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Abstract

Uniform interpolation has been the subject of many recent research papers due to
its link to Craig interpolation and its potential use in knowledge-based and agent-
based systems. In this paper, we present a saturation-based system that computes
a local uniform interpolant for a formula and a “keep” signature in the multi-modal
logic Kn. The system works by exhaustively applying a set of rules to generate a
sufficient number of local consequences, which are then filtered to remove those that
contain symbols outside the keep signature. We show that the system is guaranteed
to terminate and is sound and uniform interpolation complete. We further prove that
we can extend the system to compute uniform interpolants for formulas in multi-
modal logics of serial and reflexive frames Dn and Tn.
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1 Introduction

A formula ϕ′ is said to be a uniform Σ-interpolant of ϕ, if for any ψ over the
signature Σ, ψ is implied by ϕ′ if and only if ψ is implied by ϕ. Uniform inter-
polation is closely related to the notion of Craig interpolation. In Craig inter-
polation, two formulae ϕ and ψ such that ϕ implies ψ are given, and the task is
to compute an intermediate formula ϕ′ such that ϕ implies ϕ′ and ϕ′ implies ψ.
A logic is said to have the uniform interpolation (respectively, Craig interpola-
tion) property if, for any formula and signature (respectively, two formulas), a
uniform interpolant (respectively, Craig interpolant) can be computed.

The notion of uniform interpolation is stronger than Craig interpolation
for two reasons. The first is that any logic that has the uniform interpolation
property also has the Craig interpolation property. The second is that uniform
interpolation can be used to compute Craig interpolants. This can be achieved
by “keeping” consequences over the shared signature during interpolation.

Regarding applications, uniform interpolation and Craig interpolation have
been investigated for a range of modal logics, and the closely related description
logics, which underlie ontology languages such as OWL [2]. Ontology engineers



38 Saturation-Based Uniform Interpolation for Multi-Modal Logics

benefit from uniform interpolation in ontology debugging, versioning and sum-
marisation [17,13]. In agent-based applications, uniform interpolation is used
to update the knowledge of an agent by making them ignorant of certain propo-
sitional formulas [1]. Knowledge-sharing applications may use uniform inter-
polation to facilitate knowledge exchange among agents with different domain
specialisations [20].

Several variants of the uniform interpolation problem have been studied.
For classical logic, the problem is reduced to the second-order quantifier elim-
ination problem [7,8], which aims to eliminate given predicate symbols from
the formula. Uniform interpolation has been investigated in description logic
sometimes under the name of deductive forgetting. Uniform interpolation and
forgetting are dual notions as the former aims to compute a formula by keeping
a signature Σ, while the aim of latter is to compute a formula that eliminates the
complement of Σ. Most studies have focused on TBox forgetting [17,13,14,16]
sometimes with an ABox [15], with [19] considering on concept forgetting.

The difference between TBox forgetting and concept forgetting (or forget-
ting for a local modal Kn formula) is that a TBox is a set of axioms that are
universally quantified, whereas a concept or a modal Kn-formula is local, i.e.,
a modal Kn-formula is instantiated to a particular set of individuals/worlds.
Uniform interpolation of a TBox is thus a global interpolation problem whereas
uniform interpolation of a concept or aKn-formula is a local interpolation prob-
lem. There are also differences in the complexity of the two problems. It was
shown that TBox forgetting is triple exponential in the size of the input [17],
whereas concept forgetting is in ExpSpace [19].

We are interested in the local form of uniform interpolation for modal logics.
The modal logic K was shown to have the uniform interpolation property
via constructive proofs [9,21]. An implementable approach to constructing
uniform interpolants was given in [3] for the modal logics K and T . Wolter [22]
proved that the modal logic S5 has the uniform interpolation property, and that
uniform interpolation for any normal mono-modal logic can be generalised to
its multi-modal case. Recently, it was shown that K45n and KD45n have the
uniform interpolation property [5]. It is known that S4 and K4 do not have
the uniform interpolation property [10,3].

The aim of our research is to develop resolution-based systems for comput-
ing local uniform interpolants in modal logics that are suitable for implemen-
tation. In this paper, we present such a system for the multi-modal logics Kn,
Dn, and Tn. We prove that the system is guaranteed to terminate, is sound and
uniform interpolation complete. We established the complexity of the system,
and discuss the relationship to other works. The main contributions of this
paper are:

• The system is the first provably correct resolution-based system for com-
puting uniform interpolants in the modal logics Kn, Dn and Tn. Our work
extends and improves the work presented in [11] for modal logic K.

• The idea of our completeness proof is novel for resolution-based uniform
interpolation systems. Completeness proofs for previous systems which
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use resolution are based on proof-theoretic arguments [11,14,15,16]. Our
completeness proof is based on a model-theoretic argument in which bisim-
ulation takes a central role.

2 Getting Started

We assume the reader is familiar with the multi-modal logic Kn [4,12]. We
fix A a set of strings, and P = {p, q, r, . . . } a countable possibly infinite set
of propositional symbols. A Kn formula ϕ over a given signature is defined
inductively as follows: ϕ ::= p | ⊤ |⊥ | ¬ϕ |ϕ∨ϕ |ϕ∧ϕ |2aϕ |3aϕ where a ∈ A.

We use F = (W, R) to denote a Kripke frame where W is a nonempty
set of worlds and R a mapping from elements of A to binary relations over
W. To abbreviate notation, we use Ra instead of R(a), and we say that u is
a-accessible from w if Ra(w, u). We use M = (W, R, V ) to denote a Kripke
model where (W, R) is a Kripke frame, and V is a valuation function that
assigns each propositional symbol p in P a subset V (p) of W.

A formula ϕ is (locally) satisfiable in a model M, if there is a world w
in W at which ϕ is true. We use M, w |= ϕ to denote that ϕ is true at w
in M. A formula ϕ is (unconditionally) satisfiable if it is true at some world
in some model. A formula ϕ is globally satisfied (or true) in a model M,
denotedM |= ϕ, if it is true at every w inM. A formula ϕ is valid, denoted |= ϕ,
if it is satisfied in all models over any frame F . A set of formulae N is globally
satisfied by a modelM, denotedM |= N , if for each formula ϕ inN ,M globally
satisfies ϕ.

In this paper, we consider two logics which extend Kn, namely Dn and Tn,
the multi-modal logics of serial and reflexive frames, respectively. In a Dn

model, each accessibility relation Ra is serial, i.e. for each w ∈ W, and each
a ∈ A, there exists a w′ ∈ W such that Ra(w,w

′) is true in the model. In a
Tn model, each accessibility relation Ra is reflexive, i.e. for each w ∈ W, and
each a ∈ A, Ra(w,w) is true in the model. The modal logic Dn is axiomatized
by the axioms of Kn and the axiom schema (D) = 2aϕ→ 3aϕ. Similarly, Tn
is axiomatized by adding the axiom schema (T ) = 2aϕ→ ϕ.

We are interested in the problem of computing local uniform interpolant of
a formula and a signature.

Definition 2.1 Given a formula ϕ, a uniform interpolant of ϕ with respect to
a signature Σ of propositional symbols is a formula ϕ′ such that:
(i) ϕ′ does not contain symbols outside of Σ, and
(ii) for any modal formula ψ over Σ, we have that for all models M, M |=

ϕ→ ψ iff for all models M, M |= ϕ′ → ψ.

3 Uniform Interpolation Method

We start with a high-level description of our uniform interpolation method for
multi-modal logic Kn. Without loss of generality, we assume that the input
formula ϕ is given in negation normal form.
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Overview. The system is based on resolution with modal logic adaptations.
The idea behind our approach is the following: for each propositional symbol
x outside the given signature Σ, we generate a sufficient set of clauses for the
given formula and subsequently eliminate any formulae that contain x. We
repeat the process for all propositional symbols outside Σ.

The system uses special world symbols, or W -symbols for short, which are
propositional symbols that help in two related ways:

(i) They are used to flatten the input formula to surface some parts of it.
E.g., 2(ψ ∨3ϕ) becomes 2W1, W1 ⇒ ψ ∨3W2 and W2 ⇒ ϕ.

(ii) They allow the inferences to be restricted to subformulae labelled with
the same W -symbol. E.g., 2(x ∧ (¬x ∨ p)) becomes 2W , W ⇒ x and
W ⇒ ¬x ∨ p. Later on, we see that one of our rules allows us to apply a
resolution step on x.

Initially, we can think of W -symbols as constants representing worlds in a
labelled tableau algorithm.

For a formula ϕ, a signature Σ, and an ordering ≻ over the symbols outside
the input signature Σ, the system is provided a clause set N0 = {W0 ⇒ ϕ} as
input, and applies its rules exhaustively to the formulae in the set until no rules
can be applied, resulting in a clause set of the form Nn = {W0 ⇒ ϕ1, ...,W0 ⇒
ϕm}. The formula ϕ′ = ϕ1 ∧ . . . ∧ ϕm is then a uniform Σ-interpolant of ϕ,
which is proved later.

The role of W0 is to represent a specific world that satisfies the given for-
mula ϕ. Any model M that satisfies ϕ at point w can be extended in a non-
vacuous way to one that satisfies W0 and W0 ⇒ ϕ by setting w ∈ V (W0). In
this extended model, W0 ⇒ ϕ is globally witnessed as non-vacuously true.

The process of constructing a uniform interpolant is iterative with respect to
the symbols outside Σ, and the ordering ≻ fixes the order in which these sym-
bols are eliminated. For some uniform interpolation problems, a good ordering
may allow the system to solve a problem in far fewer steps. For simplicity, and
since the ordering does not improve any worst-case complexity results, we can
assume this ordering is arbitrary. We use x to denote the maximal propositional
symbol occurring in the current clause set Ni at the ith step.

The System. The rules of our uniform interpolant system are given in Fig-
ures 1, 2 and 3. Each rule has a premise, some conditions and a conclusion. The
rules are structured with the premise above a horizontal line and the conclu-
sion below it. The premise (respectively conclusion) can be one or more clauses
depending on which rule is being applied. There are three types of rules in the
system: preprocessing rules, resolution rules, and elimination rules.

The preprocessing rules and the elimination rules are replacement rules;
they replace the premise in the current working clause set with the conclusion.
The resolution rules are saturation rules; they keep the premise and extend the
clause set with the conclusion. The rules can be applied in any order as long
as the conditions for each rule are met.

The clauses obtained and handled by our system are in a normal form. They
are all labelled with a W -symbol in the condition of the implication. We can
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have a formula or another W -symbol in the consequence of the implication.
Concretely, for some W -symbols Wi and Wj , and some modal formula ψ, a
clause can have the form Wi ⇒ ψ or Wi ⇒ Wj . If ψ is a disjunction of
modal formulae, we assume that it is a set, i.e., there is no repetition among
the disjuncts. This is essential for the correctness of the method. We use the
notation ⇒, in contrast to →, to highlight that an implication is generated by
our system to maintain our normal form. Semantically, they are identical.

To describe the different types of W -symbols, we introduce some terminol-
ogy and the functions Def and Corr which are used in the conditions of our
system, and later on in the proofs.

Definition 3.1 Given a set N of clauses, the set Sw is the set of W -symbols
introduced for subformulas appearing under a modal operator via the WI rule.
We call these symbols base W -symbols.

We use an injective functionDef that maps baseW -symbols to subformulas
of clauses in N , and that is extended each time we introduce a new W -symbol.

The set Cw is the set of W -symbols introduced by the Res 2# rule. We
call these symbols combinatory W -symbols.

We define a function Corr that mapsW -symbols to subsets of Sw as follows:

Corr(Wi) =


{Wi}, if Wi ∈ Sw

Corr(Wn) ∪ Corr(Wm), if Wi ∈ Cw where Wn and Wm come

from the premise of the Res 2#
rule that has introduced Wi.

It is easy to see that the definition of Corr is well-founded. Intuitively, a
base W -symbol is introduced to represent a subformula, and a combinatory
W -symbol can be seen as a unique representative of a subset of the base W -
symbols.

We now describe the three groups of rules which together make up our
system. We use N to refer to the current working clause set. We assume
that x is the current symbol we would like to eliminate, i.e., it is the maximal
symbol in the current set with respect to the given ordering ≻. The W -symbol
Wi is the ith W -symbol introduced during the inference process.

Preprocessing. The purpose of the preprocessing rules is to apply transfor-
mations to the members of the working clause set so that they can be handled
by the other rules. Generally, the idea is to surface symbols appearing in ϕ
that are not in Σ, i.e., to surface x in ϕ. The rules are applied in a lazy manner
which means their application can be deferred to whenever they are necessary.
The preprocessing rules are provided in Figure 1. The clausification rule dis-
tributes disjunction over conjunction. The world introduction rule performs
structural transformation that flattens modal formulae.

Resolution. The purpose of the resolution rules is to deduce a sufficient num-
ber of clauses/formulas to generate a uniform interpolant. The rules are given
in Figure 2.
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Clausification:
N,Wi ⇒ (ϕ1 ∧ ϕ2) ∨ ϕ3

N,Wi ⇒ ϕ1 ∨ ϕ3,Wi ⇒ ϕ2 ∨ ϕ3
provided that either ϕ1 or ϕ2
contain x. ϕ3 may be empty.

World Introduction (WI):

N,Wi ⇒ #aϕ1 ∨ ϕ2
N,Wi ⇒ #aWj ∨ ϕ2,Wj ⇒ ϕ1

provided that
(i) # ∈ {2,3},
(ii) ϕ1 must contain x,
(iii) if ϕ2 contains x then x must occur under a modal operator, and
(iv) if there is a Wk such that Def(Wk) = ϕ, then Wj =Wk, otherwise

Wj is a fresh W -symbol, Corr(Wj) = {Wj} and Def(Wj) = {ϕ}.
ϕ2 may be empty.

Fig. 1. The preprocessing rules of the UIKn system for the modal logic Kn.

Literal Resolution (Res):
Wi ⇒ ψ1 ∨ x Wi ⇒ ψ2 ∨ ¬x

Wi ⇒ ψ1 ∨ ψ2
ψ1 and/or ψ2 may be empty.

World Resolution (Res W):
Wi ⇒ ψ Wj ⇒Wi

Wj ⇒ ψ
provided that ψ contains x.

2# Resolution (Res 2#):

Wi ⇒ ψ1 ∨2aWn Wi ⇒ ψ2 ∨#aWm

Wi ⇒ ψ1 ∨ ψ2 ∨#aWj , Wj ⇒Wn, Wj ⇒Wm

provided that:
(i) # ∈ {2,3},
(ii) Corr(Wn) ∩ Corr(Wm) is empty,
(iii) if there is a Wk such that Corr(Wk) = Corr(Wn) ∪

Corr(Wm) then Wj = Wk, otherwise Wj is a fresh W -
symbol, and Corr(Wj) = Corr(Wn) ∪ Corr(Wm).

ψ1 and/or ψ2 may be empty.

Fig. 2. The resolution rules of the UIKn system for modal logic Kn.

The literal resolution rule is the heart of our system; it computes a formula
by resolving on a maximal symbol x if the premise is labelled with the same
W -symbol. The world resolution rule is used to propagate formulas labelled
by another W -symbol, which is essentially a resolution step between world
symbols. The 2# resolution rule is used to capture combinations of successor
relations. The second and third conditions are the blocking conditions; they
aim to ensure that the rule application is not redundant which is important
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Positive Purification (+Pur):

N,Wi ⇒ ψ ∨ x
N,Wi ⇒ ψ ∨ ⊤

provided that no more non-
purification rules can be applied to
the named clause in the premise.
ψ may be empty.

Negative Purification (−Pur):

N,Wi ⇒ ψ ∨ ¬x
N,Wi ⇒ ψ ∨ ⊤

provided that no more non-
purification rules can be applied to
the named clause in the premise.
ψ may be empty.

World Elimination (Elm W):
N,Wi ⇒ ψ1, . . . ,Wi ⇒ ψn

NWi

(ψ1∧···∧ψn)

provided that i ̸= 0, ψ1, . . . , ψn do not contain x or any W -symbol,
and N only contains Wi on the right hand side of ⇒ clauses. The
expression Nϕ

ψ denotes the set of clauses that is obtained by replacing
each occurrence of ϕ in N by ψ.

Fig. 3. The purification and elimination rules of the UIKn system for modal logic Kn.

to control the complexity, and that the system does not infinitely introduce
W -symbols which is essential for termination.

Elimination. The elimination rules are responsible for eliminating symbols
outside of Σ ∪ {W0}. They are applied once we have exhaustively applied the
resolution rules to compute conclusions over Σ. The rules are given in Figure 3.

The positive and negative purification rules replace a maximal symbol x,
occurring either positively or negatively, with ⊤. The world elimination rule
collects modal formulas labelled with the same W -symbol, and replaces right
hand side occurrences of theW -symbol with the conjunction of these formulas,
effectively eliminating the W -symbol from the set of clauses.

3.1 Examples

In the following examples, we demonstrate how the UIKn
system is used to

compute a uniform interpolant with respect to Σ = {p, q}. Starting from i = 0,
we use Ni to refer to the clause set that is obtained after applying the ith step
in the derivation.

Example 3.2 Consider a formula ϕ = (¬p ∨3x) ∧ (¬x ∨2q).
The input to the system is the set N0 = {W0 ⇒ (¬p ∨ 3x) ∧ (¬x ∨ 2q)}.

The only rule applicable to N0 is the clausification rule which gives

N1 = {W0 ⇒ ¬p ∨3x,W0 ⇒ ¬x ∨2q}.

Now we apply the world introduction rule to get

N2 = {W0 ⇒ ¬p ∨3W1,W1 ⇒ x,W0 ⇒ ¬x ∨2q}.
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The only applicable rules are the positive and negative purification rules. We
achieve

N3 = {W0 ⇒ ¬p ∨3W1,W1 ⇒ ⊤,W0 ⇒ ⊤∨2q}.
Eliminating W1, we obtain

N4 = {W0 ⇒ ¬p ∨3⊤,W0 ⇒ ⊤∨2q}.

The Σ-uniform interpolant is ϕ′ = (¬p ∨3⊤) ∧ (⊤ ∨2q).
Notice that this example illustrates the local flavour of the system. We see

that the occurrences of x at two different modal levels do not interact via any
resolution rule.

Example 3.3 Consider a formula ϕ = (¬p∨3x)∧2(¬x∨2q). We start with
the set N0 = {W0 ⇒ (¬p∨3x)∧2(¬x∨2q)}. Applying the clausification rule
to N0 we get

N1 = {W0 ⇒ ¬p ∨3x,W0 ⇒ 2(¬x ∨2q)}.

By applying the world introduction rule twice, we have

N3 = {W0 ⇒ ¬p ∨3W1,W1 ⇒ x,W0 ⇒ 2W2,W2 ⇒ ¬x ∨2q}.

The only applicable rule is the 23 rule, and it yields

N4 = N3 ∪ {W0 ⇒ ¬p ∨3W3,W3 ⇒W1,W3 ⇒W2}.

By applying the world resolution rule twice, we obtain

N6 = N4 ∪ {W3 ⇒ x,W3 ⇒ ¬x ∨2q}.

Now, we can apply the literal resolution rule which yields

N7 = N6 ∪ {W3 ⇒ 2q}.

We apply the positive and negative purification rules (4 applications) and
achieve

N11 = {W0 ⇒¬p ∨3W1, W1 ⇒⊤, W0 ⇒2W2,

W2 ⇒⊤∨2q, W0 ⇒¬p ∨3W3, W3 ⇒W1,

W3 ⇒W2, W3 ⇒⊤, W3 ⇒⊤∨2q,
W3 ⇒2q }.

Now, x does not appear anywhere. We eliminate the world variables W1, W2,
W3 via the world elimination rule.

To eliminate W1, we look for clauses labelled with W1, in this case we only
have W1 ⇒ ⊤. We remove W1 ⇒ ⊤ and replace each occurrence of W1 on the
right hand side of ⇒ with ⊤ as follows:

N12 = {W0 ⇒¬p ∨3⊤, W0 ⇒2W2, W2 ⇒⊤∨2q,
W0 ⇒¬p ∨3W3, W3 ⇒⊤, W3 ⇒W2,

W3 ⇒⊤∨2q, W3 ⇒2q }.
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Similarly forW2, we removeW2 ⇒ ⊤∨2q, and replace the other occurrences
of W2 with ⊤ ∨2q.

N13 = {W0 ⇒¬p ∨3⊤, W0 ⇒2(⊤ ∨2q), W0 ⇒¬p ∨3W3,

W3 ⇒⊤, W3 ⇒⊤∨2q, W3 ⇒2q }.
Finally, we eliminate W3,

N14 = {W0 ⇒¬p ∨3⊤, W0 ⇒2(⊤ ∨2q),
W0 ⇒¬p ∨3(⊤ ∧ (⊤ ∨2q) ∧2q) }.

The uniform interpolant is

ϕ′ = (¬p ∨3⊤) ∧ (2(⊤ ∨2q)) ∧ (¬p ∨3(⊤ ∧ (⊤ ∨2q) ∧2q)),

which is equivalent to ϕ′ = (¬p ∨32q) by standard simplifications.

4 Correctness and Complexity

The first lemmas in this section are relevant to termination. We prove termi-
nation by showing that any derivation uses a finite number of symbols, and we
argue that because of this, the system will stop generating new clauses.

Lemma 4.1 The number ofW -symbols introduced in a run of the UIKn
system

is bounded by 2n − 1 for n being the length of the input.

Proof. Let Sw be the set of base W -symbols. Sw is finite because the number
of modal operators in the input formula is finite, and the role of the world
introduction rule is to replace each subformula (not containing a W -symbol)
appearing under a modal operator with a W -symbol.

Let Cw be the set of combinatory W -symbols introduced by the Res2#
rule. We show inductively that for eachW -symbolWi in Cw, the set Corr(Wi)
corresponds to a unique set of W -symbols from Sw.

Since the function Corr has a finite range, which is the powerset of Sw,
we can prove that the domain is finite by showing that Corr is injective. Let
Wn and Wm be two W -symbols. We show inductively that if Corr(Wn) =
Corr(Wm) , then Wn =Wm. The proof is given in the appendix.

Since Sw is a finite set, and by condition (ii) of the 2# resolution rule, the
number of possible W -symbols is bounded by the number of unique combina-
tions of symbols from Sw. The upper bound is equal to 2|Sw|-1, where |Sw| is
the size of Sw. 2

Lemma 4.2 The UIKn system will stop generating new clauses.

Proof. The input formula ϕ contains a finite number of propositional symbols
and modal operators. By Lemma 4.1, the system introduces a finite number of
W -symbols. The resolution rules do not produce results with increased modal
depth. 2

Lemma 4.3 The UIKn
system will not reintroduce a W -symbol that was elim-

inated before.

Proof. This is because aW -symbol is introduced to surface a formula that has
symbols not in Σ, and only when a W -symbol no longer labels non-Σ symbols,
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the world elimination rule is allowed to be applied. 2

From Lemmas 4.1, 4.2 and 4.3, we conclude the following theorem.

Theorem 4.4 (Termination) Given a formula ϕ and a signature Σ, the
UIKn

system computes a formula ϕ′ in a finite number of steps.

The following lemma considers the space complexity of our system.

Lemma 4.5 The space complexity of the UIKn calculus is double exponentially
bounded in the length of the input.

Proof. The root source of the complexity is that the system generates an
exponential number of combinatory symbols. The complexity argument is built
upon three claims. Using a linear number of propositional symbols, a linear
number of base W -symbols, and an exponential number of combinatory W -
symbols:
C1 the size of each clause, before eliminating any W -symbols, has an expo-

nential upper bound in the size of the input,
C2 the number of clauses we could generate has a double exponential upper

bound in the size of the input, and
C3 the size of each clause, after eliminating W -symbols, has a double expo-

nential upper bound in the size of the input.
We show the three claims in the appendix. 2

The next lemmas show that the signature of ϕ′ is Σ.

Lemma 4.6 For a given formula ϕ and a signature Σ, the UIKn
system will

always be able to eliminate every W -symbol that is not W0, using the world
elimination rule.

Proof. The normal form that is used in our system dictates that only one
W -symbol can be present on the left hand side of ⇒. Eliminating a W -symbol
will replace occurrences of a W in the working clause set with a combination of
clauses that do not contain W -symbols. The only situation that may prevent
the elimination rule from being applied is if a clause contains the same W -
symbol on both sides of the ⇒, but it can be shown inductively that this
cannot happen. 2

Lemma 4.7 For a given formula ϕ and a signature Σ, the UIKn system will
always be able to eliminate symbols in the signature of ϕ that are not in Σ.

Proof. Let x be the maximal symbol in the signature of ϕ but outside Σ. The
world introduction rule is a replacement rule that aims to surface x. When
no resolution rule is applicable, the calculus applies a purification rule that
eliminates x. 2

Theorem 4.8 (Soundness) Given a formula ϕ and a signature Σ, the UIKn

system computes a formula ϕ′ such that for any formula ψ over Σ, we have
that if |= ϕ′ → ψ then |= ϕ→ ψ.

Proof. Consider ϕ, ϕ′ as in Theorem 4.8. We use M|Σ for the reduction of
M to Σ, i.e. the model obtained from M by ignoring all symbols outside Σ.
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We say that two models M′,M are Σ-inseparable if M′|Σ = M|Σ. To show
the theorem, we use the following claims:
C4 For each model M and world w0 such that M, w0 |= ϕ, there exists a

model M′ such that M and M′ are Σ-inseparable, M′ |= W0 ⇒ ϕ, and
V (W0) = {w0}.

C5 Each rule in our calculus is Σ-preserving, that is, if a rule is applied to a set
of clausesN to produceN ′ andM is a model that globally satisfiesN , then
there exists a model M′ that is Σ-inseparable from M that satisfies N ′.

C6 Let N = {W0 ⇒ ψi | 1 ≤ i ≤ n} be the set obtained at the end of
our derivation. For each model M that globally satisfies N and for each
w0 ∈ V (W0), we have M, w0 |= ϕ′ with ϕ′ =

∧
i≤|N | ψi.

The claims are shown in the appendix.
Via C4, C5, and C6, we can show that for any model of the input formula,

there exists a Σ-inseparable model for the output formula. And, thus, for any
formula ψ over Σ, if ϕ → ψ is true in all models, then ϕ′ → ψ is true in all
models. 2

For our completeness proof, we are interested in understanding models that
are invariant up to the satisfaction of Σ-modal formulas. Σ-modal formulas are
modal formulas described using a signature of propositional symbols Σ. For
this purpose, we use the following notion.

Definition 4.9 Let (M, w) and (M′, w′) be two Kripke models where M =
(W, R, V ) and M′ = (W ′, R′, V ′). A Σ-bisimulation between M and M′ is a
relation ρ ⊆ W ×W ′ such that wρw′, and whenever uρu′, the following holds:
atoms u and u′ satisfy the same propositional symbols from Σ;
forth For all a, if uRat, then there is a t′ such that u′R′

at
′ and tρt′;

back For all a, if u′R′
at

′, then there is a t such that uRat and tρt
′.

The following is our completeness theorem.

Theorem 4.10 (Completeness) Given a Kn formula ϕ and a signature Σ,
the UIKn system computes a Kn formula ϕ′ such that, for any Kn formula ψ
over Σ, we have that if |= ϕ→ ψ then |= ϕ′ → ψ.

Proof. Consider ϕ, ϕ′ and ψ as in Theorem 4.10. Assume |= ϕ → ψ but
̸|= ϕ′ → ψ. The assumption implies that there exists a counter model M′ and
a world w0 such that, M′, w0 |= ϕ′ and M′, w0 ̸|= ψ.

The idea of our proof is to inductively show that a Σ-bisimilar model M
can be defined based on M′ such that, M, w0 |= ϕ, and M, w0 ̸|= ψ. This will
contradict our assumption |= ϕ→ ψ.

Let n be the number of steps used for generating ϕ′ from ϕ via our calculus.
Let Nk denote the set of formulae obtained after applying k steps to ϕ. For
each i, starting from Mn = M′, we will construct a model Mi = (Wi, Ri, Vi)
for Ni.

We construct Mi by inductively extending Mi+1 and ensuring that Mi

and Mi+1 are Σ-bisimilar. In this view, N1 = {W0 ⇒ ϕ}, and Nn = {W0 ⇒
ϕ′1, . . . ,W0 ⇒ ϕ′m} where ϕ′ = ϕ′1 ∧ . . .∧ϕ′m. This will lead to a counter-model
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M0 = M as described above.
Before we state our claims, we introduce a terminology: given a set N

of clauses and W -symbols Wi and Wj , Wi is said to be directly related to
Wj if Wi ⇒ Wj ∈ N or Wj ⇒ Wi ∈ N . Two W -symbols Wi and Wj are
indirectly related if there is a W -symbol Wk such that Wk ⇒ γ1 ∨ #aWi and
Wk ⇒ γ2 ∨2aWj where γ1, γ2 may be empty. We say that two W -symbols are
related if they are directly related or indirectly related.

We prove the following claims simultaneously by backward induction: the
first claim is at the heart of our completeness, and the other three claims are
invariants that will help in our induction.

Claim 1: for all k ≤ n, there exists a model Mk such that Mk, w0 |=W0 and
Mk |= Nk but Mk, w0 ̸|= ψ.

Claim 2: for all 0 ≤ k < n, Mk and Mk+1 are Σ-bisimilar.

Claim 3: for all k ≤ n, Mk has theW -symbol independence property; that is
that either twoW -symbols are related inNk or their interpretations are disjoint.

We assume w.l.o.g. that the valuation function in M′ maps any symbol not
in Σ to the empty set.

Base case (k = n): To show Claim 1, we define the modelMn as an extension
of M′, to satisfy Nn by setting the interpretation of W0 to be true in w0, i.e.,
Vn(W0) = {w0}. Claim 2 holds trivially because k = n, and Claim 3 holds
because there is only one W -symbol and that is W0.

Step case: Assuming all claims hold for k+ 1, we will show that there exists
a Σ-bisimilar model Mk such that Mk |= Nk but Mk, w0 ̸|= ψ, and that this
model has the W -symbol independence property.

To this end, we will consider the effect of each rule and show that if it was
applied as the k-th step, it is possible to construct a model Mk from Mk+1

that satisfies our claims.
For the preprocessing rules, except for the world introduction rule, the

model remains the same. For the world introduction rule, we must reset the
interpretation of theW -symbol that was introduced to maintain Claim 3 and 4,
i.e., we make Vk(Wj) = ∅.

Similarly, for the literal resolution rule and the world resolution rule, the
model remains the same, and the argument is that Nk is a subset of Nk+1,
so a model that satisfies Nk+1 satisfies Nk, but for the 2# resolution rule, we
must reset the interpretation of theW -symbol that was introduced to maintain
Claim 3.

We give proofs for the world elimination and purification rules.

World Elimination: Let Nk+1 be the set obtained after eliminating the sym-
bol Wi from Nk.

Assume without loss of generality (w.l.o.g.) that the following formulas are
the only formulas that have left hand side (l.h.s.) occurrences of Wi in Nk:

Wi ⇒ γ1, . . . , Wi ⇒ γm (1)
The formulas where Wi can occur on the right hand side (r.h.s.) are of the
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forms:

Wj ⇒Wi or Wj ⇒ γ ∨#aWi where # ∈ {3,2}. (2)

InNk+1, i.e. after the application of the world elimination rule, the formulas
in Equation (1) are removed. The formulas of the forms in Equation (2) are
replaced with
Wj ⇒ (γ1 ∧ · · · ∧ γm) and Wj ⇒ γ ∨ #a(γ1 ∧ · · · ∧ γm) where # ∈ {3,2}
respectively. Given Mk+1, a model for Nk+1, our aim is to expand the model
into Mk for Nk by giving Wi an appropriate assignment.

By assumption, this assignment is empty, and to achieve an appropriate
interpretation, we incrementally populate the assignment in the following way.

First, to satisfy a new formula of the formWj ⇒Wi in Nk, we must expand
the valuation mapping of Wi in the model being constructed Mk to include
every world in the mapping of Wj . Explicitly, the mapping of Wi must include
the following worlds: {w |w ∈ Vk+1(Wj)}.

Second, we consider the two cases for satisfying a formula of the formWj ⇒
γ ∨#aWi where # ∈ {3,2}.

Case 1: # denotes a 3 operator. We consider each w ∈ Vk+1(Wj), if
Mk+1, w |= 3a(γ1 ∧ · · · ∧ γm) then there is a world u such that wRau is
in Ra, and Mk+1, u |= γ1 ∧ · · · ∧ γm. We extend the domain Wk with a fresh
world u′. We start by making the interpretation of u′ in Mk identical to the
interpretation of u for symbols from Σ, i.e., for all p in Σ, if u is in Vk+1(p), then
we include u′ in Vk(p). We extend the frame with successors in the following
way: for all a, and all t, if uRat is true in Mk+1, then u′Rat is made true
in Mk, and if tRau is true in Mk+1, then tRau

′ is made true in Mk. This
is to ensure that the new model Mk maintains Σ-bisimilarity. We extend the
interpretation of Vk(Wi) to include u′. To maintain Claim 3, we extend the
interpretation of the Vk for W -symbols related to Wi in the following way: for
each Wm, if u is in Vk(Wm), and Wm is related to Wi then we include u′ in the
valuation of u′.

Case 2: # denotes a 2 operator. Similar to the first case, we consider
each w ∈ Vk+1(Wj). If Mk+1, w |= 2a(γ1 ∧ · · · ∧ γm), then for every world u
connected to w via an a-successor, we check if we can make Wi true in u while
maintaining Claim 3, i.e. we check if the following condition holds: for all Wm,
if u is in Vk+1(Wm), then Wm and Wi must be related. If this is not possible,
we extend the domain Wk with a fresh world u′, and we define Vk as in the
case 1, but the accessibility relation is defined as follows:

Rak =


wRaku

′ if for some w, wRak+1
u ∈ Rak+1

u′Rakw if for some w, uRak+1
w ∈ Rak+1

wRakw
′ if for some w,w′ s.t. w ̸= u and w ̸= w′, wRak+1

w′ ∈ Rak+1

The difference between the construction in case 1 and the one here is that in
case 1, Mk is an extension of Mk+1, whereas, in this case, this would not
help because of the box operator, e.g. consider ϕ = ¬x ∧ 2(p ∧ x), and let
Mn = ({w0}, {R(w0, w0)}, Vn) where Vn(p) = {w0}.
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Now, we have completed the construction of the model Mk. It is clearly a
model for Nk, and is Σ-bisimilar to Mk+1. The world independence property
is maintained as, in our construction, we ensure that if there is a W -symbol
that is unrelated to Wi in some world u, they, and their related worlds, are
separated using a new world u′.

Positive Purification: Let Wi ⇒ ⊤ ∨ γ1 be the clause obtained after ap-
plying purification to Wi ⇒ x ∨ γ1 from Nk. We define a model Mk =
(Wk+1, Rk+1, Vk) where Vk extends the map of x in the following way

Vk(x) = Vk+1(x) ∪ {w |w ∈ Vk+1(Wi) and Mk+1, w ̸|= γ1}.
The deleted clause Wi ⇒ x ∨ γ1 is now true by the construction of Mk. It
remains to check that Mk |= Nk. Assume Mk ̸|= Nk. Since the only change
was an extension to the interpretation of x, there must be a clause which
contains x negatively in Nk that was true in Mk+1 but is not true in Mk.
This clause must be of the form Wj ⇒ ¬x ∨ γ2.

Since making the clause Wi ⇒ x∨γ1 true in Mk made Wj ⇒ ¬x∨γ2 false,
we can infer that there is a common world w in Vk(Wi) ∩ Vk(Wj) such that
Mk, w |= x ∨ γ1 but Mk, w ̸|= ¬x ∨ γ2.

There are four cases to consider.
Case 1: i = j. By literal resolution, this implies thatWi ⇒ γ1∨γ2 is in Nk

and Nk+1, and is satisfied by Mk+1 but not by Mk. This is impossible because
the two models agree up to x. γ1 and γ2 may contain x but only under a modal
operator which, by how we defined Mk for the World Elimination rule, means
that they cannot be realised by w.

Case 2: Wi and Wj are directly related in Nk. Without loss of generality,
let us assume Wi ⇒ Wj is in Nk. This implies that (i) V (Wi) ⊆ V (Wj), and
(ii) by world resolution, Wi ⇒ ¬x∨γ2 is in Nk. The problem is now reduced to
what has been discussed in the first case. Therefore, we can similarly conclude
that this case cannot happen.

Case 3: Wi andWj are indirectly related in Nk. Without loss of generality,
assume there exists a W -symbol Wk such that Wk ⇒ γ1 ∨ #aWi and Wk ⇒
γ2 ∨ 2aWj are in Nk. By the 2# resolution rule, this implies that Wk ⇒
γ1 ∨ γ2 ∨ #Wij , Wij ⇒ Wi and Wij ⇒ Wj is in Nk. This problem is now
reduced to what has been discussed in case 2, and hence it cannot occur.

Case 4: i ̸= j and Wi and Wj are not related in Nk. By Claim 3, their
interpretations are disjoint, i.e., Vk(Wi) ∩ Vk(Wj) is empty. Hence, this case
cannot occur.

Finally, since we have not changed the structure of the model nor the inter-
pretation of the elements in Σ, Mk+1 and Mk are Σ-bisimilar. The third claim
is maintained since the interpretation of the W -symbols has not changed.

As for the case of negative purification, we define a model Mk to be an
identical copy of Mk+1. What remains is to show that Mk |= Wi ⇒ ¬x ∨ γ1.
The proof is analogous to the proof given for positive purification. 2
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5 Extensions

We consider extensions of Kn, namely Dn and Tn, and show that our UIKn

system could be used or extended to cover them.

Multi-Modal Logic Dn. We claim that the UIKn
system computes uniform

interpolants for the multi-modal logic Dn. To show our claim, we prove the
completeness theorem.

Theorem 5.1 (Completeness) Given a Dn formula ϕ and a signature Σ,
the UIKn system computes a Dn formula ϕ′ such that, for any Dn formula ψ
over Σ, we have that if |= ϕ→ ψ then |= ϕ′ → ψ.

Proof. The proof uses a similar argument to the one for Kn except, here we
assume that the accessibility relations in the initial model are serial.

In addition to the three claims from the proof of Theorem 4.10, we prove
the following claim:

Claim 4: For all k ≤ n, each accessibility relation in Mk is serial.
Observe that Mk uses the frame underlying the model Mk+1 in the proofs

given for each of the rules, except for the world elimination rule. Therefore,
for these rules, Claim 4 is established. Consider the case of the world elimi-
nation rule. We construct Mk to be Σ-bisimilar to Mk+1. By the induction
hypothesis, Mk+1 is a serial model, and by the “forth” condition of definition
of Σ-bisimilation, Mk must be serial, too. 2

Multi-Modal Logic Tn. In this part, we introduce the UITn
system, and

show that it is terminating, sound and uniform interpolation complete for Tn.
The system extends UIKn by generalising the world resolution rule and adding
the reflexivity rule as a new saturation rule. These rules are shown in Figure 4.

World Resolution (Res W):
Wi ⇒ ψ1 Wj ⇒ ψ2 ∨Wi

Wj ⇒ ψ1 ∨ ψ2

provided that ψ1 contains x.
ψ2 may be a W -symbol.

Reflexivity (T):

Wi ⇒ ψ ∨2aWm

Wi ⇒ ψ ∨Wm

provided thatWm is a base symbol.

Fig. 4. The reflexivity rule and the world resolution rule of the UITn system for
modal logic Tn.

The soundness theorem and proof are analogous to Theorem 4.8 and its
proof. The termination and complexity arguments are identical to the ones in
Theorem 4.4 and Lemma 4.5. It remains to show the completeness theorem.

Theorem 5.2 (Completeness) Given a formula ϕ and a signature Σ, the
UITn system computes a formula ϕ′ such that, for any formula ψ over Σ, we
have that if |= ϕ→ ψ then |= ϕ′ → ψ.
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Proof. This proof is an extension of the proof of Theorem 4.10. We assume
that each accessibility relation is reflexive in M′. We generalise our definition
of directly related. Given N a set of clauses and W -symbols Wi and Wj , Wi

is said to be directly related to Wj if, for some γ, Wi ⇒ γ ∨ Wj ∈ N or
Wj ⇒ γ ∨Wi ∈ N .

Our aim is to prove the same three claims and the following claim.

Claim 4: For all k ≤ n, each accessibility relation Ri is reflexive in Mk.

Base case (k = n): To show Claim 4, we observe that a change happened to
the valuation of W0, and that this does not change the frame underlying the
model. Therefore, the new model Mn remains reflexive.

Because the set of reflexive models is a subset of the models considered in
the proof for Theorem 4.10, the three claims remain true for all the shared rules.
We focus on showing the claims for the reflexivity rule and the generalised world
resolution rule, and show that Claim 4 is true for all the remaining rules.

Step case: Assuming all claims hold for k + 1, we show that there exists a
model Mk that satisfies all four claims.

For all saturation rules, including the reflexivity rule and the world reso-
lution rule, the model Mk is defined to be identical to Mk+1. For the world
elimination rule, we repeat the model construction of Mk as shown in the
proof of Theorem 4.10, with the consideration that now we have the general
form Wj ⇒ γ ∨Wi, but we extend it to make Ra(u

′, u′) true for each Ra ∈ Rk.
Observe that this change still maintains the Σ-bisimulation, but will make Mk

reflexive. Clearly, Mk is a model for Nk, and the world independence property
is maintained.

For the positive and negative purification rules, observe that the frame
underlying the model Mk is identical to that of Mk+1, so Claim 4 holds. 2

6 Related Work

Fang et al. [6] use what Moss [18] called canonical formulas. They exploit the
fact that an arbitrary modal formula is equivalent to a disjunction of a finite
set of satisfiable canonical formulas, and prove that a uniform interpolant can
be constructed via literal elimination. Although the proof is constructive, as
the authors explicitly mention, the method is unpractical because the size of a
canonical formula is non-elementary.

Other uniform interpolation methods can be divided into two groups based
on whether they use a conjunctive normal form (CNF) (e.g., [11,15]) or a
disjunctive normal form (DNF) (e.g., [3,19]). Uniform interpolants can be
easily computed for formulae in disjunctive normal form, in fact the method
in [19] was shown to have an exponential worst case space complexity, which
they prove to be a tight upper bound.

Comparing the two types of approaches, we notice that methods that use
the conjunctive normal form, which are often based on resolution, struggle with
the following type of problem.

2(x ∨ q1) ∨2(¬x ∨ q2)(i) 2(¬x ∨ r1) ∨2(x ∨ r2)(ii)
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This is due to the 22 resolution rule. We claim that using our method, this
problem generates a number of clauses which is double exponentially bounded
by the input. Other resolution methods have a rule for combining 2 operators
and work in a similar way [11,15]. The work that the other rules in resolution
systems do is comparable to those that use transformation to disjunctive normal
form. However, even though the complexity of our system is less optimal
than [19], we perform better in general cases of the following example:

¬x ∨2(¬x ∨ q1) ∨2(¬x ∨ q2)(i) 2(x ∨ r1) ∨2(x ∨ r2)(ii)

Because x, the symbol that we want to eliminate, appears at level zero in the
first clause but only under a modal operator in the second clause, no resolution
rule is applicable. Hence, ¬x in the first clause can be purified, and by extending
the system with standard simplification rules, the clause is replaced with ⊤.

Different to [11], we use additional propositional symbols to flatten our in-
put, and different to [14], we do not use unification for first-order variables,
which was used there because the problem is slightly different: they look at
global (TBox) uniform interpolation with local (ABox) formulae. More broadly,
completeness proofs for resolution-based uniform interpolation systems are tra-
ditionally shown via proof-theoretic arguments. Our proofs show that a model-
theoretic argument, using Σ-bisimulation, can be made for proving uniform
interpolation completeness of resolution-based systems. We notice that the
proofs for Dn and Tn required only very modest extensions.

7 Conclusion

We presented a resolution-based method to compute uniform interpolants for
the multi-modal logic Kn. We proved that our method terminates, and is
sound and uniform interpolation complete. The space complexity was proven
to be at most double exponential in the length of the input. We showed that
the method can be used for computing uniform interpolants in Dn, and can be
extended to compute uniform interpolants in Tn.

For future work, we would like to study logics which are known to have
the uniform interpolation property, and show that the presented system can
be extended to solve the uniform interpolation problem for more modal log-
ics. Furthermore, it would be interesting to implement the UIKn

system and
perform an empirical comparison between this system and a system that trans-
forms the input into disjunctive normal form (e.g., [19,3]).

Appendix

A Proofs

Lemma A.1 The number of W -symbols introduced by the UIKn
is bounded by

2n-1 for n being the length of the input.

Proof. Let Sw be the set of base W -symbols. Sw is finite because the number
of modal operators in the input formula is finite, and the role of the world
introduction rule is to replace each subformula (not containing a W -symbol)
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appearing under a modal operator with a W -symbol.
Let Cw be the set of combinatory W -symbols introduced by the Res2#

rule. We show inductively that for eachW -symbolWi in Cw, the set Corr(Wi)
corresponds to a unique set of W -symbols from Sw.

Since the function Corr has a finite range, which is the powerset of Sw,
we can prove that the domain is finite by showing that Corr is injective. Let
Wn and Wm be two W -symbols. We will show inductively that if Corr(Wn) =
Corr(Wm) , then Wn =Wm.

Base case: Wn is in Sw. The assumption is that Corr(Wn) = Corr(Wm).
Since Wn was produced as a result of an application of the world introduc-
tion rule, we have that Corr(Wn) = {Wn}. By assumption, this means that
Corr(Wm) = {Wn}. Since Corr(Wm) corresponds to a singleton set, it must
be introduced via the world introduction rule as well, and hence, Wn =Wm.

Step case: Wn is in Cw. The cardinality of Corr(Wn) must be greater
than 1; this is because when Wn is introduced after a 2# rule application,
Corr(Wn) is defined as the combination of two sets that share no elements.
Assuming that Corr(Wn) = Corr(Wm) entails that Wm must be in Cw as two
equal sets have the same cardinality. Since Wn and Wm are in Cw, they must
have been introduced after applying the 2# rule. Assume w.l.o.g. that Wm

was introduced first. Let Corr(Wn) = Corr(Wi)∪Corr(Wj) for a Wi and Wj

that uniquely correspond to subsets of Sw symbols. By condition (iii) of the
2# rule, there cannot be a Wk such that Corr(Wk) = Corr(Wi) ∪ Corr(Wj),
thereforeWn must be equal toWm. Since Sw is a finite set, and by condition (ii)
of the 2# resolution rule, the number of possible W -symbols is bounded by
the number of unique combinations of symbols from Sw. The upper bound is
equal to 2|Sw|-1, where |Sw| is the size of Sw. 2

Lemma A.2 The space complexity of the UIKn
calculus is double exponen-

tially bounded in the length of the input.

Proof. The root source of the complexity is that the system generates an
exponential number of combinatory symbols. The complexity argument is built
upon three claims. Using a linear number of propositional symbols, a linear
number of base W -symbols, and an exponential number of combinatory W -
symbols:

C1 the size of each clause, before eliminating any W -symbols, has an expo-
nential upper bound in the size of the input,

C2 the number of clauses we could generate has a double exponential upper
bound in the size of the input, and

C3 the size of each clause, after eliminating W -symbols, has a double expo-
nential upper bound in the size of the input.

For C1, before eliminating anyW -symbols, a clause has propositional variables,
a disjunction ψ of subformulas of ϕ, and a maximally exponential number ofW -
symbols appearing under a box or a diamond operator, or both. The number
of propositional variables is linear in the size of the input (since they must
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appear in the input), the size of ψ is linear too for the same reason, and since
the number of W -symbols is in O(2n) (n is the size of the input), then the size
of a clause before eliminating any W -symbol is in O(2n).

For C2, since for each clause we have an exponential number of (proposi-
tional or W-symbol) variables that can either appear positively or negatively,
the number of clauses that could be generated before eliminating any W -
symbols is at most double exponential in the size of the input. (Note that
we assume that the system incorporates simplification rules such as subsump-
tion elimination.)

For C3, since the number of clauses is at most double exponential, and each
clause has a size that is of at most an exponential size, eliminating W -symbols
will result in a formula that is maximally bounded by O(2n ∗ 22n). 2

Theorem A.3 (Soundness) Given a formula ϕ and a signature Σ, the UIKn

system computes a formula ϕ′ such that for any formula ψ over Σ, we have
that if |= ϕ′ → ψ then |= ϕ→ ψ.

Proof. Consider ϕ, ϕ′ as in Theorem 4.8. We use M|Σ for the reduction of
M to Σ, i.e. the model obtained from M by ignoring all symbols outside Σ.
We say that two models M′,M are Σ-inseparable if M′|Σ = M|Σ. To show
the theorem, we show the following claims:
C4 For each model M and world w0 such that M, w0 |= ϕ, there exists a

model M′ such that M and M′ are Σ-inseparable, M′ |= W0 ⇒ ϕ, and
V (W0) = {w0}.

C5 Each rule in our calculus is Σ-preserving, that is, if a rule is applied to a set
of clausesN to produceN ′ andM is a model that globally satisfiesN , then
there exists a model M′ that is Σ-inseparable from M that satisfies N ′.

C6 Let N = {W0 ⇒ ψi | 1 ≤ i ≤ n} be the set obtained at the end of
our derivation. For each model M that globally satisfies N and for each
w0 ∈ V (W0), we have M, w0 |= ϕ′ with ϕ′ =

∧
i≤|N | ψi.

For C4, take a model M and a world w0 such that M, w0 |= ϕ. Extending
M by setting V (W0) = {w0} results in a Σ-inseparable model in whichW0 ⇒ ϕ
is globally satisfied.

For C5, we consider two of our rules: the world introduction rule and the
2# resolution rule. Proofs for the remaining rules are standard.

World Introduction: Let N ′ be the set obtained by replacing Wi ⇒ ϕ1 ∨
#aϕ2 in N with Wi ⇒ ϕ1 ∨#aWj and Wj ⇒ ϕ2.

Given M, a model for N , our aim is to expand the model into M′ for N ′ by
giving Wj an appropriate assignment. Consider the following case distinction.

Case 1: # denotes a 3 operator. We consider each w ∈ V (Wi), if M, w |=
3aϕ2 then, there exists a world u, connected to w via an a-successor, such that
M, u |= ϕ2. We include u in V ′(Wj), i.e. ,

V ′(Wj) = {u |M, u |= ϕ2 and ∃w s.t. w ∈ V (Wi) and wRau is true in M}.
By giving Wj the above interpretation, Wi ⇒ ϕ1 ∨ 3aWj and Wj ⇒ ϕ2

become globally satisfiable in M′.
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Case 2: # denotes a 2 operator. Similar to the first case, we consider each
w ∈ V (Wi). If M, w |= 2aϕ2, then for every world u connected to w via an
a-successor, Wj must be made true in u. We extend the definition of V ′(Wj)
to include u.

By giving Wj the above interpretation, Wi ⇒ ϕ1 ∨ 2aWj and Wj ⇒ ϕ2
become globally satisfiable in M′.

Now, we have completed the construction of the model M′. We show that
M′ is a model for N ′. The model M′ satisfies all formulas in N ′ that do not
include Wj . Indeed, this is because the interpretation of all symbols apart
from Wj has not been changed. From Cases 1 and 2, it globally satisfies all
clauses that contain Wj . Therefore, M′ is a model for N ′. The two models are
Σ-inseparable because they are defined over the same frame, and the valuation
function was not changed for propositional symbols in Σ.

2# resolution: Let N ′ be the set obtained by applying the 2# resolution
rule toWi ⇒ γ1∨2aWn and Wi ⇒ γ2∨#aWm attainingWi ⇒ γ1∨γ2∨#aWj

and Wj ⇒Wn and Wj ⇒Wm.
Given M, a model for N , our aim is to expand the model into M′ for N ′

by giving Wj an appropriate assignment. We consider the two cases:
Case 1: # denotes a 3 operator. We consider each w ∈ V (Wi), if M, w |=

2aWn and M, w |= 3aWm then, there exists a world u, connected to w via an
a-successor, such that M, u |=Wm, and M, u |=Wn. We include u in V ′(Wj).

Case 2: # denotes a 2 operator. We consider each w ∈ V (Wi). If M, w |=
2aWn and M, w |= 2aWm, then for every world u connected to w via an
a-successor, Wj must be made true in u. We include u in V ′(Wj).

We show that M′ is a model for N ′. Since the only change was to the
interpretation of Wj , M′ satisfies all clauses in N ′ without Wj . From Cases 1
and 2, M′ satisfies clauses that contain Wj . The two models are Σ-inseparable
because they are defined over the same frame, and the valuation function was
not changed for propositional symbols in Σ.

For C6, the argument is trivial. Consider N as in the claim. Let M be a
model that globally satisfies N , and w0 be a world in V (W0). By the definition
of global satisfiability, all clauses in N are satisfiable at w0. By the semantics
of implication, we have that M, w0 |= ψi for 1 ≤ i ≤ |N |. By the semantics of
conjunction, M, w0 |=

∧
i≤|N | ψi.

We showed via C4, C5, and C6 that for any model of the input formula,
there exists a Σ-inseparable model for the output formula. And, thus, for any
formula ψ over Σ, if ϕ → ψ is true in all models, then ϕ′ → ψ is true in all
models. 2
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