ψ → θ ∈ Σ), then Σq,ψ ≺ Σ (resp. Σ2ψ,θ ≺ Σ)
and V †(Σq,ψ) ⊆ V †(Σ), (resp. V †(Σ2ψ,θ) ⊆ V †(Σ)), for any † ∈ {+,−}.
Similarly, if q → ψ ∈ Sa (resp. 2ψ → θ ∈ Sa), then Sq,ψ ≺ S (resp.
S2ψ,θ ≺ S) and V †(Sq,ψ) ⊆ V †(S), (resp. V †(S2ψ,θ) ⊆ V †(S)).

(R2) If 2ψ → θ ∈ Σ, then Sψ ≺ Σ and V †(Sψ) ⊆ V †(Σ), for any † ∈ {+,−}.
Similarly, if 2ψ → θ ∈ Sa, then Sψ ≺ S and V †(Sψ) ⊆ V †(S).

(R3) If (q, ψ) ∈ I◦at(Σ), then q is p◦-free.

Define the four formulas ∃+pΣ, ∃−pΣ, ∀+pS and ∀−pS simultaneously by re-
cursion on the well-founded order ≺ over the set of all multisets and sequents:
if Σ = ∅, define ∃◦pΣ as ⊤. Otherwise, define it as:∧

R∈LR
(
∧
i

(∃◦pSai → ∀⋄pSi) →
∨
j

∃◦pΣj) ∧ (∃◦axpΣ) ∧ (∃◦atpΣ) ∧ (∃◦mpΣ)

The first conjunction is over all the left rules R in G4w− and the rule (Lp→),
backward applicable to (Σ ⇒), where (Σ ⇒) is the conclusion, the Si’s are
the non-contextual premises and (Σj ⇒)’s are the contextual premises. The
second conjunct is provided by Lemma 4.3. The rest are defined as

∃◦atpΣ =
∧

(q,ψ)∈I⋄at(Σ)

q → ∃◦pΣq,ψ ,

∃◦mpΣ =
∧

2φ∈Σ

2∃◦pφ ∧
∧

2ψ→θ∈Σ

(2∀⋄pSψ → ∃◦pΣ2ψ,θ) ∧
∧

(φ,ψ,θ)∈Im(Σ)

∃◦pΣ2ψ,θ

For ∀◦pS, if S is provable define it as ⊤, otherwise, define ∀◦pS as:∨
R

(
∧
i

(∃⋄pSai → ∀◦pSi)) ∨ (∀◦axpS) ∨ (∀◦atpS) ∨ (∀◦mpS)

The first disjunction is over all rules R in G4w backward applicable to S,
where Si’s are the premises. The second disjunct is provided by Lemma 4.3.
The third is defined as

∀◦atpS =
∧

(q,ψ)∈I◦at(S
a)

q ∧ (∃⋄pSaq,ψ → ∀◦pSq,ψ),

For ∀◦mpS, if S = (⇒ 2ψ), define ∀◦mpS = 2∀◦pSψ. Otherwise, define

∀◦mpS =
∨

2ψ→θ∈Sa

(∀◦pS2ψ,θ ∧2∀◦pSψ) ∨
∨

(φ,ψ,θ)∈Im(Sa)

∀◦pS2ψ,θ

We use induction on the well-founded order ≺ to prove that ∃◦pΣ and ∀◦pS
have all the properties of Theorem 4.1. In fact, in the induction step, we assume
that for a sequent S (resp. multiset Σ), all ∃+pΣ′, ∃−pΣ′, ∀+pS′ and ∀−pS′
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exist for any sequent S′ and multiset Σ′ lower than S (resp. Σ).
To prove that the recursive definition is well-defined, note that in any rule
in G4w, if Si’s are the premises and S is the conclusion, we have Si ≺ S.
Therefore, using the remarks (R1) and (R2) above, we conclude that both
∀◦pS and ∃◦pS are well-defined.

To prove (var), using the induction hypothesis and the remark (R3), it is
clear that ∀◦pS and ∃◦pΣ are p◦-free. Moreover, as every rule in G4iM enjoys
the variable preserving property, it is enough to use the induction hypothesis,
Lemma 4.3 and the remark (R1) and (R2) to prove V †(∀◦pS) ⊆ V †(S) and
V †(∃◦pΣ) ⊆ V †(Σ), for any † ∈ {+,−}.

To prove conditions (i), (ii), (iii) and (iv), as the cases that Σ = ∅ and S is
provable are easy, from now on, we assume that Σ ̸= ∅ and S is not provable.

To prove (i), it is enough to show that the following formulas∧
R∈LR

(
∧
i

(∃◦pSai → ∀⋄pSi) →
∨
j

∃◦pΣj) (1) , ∃◦axpΣ (2) , ∃◦atpΣ (3) , ∃◦mpΣ (4)

are all derivable from Σ. For (1), assume that the left rule R of G4w− is
backward applicable to (Σ ⇒) with Si’s as the non-contextual premises and
(Σj ⇒)’s as the contextual premises. Since Si’s and Σj ’s are lower than Σ,
by the induction hypothesis, we have Si · (∀⋄pSi ⇒), (Sai ⇒ ∃◦pSai ) and
(Σj ⇒ ∃◦pΣj) for all i and j. Therefore, Si · (

∧
i(∃◦pSai → ∀⋄pSi) ⇒) and

Σj ⇒
∨
j ∃◦pΣj are derivable. By the free-context property of R, we can add∧

i(∃◦pSai → ∀⋄pSi) to the antecedents of the premises and conclusion and put∨
j ∃◦pΣj in the succedents of the contextual premises and the conclusion. The

rule will become:

{
∧
i(∃◦pSai → ∀⋄pSi), Sai ⇒ Ssi }i∈I {Σj ⇒

∨
j ∃◦pΣj}j∈J

Σ,
∧
i(∃◦pSai → ∀⋄pSi) ⇒

∨
j ∃◦pΣj

Hence, we get Σ ⇒ (
∧
i(∃◦pSai → ∀⋄pSi) →

∨
j ∃◦pΣj). The case where the

last rule is (Lp→) is similar.
For (2), we use Lemma 4.3. For (3), if q is p⋄-free and q → ψ ∈ Σ, then

we have Σ = Σ′ ∪ {q → ψ} and Σq,ψ = Σ′ ∪ {ψ}. As Σq,ψ is lower than Σ, by
the induction hypothesis Σq,ψ ⇒ ∃◦pΣq,ψ. Therefore, Σ′, ψ ⇒ ∃◦pΣq,ψ which
implies Σ′, q, q → ψ ⇒ ∃◦pΣq,ψ. Hence, we get Σ ⇒ q → ∃◦pΣq,ψ.

For (4), we have to show that each conjunct in ∃◦mpΣ is derivable from
Σ. For the first conjunct, suppose 2φ ∈ Σ, i.e., Σ = Π,2φ. As φ is lower
than Σ, by the induction hypothesis we have φ ⇒ ∃◦pφ. Therefore, by
the rule (M), we have 2φ ⇒ 2∃◦pφ. By (Lw), we get Π,2φ ⇒ 2∃◦pφ,
which is Σ ⇒ 2∃◦pφ. For the second conjunct, suppose 2ψ → θ ∈ Σ, i.e.,
Σ = Π,2ψ → θ. As Σ2ψ,θ and Sψ are lower than Σ, by the induction hypothe-
sis, we have Σ2ψ,θ ⇒ ∃◦pΣ2ψ,θ and Sψ ·(∀⋄pSψ ⇒), which are Π, θ ⇒ ∃◦pΣ2ψ,θ

and ∀⋄pSψ ⇒ ψ. By (Lw), we have Π,2∀⋄pSψ, θ ⇒ ∃◦pΣ2ψ,θ. Applying
the rule (LM →), we get Π,2∀⋄pSψ,2ψ → θ ⇒ ∃◦pΣ2ψ,θ, which implies
Σ ⇒ 2∀⋄pSψ → ∃◦pΣ2ψ,θ. For the last conjunct, as (φ,ψ, θ) ∈ Im(Σ), we
know that 2φ,2ψ → θ ∈ Σ and the sequent φ ⇒ ψ is provable. Therefore,
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Σ = Π,2φ,2ψ → θ. As Σ2ψ,θ is lower than Σ, by the induction hypothesis, we
have Σ2ψ,θ ⇒ ∃◦pΣ2ψ,θ, which is Π,2φ, θ ⇒ ∃◦pΣ2ψ,θ. Since φ ⇒ ψ is also
provable, we can apply the rule (LM→) to obtain Π,2φ,2ψ → θ ⇒ ∃◦pΣ2ψ,θ,
which is Σ ⇒ ∃◦pΣ2ψ,θ.

For (ii), we assume p /∈ V ⋄(C̄), p /∈ V ◦(D̄) and Σ, C̄ ⇒ D̄ is derivable and
we use induction on the length of its proof. If Σ, C̄ ⇒ D̄ is an axiom, we have
∃◦axpΣ, C̄ ⇒ D̄, by Lemma 4.3, and hence ∃◦pΣ, C̄ ⇒ D̄. If the last rule is a
left rule in G4w−, it is of the form:

{Γ, φ̄i ⇒ δ̄i}i∈I {Γ, ψ̄j ⇒ D̄}j∈J
Γ, φ⇒ D̄

Then, there are two cases to consider, i.e., either φ ∈ C̄ or φ ∈ Σ. If φ ∈ C̄,
set C̄ ′ = C̄ − {φ}. Since φ ∈ C̄, it is p⋄-free by the assumption, and by the
local variable preserving property φ̄i’s and ψ̄j ’s are p⋄-free and δ̄i’s are p◦-
free. By the induction hypothesis, as p /∈ V ◦(C̄ ′, φ̄i ⇒ δ̄i), p /∈ V ◦(C̄ ′, ψ̄j ⇒
D̄), and (Σ, C̄ ′, φ̄i ⇒ δ̄i) and (Σ, C̄ ′, ψ̄j ⇒ D̄) have shorter proofs, we have
(∃◦pΣ, C̄ ′, φ̄i ⇒ δ̄i) and (∃◦pΣ, C̄ ′, ψ̄j ⇒ D̄) are derivable, for each i ∈ I
and j ∈ J . By using the rule itself, we get ∃◦pΣ, C̄ ′, φ ⇒ D̄, which implies
∃◦pΣ, C̄ ⇒ D̄.

If φ ∈ Σ, set Σ′ = Σ− {φ}. Hence, the last rule is of the form:

{Σ′, C̄, φ̄i ⇒ δ̄i}i∈I {Σ′, C̄, ψ̄j ⇒ D̄}j∈J
Σ′, C̄, φ⇒ D̄

Note that neither C̄ nor D̄ contain any active formulas. By the free-context
property, if we delete C̄ and D̄ from the premises and conclusion of the last
rule, the rule remains valid and it changes to:

{Σ′, φ̄i ⇒ δ̄i}i∈I {Σ′, ψ̄j ⇒}j∈J
Σ′, φ⇒

Hence, the rule is backward applicable to (Σ ⇒). Set Si = (Σ′, φ̄i ⇒ δ̄i) and
Σj = Σ′, ψ̄j . As Si · (C̄ ⇒) and (Σj , C̄ ⇒ D̄) are provable and Si’s and Σj ’s are
lower than (Σ ⇒), by the induction hypothesis, we have (∃◦pSai , C̄ ⇒ ∀⋄pSi)
and (∃◦pΣj , C̄ ⇒ D̄). Hence C̄ ⇒

∧
i(∃◦pSai → ∀⋄pSi) and (

∨
j ∃◦pΣj , C̄ ⇒ D̄)

are derivable. Therefore, we have (
∧
i(∃◦pSai → ∀⋄pSi) →

∨
j ∃◦pΣj , C̄ ⇒ D̄).

As
∧
i(∃◦pSai → ∀⋄pSi) →

∨
j ∃◦pΣj is a conjunct in ∃◦pΣ, we have

∃◦pΣ, C̄ ⇒ D̄.

If the last rule of the proof is a right rule, then it is of the form:

{Σ, C̄, φ̄i ⇒ ψ̄i}i∈I
Σ, C̄ ⇒ φ

and D̄ = {φ}. Hence, φ is p◦-free. By the local variable preserving prop-
erty, φ̄i’s are p⋄-free and ψ̄i’s are p◦-free. By the induction hypothesis, as
(C̄, φ̄i ⇒ ψ̄i) is p◦-free and (Σ, C̄, φ̄i ⇒ ψ̄i) has a shorter proof, we have
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(∃◦pΣ, C̄, φ̄i ⇒ ψ̄i). Using the rule itself, we get ∃◦pΣ, C̄ ⇒ φ which is
∃◦pΣ, C̄ ⇒ D̄.

If the last rule is the rule (Lp→), then it is of the form

Γ, q, ψ ⇒ D̄

Γ, q, q → ψ ⇒ D̄

There are four cases to consider, depending on whether q or q → ψ are in C̄.
If q, q → ψ ∈ C̄, then set C̄ ′ = C̄ − {q, q → ψ}. As Σ, C̄ ′, q, ψ ⇒ D̄ has

a shorter proof and q and ψ are p⋄-free, then by the induction hypothesis,
∃◦pΣ, C̄ ′, q, ψ ⇒ D̄. Hence, by the rule itself, we have ∃◦pΣ, C̄ ′, q, q → ψ ⇒ D̄.

If q, q → ψ /∈ C̄, then the premise of the rule is of the form Σq,ψ, C̄ ⇒ D̄,
and by the induction hypothesis, we have ∃◦pΣq,ψ, C̄ ⇒ D̄. However, by the
free-context property, we can delete C̄ and D̄ in the premise and conclusion and

the rule remains valid and has the form
Σq,ψ ⇒
Σ ⇒

. Therefore, this rule is

backward applicable to (Σ ⇒) and as this rule has no non-contextual premise,
⊤ → ∃◦pΣq,ψ appears as a conjunct in ∃◦pΣ. Hence, ∃◦pΣ, C̄ ⇒ D̄ is derivable.

If q → ψ /∈ C̄ and q ∈ C̄, then q is p⋄-free. Set C̄ ′ = C̄ − {q}. Then, the
premise of the rule is of the form Σq,ψ, q, C̄

′ ⇒ D̄. As q → ψ ∈ Σ, we have
Σq,ψ ≺ Σ, by (R1). As (C̄ ′, q ⇒ D̄) is p◦-free, by the induction hypothesis,
C̄ ′, q,∃◦pΣq,ψ ⇒ D̄. Using the rule (Lp→), we get C̄ ′, q, q → ∃◦pΣq,ψ ⇒ D̄.
As q → ∃◦pΣq,ψ is a conjunct in ∃◦pΣ, we have ∃◦pΣ, C̄ ⇒ D̄.

If q /∈ C̄ and q → ψ ∈ C̄, then ψ is p⋄-free and q is p◦-free. Set
C̄ ′ = C̄ − {q → ψ}. Then, the premise of the rule is of the form Σ, ψ, C̄ ′ ⇒ D̄.
By the induction hypothesis, we have ∃◦pΣ, ψ, C̄ ′ ⇒ D̄. Moreover, by (Ax),
we have Σ ⇒ q. Since q is p◦-free, we have ∃◦axpΣ ⇒ q and hence, ∃◦pΣ ⇒ q.
Therefore, ∃◦pΣ, q → ψ, C̄ ′ ⇒ D̄, which is ∃◦pΣ, C̄ ⇒ D̄.

If the last rule in the proof is the modal rule (M), then it is of the form

φ⇒ ψ
M

2φ⇒ 2ψ

As Σ ̸= ∅, we have C̄ = ∅ and Σ = 2φ. Since D̄ = 2ψ, the formula ψ
is p◦-free. As (φ ⇒ ψ) is provable and φ is lower than Σ, by the induction
hypothesis, we have ∃◦pφ⇒ ψ and by (M), 2∃◦pφ⇒ 2ψ. As 2∃◦pφ appears
as a conjunct in the definition of ∃◦pΣ, we get ∃◦pΣ, C̄ ⇒ D̄.

If the last rule in the proof is the modal rule (LM→), then it is of the form

φ⇒ ψ Γ,2φ, θ ⇒ D̄
LM →

Γ,2φ,2ψ → θ ⇒ D̄

There are four cases to consider based on which formulas are in C̄.
If 2φ,2ψ → θ ∈ C̄, then φ and θ are p⋄-free and ψ is p◦-free. Set C̄ ′ = C̄−

{2φ,2ψ → θ}. The right premise of the rule is of the form Σ, C̄ ′,2φ, θ ⇒ D̄.
Hence, by the induction hypothesis ∃◦pΣ, C̄ ′,2φ, θ ⇒ D̄. By (LM →) on
the latter sequent and φ ⇒ ψ, we get ∃◦pΣ, C̄ ′,2φ,2ψ → θ ⇒ D̄ which is
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∃◦pΣ, C̄ ⇒ D̄.
If 2φ,2ψ → θ /∈ C̄, then set Σ′ = Σ − {2φ,2ψ → θ}. Hence, the

right premise of the rule is of the form Σ′,2φ, θ, C̄ ⇒ D̄, or equivalently
Σ2ψ,θ, C̄ ⇒ D̄. Therefore, by the induction hypothesis ∃◦pΣ2ψ,θ, C̄ ⇒ D̄.
However, ∃◦pΣ2ψ,θ appears as a conjunct in the definition of ∃◦pΣ, since
2φ,2ψ → θ ∈ Σ and G4iM ⊢ φ⇒ ψ. Consequently, ∃◦pΣ, C̄ ⇒ D̄.

If 2ψ → θ ∈ C̄ and 2φ /∈ C̄, then θ is p⋄-free and ψ is p◦-free. Set
C̄ ′ = C̄ − {2ψ → θ}. Then, the premise has the form Σ, C̄ ′, θ ⇒ D̄. By
the induction hypothesis, we have ∃◦pΣ, C̄ ′, θ ⇒ D̄ and by (Lw), we have
∃◦pΣ, C̄ ′,2∃◦pφ, θ ⇒ D̄. Moreover, as φ ⇒ ψ is provable, ψ is p◦-free,
and φ is lower than Σ, by the induction hypothesis, we have ∃◦pφ ⇒ ψ.
Applying (LM →) on ∃◦pφ ⇒ ψ and ∃◦pΣ, C̄ ′,2∃◦pφ, θ ⇒ D̄, we get
∃◦pΣ, C̄ ′,2∃◦pφ,2ψ → θ ⇒ D̄. Note that as 2φ ∈ Σ, by definition 2∃◦pφ
appears as a conjunct in ∃◦pΣ. Therefore, ∃◦pΣ, C̄ ⇒ D̄.

Finally, if 2φ ∈ C̄ and 2ψ → θ /∈ C̄, then φ is p⋄-free. Set C̄ ′ = C̄ −{2φ}.
Therefore, the right premise is of the form C̄ ′,2φ,Σ2ψ,θ ⇒ D̄. Since C̄ ′

and φ are p⋄-free and D̄ is p◦-free, by the induction hypothesis, we have
C̄ ′,2φ,∃◦pΣ2ψ,θ ⇒ D̄. Moreover, for the premise φ ⇒ ψ, as Sψ is lower than
Σ and φ is p⋄-free, by the induction hypothesis, we get φ,∃◦pSaψ ⇒ ∀⋄pSψ.
However, as Saψ = ∅, by definition we have ∃◦pSaψ = ⊤. Hence, φ ⇒ ∀⋄pSψ.
Applying (LM →) on φ ⇒ ∀⋄pSψ and C̄ ′,2φ,∃◦pΣ2ψ,θ ⇒ D̄ we get
C̄ ′,2φ,2∀⋄pSψ → ∃◦pΣ2ψ,θ ⇒ D̄. Therefore, as 2ψ → θ ∈ Σ, the formula
2∀⋄pSψ → ∃◦pΣ2ψ,θ is a conjunct in ∃◦pΣ, and hence ∃◦pΣ, C̄ ⇒ D̄ is
derivable.

To prove (iii), it is enough to show that the following are provable:

S · (
∧
i

(∃⋄pSai → ∀◦pSi) ⇒) (1), S · (∀◦axpS ⇒) (2),

S · (∀◦atpS ⇒) (3), S · (∀◦mpS ⇒) (4).

For (1), assume that the rule R in G4w is backward applicable to S and the
premises of R are Si’s. As Si’s are lower than S, by the induction hypothesis
Si · (∀◦pSi ⇒) and Sai ⇒ ∃⋄pSai . Therefore, Si · (∃⋄pSai → ∀◦pSi ⇒). Hence,
by weakening, we have Si · ({∃⋄pSai → ∀◦pSi}i ⇒). Since any rule in G4w has
the free-context property, we can add {∃⋄pSai → ∀◦pSi}i to the antecedents
of the premises and conclusion and by the rule itself, we have S · ({∃⋄pSai →
∀◦pSi}i ⇒) and hence we get S · (

∧
i(∃⋄pSai → ∀◦pSi) ⇒ ).

For (2), see Lemma 4.3. For (3), if (q, ψ) ∈ I◦at(S
a), then S = (Γ, q →

ψ ⇒ ∆) and Sq,ψ = (Γ, ψ ⇒ ∆). As Sq,ψ ≺ S, by the induction hypothesis
Γ, ψ, ∀◦pSq,ψ ⇒ ∆ and Γ, ψ ⇒ ∃⋄pSaq,ψ. Hence, Γ, ψ, ∃⋄pSaq,ψ → ∀◦pSq,ψ ⇒ ∆.
Therefore, Γ, q, q → ψ,∃⋄pSaq,ψ → ∀◦pSq,ψ ⇒ ∆ which implies Γ, q → ψ, q ∧
(∃⋄pSaq,ψ → ∀◦pSq,ψ) ⇒ ∆, and we get S · (q ∧ (∃⋄pSaq,ψ → ∀◦pSq,ψ) ⇒ ).

For (4), if S = (⇒ 2ψ), then by definition ∀◦mpS = 2∀◦pSψ. As Sψ ≺ S,
by the induction hypothesis Sψ · (∀◦pSψ ⇒ ) = (∀◦pSψ ⇒ ψ) is provable. By
(M) we get 2∀◦pSψ ⇒ 2ψ which is S · (∀◦mpS ⇒ ). If S is not of the form
(⇒ 2ψ), then ∀◦mpS is defined by a disjunction over two families of formulas.
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We have to show that adding any such disjunct to the antecedent of S makes
it provable.

For the first family of disjuncts, if 2ψ → θ ∈ Sa, then S is in form
(Γ,2ψ → θ ⇒ ∆). As Sψ and S2ψ,θ are lower than S, by the induction
hypothesis we have (∀◦pSψ ⇒ ψ) and (∀◦pS2ψ,θ,Γ, θ ⇒ ∆). By (Lw), we get
(2∀◦pSψ,∀◦pS2ψ,θ,Γ, θ ⇒ ∆) and by (LM →), 2∀◦pSψ,∀◦pS2ψ,θ,Γ,2ψ →
θ ⇒ ∆, which implies S · (2∀◦pSψ ∧ ∀◦pS2ψ,θ ⇒ ).

For the second family of disjuncts, if (φ,ψ, θ) ∈ Im(Sa), then S has the form
S = (Γ,2φ,2ψ → θ ⇒ ∆) andG4iM ⊢ φ⇒ ψ. Since S2ψ,θ = (Γ,2φ, θ ⇒ ∆)
is lower than S, by the induction hypothesis we have ∀◦pS2ψ,θ,Γ,2φ, θ ⇒ ∆.
Applying (LM →) on the latter sequent and φ⇒ ψ, we get S · (∀◦pS2ψ,θ ⇒).

For (iv), we use induction on the length of the proof of S ·(C̄ ⇒). If S ·(C̄ ⇒)
is an axiom, by Lemma 4.3 we have C̄ ⇒ ∀◦axpS, and hence ∃⋄pSa, C̄ ⇒ ∀◦pS.
If the last rule is a left one in G4w−, it is of the form:

{Γ, φ̄i ⇒ δ̄i}i∈I {Γ, ψ̄j ⇒ ∆}j∈J
Γ, φ⇒ ∆

There are two cases to consider, either φ ∈ C̄ or φ ∈ Sa. If φ ∈ C̄, then it is
p◦-free and by the local variable preserving property, φ̄i’s and ψ̄j ’s are p

◦-free
and δ̄i’s are p⋄-free. Set C̄ ′ = C̄ − {φ}. As the sequent S · (C̄ ′, ψ̄j ⇒) has
a shorter proof, by the induction hypothesis we have (∃⋄pSa, C̄ ′, ψ̄j ⇒ ∀◦pS).
Now, we want to use the induction hypothesis to prove (∃⋄pSa, C̄ ′, φ̄i ⇒ δ̄i).
Note that it might be the case that Ss = ∅ and hence Sa is not lower than
S. However, we already saw that for any multiset Σ, having the conditions (i),
(ii), (iii) and (iv) for all multisets and sequents below Σ proves part (ii) for Σ.
Putting Σ = Sa, as any multiset or sequent below Sa is also below S, by the
induction hypothesis we have all four conditions for them and hence we have
(ii) for Sa. Now, as (Sa, C̄ ′, φ̄i ⇒ δ̄i) is provable and p /∈ V ⋄(C̄ ′, φ̄i ⇒ δ̄i), by
(ii), we have (∃⋄pSa, C̄ ′, φ̄i ⇒ δ̄i). By the rule itself, we have

{∃⋄pSa, C̄ ′, φ̄i ⇒ δ̄i}i∈I {∃⋄pSa, C̄ ′, ψ̄j ⇒ ∀◦pS}j∈J
∃⋄pSa, C̄ ′, φ⇒ ∀◦pS

which is ∃⋄pSa, C̄ ⇒ ∀◦pS.
If φ /∈ C̄, then it does not contain any active formulas of the rule. Set Γ′ =
Sa − {φ}. The last rule is of the form:

{Γ′, C̄, φ̄i ⇒ δ̄i}i∈I {Γ′, C̄, ψ̄j ⇒ ∆}j∈J
Γ′, C̄, φ⇒ ∆

By the free-context property, we can delete C̄ from the premises and conclusion
of the rule which remains valid and changes to:

{Γ′, φ̄i ⇒ δ̄i}i∈I {Γ′, ψ̄j ⇒ ∆}j∈J
Γ′, φ⇒ ∆

Therefore, the rule is backward applicable to S = (Γ′, φ ⇒ ∆). Set Si =
(Γ′, φ̄i ⇒ δ̄i) and Tj = (Γ′, ψ̄j ⇒ ∆). As Si’s and Tj ’s are lower than S



94 Uniform Lyndon interpolation for intuitionistic monotone modal logic

and Si · (C̄ ⇒) and Tj · (C̄ ⇒) are provable, by the induction hypothesis, we
have ∃⋄pSai , C̄ ⇒ ∀◦pSi and ∃⋄pT aj , C̄ ⇒ ∀◦pTj . Hence, C̄ ⇒

∧
i(∃⋄pSai →

∀◦pSi)∧
∧
j(∃⋄pT aj → ∀◦pTj) and as

∧
i(∃⋄pSai → ∀◦pSi)∧

∧
j(∃⋄pT aj → ∀◦pTj)

appears as a disjunct in ∀◦pS, we have C̄ ⇒ ∀◦pS and hence ∃⋄pSa, C̄ ⇒ ∀◦pS.
The case where the last rule is a right one in G4w− is similar. If the last rule
is the rule (Lp→), then it has the form

Γ, q, ψ ⇒ ∆

Γ, q, q → ψ ⇒ ∆

There are four cases to consider, depending on whether q or q → ψ are in C̄.
If q, q → ψ ∈ C̄, then q and ψ are p◦-free. Set C̄ ′ = C̄ − {q, q → ψ}. As

the premise S · (C̄ ′, q, ψ ⇒) has a shorter proof, by the induction hypothesis
∃⋄pSa, C̄ ′, q, ψ ⇒ ∀◦pS and by (Lp→) we have ∃⋄pSa, C̄ ′, q, q → ψ ⇒ ∀◦pS.

If q, q → ψ /∈ C̄, then by the free-context property we can delete C̄ from
the premise and the conclusion and the rule remains valid and changes to

Γ− C̄, q, ψ ⇒ ∆

Γ− C̄, q, q → ψ ⇒ ∆

Note that the conclusion is S. Therefore, the rule is backward applicable to S.
Denote the premise by S′. By the induction hypothesis we have ∃⋄pS′a, C̄ ⇒
∀◦pS′. As ∃⋄pS′a → ∀◦pS′ appears as a disjunct in ∀◦pS, we have ∃⋄pSa, C̄ ⇒
∀◦pS.

If q → ψ /∈ C̄ and q ∈ C̄, then q → ψ ∈ Sa, q is p◦-free and the premise is
of the form Sq,ψ · (C̄ ⇒). By (R1), we know Sq,ψ ≺ S. Hence, by the induction
hypothesis ∃⋄pSaq,ψ, C̄ ⇒ ∀◦pSq,ψ. Hence, as q ∈ C̄, we get C̄ ⇒ q∧(∃⋄pSaq,ψ →
∀◦pSq,ψ). As q → ψ ∈ Sa and q is p◦-free, we have (q, ψ) ∈ I◦at(S

a). Hence,
q ∧ (∃⋄pSaq,ψ → ∀◦pSq,ψ) is a disjunct in ∀◦pS, and we have ∃⋄pSa, C̄ ⇒ ∀◦pS.

If q /∈ C̄ and q → ψ ∈ C̄, then q ∈ Sa, q is p⋄-free and ψ is p◦-free. Set
C̄ ′ = C̄ − {q → ψ}. As the premise is of the form S · (C̄ ′, ψ ⇒ ) and it has a
shorter proof, by the induction hypothesis we have ∃⋄pSa, C̄ ′, ψ ⇒ ∀◦pS. As
Sa ⇒ q is an instance of (Ax) and q is p⋄-free, we reach ∃⋄axpSa ⇒ q. Therefore,
as ∃⋄axpSa is a conjunct in ∃⋄pSa, we have ∃⋄pSa, q → ψ, C̄ ′ ⇒ ∀◦pS.

If the last rule in the proof is the modal rule (M), then it is of the form

φ⇒ ψ
M

2φ⇒ 2ψ

If C̄ = ∅, then S = (2φ ⇒ 2ψ) is provable which contradicts with the
assumption that S is not provable. Hence, C̄ = 2φ. Therefore, φ is p◦-free
and S = (⇒ 2ψ). By definition ∀◦mpS = 2∀◦pSψ. Since φ is p◦-free and
φ ⇒ ψ is provable, by the induction hypothesis ∃⋄pSaψ, φ ⇒ ∀◦pSψ. However,
since Saψ = ∅, we have ∃⋄pSaψ = ⊤. Therefore, φ ⇒ ∀◦pSψ, and by (M) and

then (Lw), we get ∃⋄pSa, C̄ ⇒ ∀◦mpS. As ∀◦mpS is one of the disjuncts in the
definition of ∀◦pS, we get ∃⋄pSa, C̄ ⇒ ∀◦pS.

If the last rule in the proof is the modal rule (LM→), then it is of the form

φ⇒ ψ Γ,2φ, θ ⇒ ∆
LM→

Γ,2φ,2ψ → θ ⇒ ∆



Akbar Tabatabai, Iemhoff and Jalali 95

There are four cases to consider based on which formulas are in C̄.
If 2φ,2ψ → θ ∈ C̄, then φ and θ are p◦-free. Set C̄ ′ = C̄ −{2φ,2ψ → θ}.

The right premise is of the form S · (C̄ ′,2φ, θ ⇒ ). Therefore, by the induction
hypothesis ∃⋄pSa, C̄ ′,2φ, θ ⇒ ∀◦pS. Applying (LM→) on the latter sequent
and φ⇒ ψ, we get (∃⋄pSa, C̄ ′,2φ,2ψ → θ ⇒ ∀◦pS) = (∃⋄pSa, C̄ ⇒ ∀◦pS).

Note that in the other three cases below, we have Sa ̸= ∅. Hence, S is not
of the form (⇒ 2ψ) and hence ∀◦mpS is in the form of the big disjunction.

Suppose 2φ,2ψ → θ /∈ C̄. As the right premise is of the form S2ψ,θ ·(C̄ ⇒)
and by remark (R1), we have S2ψ,θ ≺ S, by the induction hypothesis we have
∃⋄pSa2ψ,θ, C̄ ⇒ ∀◦pS2ψ,θ. Since both 2φ and 2ψ → θ are in Sa and φ ⇒ ψ is
provable, we get (φ,ψ, θ) ∈ Im(Sa), which implies that ∃⋄pSa2ψ,θ is a conjunct

in ∃⋄pSa and ∀◦pS2ψ,θ a disjunct in ∀◦pS. Therefore, we get ∃⋄pSa, C̄ ⇒ ∀◦pS.
If 2ψ → θ ∈ C̄ and 2φ /∈ C̄, then ψ is p⋄-free and θ is p◦-free. Set

C̄ ′ = C̄ − {2ψ → θ}. Since φ ⇒ ψ is provable and ψ is p⋄-free, by the
induction hypothesis condition (ii) we have ∃⋄pφ ⇒ ψ. As S · (C̄ ′, θ ⇒) is
a premise of the rule and has a shorter proof, by the induction hypothesis we
have ∃⋄pSa, C̄ ′, θ ⇒ ∀◦pS and by (Lw), 2∃⋄pφ,∃⋄pSa, C̄ ′, θ ⇒ ∀◦pS. Applying
(LM→) on the latter sequent and on ∃⋄pφ⇒ ψ we get 2∃⋄pφ,∃⋄pSa, C̄ ′,2ψ →
θ ⇒ ∀◦pS. As 2φ ∈ Sa, by definition 2∃⋄pφ appears as a conjunct in ∃⋄pSa.
Hence, ∃⋄pSa, C̄ ⇒ ∀◦pS.

If 2φ ∈ C̄ and 2ψ → θ /∈ C̄, set C̄ ′ = C̄ −{2φ}. As Sψ · (φ⇒) = (φ⇒ ψ)
is provable and φ is p◦-free, by the induction hypothesis ∃⋄pSaψ, φ ⇒ ∀◦pSψ,
or equivalently φ ⇒ ∀◦pSψ, as Saψ = ∅ and hence ∃⋄pSaψ = ⊤. Therefore, by
(M),

2φ⇒ 2∀◦pSψ (1)

On the other hand, as the right premise is S2ψ,θ · (C̄ ′,2φ ⇒) and C̄ ′ and 2φ
are p◦-free, by the induction hypothesis, condition (iv), we get

∃⋄pSa2ψ,θ, C̄ ′,2φ⇒ ∀◦pS2ψ,θ. (2)

Therefore, using (1) and (2) we get

2∀◦pSψ → ∃⋄pSa2ψ,θ, C̄ ′,2φ⇒ ∀◦pS2ψ,θ.

As 2ψ → θ ∈ Sa, the formula 2∀◦pSψ → ∃⋄pSa2ψ,θ appears as a conjunct in

the definition of ∃⋄pSa. Hence, ∃⋄pSa, C̄ ′,2φ ⇒ ∀◦pS2ψ,θ. Together with (1)
we get ∃⋄pSa, C̄ ′,2φ ⇒ ∀◦pS2ψ,θ ∧ 2∀◦pSψ, which implies ∃⋄pSa, C̄ ⇒ ∀◦pS,
as ∀◦pS2ψ,θ ∧2∀◦pSψ is a disjunct in ∀◦pS, again by 2ψ → θ ∈ Sa. 2
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