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Abstract

Provability logic is a framework to investigate the provability behavior of the mathe-
matical theories. More precisely, it studies the relationship between a mathematical
theory T and a modal logic L via the provability interpretations that read the modal-
ity as a provability predicate of T . In this paper, we will extend this relationship
from one single theory to a hierarchy of theories capturing the philosophical intuition
of the hierarchy of meta-theories one may use to talk about the theories themselves.
More precisely, using the modal language with infinitely many modalities, {2n}∞n=0,
we will first define the hierarchical counterparts of the classical modal logics K4, KD4
and GL. Then, we will show that they are sound and complete with respect to their
provability interpretations in the class of all hierarchies, the hierarchies of consistent
theories and the constant hierarchies, respectively. We will also show that none of the
extensions of the hierarchical counterpart of KD45 has a provability interpretation.

Keywords: provability logic, provability interpretation, Solovay’s completeness
theorems.

1 Introduction

Provability logic is a framework that identifies the key modal aspects of the
provability predicates of the mathematical theories. This modal approach was
roughly initiated by Gödel’s short note [11] on the interpretation of the Brouw-
erian constructions as the usual classical proofs. It then gained power when
Löb [16] identified the modal properties of a provability predicate required in
the usual proof of Gödel’s second incompleteness theorem. He also added his
own key generalization, the well-known Löb’s axiom 2(2A→ A) → 2A that is
valid under all provability interpretations interpreting 2 as a provability pred-
icate for a strong enough theory T . Finding such non-trivial modal formulas
asked for the characterization of all such formulas, the provability logic of the
theory T , where the key step was taken by Solovay in his seminal paper [20].
He invented the internalization technique embedding Kripke frames into the
formal arithmetic in order to prove that the provability logic of Peano arith-
metic is GL, the logic K4 plus the Löb’s axiom. Inspired by this seminal work,
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a series of deep investigations were initiated to study the different layers of the
provability behavior of the theories, from first-order provability logics [14] and
interpretability logics [22,14] to the provability logics of intuitionistic theories
and the bimodal and polymodal provability logics addressing more than one
provability predicates at the same time [7,10,19,15,13]. In this paper, we are
taking a similar route as in the latter to employ a polymodal language to re-
flect the provability behavior of a hierarchy of theories. The most well-known
provability logic in this sense is GLP, introduced by Japaridze in [15] alongside
its elaborate Solovay-style arithmetical completeness theorem (also see [8]) and
studied extensively later, from many different angles, from topological seman-
tics [6] to computational complexity [18]. However, our motivation and hence
our setting is somewhat different. To explain the motivation, let us come back
to the original Gödel’s interpretation of Brouwerian constructions.
To have a formal language for classical informal provability, in [11], Gödel
proposed the modal logic S4. The axioms are all valid under the intu-
itive interpretation of 2 as the informal provability predicate. The axiom
(K) : 2(A→ B) → (2A→ 2B) states that the provability predicate is closed
under modus ponens. The axiom (4) : 2A→ 22A states that “the provability
of a provable statement is also provable” which seems a reasonable condition to
have and finally (T ) : 2A→ A states that the proofs are all sound. However, as
Gödel observed himself, S4 is not sound with respect to the formal provability
interpretation that reads 2 as PrT , for some strong enough theory T . Because,
S4 ⊢ ¬2⊥∧2¬2⊥ and hence the formula should be valid under the provabil-
ity interpretation while its interpretation ¬PrT (⊥)∧PrT (¬PrT (⊥)) contradicts
with Gödel’s own second incompleteness theorem. Having that observation, one
may wonder if there is any formalization for the intuitive provability interpre-
tation.
To find the source of the mismatch between the formal and the informal prov-
ability interpretations, one should look into the role of the nested modalities.
Nested modalities intuitively capture the nested use of the provability predi-
cates to express the statements such as “the provability of p”, “the provability
of “the provability of p”” and so on. These different layers of provability pred-
icates naturally refer to different layers of theories, meta-theories, meta-meta-
theories and so on. But the usual provability interpretation reads all of them
as the provability predicate for a fixed theory. Philosophically speaking, there
is no reason to assume that all the layers of our meta-theories are the same.
Quite the contrary, in the actual practice of proof theory, sometimes we need
to have more powerful meta-theories to investigate the behavior of the theory
itself. For instance, in the aforementioned problematic formula ¬2⊥∧2¬2⊥,
observing that the inner box refers to a theory T while the outer box refers to
its meta-theory U , transforms the contradictory interpretation of the formula
to ¬PrT (⊥) ∧ PrU (¬PrT (⊥)) which simply states the safe and intuitive claim
that T is consistent and its consistency is provable in its meta-theory U .
Having that observation, [1] proposed using a hierarchy of theories to formal-
ize the different layers of meta-theories instead of using just one theory for
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all the levels. Following that approach and using some natural classes of the
hierarchies of the arithmetical theories, we found some natural interpretations
for some modal logics such as K4, KD4 and S4 and hence a formalization for
Brouwer-Heyting-Kolmogorov interpretation.
This framework extension suggests a reverse problem of characterizing the prov-
ability behavior of a given class of hierarchies of theories rather than providing
a provability interpretation for a given modal logic. The present paper is de-
voted to this problem. We employ the polymodal language L∞ with infinitely
many modalities {2n}∞n=0 to capture the different layers of the meta-theories’
hierarchy. However, our polymodal approach deviates from the usual poly-
modal approach by making the syntactical restrictions to avoid using the lower
boxes over themselves or the higher ones. This captures the intuition that a
theory can not refer to itself or its meta-theories. Using this restriction, the
modal logics naturally avoids GL-style principles to transparently reflect the
provability behavior of the hierarchies rather than the somewhat peculiar be-
havior of the single theories. Employing this restriction, we will introduce the
hierarchical counterparts of the logics K4, KD4, S4, KD45, S5 and GL, denoted
by K4∞, KD4∞, S4∞, KD45∞, S5∞ and GL∞, respectively. Then, we will in-
troduce the provability interpretation for some of these new logics with respect
to the hierarchies of theories. We will see that K4∞ is sound and complete
with respect to the class of all hierarchies, while KD4∞ and GL∞ capture all
consistent and constant hierarchies, respectively. We will also show that no
extension of KD45∞, including S5∞ has a provability interpretation. To prove
the completeness results, unfortunately, it seems impossible to imitate Solo-
vay’s technique directly. However, we will present a reduction method that
reduces the required completeness to Solovay’s theorem. It is also possible to
develop a similar result for S4∞ but its technique is beyond what we employ
in this paper. The logics and their connection to hierarchies were introduced
in the unpublished preprint [2], where we used the results in [1] to provide the
required completeness theorems. In this paper, we present a somewhat differ-
ent presentation of the systems and a self-contained direct completeness proofs
independent of the results in [1].

2 Preliminaries

In this section, we will recall some basic preliminary facts about the modal
logic GL, its sequent-style proof system and its provability interpretations. Let
L = {∧,∨,⊥,→,2} be the language of modal logics. We use ¬A and ⊤ as
abbreviations for A → ⊥ and ⊥ → ⊥, respectively. The only modal logic we
work with in this paper is Gödel-Löb logic GL defined as the smallest set of
formulas in L containing all classical tautologies, the axioms (K) : 2(A →
B) → (2A→ 2B), (4) : 2A→ 22A and (L) : 2(2A→ A) → 2A and closed
under the rules (MP ) : A,A→ B ⊢ B and (NC) : A ⊢ 2A.
By a sequent over L, we mean an expression in the form S = Γ ⇒ ∆, where
Γ and ∆ are multisets of formulas in L. Define GGL as the system consisting
of the rules depicted in Figure 1. GGL is equivalent to the system defined in
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Ax
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Γ, A→ B ⇒ ∆

Γ, A⇒ B,∆
R →

Γ ⇒ A→ B,∆

Γ,2Γ,2A⇒ A
GL

2Γ ⇒ 2A

Fig. 1. The sequent calculus GGL.

[12] and hence is complete for GL. Later, for some technical reasons, we will
extend the language L by a sequence of fresh atomic variables Q = {qn}∞n=0.
We will denote this language, the logic and the sequent system for it by L(Q),
GL(Q) and GGL(Q), respectively.
The second ingredient we need is the arithmetical theories and the provability
interpretation they provide for the logic GL. We only recall some important
points and for the rest refer the reader to [4]. Let LPA = {≤, s,+, ·, exp, 0}
be the usual language of Peano arithmetic augmented with the symbol exp
with the intended meaning exp(n) = 2n. The expressions ∀x ≤ t ϕ(x) and
∃x ≤ t ϕ(x) abbreviate ∀x(x ≤ t → ϕ(x)) and ∃x(x ≤ t ∧ ϕ(x)), respectively.
The occurrence of the quantifiers in these formulas are called bounded. By Σ1,
we mean the least class of formulas in LPA containing the atomic formulas and
their negations and closed under conjunction, disjunction, bounded quantifiers
and existential quantifiers. By the abuse of notation, we extend Σ1 to include
any formula logically equivalent to a formula in Σ1. The formulas in Σ1 describe
recursively enumerable sets and vice verse. By IΣ1, we mean a basic quantifier-
free theory defining the symbols of the language [4], extended by the induction
axiom ϕ(0) ∧ ∀x(ϕ(x) → ϕ(s(x))) → ∀xϕ(x), where ϕ(x) ∈ Σ1. The theory
IΣ1 enjoys Σ1-completeness, meaning that for any sentence ϕ ∈ Σ1, if N ⊨ ϕ
then IΣ1 ⊢ ϕ. A theory T is called Σ1-sound if T ⊢ ϕ implies N ⊨ ϕ, for any
sentence ϕ ∈ Σ1.
One of the interesting properties of IΣ1 is its power to formalize a basic amount
of meta-mathematics. Let ⌜ϕ⌝ be one of the natural Gödel numberings for the
formulas of LPA and set Pr(x) ∈ Σ1 as a predicate satisfying

(i) IΣ1 ⊢ ϕ iff N ⊨ Pr(⌜ϕ⌝),

(ii) IΣ1 ⊢ Pr(⌜ϕ→ ψ⌝) → (Pr(⌜ϕ⌝) → Pr(⌜ψ⌝)),
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(iii) (formalized Σ1-completeness) IΣ1 ⊢ ϕ→ Pr(⌜ϕ⌝), for any ϕ ∈ Σ1.

For such a predicate, see [4]. We fix this predicate throughout the paper as the
provability predicate for IΣ1. Now, let T be a recursively enumerable theory
over LPA extending IΣ1. By a provability predicate for T , we mean a formula
PrT (x) ∈ Σ1 such that:

(i) T ⊢ ϕ iff N ⊨ PrT (⌜ϕ⌝),

(ii) IΣ1 ⊢ PrT (⌜ϕ→ ψ⌝) → (PrT (⌜ϕ⌝) → PrT (⌜ψ⌝)),

(iii) IΣ1 ⊢ Pr(⌜ϕ⌝) → PrT (⌜ϕ⌝).

For simplicity, we usually write PrT (ϕ) for PrT (⌜ϕ⌝). In this paper, we only
work with recursively enumerable theories T extending IΣ1. Our provability
predicates also formally reflect this fact as the part (iii) demands. For the
future reference, to address (iii), if PrT is clear from the context, we say that
T is extending IΣ1, provably in IΣ1. It is easy to see that any provability
predicate PrT satisfies the following conditions:

(i) T ⊢ ϕ iff IΣ1 ⊢ PrT (ϕ),

(ii) IΣ1 ⊢ PrT (ϕ→ ψ) → (PrT (ϕ) → PrT (ψ)),

(iii) IΣ1 ⊢ PrT (ϕ) → PrT (PrT (ϕ)).

The first is a consequence of Σ1-completeness of IΣ1 and the third is a con-
sequence of formalized Σ1-completeness of IΣ1 together with the fact that
T extends IΣ1, provably in IΣ1. It is routine to see that these conditions
imply IΣ1 ⊢ PrT (PrT (ϕ) → ϕ) → PrT (ϕ), for any sentence ϕ ∈ LPA

and specifically, the formalized Gödel’s second incompleteness theorem, i.e.,
IΣ1 ⊢ PrT (¬PrT (⊥)) → PrT (⊥). Denoting ¬PrT (⊥) by ConsT , we have
IΣ1 ⊢ ConsT → ¬PrT (ConsT ) [4].

Definition 2.1 By an arithmetical substitution σ, we mean a function assign-
ing arithmetical sentences to the atomic formulas of L. Let T ⊇ IΣ1 be a
theory, PrT be a provability predicate for T and A ∈ L be a modal formula.
Then, by APrT ,σ, we mean an arithmetical sentence resulting by substituting
the atoms of A according to σ and interpreting its boxes as PrT .

In the following, we will present the uniform version of Solovay’s character-
ization of GL [20] investigated in [17,3,21,9,5]. For a clear exposition and the
generality we use here, see [4].

Theorem 2.2 (Uniform Solovay’s Theorem) If GL ⊢ A, then IΣ1 ⊢ APrT ,σ,
for any arithmetical theory T ⊇ IΣ1, any provability predicate PrT for T and
any arithmetical substitution σ. Conversely, for any Σ1-sound theory T ⊇ IΣ1,
there is a provability predicate PrT and an arithmetical substitution ∗ such that
for any modal formula A ∈ L, if T ⊢ APrT ,∗ then GL ⊢ A.

Notice the uniformity in the completeness part of the theorem that provides
one arithmetical substitution for all modal formulas. This property will play a
crucial role in our completeness results later in Section 5.
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3 Hierarchical Modal Logics

In this section, we first introduce a polymodal language to reflect the provability
predicates for a hierarchy of theories rather than just one theory. Then, we
will introduce the hierarchical counterparts of some basic modal logics.

Definition 3.1 Let L∞ = {∧,∨,⊥,→} ∪ {2n}∞n=0 be a modal language with
infinitely many modalities. The set of formulas in this language, also denoted by
L∞, is defined as the least set of expressions containing the atomic formulas and
⊥ and closed under all propositional operations and the following operation: If
A ∈ L∞ and n is strictly greater than the index of any box occurring in A, then
2nA ∈ L∞. By the rank of A ∈ L∞, denoted by r(A), we mean the greatest
index of the boxes occurring in A. If there is none, then set r(A) = −1. Finally,
for a multiset Γ of formulas in L∞, define r(Γ) as the maximum of the ranks
of its elements.

Notice the difference between the formulas in L∞ and the usual polymodal
formulas. In the former case, we impose a syntactic restriction that only allows
a box in a formula if its index is greater than all the indices of the boxes lying
in its scope. For instance, the expression 21(20p → p) is a formula in L∞
with rank one, while the expression 2121p is not a formula. From now on,
we implicitly assume that any polymodal formula used in this paper belongs
to the set L∞. For instance, whenever we consider an axiom, we only allow
the substitutions that result in a formula in L∞. As an example, in the axiom
21p→ 21p, the formula p can be substituted by 20q → r but not 22q.

Definition 3.2 Consider the following set of axioms:

(H) 2nA→ 2n+1A,

(K∞) 2n(A→ B) → (2nA→ 2nB),

(4∞) 2nA→ 2n+12nA,

(D∞) ¬2n⊥,

(T∞) 2nA→ A,

(5∞) ¬2nA→ 2n+1¬2nA,

(L∞) 2n+1(2nA→ A) → 2nA.

Let A be a set of these axioms. Define the set of L(A)-proofs as the least
set of finite sequences of formulas containing the sequences with length one of
classical tautologies over the language L∞ or instances of the axioms in A and
closed under the following two rules:

(MP ) If {Ai}mi=1 and {Bj}lj=1 are L(A)-proofs such that Am = D and Bl =

D → E, then {Ck}m+l+1
k=1 is an L(A)-proof, where Ck = Ak, for 1 ≤ k ≤ m,

Ck = Bk−m, for m+ 1 ≤ k ≤ m+ l and Cm+l+1 = E,

(NC∞) If {Ai}mi=1 is an L(A)-proof such that Am = D and r(Ai) < n, for any
1 ≤ i ≤ m, then {Bk}m+1

k=1 is an L(A)-proof, where Bk = Ak, for 1 ≤ k ≤ m
and Bm+1 = 2nD,
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By the rank of an L(A)-proof, we mean the maximum of the ranks of the for-
mulas it contains. If an L(A)-proof ends with the formula A, we call it an
L(A)-proof for A. If there exists an L(A)-proof for A, we write L(A) ⊢ A.
For any (not necessarily finite) set Γ ∪ {A} ⊆ L∞, by L(A) ⊢ Γ ⇒ A,
we mean the existence of a finite set ∆ ⊆ Γ such that L(A) ⊢

∧
∆ → A.

We denote the following L(A)’s by their usual modal terminology: K4∞ =
L(H,K∞, 4∞), KD4∞ = L(H,K∞, 4∞, D∞), GL∞ = L(H,K∞, 4∞, L∞),
KD45∞ = L(H,K∞, 4∞, D∞, 5∞), and S5∞ = L(H,K∞, 4∞, T∞, 5∞).

The only point to clarify is the deviation of (NC∞) from the usual necessi-
tation rule. To explain, assume we already provided a proof for a statement A
using formulas with maximum rank n − 1. This argument, as it refers to the
meta-theories up to the level n− 1, must live in a higher meta-theory. Hence,
it is reasonable to conclude “the provability of A” in the level n or higher, i.e.,
2mA, for m ≥ n. Note that even if 2kA ∈ L∞, for some k ≤ n− 1, we can not
use (NC∞) to conclude 2kA as the whole proof lives in the level n or higher.
In this sense, our necessitation is a global operation depending on the whole
proof. One may wonder if it is the case that any provable formula A has a
proof with rank bounded by r(A). To prove this form of analyticity, we need
to design cut-free sequent calculi for our logics which is beyond the scope of
this paper, see [2]. However, we use an indirect method to prove it for K4∞ in
Section 7.

4 Provability Models

The canonical notion of model for the introduced hierarchical modal logics must
consist of a classical model to interpret the box-free formulas and a hierarchy
of theories to interpret the boxes.

Definition 4.1 A provability model is a tuple M = (M, {Tn}∞n=0, {Prn}∞n=0),
where M is a model of IΣ1, {Tn}∞n=0 is a hierarchy of recursively enumerable
arithmetical theories, all extending IΣ1 and {Prn}∞n=0 is a sequence of prov-
ability predicates such that for any n ≥ 0, Prn is a provability predicate for
Tn and Tn ⊆ Tn+1, provably in IΣ1, i.e., IΣ1 ⊢ Prn(ϕ) → Prn+1(ϕ), for any
arithmetical sentence ϕ. We denote M , Tn and Prn, by |M|, TM

n and PrMn ,
respectively.

Remark 4.2 Here are some remarks. First, we assume that all theories extend
the basic theory IΣ1 and M ⊨ IΣ1 as we want our theories and our model to
have the power to implement and understand the basic meta-mathematical
theorems, respectively. As long as the base theory is powerful enough, the
choice of IΣ1 is immaterial. Secondly, from now on, as a theory is uniquely
determined by its provability predicate, by dropping {Tn}∞n=0, we only use the
pair M = (M, {Prn}∞n=0) to denote a provability model.

Definition 4.3 (i) The class of all provability models is denoted by PrM.

(ii) A provability model (M, {Prn}∞n=0) is called consistent, if for any n ≥ 0,
the model M thinks that Tn is consistent and Tn+1 ⊢ Cons(Tn), i.e., M ⊨
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Cons(Tn) and M ⊨ Prn+1(Cons(Tn)). The class of all consistent provability
models is denoted by Cons.

(iii) A provability model (M, {Prn}∞n=0) is constant, if for any n and m,
(M, {Prn}∞n=0) thinks that Tn = Tm, i.e., M ⊨ Prm(ϕ) ↔ Prn(ϕ) and
M ⊨ Pr0(Prm(ϕ) ↔ Prn(ϕ)), for any sentence ϕ ∈ LPA. The class of all
constant provability models is denoted by Cst.

Definition 4.4 By an arithmetical substitution, we mean a function assigning
an arithmetical sentence to any atomic formula of L∞. IfM = (M, {Prn}∞n=0) is
a provability model, A ∈ L∞ is a formula and σ is an arithmetical substitution,
then by AM,σ, we mean the arithmetical sentence resulting from substituting
the atomic formulas in A according to σ and interpreting 2n in A as Prn. If Γ
is a set of formulas, by ΓM,σ, we mean the set {AM,σ | A ∈ Γ}.

Definition 4.5 Let M be a provability model and A ∈ L∞ be a formula.
Then, A is satisfied in the model M, denoted by M ⊨ A, if |M| ⊨ AM,σ, for any
arithmetical substitution σ. Moreover, if Γ ∪ {A} is a (not necessarily finite)
set of formulas, C is a class of provability models and σ is an arithmetical
substitution, we write C ⊨ Γσ ⇒ Aσ when |M| ⊨

∧
ΓM,σ implies |M| ⊨ AM,σ,

for any M ∈ C and we write C ⊨ Γ ⇒ A if C ⊨ Γσ ⇒ Aσ, for any arithmetical
substitution σ.

Example 4.6 Define T0 = IΣ and Tn+1 = Tn + Cons(Tn), for any n ≥ 0 and
set Pr0 = Pr and Prn+1(ϕ) = Prn(ConsTn

→ ϕ). Then, the pair (N, {Prn}∞n=0)
is clearly a consistent provability model. To have an example of satisfaction of a
formula in a provability model, note that (N, {Tn}∞n=0) ⊨ 2n+1(¬2np∨¬2n¬p),
as for any arithmetical substitution σ, as Tn+1 ⊢ ¬Prn(⊥), IΣ1 ⊆ Tn+1 and
Prn is a provability predicate, we have Tn+1 ⊢ ¬Prn(pσ) ∨ ¬Prn(¬pσ) which
implies N ⊨ Prn+1(¬Prn(pσ) ∨ ¬Prn(¬pσ)).

Lemma 4.7 Let (L, C) be one of the pairs (K4∞,PrM), (KD4∞,Cons), or
(GL∞,Cst). If A has an L-proof with rank n, then |M| ⊨ AM,σ and |M| ⊨
Prm(AM,σ), for any provability model M ∈ C, any m > n and any arithmetical
substitution σ.

Proof. Fix σ and M = (M, {Prn}∞n=0) ∈ C and denote DM,σ by Dσ, for any
D ∈ L∞. Now, use a structural induction on the set of L-proofs to prove the
claim. If A is a classical tautology or an instance of the axioms (H), (K∞),
or (4∞), we first show IΣ1 ⊢ Aσ. The case for the classical tautology, (H)
and (K∞) are easy. For (4∞), we have A = 2n−1B → 2n2n−1B, for some
B. Therefore, Aσ = Prn−1(B

σ) → Prn(Prn−1(B
σ)). As Prn−1 ∈ Σ1, by the

formalized Σ1-completeness, we have IΣ1 ⊢ Prn−1(B
σ) → Pr(Prn−1(B

σ)).
Finally, as IΣ ⊆ Tn provably in IΣ1, we have IΣ1 ⊢ Prn−1(B

σ) →
Prn(Prn−1(B

σ)). Now, as IΣ1 ⊢ Aσ for a classical tautology or an instance
of the axioms (H), (K∞) or (4∞), we have M ⊨ Aσ as M ⊨ IΣ1. On the
other hand, as IΣ1 ⊆ Tm, we have Tm ⊢ Aσ. By Σ1-completeness, we reach
IΣ1 ⊢ Prm(Aσ) which implies M ⊨ Prm(Aσ), again by M ⊨ IΣ1.
For the axiom (D∞), we have A = ¬2n⊥ and M ∈ Cons. Hence, M ⊨
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¬Prn(⊥) and M ⊨ Prn+1(¬Prn(⊥)), by definition. As m ≥ n + 1 and the
hierarchy is increasing, provably in IΣ1, we have IΣ1 ⊢ Prn+1(¬Prn(⊥)) →
Prm(¬Prn(⊥)) and hence, we reach M ⊨ Prm(¬Prn(⊥)).
For the axiom (L∞), we have A = 2n(2n−1B → B) → 2n−1B, for some B
and M ∈ Cst. Let ϕ = Prn−1(B

σ) → Bσ. Then,M ⊨ Prn(ϕ) ↔ Prn−1(ϕ) and
M ⊨ Pr0(Prn(ϕ) ↔ Prn−1(ϕ)) as M is constant. Therefore, as T0 ⊆ Tm, prov-
ably in IΣ1, we have M ⊨ Prm(Prn(ϕ) ↔ Prn−1(ϕ)). Hence, M thinks that
Aσ and Prm(Aσ) are equivalent to Prn−1(Prn−1(B

σ) → Bσ) → Prn−1(B
σ)

and Prm(Prn−1(Prn−1(B
σ) → Bσ) → Prn−1(B

σ)), respectively. However,
as Prn−1 is a provability predicate, we have IΣ1 ⊢ Prn−1(Prn−1(B

σ) →
Bσ) → Prn−1(B

σ) and hence M ⊨ Prn−1(Prn−1(B
σ) → Bσ) → Prn−1(B

σ).
Moreover, we have IΣ1 ⊢ Pr(Prn−1(Prn−1(B

σ) → Bσ) → Prn−1(B
σ)), by

formalized Σ1-completeness. As IΣ1 ⊆ Tm, provably in IΣ1, we finally
reach IΣ1 ⊢ Prm(Prn−1(Prn−1(B

σ) → Bσ) → Prn−1(B
σ)) which implies

M ⊨ Prm(Prn−1(Prn−1(B
σ) → Bσ) → Prn−1(B

σ)).
For the rules, if A is the result of the modus ponens rule over the L-proofs for
B and B → A, by the induction hypothesis, we have M ⊨ Bσ, M ⊨ Prm(Bσ),
M ⊨ Bσ → Aσ, and M ⊨ Prm(Bσ → Aσ). Hence, M ⊨ Aσ and M ⊨ Prm(Aσ),
as Prm is a provability predicate. If A is a consequence of the rule (NC∞), then
A = 2nB, for some B and n is greater than the rank of all formulas in the proof
prior to B. By the induction hypothesis, we have M ⊨ Prn(B

σ). Moreover, by
the formalized Σ1-completeness, we have IΣ1 ⊢ Prn(B

σ) → Pr(Prn(B
σ)). As

IΣ1 ⊆ Tm, provably in IΣ1, we reach IΣ1 ⊢ Prn(B
σ) → Prm(Prn(B

σ)) which
proves M ⊨ Prm(Prn(B

σ)), as M ⊨ IΣ1. 2

Theorem 4.8 (Soundness Theorem)

(i) If K4∞ ⊢ Γ ⇒ A then PrM ⊨ Γ ⇒ A.

(ii) If KD4∞ ⊢ Γ ⇒ A then Cons ⊨ Γ ⇒ A.

(iii) If GL∞ ⊢ Γ ⇒ A then Cst ⊨ Γ ⇒ A.

Proof. We only prove the case of K4∞. The rest are similar. If K4∞ ⊢ Γ ⇒ A,
then, there exists a finite set ∆ ⊆ Γ such that K4∞ ⊢

∧
∆ → A. Then, by

Lemma 4.7, for any M ∈ PrM and any arithmetical substitution σ, we have
|M| ⊨

∧
∆M,σ → AM,σ. Therefore, M ⊨ Γ ⇒ A. 2

5 Completeness Results

In this section, we will provide the completeness results for the provability
interpretations we have provided before.

5.1 Logics K4∞ and KD4∞

For the completeness of K4∞ and KD4∞, our strategy is using a translation
between GL and K4∞ to reduce the completeness to uniform Solovay’s theorem.

Definition 5.1 Let Q = {qn}∞n=0 be a sequence of fresh atomic formulas
occurring nowhere in the formulas of L. Define the translation function
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t : L∞ → L(Q) as follows: ⊥t = ⊥, pt = p, for any atomic formula p,
(B ◦ C)t = Bt ◦ Ct, for any ◦ ∈ {∧,∨,→} and (2nB)t = 2(

∧n
i=0 qi → Bt).

The translation t is a syntactical way to connect the provability interpre-
tations of K4∞ to that of GL by interpreting a (suitable) hierarchy of theories
as a base theory extended by a sequence of formulas. The following lemma
provides the connection we are seeking. The proof is the main machinery of
the present paper and shall be given in a separate Section 7.

Lemma 5.2 (Reduction Lemma) If GL(Q) ⊢ At then K4∞ ⊢ A.
Theorem 5.3 (Uniform Strong Completeness) Let (L, C) be one of the pairs
(K4∞,PrM) or (KD4∞,Cons). Then, for any Σ1-sound recursively enumer-
able arithmetical theory T ⊇ IΣ1, there exist a hierarchy of theories {Tn}∞n=0,
all extending T , a hierarchy of provability predicates {Prn}∞n=0 for {Tn}∞n=0

and an arithmetical substitution τ such that Tn ⊆ Tn+1, provably in IΣ1, for
any n and for any set (not necessarily finite) Γ ∪ {A} of formulas in L∞, if
{(M, {Prn}∞n=0) ∈ C |M ⊨ T} ⊨ Γτ ⇒ Aτ , then L ⊢ Γ ⇒ A.

Proof. We first prove the claim for L = K4∞. Let PrT and ∗ be the provability
predicate and the substitution that the uniform Solovay’s theorem, Theorem
2.2, provides. Therefore, T ⊢ BPrT ,∗ iff GL(Q) ⊢ B, for any formula B ∈ L(Q).
For any n ≥ 0, set Tn = T + {q∗i }ni=0 with the provability predicate Prn(ϕ) =
PrT (

∧n
i=0 q

∗
i → ϕ). We claim that τ = ∗ together with the hierarchies {Tn}∞n=0

and {Prn}∞n=0 satisfies the properties the theorem claims. First, note that by
definition, T ⊆ Tn and Tn ⊆ Tn+1, provably in IΣ1, for any n. Then, let
M be an arbitrary model of T and fix MM = (M, {Prn}∞n=0). Recall that
the translation between K4∞ and GL(Q) interprets 2mC as 2(

∧m
i=0 qi → Ct).

Therefore, it is easy to see that DMM ,τ = (Dt)PrT ,∗, for any D ∈ L∞. Now,
if for any M ⊨ T , we have M ⊨ ΓMM ,τ ⇒ AMM ,τ , we reach M ⊨ (Γt)PrT ,∗ ⇒
(At)PrT ,∗ which implies T∪(Γt)PrT ,∗ ⊢ (At)PrT ,∗. Hence, there is a finite ∆ ⊆ Γ
such that T ⊢

∧
(∆t)PrT ,∗ → (At)PrT ,∗. Note that ∆t ∪ {At} ⊆ L(Q). Hence,

by uniform Solovay’s theorem, GL(Q) ⊢
∧

∆t → At. Finally, by using Lemma
5.2, we reach K4∞ ⊢

∧
∆ → A and hence K4∞ ⊢ Γ ⇒ A.

For L = KD4∞, let Π = {¬2n⊥,2n+1¬2n⊥}n∈N. Then, it is easy to see
that a provability model M satisfies all the elements of Π iff it is consistent.
Therefore, if {(M, {Prn}∞n=0) ∈ Cons | M ⊨ T} ⊨ Γτ ⇒ Aτ , we can conclude
{(M, {Prn}∞n=0) ∈ PrM |M ⊨ T} ⊨ Πτ ,Γτ ⇒ Aτ . Hence, by the first part we
have K4∞ ⊢ Γ∪Π ⇒ A. Since KD4∞ proves all formulas in Π, we finally reach
KD4∞ ⊢ Γ ⇒ A. 2

Corollary 5.4 (Strong Completeness)

(i) If PrM ⊨ Γ ⇒ A then K4∞ ⊢ Γ ⇒ A.

(ii) If Cons ⊨ Γ ⇒ A then KD4∞ ⊢ Γ ⇒ A.

5.2 Logic GL∞

For the logic GL∞, the canonical strategy is reducing the completeness of GL∞
directly to Solovay’s result. For that purpose, we need the forgetful translation
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f : L∞ → L that keeps the atomic formulas and the propositional connectives
intact and maps 2n to 2.

Lemma 5.5 If GL ⊢ Af then GL∞ ⊢ A.
Proof. We prove the following, where the part (iii) is our main claim. The
other two are required to prove (iii).

(i) For any A ∈ L∞ and any natural numbers m,n > r(A), GL∞ ⊢ 2mA ↔
2nA.

(ii) For any A,B ∈ L∞, if Af = Bf , then GL∞ ⊢ A↔ B.

(iii) If GL ⊢ Af then GL∞ ⊢ A.
For (i), it is enough to show that if n > r(A), we have GL∞ ⊢ 2nA↔ 2n+1A.
The direction 2nA → 2n+1A is an instance of the axiom (H). For the other
direction, by (L∞), we have GL∞ ⊢ 2n+1(2nA → A) → 2nA. Using (K∞),
it is easy to see that GL∞ ⊢ 2n+1A → 2n+1(2nA → A). which implies
GL∞ ⊢ 2n+1A→ 2nA.
For (ii), use induction on the structure of A. The atomic and propositional
cases are straightforward. For the modal case, assume A = 2mC which implies
Bf = Af = 2Cf . Hence, there must be a formula D ∈ L∞ such that B = 2nD
and Cf = Df . By induction hypothesis, GL∞ ⊢ C ↔ D. Therefore, for a large
enough k, we can use (NC∞) to prove GL∞ ⊢ 2k(C ↔ D). Hence, by (K∞),
we have GL∞ ⊢ 2kC ↔ 2kD. By (i), we have GL∞ ⊢ 2kC ↔ 2mC and
GL∞ ⊢ 2kD ↔ 2nD. Hence, GL∞ ⊢ 2mC ↔ 2nD which means GL∞ ⊢ A ↔
B.
For (iii), first consider the translation g : L → L∞ as follows: ⊥g = ⊥, pg = p,
for any atomic formula p, (B ◦ C)g = Bg ◦ Cg, for any ◦ ∈ {∧,∨,→} and
(2B)g = 2nB

g, where n = r(Bg) + 1. It is clear that (Bg)f = B. Now,
we show that if GL ⊢ B, then there exists a formula B′ ∈ L∞ such that
GL∞ ⊢ B′ and B′f = B. For that purpose, use induction on the length of
the proof of B in GL. If B is a classical tautology, set B′ = Bg. It is easy to
see that Bg is also a classical tautology. For the axiom (K), if B = 2(C →
D) → (2C → 2D), then set B′ = 2n(C

g → Dg) → (2nC
g → 2nD

g), where
n = max{r(Cg), r(Dg)} + 1. The proof for the other axioms are similar. For
the modus ponens, if GL ⊢ C and GL ⊢ C → B, by induction hypothesis,
there are formulas C ′, C ′′, and B′ such that C ′f = C, C ′′f = C, B′f = B,
GL∞ ⊢ C ′ and GL∞ ⊢ C ′′ → B′. By part (ii), we have GL∞ ⊢ C ′ ↔ C ′′.
Hence, GL∞ ⊢ B′. For necessitation, we must have B = 2C and GL ⊢ C. By
induction hypothesis, there exists C ′ such that GL∞ ⊢ C ′ and C ′f = C. Then,
for a large enough n, by (NC∞), we have GL∞ ⊢ 2nC

′.
Now, it is easy to prove (iii). If GL ⊢ Af , then, there exists a formula B′ such
that GL∞ ⊢ B′ and B′f = Af . Hence, by part (ii), we have GL∞ ⊢ A ↔ B′.
Hence, GL∞ ⊢ A. 2

Theorem 5.6 (Uniform Strong Completeness) For any Σ1-sound recursively
enumerable arithmetical theory T ⊇ IΣ1, there is a provability predicate PrT
and an arithmetical substitution τ such that for any set (not necessarily finite)
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Γ ∪ {A} of formulas in L∞, if {(M, {PrT }∞n=0) | M ⊨ T} ⊨ Γτ ⇒ Aτ , then
GL∞ ⊢ Γ ⇒ A.

Proof. First, notice that for any arithmetical substitution σ, any formula
B ∈ L∞ and any M ⊨ T , if we set MM = (M, {PrT }∞n=0), then BMM ,σ =
(Bf )PrT ,σ simply because all provability predicates are equal to PrT . Therefore,
{(M, {PrT }∞n=0) | M ⊨ T} ⊨ Γτ ⇒ Aτ implies M ⊨ (Γf )PrT ,τ ⇒ (Af )PrT ,τ ,
for any M ⊨ T . Hence, T ∪ (Γf )PrT ,τ ⊢ (Af )PrT ,τ . Therefore, there is a finite
set ∆ ⊆ Γ such that T ⊢

∧
(∆f )PrT ,τ → (Af )PrT ,τ . By Theorem 2.2, we have

GL ⊢
∧
∆f → Af . Finally, by Lemma 5.5, we have GL∞ ⊢ ∆ ⇒ A and hence

GL∞ ⊢ Γ ⇒ A. 2

Corollary 5.7 (Strong Completeness) If Cst ⊨ Γ ⇒ A then GL∞ ⊢ Γ ⇒ A.

6 The Extensions of KD45∞
The logic S5∞ is too strong to have a provability interpretation. The axioms
(T∞), (4∞), and (5∞) together imply that 2nA ↔ 2n+12nA and ¬2nA ↔
2n+1¬2nA which informally state that the provability in Tn is decidable in
Tn+1 and as Tn+1 is recursively enumerable, we reach the decidability of Tn that
is impossible. In this section, we will prove a stronger version that generalizes
the result to KD45∞.

Theorem 6.1 There is no provability model for any extension of the logic
KD45∞. Specially, S5∞ has no provability model.

Proof. Assume (M, {Prn}∞n=0) ⊨ KD45∞. Then, for any arithmetical substi-
tution σ, we have M ⊨ ¬Prn(pσ) → Prn+1(¬Prn(pσ)). Pick an arithmetical
substitution that maps p to the arithmetical sentence Prn+1(⊥). Hence,

M ⊨ ¬Prn(Prn+1(⊥)) → Prn+1(¬Prn(Prn+1(⊥))). (∗)

On the other hand, by the formalized Σ1-completeness and the fact
that IΣ1 ⊆ Tn, provably in IΣ1, we have IΣ1 ⊢ Prn+1(⊥) →
Prn(Prn+1(⊥)) and hence IΣ1 ⊢ ¬Prn(Prn+1(⊥)) → ¬Prn+1(⊥). Thus,
Tn+1 ⊢ ¬Prn(Prn+1(⊥)) → ¬Prn+1(⊥). Moreover, by Σ1-completeness,
we have IΣ1 ⊢ Prn+1(¬Prn(Prn+1(⊥)) → ¬Prn+1(⊥)). Therefore, IΣ1 ⊢
Prn+1(¬Prn(Prn+1(⊥))) → Prn+1(¬Prn+1(⊥)). And since M ⊨ IΣ1, we
have M ⊨ Prn+1(¬Prn(Prn+1(⊥))) → Prn+1(¬Prn+1(⊥)). Therefore, using
(∗), we have M ⊨ ¬Prn(Prn+1(⊥)) → Prn+1(¬Prn+1(⊥)). By the formal-
ized Gödel’s second incompleteness theorem, we have IΣ1 ⊢ ¬Prn+1(⊥) →
¬Prn+1(¬Prn+1(⊥)). Therefore, M ⊨ ¬Prn(Prn+1(⊥)) → Prn+1(⊥). How-
ever, the provability model (M, {Prn}∞n=0) is a model of (D∞). Hence,
M ⊨ ¬Prn+1(⊥). Hence, M ⊨ Prn(Prn+1(⊥)). Since Tn ⊆ Tn+2, provably
in IΣ1, we reach M ⊨ Prn+2(Prn+1(⊥)). Again, since the provability model
is a model for the logic KD4∞, it satisfies the formula 2n+2¬2n+1⊥. Hence,
M ⊨ Prn+2(¬Prn+1(⊥)). Therefore, M ⊨ Prn+2(⊥), which contradicts with
an instance of the axiom (D∞). 2
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It is worth mentioning that the main reason behind this lack of provability
models for KD45∞ is the assumption that all the theories in a provability
model are recursively enumerable. In the well-known polymodal provability
logic GLP, this condition is relaxed [13] and hence having the axiom (5∞)
does not make any problem. However, we believe that the restriction we use is
philosophically justified, as the theories for such interpretations must be human
understandable.

7 Proof of the Reduction Lemma

The main strategy to prove the reduction lemma, Lemma 5.2, is using a cut-
free proof for At in GL(Q) to construct a K4∞-proof for A. For that purpose,
we need to prove a stronger version of necessitation in K4∞. Let us start with
this task. Let n ≥ 0 be a given natural number and set the n-truncation as the
function over L∞ defined as follows: ⊥n = ⊥, pn = p, for any atomic formula
p, (B ◦ C)n = Bn ◦ Cn, for any ◦ ∈ {∧,∨,→} and (2iB)n = 2iB, for i < n
and (2iB)n = ⊤, for i ≥ n. Moreover, for any sequence of formulas {Ai}mi=1,
define ({Ai}mi=1)

n = {An
i }mi=1. Observe that for any formula A, if r(A) < n,

then An = A and r(Bn) < n, for any formula B ∈ L∞.

Lemma 7.1 If π is a K4∞-proof for A, then πn is a K4∞-proof for An. Spe-
cially, if K4∞ ⊢ A, then A has a K4∞-proof with rank r(A).

Proof. We use structural induction on the set of the K4∞-proofs. If A is a
classical tautology, as the translation commutes with the propositional con-
nectives, An would also be a classical tautology and hence there is nothing to
prove. If A is an instance of the axiom (H), then A = 2kB → 2k+1B. If
k+1 < n, then An = A and hence there is nothing to prove. If n ≤ k+1, then
An = (2kB)n → ⊤ which is a classical tautology. If A is an instance of the ax-
iom (K∞), then A = 2k(B → C) → (2kB → 2kC). If k < n, we have An = A
and hence, there is nothing to prove. If k ≥ n, we have An = ⊤ → (⊤ → ⊤)
which is a classical tautology. If A is an instance of the axiom (4∞), then
A = 2kB → 2k+12kB. The case k + 1 < n is trivial. If n ≤ k + 1, we
have An = (2kB)n → ⊤ which is again a classical tautology. For the rules,
if the last rule is modus ponens, there is nothing to prove as the n-truncation
commutes with implication. If it is the necessitation rule, then π = {Ai}m+1

i=1 ,
Am+1 = 2kB and r(Ai) < k, for any i ≤ m. Set π′ = {Ai}mi=1. If k < n,
then r(π) = k < n. Hence, π remains intact under the n-truncation and hence
there is nothing to prove. If k ≥ n, then using the induction hypothesis, π′n is
a K4∞-proof. As (2kB)n = ⊤, the sequence πn is just π′n with one classical
tautology ⊤ added to its end. Therefore, πn is clearly a K4∞-proof.
For the second part, if K4∞ ⊢ A, then there is a K4∞-proof π for A. Set
n = r(A) + 1. Then, as r(A) < n, we have An = A. By the first part, πn is a
proof for An = A and r(πn) < n = r(A) + 1. 2

Theorem 7.2 (Strong Necessitation) Let I and J be some finite sets. Then,
if K4∞ ⊢ {2ni

Ai}i∈I , {2nBj}j∈J ⇒ A, where r(A) < n and ni < n, for any
i ∈ I, then K4∞ ⊢ {2ni

Ai}i∈I ⇒ 2nA.
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Proof. Assume π is a K4∞-proof for
∧

i∈I 2niAi∧
∧

j∈J 2nBj → A. Therefore,
by Lemma 7.1, πn is a K4∞-proof for

∧
i∈I(2ni

Ai)
n ∧

∧
j∈J(2nBj)

n → An.
As r(A), ni < n, we have An = A, (2ni

Ai)
n = 2ni

Ai and (2nBj)
n = ⊤.

Hence, πn is a K4∞-proof for
∧

i∈I 2ni
Ai ∧

∧
j∈J ⊤ → A. As r(πn) < n,

by necessitation, we have K4∞ ⊢ 2n(
∧

i∈I 2niAi ∧
∧

j∈J ⊤ → A). Hence, by
using the axiom (K∞), we have K4∞ ⊢

∧
i∈I 2n2niAi ∧

∧
j∈J 2n⊤ → 2nA.

Finally, using the axioms (4∞) and (H) and the fact that K4∞ ⊢ 2n⊤, we have
K4∞ ⊢

∧
i∈I 2ni

Ai → 2nA. 2

Now, as we have proved the strong necessitation, we are ready to prove the
reduction lemma. Define the set X ⊆ L(Q) as the least set of modal formulas
containing ⊥ and all the atomic formulas (including the atoms in Q) and closed
under the propositional connectives and the following rule: If A ∈ X, then:

• 2(
∧n

i=0 qi → A) ∈ X, if n is greater than all the indices of qj ’s occurring in
A.

• 2(
∧m

i=0 qi ∧
∧n

i=m+1 ⊥ → A) ∈ X, if m is greater than or equal to all the
indices of qj ’s occurring in A and m < n.

Set X0 and X1 as the sets of all formulas in forms 2(
∧n

i=0 qi → A) and
2(

∧m
i=0 qi∧

∧n
i=m+1 ⊥ → A) inX, respectively. Note that these are the only for-

mulas in the form 2B in X. It is easy to check that X includes all sub-formulas
of formulas Dt, for any D ∈ L∞. The proof is by induction on the structure of
D. The only non-trivial case is D = 2nE. In this case, Dt = 2(

∧n
i=0 qi → Et)

in which n is greater than all indices of qj ’s occurring in E. Hence, Dt ∈ X0.
It is easy to see that all proper subformulas of Dt also belong to X.
Here are some terminology. An X-proof is a cut-free proof in the system
GGL(Q) consisting only of the formulas in X. By the rank of a formula
A ∈ X, denoted by r(A), we mean the greatest number n such that qn occurs
in the formula A. If there is none, set r(A) = −1. For any multiset Γ ⊆ X, by
r(Γ), we mean the maximum of the ranks of the elements of Γ. An X-proof is
called nice, if r(2Γ) ≤ r(2A), for any occurrence of the rule

Γ,2Γ,2A⇒ A
GL

2Γ ⇒ 2A

in the proof. Note that the equality r(2Γ) = r(2A) is also allowed.
Let n be a natural number and σn be the substitution that maps qi to ⊥,
for i > n and keeps the other atomic formulas intact. It is easy to see that
r(σn(A)) ≤ n, for any formula A ∈ X. Moreover, for a boxed formula A ∈ X,
if r(A) > n, we have r(σn(A)) = n. The latter is easy to prove by checking the
two forms of the modal formulas in X.
Denoting the result of applying σn on a sequence π by σn(π), we have:

Lemma 7.3 The sets X and X1 are closed under σn and if r(A) > n and
2A ∈ X0, then σn(2A) ∈ X1. Moreover, if π is a nice X-proof, then so is
σn(π).

Proof. For the first part, to show the closure of X under σn, use a simple
structural induction. We only explain the box case. If A ∈ X0, we have
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A = 2(
∧m

i=0 qi → B). If n ≥ m, then σn(A) = A, as there is no qi in A such
that i > n. Therefore, σn(A) ∈ X. If n < m, then σn(A) = 2(

∧n
i=0 qi ∧∧m

i=n+1 ⊥ → σn(B)). By induction hypothesis, σn(B) ∈ X. As n ≥ r(σn(B)),

we have σn(A) ∈ X1. If A ∈ X1, we have A = 2(
∧m

i=0 qi ∧
∧k

i=m+1 ⊥ → B),
where m < k. If n ≥ m, we have σn(A) = A, as there is no qi in B such
that i > n. Therefore, σn(A) ∈ X. If n < m, then σn(A) = 2(

∧n
i=0 qi ∧∧k

i=n+1 ⊥ → σn(B)). By induction hypothesis, we have σn(B) ∈ X which
implies σn(A) ∈ X1, as n ≥ r(σn(B)). Note that our argument shows that
σn(A) ∈ X1, for A ∈ X1 and if r(A) > n and 2A ∈ X0, then σn(2A) ∈ X1.
For the second part, note that if π is an X-proof then as proofs are closed
under substitutions, by the first part, we know that σn(π) is also an X-proof.
For niceness, since π is a nice X-proof, r(2Γ) ≤ r(2A), for any occurrence of
the rule (GL) in π:

Γ,2Γ,2A⇒ A
GL

2Γ ⇒ 2A

If r(2A) ≤ n, we also have r(2Γ) ≤ n and hence 2Γ and 2A have no qj
with j > n. Therefore, 2Γ, Γ, 2A and A remain intact and hence there is
nothing to prove. If r(2A) > n, then as r(σn(2A)) = n, we have to show that
r(σn(2Γ)) ≤ n which is trivial. 2

Lemma 7.4 If Γ ⇒ ∆ has an X-proof, then there exists 2Σ ⊆ X1 such that
2Σ,Γ ⇒ ∆ has a nice X-proof.

Proof. We use induction on the length of the X-proof of Γ ⇒ ∆. If the last
rule is an axiom, a structural rule or a propositional rule, then the claim is
obvious from the induction hypothesis. For the modal rule (GL), we know
that 2Γ ⇒ 2A is proved by Γ,2Γ,2A ⇒ A. By the induction hypothesis,
there exists 2Σ ⊆ X1 such that 2Σ,Γ,2Γ,2A ⇒ A has a nice X-proof.
Call it π. Note that since 2Σ ⊆ X1, we also have Σ ⊆ X. Set r(A) = n.
Divide Γ into two parts, Γ0 and Γ1 in a way that r(Γ0) ≤ n and r(γ) > n,
for any γ ∈ Γ1. Notice that σn does not change Γ0 and A, as their ranks
are bounded by n. By Lemma 7.3, we know that σn(π) is a nice X-proof for
2σn(Σ),Γ0,2Γ0, σn(Γ1),2σn(Γ1),2A⇒ A. Set Σ′ = σn(Σ)∪σn(Γ1) and note
that Σ′ ⊆ X, as X is closed under σn, by Lemma 7.3. Hence, by left weakening
to add Σ′, we have a nice X-proof for Σ′,2Σ′,Γ0,2Γ0,2A ⇒ A. Now, use
(GL) to prove 2Σ′,2Γ0 ⇒ 2A. Again, by the left weakening for 2Γ1, we have
2Σ′,2Γ0,2Γ1 ⇒ 2A. Therefore, we have provided a proof for 2Σ′,2Γ ⇒ 2A.
It is clear that this proof is an X-proof. To show that it is nice, notice that
the use of (GL) is allowed, as r(2Γ0) ≤ n, by definition, and r(2Σ′) ≤ n, as
2Σ′ = σn(2Σ ∪ 2Γ1). Finally, we must show 2Σ′ ⊆ X1. First, note that as
2Σ ⊆ X1 and X1 is closed under σn, we have σn(2Σ) ⊆ X1. On the other
hand, for any formula γ ∈ Γ1, if 2γ ∈ X1, then σn(2γ) ∈ X1 by the closure
of X1 under σn and if 2γ ∈ X0, then as r(γ) > n, we have σn(2γ) ∈ X1, by
Lemma 7.3. 2

Define the translation function s : X → L∞ as follows: ⊥s = ⊥, ps = p and
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qsi = ⊤, for any i ≥ 0, (B ◦ C)s = Bs ◦ Cs, for any ◦ ∈ {∧,∨,→} and if
A = 2(

∧n
i=0 qi → B) then As = 2nB

s and if A = 2(
∧m

i=0 qi∧
∧n

i=m+1 ⊥ → B)
then As = ⊤. Here are some basic properties of the translation s. First of all,
s is well-defined, meaning that As ∈ L∞, for any A ∈ X. To prove, we show
the stronger claim that if A ∈ X, then As ∈ L∞ and r(As) ≤ r(A). The proof
is by structural induction on X. The only non-trivial case is when A ∈ X0. If
A = 2(

∧n
i=0 qi → B), then n > r(B), by definition. By induction hypothesis,

Bs ∈ L∞ and r(Bs) ≤ r(B). Therefore, 2nB
s ∈ L∞ and r(As) = r(2nB

s) =
n = r(A). Secondly, if A = 2B ∈ X1, then B

s is provably equivalent to ⊤ in
K4∞, because B =

∧m
i=0 qi ∧

∧n
i=m+1 ⊥ → C has a ⊥ in its premises, which

means that Bs is equivalent to ⊤. Thirdly, note that s is a left inverse for the
translation t, meaning that for any A ∈ L∞, we have (At)s = A.

Lemma 7.5 If Γ ⇒ ∆ has a nice X-proof, then K4∞ ⊢
∧

Γs →
∨

∆s.

Proof. The proof is based on an induction on the length of the niceX-proof. If
the last rule is an axiom, a structural rule or a propositional rule, then the claim
follows from the induction hypothesis. The reason is that s commutes with the
propositional connectives and K4∞ proves all propositional tautologies. For
the modal rule (GL), if 2Γ ⇒ 2A is proved by 2Γ,Γ,2A ⇒ A, by induction
hypothesis, we have K4∞ ⊢ (2Γ)s,Γs, (2A)s ⇒ As. We want to show K4∞ ⊢
(2Γ)s ⇒ (2A)s. For that purpose, we must investigate the form of (2A)s and
the elements of (2Γ)s. If 2A ∈ X1, then by definition (2A)s = ⊤ and hence
there is nothing to prove. Therefore, assume 2A ∈ X0. Hence, A has the form
A =

∧m
i=0 qi → B and r(B) < r(A) = m. As r(Bs) ≤ r(B), by Lemma 7.1,

the formula As =
∧m

i=0 ⊤ → Bs is equivalent to Bs, by a K4∞-proof with rank
r(B). Therefore, by (NC∞) and (K∞) and using the fact that r(B) < m, it is
easy to see that (2A)s is equivalent to 2mB

s, provably in K4∞. On the other
hand, for any 2γ ∈ 2Γ ⊆ X, if 2γ ∈ X1, then γ

s is equivalent to ⊤, provably in
K4∞. Moreover, (2γ)s = ⊤, by definition. Therefore, we can ignore this kind of
boxed formulas in 2Γ and w.l.o.g., assume 2Γ ⊆ X0. Therefore, γ has the form
γ =

∧nγ

i=0 qi → βγ and hence r(γ) = nγ > r(βγ). Therefore, γ
s =

∧nγ

i=0 ⊤ → βs
γ

and as r(βs
γ) ≤ r(βγ), by Lemma 7.1, the formulas γs and βs

γ are equivalent
with a K4∞-proof with rank r(βγ) and hence as before, since r(βγ) < nγ , we
know that (2γ)s is equivalent to 2nγ

βs
γ , provably in K4∞. Now, the result of

the induction hypothesis, i.e., K4∞ ⊢ (2Γ)s,Γs, (2A)s ⇒ As implies K4∞ ⊢
{2nγβ

s
γ , β

s
γ}γ∈Γ,2mB

s ⇒ Bs. As the X-proof is nice, we have m = r(A) =
r(2A) ≥ nγ = r(γ) = r(2γ). Split Γ into Γ1 consisting of γ ∈ Γ such that
nγ = m and Γ2 = Γ−Γ1. Hence, K4∞ ⊢ {2mβ

s
γ}γ∈Γ1

,2mB
s, {2nγ

βs
γ}γ∈Γ2

⇒∧
γ∈Γ β

s
γ → Bs. As r(βγ) < r(γ) ≤ m and r(B) < r(A) = m, we have r(βs

γ) ≤
r(βγ) < m and r(Bs) ≤ r(B) < m. By strong necessitation, Theorem 7.2, we
reach K4∞ ⊢ {2nγβ

s
γ}γ∈Γ2 ⇒ 2m(

∧
γ∈Γ β

s
γ → Bs). By a simple application of

(K∞), we will have K4∞ ⊢ {2nγβ
s
γ}γ∈Γ2 , {2mβ

s
γ}γ∈Γ ⇒ 2mB

s. As nγ ≤ m,
for any γ ∈ Γ, by (H), K4∞ ⊢ {2nγ

βs
γ}γ∈Γ ⇒ 2mB

s which completes the
proof. 2

Proof. [of Lemma 5.2] If GL(Q) ⊢ At, there is a cut-free proof of (⇒ At) in
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GGL(Q). Therefore, every formula in the proof is a subformula of At and
hence it is in X. Hence, (⇒ At) has an X-proof. By Lemma 7.4, there is a
set 2Σ ⊆ X1 such that 2Σ ⇒ At has a nice X-proof. Then, by Lemma 7.5,
K4∞ ⊢

∧
(2Σ)s ⇒ (At)s. We know that (At)s = A. Since 2Σ ⊆ X1, we have

(2σ)s = ⊤, for any σ ∈ Σ. Therefore, K4∞ ⊢ A. 2
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[11] Gödel, K., Eine interpretation des intuitionistis-chen aussagenkalkuls, Ergebnisse eines
mathematisches Kolloquiums 4 (1933), pp. 39–40.

[12] Goré, R. and R. Ramanayake, Valentini’s cut-elimination for provability logic resolved,
Rev. Symb. Log. 5 (2012), pp. 212–238.
URL https://doi.org/10.1017/S1755020311000323

[13] Japaridze, G., The polymodal provability logic, in: Intensional logics and logical structure
of theories: material from the Fourth Soviet-Finnish Symposium on Logic, 1988, pp. 16–
48.

[14] Japaridze, G. and D. de Jongh, The logic of provability, in: Handbook of proof theory,
Stud. Logic Found. Math. 137, North-Holland, Amsterdam, 1998 pp. 475–546.
URL https://doi.org/10.1016/S0049-237X(98)80022-0

[15] Japaridze, G. K., “The modal logical means of investigation of provability,” Ph.D. thesis,
Thesis in Philosophy, in Russian, Moscow (1986).
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