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Abstract

In “Empirical Negation”, Michael De takes up the challenge of extending intuitionism
from mathematical discourse to empirical discourse, and to this end, he introduced an
expansion of intuitionistic propositional logic obtained by adding a unary connective
called empirical negation. The intuitive reading of empirical negation of A is: it is not
the case that there is sufficient evidence at present that A. From a model-theoretic
perspective, cashed out in terms of pointed Kripke models for intuitionistic logic,
empirical negation of A is forced at a point iff A is not forced at the base point.
Then, a simple calculation reveals that double empirical negation of A is forced at a
point iff A is forced at the base point. In other words, double empirical negation can
be seen as an actuality operator explored by John N. Crossley, Lloyd Humberstone,
Martin Davies and more. Based on these, we introduce an expansion of intuitionistic
propositional logic obtained by adding actuality. Our main results include sound and
strongly complete axiomatization as well as comparisons to closely related systems
such as Global Intuitionistic Logic of Satoko Titani as well as LGP of Matthias Baaz.

Keywords: Actuality, Empirical Negation, Global Intuitionistic Logic, Intuitionistic
Modal Logic, Completeness, Sequent Calculus.

1 Introduction

In the literature, there are various expansions of intuitionistic logic, based on
a number of different motivations. One of the motivations that seems to be
popular is to extend intuitionism from mathematical discourse to empirical dis-
course. To this end, the role played by proof within the mathematical discourse
will be played by warrant/evidence/verification/etc. within the empirical dis-
course.

1 We are grateful to the referees for their helpful comments. Email: satoruniki@jaist.ac.jp
2 This research was supported by a Sofja Kovalevskaja Award of the Alexander von
Humboldt-Foundation, funded by the German Ministry for Education and Research. Email:
Hitoshi.Omori@rub.de
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The main background of this paper, namely “Empirical Negation” by
Michael De, is a contribution within the above motivation, following the dis-
cussions led by Michael Dummett and Neil Tennant. 3 De’s focus in [16] was
on negation, and expanded the language of intuitionistic propositional logic by
adding empirical negation. The intuitive reading of empirical negation of A
is that “it is not the case that there is sufficient evidence at present that A”.
Model theoretically, this is formulated with the help of pointed Kripke models
for intuitionistic logic. More specifically, empirical negation of A is forced at a
point iff A is not forced at the base point. Following De’s paper, a Hilbert-style
axiomatization was given for the expansion of intuitionistic logic in [17], and in
[18], a comparison of empirical negation and classical negation was carried out
over subintuitionistic logic, introduced and explored by Greg Restall in [38].

Now, a simple calculation reveals that double empirical negation of A is
forced at a point iff A is forced at the base point. In other words, double
empirical negation can be seen as an actuality operator explored by John N.
Crossley, Lloyd Humberstone, Martin Davies and more. This then gives rise to
a natural question of exploring an expansion of intuitionistic logic enriched by
actuality operator. 4 The aim of this paper is twofold, and the first aim is to
address this question. Although the notion of actuality has been discussed in
classical settings (see our brief overview below), no attempts are known, to the
best of authors’ knowledge, to discuss the notion of actuality based on intu-
itionistic logic. 5 However, it is of significant interest how we can incorporate
the notion along the philosophical foundation of Dummett-Tennant-De. The
second aim is to draw some connections to closely related systems. This enables
us to uncover links with other logical concepts, such as empirical negation and
globality. For this purpose, we shall adopt a language that includes absurdity
and therefore negation. Nonetheless we shall also observe how the notion of
actuality is independent of that of negation, which is an advantage over an
approach that defines actuality in terms of empirical negation. Before moving
further, let us briefly review some of the developments in the literature related
to our aim.

Actuality The notion of actuality has been studied in modal logic for a long
time, and various conceptualizations have been introduced. Even at an early
period, Crossley, Humberstone and Davies [14,15] already introduced two dif-
ferent actuality operators, A and F (read fixedly). Each model M has a
distinguished world w∗, and Aϕ is true at w iff ϕ is true at w∗. On the other
hand, Fϕ is true at w iff for every model M′, ϕ is true at M′’s distinguished
world w′. These two operators represent different intuitions about whether ‘the
actual world’ is necessarily so or not.

3 Another interesting direction following Dummett is to discuss not only verification, but
also falsification. This path is explored by Andreas Kapsner in great detail in [33].
4 HO would like to thank Patrick Blackburn for pointing this out and encouraging him to
pursue this direction at AiML 2016 in person.
5 Note that there is a recent work on the notion of actuality based on relevant logics by
Shawn Standefer in [42].
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Another example for flexible actuality is that of Dominic Gregory [29],
whose semantics includes a mapping @, which maps a world w to its actual
world @(w) in the same model, with a couple of conditions on @. This in
particular allows there being more than one actual worlds in a model. 6

Baaz’ LGP and Titatni’s GI Recall that Gödel-Dummett logic, introduced
in [24] by Dummett, is an extension of intuitionistic logic with the linearity
axiom:

(A→ B) ∨ (B → A). (Lin)

Semantically, this logic is characterised by linear Kripke frames, which enables
us to see it as a fuzzy logic in intuitionistic setting.

Then, in [2], Matthias Baaz expanded Gödel-Dummett logic by an addi-
tional operator, 4, which he called a projection modality, also later known as
Baaz’ Delta. The resulting logic is named LGP. Semantically, a formula of the
form 4A attains either the value 1 or 0, and it attains the value 1 iff A has
the value 1. 7 In other words, 4A is true iff A is valid in the model. Baaz in
the same paper also mentions an operator equivalent to empirical negation in
the setting of Gödel-Dummett logic (cf. [2, p.33]).

A logic closely related to LGP of Baaz is Satoko Titani’s global intuition-
istic logic GI, introduced in [46]. This logic, formulated as a sequent calculus,
is defined by adding to intuitionistic logic an operator 2 of globalization. From
a semantic perspective, in terms of algebraic semantics, 2 has the same inter-
pretation as 4. There is also a fuzzy extension of GI called fuzzy intuitionistic
logic with globalization GIF proposed by Gaisi Takeuti and Satoko Titani in
[45], whose propositional fragment is equivalent to LGP (cf. [13, Remark 3]).

Note here that global intuitionistic logic can be regarded as an instance of
intuitionistic modal logics which are equipped with at least two accessibility
relations, intuitionistic ≤ and modal R. This is studied since 1948 by Frederic
B. Fitch in [25], followed by Arthur N. Prior’s [37] and R. A. Bull’s papers
[11,12], and later major developments include [7,8,21,36,39,40,41,48]. Some
close connections of global intuitionistic logic to intuitionistic modal logics are
studied by Hiroshi Aoyama in [1].

Based on these, this paper is structured as follows. We first introduce intu-
itionistic logic with actuality operator, called IPC@, both in terms of semantics
and proof system, in §2. Then, in §3, we establish the soundness and strong
completeness of IPC@. This is followed by a comparison of IPC@ with related
systems in §4 and §5. More specifically, IPC@ is compared with intuitionistic
logic with empirical negation as well as logic of actuality of Crossley and Hum-
berstone in §4. We then turn to compare IPC@ with LGP of Baaz and GI
of Titani in §5. The paper concludes with a brief summary of our main results
and some directions for future research in §6.

6 For more discussions on actuality, see, for instance, [26,32,43].
7 This condition is closely related to the framework of simple monadic Heyting algebra which
is explored in detail in [6] by Guram Bezhanishvili. We would like to thank one of the referees
for directing our attention to this paper.
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2 Semantics and Proof system

After setting up the language, we first present the semantics, and then turn to
the proof system.

Definition 2.1 The language L@
⊥ consists of a finite set {@,⊥,∧,∨,→} of

propositional connectives and a countable set Prop of propositional variables
which we denote by p, q, etc. Furthermore, we denote by Form the set of
formulas defined as usual in L@

⊥. We denote a formula of L@
⊥ by A, B, C, etc.

and a set of formulas of L@
⊥ by Γ, ∆, Σ, etc.

2.1 Semantics

Definition 2.2 A model for the language L@
⊥ is a quadruple 〈W, g,≤, V 〉,

where W is a non-empty set (of states); g ∈ W (the base state); ≤ is a par-
tial order on W with g being the least element; and V : W × Prop → {0, 1}
an assignment of truth values to state-variable pairs with the condition that
V (w1, p) = 1 and w1 ≤ w2 only if V (w2, p) = 1 for all p ∈ Prop and all
w1, w2 ∈ W . Valuations V are then extended to interpretations I to state-
formula pairs by the following conditions:

• I(w, p) = V (w, p);
• I(w,⊥) = 0;
• I(w,@A) = 1 iff I(g,A) = 1;
• I(w,A ∧B) = 1 iff I(w,A) = 1 and I(w,B) = 1;
• I(w,A ∨B) = 1 iff I(w,A) = 1 or I(w,B) = 1;
• I(w,A→ B) = 1 iff for all x ∈W : if w ≤ x and I(x,A) = 1 then I(x,B) = 1.

Semantic consequence is now defined in terms of truth preservation at g:
Γ |= A iff for all models 〈W, g,≤, I〉, I(g,A) = 1 if I(g,B) = 1 for all B ∈ Γ.

2.2 Proof System

Definition 2.3 The system IPC@ consists of the following axiom schemata
and rules of inference:

⊥→A (Ax0)

A→(B→A) (Ax1)

(A→(B→C))→((A→B)→(A→C)) (Ax2)

(A ∧B)→A (Ax3)

(A ∧B)→B (Ax4)

(C→A)→((C→B)→(C→(A ∧B))) (Ax5)

A→(A ∨B) (Ax6)

B→(A ∨B) (Ax7)

(A→C)→((B→C)→((A ∨B)→C)) (Ax8)

@(A→B)→(@A→@B) (Ax9)

@A→A (Ax10)

@A→@@A (Ax11)

@A ∨ (@A→B) (Ax12)

@(A∨B)→(@A∨@B) (Ax13)

A

@A
(RN)

A A→B
B

(MP)

Finally, we write Γ ` A if there is a sequence of formulas B1, . . . , Bn, A, n ≥ 0,
such that every formula in the sequence B1, . . . , Bn, A either (i) belongs to Γ;
(ii) is an axiom of IPC@; (iii) is obtained by (MP) or (RN) from formulas
preceding it in sequence.
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Remark 2.4 We will refer to the subsystem of IPC@ which consists of axiom
schemata (Ax1)–(Ax8) and a rule of inference (MP) as IPC+.

Note that the deduction theorem does not hold with respect to→ in IPC@.
However, we do have a deduction theorem in a slightly different form, and our
goal now is to prove this. For this purpose, we begin with some preparations.

Fact 2.5 The following formulas are provable in IPC+ and thus in IPC@.

A→ A (1)

(A ∨B)→ (B ∨A) (2)

(A→ (B → C))→ (B → (A→ C)) (3)

(A ∨B)→ ((B → C)→ (A ∨ C)) (4)

(A→ (B → C))→ ((A ∧B)→ C) (5)

Now, we can prove one direction of the deduction theorem.

Proposition 2.6 For all Γ ∪ {A,B} ⊆ Form, if Γ, A ` B then Γ ` @A→ B.

Proof. By the induction on the length n of the proof of Γ, A ` B. If n = 1,
then we have the following three cases.

• If B is one of the axioms of IPC@, then we have ` B. Therefore, by (Ax1),
we obtain ` @A→ B which implies the desired result.

• If B ∈ Γ, we have Γ ` B, and thus we obtain the desired result by (Ax1).
• If B = A, then by (Ax10), we have @A→ B which implies the desired result.

For n > 1, then there are two additional cases to be considered.

• If B is obtained by applying (MP), then we will have Γ, A ` C and Γ, A `
C → B lengths of the proof of which are less than n. Thus, by induction
hypothesis, we have Γ ` @A → C and Γ ` @A → (C → B), and by (Ax2)
and (MP), we obtain Γ ` @A→ B as desired.

• If B is obtained by applying (RN), then B = @C and we will have Γ, A ` C
length of the proof of which is less than n. Thus, by induction hypothesis,
we have Γ ` @A→C. By (Ax9) and (RN), we have Γ ` @@A→@C. Another
application of (Ax9) gives us Γ ` @A→ @C, i.e. Γ ` @A→ B as desired.

This completes the proof. 2

Proposition 2.7 For all Γ ∪ {A,B} ⊆ Form, if Γ ` @A→ B then Γ, A ` B.

Proof. By the assumption Γ ` @A → B. Moreover, we have Γ, A ` @A by
(RN). Thus, we obtain the desired result by (MP). 2

By combining Propositions 2.6 and 2.7, we obtain the following theorem.

Theorem 2.8 For all Γ ∪ {A,B} ⊆ Form, Γ, A ` B iff Γ ` @A→ B.

Let us mention a corollary of the deduction theorem which shall prove vital
for the completeness theorem.

Corollary 2.9 If A ` C and B ` C, then A ∨B ` C.

Proof. If A ` C and B ` C, then by deduction theorem ` @A → C and `
@B → C. Thus ` (@A∨@B)→ C; now use (Ax13) to deduce ` @(A∨B)→ C.
By deduction theorem again, we conclude A ∨B ` C. 2
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3 Soundness and Completeness

We now turn to prove the soundness and the strong completeness. The proofs
are in large part analogous to those of [17,18] which build on [38].

3.1 Soundness

Theorem 3.1 For Γ ∪ {A} ⊆ Form, if Γ ` A then Γ |= A.

Proof. By induction on the length of the proof. 2

3.2 Key notions for completeness

In below we introduce some concepts used in the argument for completeness.

(i) Σ `π A iff Σ ∪Π ` A.
(ii) Σ is a Π-theory iff:

(a) if A,B ∈ Σ then A ∧B ∈ Σ.
(b) if `π A→ B then (if A ∈ Σ then B ∈ Σ).

(iii) Σ is prime iff (if A ∨B ∈ Σ then A ∈ Σ or B ∈ Σ).
(iv) Σ `π ∆ iff for some D1, . . . , Dn ∈ ∆, Σ `π D1, . . . , Dn.
(v) `π Σ→ ∆ iff for some C1, . . . , Cn ∈ Σ and D1, . . . , Dm ∈ ∆:

`π C1 ∧ · · · ∧ Cn → D1 ∨ · · · ∨Dm.

(vi) Σ is Π-deductively closed iff (if Σ `π A then A ∈ Σ).
(vii) 〈Σ,∆〉 is a Π-partition iff:

(a) Σ ∪∆ = Form
(b) 0π Σ→ ∆

(viii) Σ is non-trivial iff A /∈ Σ for some formula A.

Lemma 3.2 If Γ is a non-empty Π-theory, then Π ⊆ Γ.

Proof. Take A ∈ Π. Then, we have Π ` A. Now since Γ is non-empty, take
any C ∈ Γ. Then, by (Ax1), we obtain Π ` C → A, i.e. `π C → A. Thus,
combining this together with C ∈ Γ and the assumption that Γ is Π-theory, we
conclude that A ∈ Γ. 2

3.3 Extension lemmas

We now introduce a number of lemmas concerning extensions of sets with
various properties. For the proofs, cf. [17, §2] which are based on [38].

Lemma 3.3 If 〈Σ,∆〉 is a Π-partition then Σ is a prime Π-theory.

Lemma 3.4 If 0π Σ → ∆ then there are Σ′ ⊇ Σ and ∆′ ⊇ ∆ such that
〈Σ′,∆′〉 is a Π-partition.

Corollary 3.5 Let Σ be a non-empty Π-theory, ∆ be closed under disjunction,
and Σ ∩∆ = ∅. Then there is Σ′ ⊇ Σ such that Σ′ ∩∆ = ∅ and Σ′ is a prime
Π-theory.

Lemma 3.6 If Σ 0 ∆ then there are Σ′ ⊇ Σ and ∆′ ⊇ ∆ such that 〈Σ′,∆′〉 is
a partition, and Σ′ is deductively closed.
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We shall mention that the proof of this lemma relies on Corollary 2.9, and
consequently on (Ax13). Hence the same argument cannot be directly imitated
by a logic lacking this axiom, such as GIPC in §5.

Corollary 3.7 If Σ 0 A then there are Π ⊇ Σ such that A /∈ Π, Π is a prime
Π-theory and is Π-deductively closed.

3.4 Counter-example lemma

Lemma 3.8 If ∆ is a Π-theory and A → B /∈ ∆, then there is a prime Π-
theory Γ, such that A ∈ Γ and B /∈ Γ.

Proof. Let Σ = {C : A → C ∈ ∆}. We check that Σ is a Π-theory. First, if
C1, C2 ∈ Σ then A→ C1, A→ C2 ∈ ∆. Since ` (A→ C1 ∧ A→ C2)→ (A→
(C1 ∧C2)) and ∆ a Π-theory, we have A→ (C1 ∧C2) ∈ ∆. Thus C1 ∧C2 ∈ Σ.
Now suppose that `π C → D and C ∈ Σ. Then `π (A→ C)→ (A→ D) and
A→ C ∈ ∆; so A→ D ∈ ∆ and hence D ∈ Σ.

Clearly A∈Σ and B∨ · · · ∨B/∈Σ. Based on this, let ∆′ be the closure of {B}
under disjunction. Then Σ∩∆′=∅, and the result follows from Corollary 3.5.2

Note that, since Σ is non-trivial, the obtained Γ is non-trivial as well.

3.5 Completeness

We are now ready to prove the completeness.

Theorem 3.9 For all Γ ∪ {A} ⊆ Form, if Γ |= A then Γ ` A.

Proof. We prove the contrapositive. Suppose that Γ 0 A. Then, by Corollary
3.7, there is a Π ⊇ Γ such that Π is a prime Π-theory, Π-deductively closed
and A /∈ Π. Define the interpretation A = 〈X,Π,≤, I〉, where X = {∆ :
∆ is a non-trivial prime Π-theory}, ∆ ≤ Σ iff ∆ ⊆ Σ and I is defined thus.
For every state Σ and propositional parameter p:

I(Σ, p) = 1 iff p ∈ Σ

We show by induction on B that I(Σ, B) = 1 iff B ∈ Σ. We concentrate on
the cases where B has the form @C and C → D.

When B ≡ @C, if I(Σ,@C) = 1 then by definition I(Π, C) = 1. By IH
this is equivalent to C ∈ Π. Then C ∈ Σ as Π ⊆ Σ and also `π @C by (RN).
Hence `π C → @C by (Ax1). Now as Σ is a Π-theory, C ∈ Σ implies @C ∈ Σ.
For the other direction, it suffices to show @C ∈ Σ implies C ∈ Π. First note
@C ∨ @C → D ∈ Π for all D because Π is Π-deductively closed. Then as
Π is a prime theory, for each D either @C ∈ Π or @C → D ∈ Π. That is,
either @C ∈ Π or for all D, @C → D ∈ Π. But if the latter, because Σ is a
Π-theory, that Π ⊆ Σ and ` (@C ∧ (@C → D)) → D imply D ∈ Σ for all D.
This contradicts the non-triviality of Σ, so it must be that @C ∈ Π. But then
C ∈ Π by (Ax10) and Π being a Π-theory.

WhenB ≡ C → D, by IH I(Σ, C → D) = 1 iff for all ∆ s.t. Σ ⊆ ∆, if C ∈ ∆
then D ∈ ∆. Hence it suffices to show that this latter condition is equivalent
to C → D ∈ Σ. For the forward direction, we argue by contraposition; so
assume C → D /∈ Σ. Then by Lemma 3.8 we can find find a non-trivial prime
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Π-theory Σ′ such that C ∈ Σ′ but D /∈ Σ′. For the backward direction, assume
C → D ∈ Σ and C ∈ ∆ for any ∆ s.t. Σ ⊆ ∆. Then C → D ∈ ∆ as well, and
so D ∈ ∆ since ∆ is a Π-theory.

It now suffices to observe that B ∈ Π for all B ∈ Γ and A /∈ Π, which in
view of the above means Γ 6|= A. This completes the proof. 2

4 Comparison (I)

In this section, we give some comparisons of IPC@ with IPC∼, as given in
[16,17], and S5A of Crossley and Humberstone, as given in [14].

4.1 Empirical negation and actuality

IPC∼ employs the language L∼ = {∼,∧,∨,→}, and is axiomatized as follows.

Definition 4.1 The system IPC∼ consists of (Ax1)-(Ax8), (MP) and the
following axiom schemata and a rule of inference:

A ∨ ∼A (N1)

∼A→ (∼∼A→ B) (N2)

A ∨B
∼A→ B

(RP)

We shall denote the deducibility in IPC∼ by `∼. The deduction theorem
holds in the form Γ, A `∼ B iff Γ `∼ ∼∼A → B (cf. [17, Theorem 2.1]). The
corresponding semantics for IPC∼ is almost identical to that of IPC@, except
for the valuation of formulas of the form ∼A , which is given by:

I(w,∼A) = 1 iff I(g,A) = 0.

Remark 4.2 Note that Kosta Došen, in papers [20,22,23], considered negative
modalities in models with two relations between worlds, like the models for
intuitionistic modal logics, and one of them has the following condition:

w  ∼A iff for some w′ ∈W,wRw′ and w′ 1 A.

Although the modal relation R is absorbed by the intuitionistic relation ≤,
empirical negation can be seen as having this type of valuation. Interestingly,
Došen considered this sort of absorption is a necessary condition for a negative
modality to be deemed a ‘negation’ (cf. [23, p.85]). For a recent discussion
on negation understood as negative modality, see [4,5,19]. See also [31] for an
up-to-date survey on negation, as well as negative modalities, in general.

Remark 4.3 There are two more things to note with this valuation. First,
intuitionistic ⊥ and consequently the intuitionistic negation ¬ is definable in
IPC∼ by setting ⊥ := ∼(A → A). Second, since I(w,∼∼A)=1 iff I(g,A)=1,
we see @ is also definable in IPC∼ by @A := ∼∼A.

A natural question then would be whether we can go the opposite direction,
namely, is ∼ definable in IPC@? It turns out that this also holds. Since we have
⊥ in L@

⊥, we readily see: I(w,¬@A)=1 iff I(g,A)=0. The situation changes
once we drop ⊥ from the language. Let IPC@+ be defined in the language
L@ = {@,∧,∨,→} with (Ax1)-(Ax13), (RN) and (MP). The completeness for
IPC@+ with respect to Kripke models with the base state is readily obtainable
by an analogous means to that of IPC@.
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Proposition 4.4 ∼ is not definable in IPC@+.

Proof. If ∼ is definable in IPC@+, then as we have seen ⊥ is also definable as
∼(A→A). Let F be such a formula. Now choose a model such that V (w, p)=1
for all p and w∈W . Then by induction on formula we can establish I(w,A)=1
for all A and w∈W . So in particular, I(w,F )=1 for all w∈W , a contradiction.2

Therefore IPC@+ may be seen as an intuitionistic system with actuality
operator that is independent of negation. This system consequently has an
advantage over IPC@ and IPC∼ when a non-standard notion of negation is
espoused. Moreover it offers a suitable starting point for combining intuitionism
in empirical discourse and the school of intuitionism which eschews negation
altogether, as a result of scepticism towards unrealised concepts (cf. [30]).

4.2 Classical actuality and constructive actuality

We now turn to compare IPC@ to S5A of Crossley and Humberstone. To this
end, we first review the basics of S5A, with a slightly difference in the notation
to replace A, for actuality, by @. Then the system is described by the language
L@
m = {@,2,⊥,∧,∨,→}.

Definition 4.5 [Crossley & Humberstone] An S5A-model for the language
L@
m is a triple 〈W, g, V 〉, where W is a non-empty set (of states); g ∈ W (the

base state); and V : W × Prop → {0, 1} an assignment of truth values to
state-variable pairs. Valuations V are then extended to interpretations I to
state-formula pairs by the following conditions:

• I(w, p) = V (w, p);
• I(w,⊥) = 0;
• I(w,2A) = 1 iff for all w ∈W , I(w,A) = 1;
• I(w,@A) = 1 iff I(g,A) = 1;
• I(w,A ∧B) = 1 iff I(w,A) = 1 and I(w,B) = 1;
• I(w,A ∨B) = 1 iff I(w,A) = 1 or I(w,B) = 1;
• I(w,A→ B) = 1 iff I(w,A) 6= 1 or I(w,B) = 1.

Then, S5A-validity is defined in terms of truth at all w ∈ W : |=S5A A iff
for all S5A-models 〈W, g, I〉, I(w,A) = 1 for all w ∈W .

Definition 4.6 [Crossley and Humberstone] The axiomatic proof system for
S5A consists of the following axioms in addition to any axiomatization of S5:

@(@A→ A) (A1)

@(A→ B)→ (@A→ @B) (A2)

@A↔ ¬@¬A (A3)

2A→ @A (A4)
@A→ 2@A (A5)

We refer to the derivability in S5A as `S5A.

Based on these, Crossley and Humberstone established the following result.

Theorem 4.7 (Crossley and Humberstone) For all A ∈ Form@
m, |=S5A A

iff `S5A A.

The above axiomatization seen in view of IPC@ is problematic since the
right-to-left direction of (A3) is not valid/derivable. However, a slightly differ-
ent axiomatization will allow us to compare S5A and IPC@ more easily.
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Proposition 4.8 Let `S5A′ be the derivability in a system obtained from the
axiomatic proof system for S5A by replacing (A3) by the following two axioms:

@A→ ¬@¬A (A3.1) @(A ∨B)→ (@A ∨@B) (A3.2)

Then, for all A ∈ Form@
m, `S5A′ A iff `S5A A.

Proof. For the left-to-right direction, it suffices to check that (A3.2) is deriv-
able in S5A. In view of (A3), (A3.2) is derivable iff `S5A (@¬A ∧ @¬B) →
@(¬A ∧ ¬B). But this is obvious since @ is an extension of K-modality.

For the other way around, it suffices to prove `S5A′ @A ∨ @¬A. Since we
have classical tautologies, we have `S5A′ A ∨ ¬A, and by the rule of necessi-
tation, we have `S5A′ 2(A ∨ ¬A). This implies `S5A′ @(A ∨ ¬A) in view of
(A4), and finally we make use of (A3.2) to obtain the desired result. 2

Remark 4.9 Note first that even though we do not have the necessity operator
in IPC@, the actuality operator also enjoys the following condition:

I(w,@A) = 1 iff for all w ∈W, I(w,A) = 1

This is because the base point is the root. Thus, if we regard 2 as @ in the
above axiomatization of S5A, then we can see that all the axiom schemata and
rules of inference related to 2 and @ in S5A are derivable in IPC@.

Therefore, there is a sense in which IPC@ is a generalization of S5A. But
there is also a sense in which this generalization is not simple. More specifically,
we obtain the following result.

Proposition 4.10 IPC@ plus Peirce’s law collapses into Triv based on CL.

Proof. In view of (Ax10), it suffices to prove A→@A in the extension. Note
first that A∨(A→B) is still derivable from an instance of Peirce’s law, namely
(((A ∨ (A→B))→A)→(A∨(A→B)))→(A∨(A→B)). Then as before we obtain
@A∨@(A→B), which entails (@A→@B)→@(A→B). Take B ≡ @A and we
have (@A→@@A)→@(A→@A). By (Ax11) and (Ax10), we obtain A→ @A.2

Remark 4.11 The above proof does not rely on the existence of ⊥ in the
language, and thus also applies to IPC@+.

5 Comparison (II)

In this section, we offer further comparisons of IPC@ with LGP of Baaz, as
given in [2], and GIPC of Titani, as given in [46].

5.1 Baaz Delta and actuality

As we mentioned in the introduction, Baaz’ logic LGP is Gödel-Dummet logic
equipped with a projection modality 4. Let us first look at the precise formu-
lation in [2]. (For the sake of simplicity, we shall hereafter use L@

⊥ to describe
the system, so @ will be used instead of 4.)

Definition 5.1 [Baaz] Let V ⊆ [0, 1] be a set of truth values containing 0 and
1. A valuation V based on V assigns a truth value in V to each propositional
variable. V is extended to all propositions by the clauses:
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• V(⊥) = 0

• V(A∧B) = min(V(A),V(B))

• V(A∨B) = max(V(A),V(B))

• V(A→B) =

{
V(B) if V(A) > V(B)

1 if V(A) ≤ V(B)

• V(@A) =

{
1 if V(A) = 1

0 if V(A) 6= 1

Then GP(V ) := {A : V(A) = 1 for every V based on V }.

Definition 5.2 LGP is axiomatized by adding the following axiom to IPC@.

(A→ B) ∨ (B → A) (Lin)

Let V be infinite. Baaz showed the following weak completeness for LGP.

Theorem 5.3 (Baaz) For all A ∈ Form, LGP ` A iff A ∈ GP(V ).

As is well-known (e.g. [27, Theorem 19, Chapter 4]), Kripke-semantically
(Lin) corresponds to lineally ordered Kripke frames. Thus as an improvement,
we obtain a strong completeness proof for LGP, in view of Theorem 3.9. More
specifically, let us denote `l and |=l for the derivability in LGP and semantic
consequence with respect to the class of linearly ordered models, respectively.

Proposition 5.4 For all Γ ∪ {A} ⊆ Form, Γ `l A iff Γ |=l A.

Proof. For soundness, we have to check that (Lin) holds in any linearly ordered
model. Given a linearly ordered model 〈W, g,≤, I〉 and formulas A and B, let
us denote V (A) = {w : I(w,A) = 1} and V (B) = {w : I(w,B) = 1}. Then we
have V (A) ⊆ V (B) or V (B) ⊆ V (A). Hence I(g,A→ B ∨B → A) = 1.

For completeness, we have to check that the counter-model construction of
Theorem 3.9 creates a linearly ordered model. Suppose otherwise. Then there
are states Σ1 and Σ2 such that neither Σ1 ⊆ Σ2 nor Σ2 ⊆ Σ1. Then we can
find a formula A1 in Σ1 not in Σ2, and A2 in Σ2 not in Σ1. Now as the base
state Π is a prime Π-theory, A1 → A2 ∨A2 → A1 ∈ Π, and so A1 → A2 ∈ Π or
A2 → A1 ∈ Π. Without loss of generality, assume the former. Then because Σ1

is a Π-theory, A1 ∧ (A1 → A2) ∈ Σ1; thus A2 ∈ Σ1, a contradiction. Therefore
the counter-model has to be linearly ordered. This completes the proof. 2

Remark 5.5 The above result clarifies that IPC@ is a generalization of LGP
to include non-linearly ordered models. To give a further comparison, for LGP
it is observed in [2] that ¬¬A is a dual projection operator of @A, attaining 1 if
A 6= 0 and 0 otherwise. In the setting of IPC@, this true-if-not-false type of op-
erator is perhaps better captured by ¬@¬A (i.e. ∼¬A). I(w,¬@¬A)=1 iff for
some u∈W, I(u,A)=1; so while ¬¬A→¬@¬A holds in general, ¬@¬A→¬¬A
does not. One may readily check that this latter implication is equivalent to
the weak excluded middle ¬A∨¬¬A as an axiom; in particular ¬@¬A and ¬¬A
becomes equivalent in LGP, because (Lin) implies the weak excluded middle.

5.2 A reformulation of global intuitionistic logic

Next we shall consider propositional global intuitionistic logic (to be called
GIPC). Let us first look at the formulation of the logic in sequent calculus as
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given in [46,1]. The system will be described in the language L@
⊥. Originally,

however, 2 was used in place of @, and ¬ was taken as primitive, rather than
⊥. We shall call the calculus LGJ and the derivability by `gGI .
Definition 5.6 [Titani & Aoyama] The rule of the calculus LGJ are as follows.

A⇒ A [Ax] ⊥ ⇒ [L⊥]

Γ⇒ ∆ [LW]
A,Γ⇒ ∆

Γ⇒ ∆ [RW]
Γ⇒ ∆, A

A,A,Γ⇒ ∆
[LC]

A,Γ⇒ ∆

Γ⇒ ∆, A,A
[RC]

Γ⇒ ∆, A

Γ, A,B,Π⇒ ∆
[LE]

Γ, B,A,Π⇒ ∆

Γ⇒ ∆, A,B,Λ
[RE]

Γ⇒ ∆, B,A,Λ

Γ⇒ ∆, A A,Π⇒ Λ
[Cut]

Γ,Π⇒ ∆,Λ

Ai,Γ⇒ ∆
[L∧]

A1 ∧A2,Γ⇒ ∆

Γ⇒ ∆, A Γ⇒ ∆, B
[R∧]

Γ⇒ ∆, A ∧B
A,Γ⇒ ∆ B,Γ⇒ ∆

[L∨]
A ∨B,Γ⇒ ∆

Γ⇒ ∆, Ai
[R∨]

Γ⇒ ∆, A1 ∨A2

Γ⇒ ∆, A B,Π⇒ Λ
[L→]

A→ B,Γ,Π⇒ ∆,Λ

A,Γ⇒ ∆̄, B
[R→]

Γ⇒ ∆̄, A→ B

A,Γ⇒ ∆
[L@]

@A,Γ⇒ ∆

Γ̄⇒ ∆̄, A
[R@]

Γ̄⇒ ∆̄,@A

In the above, i ∈ {1, 2} and Γ̄ and ∆̄ are finite sequences of @-closed formulas,
which are formulas built from ⊥ and formulas of the form @A, by the con-
nectives ∧,∨,→. For example, @@A,@A ∧ @(⊥ → C),¬@(¬A ∨ B) are all
@-closed formulas. We shall denote @-closed formulas by Ā, B̄ and so on.

We wish to compare GIPC with IPC@. For this purpose it is preferable to
have at hand a Hilbert-style axiomatization. This we claim to be the following.

Definition 5.7 The system GIPC consists of (Ax0)-(Ax12), (MP),(RN) and
the following axiom scheme:

(@A→ @B)→ @(@A→ B) (Ax14)

The derivability in GIPC will be denoted by `GI .
Remark 5.8 Note that the deduction theorem, in the form of Theorem 2.8,
holds for GIPC as well, by the same argument.

We now show a lemma before proving that LGJ and GIPC are equivalent.

Lemma 5.9 Let Ā be @-closed. Then, (i) `GI Ā∨Ā→B, and (ii) `GI Ā→@Ā.
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Proof. For (i), we argue by induction on the complexity of A.

• If Ā ≡ ⊥, then `GI ⊥ ∨⊥ → B.
• If Ā ≡ @A, then @A ∨@A→ B is an instance of (Ax12).
• If Ā ≡ C̄∧D̄, then by IH `GI C̄∨C̄→B and `GI D̄∨D̄→B. So `GI (C̄ ∧
D̄) ∨ (C̄ ∧ D̄)→ B.

• If Ā ≡ C̄ ∨ D̄, similarly `GI (C̄ ∨ D̄) ∨ (C̄ ∨ D̄)→ B.
• If Ā ≡ C̄ → D̄, by IH `GI C̄ ∨ C̄ → D̄ and `GI D̄ ∨ D̄ → B. So `GI (C̄ →
D̄) ∨ (C̄ → D̄)→ B.

For (ii), we similarly argue by induction on A.

• If Ā ≡ ⊥, then ⊥ → @⊥ is an instance of (Ax0).
• If Ā ≡ @A, then @A→ @@A is an instance of (Ax11).
• If Ā ≡ B̄ ∧ C̄, then by IH `GI B̄ → @B̄ and `GI C̄ → @C̄. Thus `GI
B̄ ∧ C̄ → @B̄ ∧@C̄. Now it is easy to check via the deduction theorem that
`GI @B̄ ∧@C̄ → @(B̄ ∧ C̄). Hence `GI B̄ ∧ C̄ → @(B̄ ∧ C̄).

• If Ā ≡ B̄∨C̄, then using the same IH as above, we see `GI B̄∨C̄ → @B̄∨@C̄.
Again it is an easy consequence of the deduction theorem that `GI @B̄ →
@(B̄ ∨ C̄) and `GI @C̄ → @(B̄ ∨ C̄). Hence `GI B̄ ∨ C̄ → @(B̄ ∨ C̄).

• If Ā ≡ B̄ → C̄, then using (Ax10) and the IH that `GI C̄ → @C̄ we infer
`GI (B̄ → C̄) → (@B̄ → @C̄). Thus by (Ax14) `GI (B̄ → C̄) → @(@B̄ →
C̄). Also by the IH that `GI B̄ → @B̄ we have `GI (@B̄ → C̄)→ (B̄ → C̄).
So by (RN) and (Ax9), `GI @(@B̄ → C̄) → @(B̄ → C̄). Combining the
above two observations, we conclude `GI (B̄ → C̄)→ @(B̄ → C̄).

This completes the proof. 2

Proposition 5.10 The following equivalence hold between LGP and GIPC.
(i) For all A ∈ Form, if `GI A then `gGI ⇒ A.
(ii) For all Γ,∆ ⊆ Form, if `gGI Γ⇒ ∆ then `GI

∧
Γ→

∨
∆.

Proof. For (i), given the correspondence in intuitionistic logic, it suffices to
consider axioms involving @ and (RN). Here we show cases for (Ax12) and
(Ax14), which are stated but not shown in [1, Proposition 2.1]; other cases are
immediate.

Ax12

@A⇒ @A [RW]
@A⇒ @A,B

[R→]⇒ @A,@A→ B
[R∨],[RC]

⇒ @A ∨@A→ B

Ax14

@A⇒ @A
B ⇒ B [L@]

@B ⇒ B [L→]
@A→ @B,@A⇒ B

[R→]
@A→ @B ⇒ @A→ B [R@]

@A→ @B ⇒ @(@A→ B)
[R→]

⇒ (@A→ @B)→ @(@A→ B)

For (ii), we treat here the cases for [R→], [L@] and [R@].

• For [R→], by IH `GI (
∧

Γ∧A)→ (
∨

∆̄∨B). So `GI
∧

Γ→ (A→ (
∨

∆̄∨B)).
Now by Lemma 5.9 (i), `GI

∨
∆̄∨

∨
∆̄→ B. Thus `GI

∧
Γ→ (

∨
∆̄∨A→

B).
• For [L@], by IH `GI (A∧

∧
Γ)→

∨
∆. Then `GI A→ (

∧
Γ→

∨
∆). So by
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(Ax10) `GI @A→ (
∧

Γ→
∨

∆). Hence `GI (@A ∧
∧

Γ)→
∨

∆.
• For [R@], by IH `GI

∧
Γ̄→ (

∨
∆̄∨A). Then `GI (

∧
Γ̄∧(

∨
∆̄→ @A))→ A.

Thus by (RN) and (Ax9), `GI @(
∧

Γ̄ ∧ (
∨

∆̄→ @A))→ @A. Here we note
@(

∧
Γ̄∧(

∨
∆̄→ @A)) is @-closed. So by Lemma 5.9 (ii), `GI (

∧
Γ̄∧(

∨
∆̄→

@A))→ @A. Also by Lemma 5.9 (i), `GI
∨

∆̄∨
∨

∆̄→ @A. From these we
deduce `GI

∧
Γ̄→ (

∨
∆̄ ∨@A).

This completes the proof. 2

5.3 Globalization and actuality

We are now ready to compare IPC@ and GIPC. We first observe that the
former logic contains the latter.

Proposition 5.11 IPC@⊇ GIPC.

Proof. It suffices to observe that (Ax14) is derivable in IPC@. Applying (RN)
and (Ax13) to (Ax12), we obtain ` @A ∨ @(@A → B). Then on one hand,
since ` @A → ((@A → @B) → @B) and ` @B → @(@A → B) (the latter
by (Ax1), (RN) and (Ax9)), we have ` @A→ ((@A→ @B)→ @(@A→ B)).
On the other hand, it is immediate that ` @(@A → B) → ((@A → @B) →
@(@A→ B)). Therefore ` (@A→ @B)→ @(@A→ B). 2

Remark 5.12 Baaz, in [2], states sequent rules for 4 of LGP. It turns out
that the same rules can be used to formulate a calculus for IPC@. It is obtained
from LGJ by relaxing [R@] to

Γ̄⇒ ∆, A
[R@]

Γ̄⇒ ∆,@A

By Proposition 5.11, we can use Lemma 5.9 for IPC@ as well. Then we can
argue analogously to Proposition 5.10; the treatments of cases for the new [R@]
and (Ax13) are straightforward.

To show that the inclusion of the above proposition is strict, we shall turn to
a closely related logic called TCCω. This is a subsystem of IPC∼ introduced
by A. B. Gordienko in [28] as an extension of Richard Sylvan’s logic CCω (cf.
[44]). Its axiomatization is that of IPC∼, except (RP) is replaced with

A→ B

∼B → ∼A
. (RC)

The deducibility in TCCω will be denoted `t. It is easy to check that formulas
and rules derivable in IPC∼ listed in [17, Lemma 2.6, Lemma 2.8] are also
derivable in TCCω. In particular, the following formulas and rule are derivable.

(∼A→ A)→ A (t1)

∼(A→ A)→ B (t2)

∼∼A→ A (t3)

A

∼∼A
(t4)

Moreover, the same form of the deduction theorem as IPC∼ holds in TCCω.
Quite similarly to the situation with IPC@ and IPC∼, we have the follow-

ing translations between GIPC and TCCω.
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Definition 5.13 Let ()∼ and ()@ be translations between L@
⊥ and L∼ such

that:

p∼ = p p@ = p

(A ◦B)∼ = A∼ ◦B∼ (A ◦B)@ = A@ ◦B@

(@A)∼ = ∼∼A∼ (∼A)@ = ¬@A@

⊥∼ = ∼(p0 → p0)

where p0 is a fixed propositional variable, and ◦ ∈ {∧,∨ →}.

Lemma 5.14 For all A ∈ Form, `GI A ↔ (A∼)@ and for all A ∈ Form∼,
`t A↔ (A@)∼.

Proof. By induction on A. Here we look at the cases A ≡ @B and A ≡ ∼B.
For the former, we need to show `GI @B ↔ ¬@¬@(B∼)@. By IH `GI

B ↔ (B∼)@, so its suffices to show `GI @B ↔ ¬@¬@B. We first note ¬@B is
@-closed, thus `GI ¬@¬@B ↔ ¬¬@B. Also `GI ¬¬@B ↔ @B from (Ax12).
Therefore we conclude `GI @B ↔ ¬@¬@B as desired.

For the latter, we need `t ∼B ↔ (∼∼(B@)∼ → ∼(p0 → p0)). Again by IH
`t B ↔ (B@)∼. Then the equivalence follows by (N2), (t1) and (t2). 2

Proposition 5.15 We have that (i) for all A ∈ Form, `GI A iff `t A∼, and
(ii) for all A ∈ Form∼, `t A iff `GI A@.

Proof. By Lemma 5.14, it suffices to show the left-to-right direction.
For (i), we need to check the translations of (Ax9)-(Ax12), (Ax14) and

(RN) hold in TCCω.

• (Ax9) is translated as ∼∼(A∼ → B∼)→ (∼∼A∼ → ∼∼B∼), the derivabil-
ity of which is immediate from the deduction theorem and (RC).

• (Ax10) is translated as ∼∼A∼ → A∼, which is an instance of (t3).
• (Ax11) is translated as ∼∼A∼ → ∼∼∼∼A∼. This follows from (N2) and

(t1), which imply ∼∼∼A∼ → ∼A∼; then use (RC).
• (Ax12) becomes ∼∼A∼ ∨ ∼∼A∼ → B∼, a consequence of (N1) and (N2).
• For (Ax14), we need to show `t (∼∼A∼ → ∼∼B∼) → ∼∼(∼∼A∼ → B∼).

First `t ∼A∼∨∼∼A∼ from (N1) and ∼∼∼A∼ → ∼A∼ as seen above. So `t
(∼∼A∼ → ∼∼B∼)→ (∼A∼∨∼∼B∼). We shall show `t (∼A∼∨∼∼B∼)→
∼∼(∼∼A∼ → B∼). On one hand, `t ∼A∼ → ∼∼(∼∼A∼ → B∼) from (N2),
(t3) and (RC). On the other hand, `t ∼∼B∼ → ∼∼(∼∼A∼ → B∼) from
(Ax1) and (RC). Thus `t (∼A∼∨∼∼B∼)→∼∼(∼∼A∼→B∼) as required.

• Finally, (RN) is replicable by (t4).

For (ii), we need to check (N1),(N2) and (RC).

• (N1) is translated into A@ ∨ ¬@A@, which is an instance of (Ax12).
• (N2) is translated into ¬@A@ → (¬@¬@A@ → B@). As we observed in

Lemma 5.14, ¬@¬@A@ is equivalent to ¬¬@A@; so it follows from (Ax0).
• For (RC), we need to derive ¬@B → ¬@A from A → B. This is possible

with (RN),(Ax9) and by contraposition.

This completes the proof. 2
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The translation allows us to use the Kripke semantics for TCCω.

Definition 5.16 [Gordienko] A TCCω-model for L∼ is a triple 〈W,≤, V 〉 with
each component as in IPC@. V is extended to interpretation I analogously,
except for the interpretation of ∼A, which is given by:

I(w,∼A) = 1 iff I(w′, A) = 0 for some w′ ∈W .

We shall use |=t for the semantic consequence, defined as follows: |=t A iff for
all TCCω-models 〈W,≤, V 〉, I(w,A) = 1 for all w ∈W .

Remark 5.17 Note in particular that a model of TCCω does not necessarily
have a base state. If it does, then the interpretation coincides with that of
IPC@.

We are now ready to separate the two systems.

Theorem 5.18 (Gordienko) For all A ∈ Form∼, `t A iff |=t A.

Corollary 5.19 IPC@) GIPC.

Proof. First, observe that we have the following valuation for ∼∼A.

I(w,∼∼A) = 1 iff I(w′, A) = 1 for all w′.

Now, if GIPC proves (Ax13), then by Proposition 5.15∼∼(p∨q)→ ∼∼p∨∼∼q
is provable in TCCω. On the other hand, if we consider a model where W =
{w,w′}, ≤ ={(w,w), (w′, w′)}, V (p)={w} and V (q)={w′}, then I(w,∼∼(p ∨
q)) = 1, but I(w,∼∼p) = I(w,∼∼q) = 0. Hence this is a countermodel
for ∼∼(p ∨ q)→∼∼p ∨ ∼∼q. So by the previous theorem, 0t ∼∼(p ∨ q) →
∼∼p ∨ ∼∼q. A contradiction. Therefore GIPC does not prove (Ax13). 2

Remark 5.20 Note that given a model of TCCω, we can define a model for
L@
⊥ with the interpretation I such that

I(w,@A) = 1 iff I(w′, A) = 1 for all w′.

Then, it is not difficult to see that each such model corresponds to the origi-
nal model similarly to Lemma 5.14 and Proposition 5.15. Therefore, it is an
immediate consequence of Theorem 5.18 that this gives a sound and weakly
complete Kripke semantics for GIPC. (This semantics can be also obtained
from Ono’s semantics via Gordienko’s technique; see below.)

We offer a few more words about GIPC. In [36], Hiroakira Ono extensively
discussed intutitionistic modal systems which are defined by axioms that classi-
cally define S5 when added to S4. Aoyama [1] compared some of these systems
with GIPC, 8 but he did not compare with the strongest of Ono’s systems,
L4. It is defined by (Ax0)-(Ax11), @A ∨@¬@A, (MP) and (RP). The Kripke
semantics for L4 in [36] is characterised by modal relation R that is an equiva-
lence relation; this corresponds to the original semantics of TCCω, from which
Gordienko derived [28, Lemma 4.4] the semantics of Definition 5.16. This ob-
servation and Proposition 5.15 suggest a close relationship between GIPC and
L4. In fact, the two systems turn out to coincide.

8 Some of the comparisons offered in [1] are also observed by Hidenori Kurokawa in [34].
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Proposition 5.21 GIPC = L4

Proof. On one hand, ¬@A is @-closed, so by Lemma 5.9 (ii) ¬@A→ @¬@A
is derivable in GIPC. Thus with (Ax12), @A ∨@¬@A is derivable in GIPC.
Consequently GIPC contains L4. On the other hand, @A ∨ @¬@A implies
(Ax12) with (Ax0) and (Ax10). Moreover, (@A → @B) → @(@A → @B) is
known to be derivable in L4 (cf. [36, Figure 2.1]), and it is a consequence of
(Ax10), (RN) and (Ax9) that @(@A→ @B)→ @(@A→ B) holds, so (Ax14)
is also derivable in L4. Thus L4 contains GIPC as well. 2

5.4 Sequent calculi for TCCω and IPC∼

Finally, we shall use the results obtained so far to formulate sequent calculi
for TCCω and IPC∼. We begin with introducing an analogue of @-closed for
formulas in L∼.

Definition 5.22 We define the class of ∼-closed formulas by the next clauses.
(i) ⊥, ∼A are ∼-closed.
(ii) If B̄ and C̄ are ∼-closed, then B̄ ◦ C̄ is ∼-closed, where ◦ ∈ {∧,∨,→}.

It is straightforward to check that if Ā is ∼-closed, then Ā@ is @-closed.

Lemma 5.23 For all A ∈ Form∼, `t Ā→ ∼∼Ā.

Proof. By the above observation and Lemma 5.9 (ii), we have `GI Ā@ →
@Ā@. Thus by Proposition 5.15 (i) and Lemma 5.14, `t Ā→ ∼∼Ā. 2

The sequent rules for∼ corresponding to TCCω is obtained by the following

Γ̄⇒ ∆̄, A
[L∼]

∼A, Γ̄⇒ ∆̄

A,Γ⇒ ∆
[R∼]

Γ⇒ ∆,∼A

where Γ̄, ∆̄ are ∼-closed. The sequent calculus LT for TCCω is obtained
by adding the above rules to the positive and non-modal fragment of LGJ
(derivability denoted by `gT ).

Theorem 5.24 For all Γ,∆ ⊆ Form∼, `gT Γ⇒ ∆ iff `t
∧

Γ→
∨

∆.

Proof. For the right-to-left direction, we need to check the cases for (N1),(N2)
and (RC). Each case is straightforward. For the right-to-left direction, we must
check the cases for [L∼] and [R∼]. The latter case is simple; for the former case,
`t Γ̄ → (

∨
∆̄ ∨ A) by IH. Then by (MP) and Lemma 5.23, Γ̄ `t ∼∼

∨
∆̄ ∨ A.

So by (N2), (RC) and (t3), we obtain Γ̄ `t ∼A →
∨

∆̄. Hence by deduction
theorem and Lemma 5.23 again, we conclude `t (Γ̄ ∧ ∼A)→

∨
∆̄. 2

A sequent calculus for IPC∼ has not been considered before. We can now
obtain one by removing the condition that ∆̄ is ∼-closed in [L∼]. The corre-
spondence with the Hilbert-style system is straightforwardly demonstrable.

6 Concluding remarks

In this article, we introduced IPC@, an expansion of IPC, obtained by adding
actuality operator, and compared with systems including LGP of Baaz, GIPC
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of Titani and IPC∼ of De, obtained by adding projection operator, global-
ization operator and empirical negation respectively. What emerged is the
following hierarchy of systems in L@

⊥, each corresponding to a system in L∼.

GIPC = L4

IPC@

LGP

TCCω

IPC∼

IPC∼ + (Lin)

⇐⇒

⇐⇒

⇐⇒
(In L@

⊥) (In L∼)

With respect to these systems, we make some additional observations and
mention a few future directions.

Hybrid logic Since there are clear connections between hybrid logics and
logics with actuality operator, and in particular there are some results on hybrid
logics based on intuitionistic logic (cf. [9,10]), a comparison of IPC@ to these
systems will be of great interest.

Kripke semantics vs. Beth semantics We observed that @ in IPC@

and ∼ in IPC∼ are inter-definable (in the presence of ⊥ in the language), and
similarly for GIPC and TCCω. As we have noted, a crucial difference between
the semantics of IPC∼ and TCCω (hence the interpretation of @) is that
models in the former always has a base state, while the latter in general does
not. As a result, Kripke-semantically, even though both @ can be understood
as a globalization operator (i.e. true iff true everywhere), only the former can
be interpreted as an actuality operator. Yet one may wonder whether one could
view @ in GIPC as a sort of actuality operator.

Beth semantics offers a possibility for this alternative interpretation. It is
a semantics similar to Kripke semantics, but crucially different in that (i) all
models have a base state, and (ii) the valuation of disjunction does not require
one of the disjuncts to hold in the same world. 9 If we define the clause for ∼
as in the Kripke semantics of IPC∼, we obtain Beth semantics with empirical
negation (cf. Appendix). One of the present authors have shown elsewhere in
[35] that (RP) is not valid, but TCCω is sound and complete with respect to
this semantics. This means that @ in GIPC can be understood as actuality
operator with respect to Beth semantics. Thus there are two types of actuality
operator/empirical negation in intuitionistic logic, Kripke-type and Beth-type.

With this kind of perspective, we can connect results related to GIPC
with empirical negation. For instance, Titani’s global intutionistic set theory
can be seen as a mathematical theory with Beth-type empirical negation, by
reading ¬2 as ∼. This could then encourage the investigation of intuitionistic
set theory with Kripke-type empirical negation, as a possible future direction.

Quantifiers Global intuitionistic logic was originally formulated in a first-
order language. Moreover, quantification for LGP has been investigated in

9 For more information, cf. [47, Chapter 13].



Niki, Omori 477

[2,3]. From this perspective, it seems to be a natural direction to consider
first-order systems for IPC@. This can be particularly interesting because like
disjunction, existential quantifier has differing interpretations in Kripke and
Beth models. Therefore we might be able to find an interesting interaction
between quantifiers and modal operators. Moreover, for the purpose of com-
paring IPC@ to S5A of Crossley and Humberstone, we also need quantifiers,
and this will be yet another motivation for adding quantifiers.

Hypersequent calculi The sequent calculus for global intuitionistic logic GI
defined by Titani and Aoyama is not cut-eliminatable, as observed by Agata
Ciabattoni in [13, p.437]. She instead formulated a cut-free hypersequent cal-
culus for GI and for GIF. We may then expect a similar approach to be quite
beneficial in pursuing cut-free sequent calculi for the systems we have consid-
ered, namely IPC@, IPC∼ and TCCω.

Appendix

Beth semantics for TCCω We shall employ the following notations for se-
quences and related notions.

• α, β, . . .: infinite sequences of the form 〈α1, α2, . . .〉 of natural numbers.
• 〈〉: the empty sequence.
• b, b′, . . .: finite sequences of the form 〈b1, . . . , bn〉 of natural numbers.
• b ∗ b′: b concatenated with b′.
• lh(b): the length of b.
• b � b′: b ∗ b′′ = b′ for some b′′.
• b ≺ b′: b � b′ and b 6= b′.
• ᾱn: α’s initial segment up to the nth element.
• α ∈ b: b is α’s initial segment.

We define a tree to be a set T of finite sequences of natural number such
that 〈〉 ∈ T , b ∈ T ∨ b /∈ T and b ∈ T ∧ b′ ≺ b → b′ ∈ T . We call each finite
sequence in T as a node and 〈〉 as the root. A successor of a node b is a node
of the form b ∗ 〈x〉. By leaves of T , we mean the nodes of T which do not have
a successor, i.e. nodes b such that ¬∃x(b ∗ 〈x〉) ∈ T . A spread then is a tree
whose nodes always have a successor, i.e. ∀b ∈ T∃x(b ∗ 〈x〉 ∈ T ).

A Beth model then is a triple (W,�, V ), where (W,�) defines a spread and
V : W × Prop → {0, 1} an assignment of truth values to state-variable pairs
with the condition that:

V (b, p) = 1 iff for all α ∈ b there is m such that (V (ᾱm, p) = 1). [covering]

An interpretation I for Beth model is defined by the following clauses.

• I(b, p) = V (b, p);
• I(b, A∧B)=1 iff I(b, A)=1 and I(b, B)=1;
• I(b, A∨B)=1 iff for all α∈b there is n such that I(ᾱn,A)=1 or I(ᾱn,B)=1;
• I(b, A→B) = 1 iff for all b∈W : if b � b′ and I(b′, A)=1 then I(b′, B)=1;
• I(b,∼A) = 1 iff I(〈〉, A) = 0.

The semantic consequence is then defined as in Kripke semantics.
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