
The ‘Long Rule’ in the Lambek Calculus with
Iteration: Undecidability without Meets and

Joins

Stepan Kuznetsov 1

Steklov Mathematical Institute of RAS
8 Gubkina St., Moscow 119991, Russia

Abstract

We consider the Lambek calculus extended with positive iteration as a unary con-
nective. The choice of positive iteration, not Kleene star, is dictated by Lambek’s
antecedent non-emptiness restriction. Usually iteration is axiomatized either by an
inductive schema or by an ω-rule. We consider an intermediate system with a rule
which we call the ‘long rule,’ which reduces iteration of A to explicit treatment of
powers of A up to the k-th one, and reusing iteration in the form Ak · A+. In the
presence of additive disjunction (union), the ‘long rule’ is easily derivable. For the
‘pure’ Lambek calculus without additives this is not the case. For the system with
the ‘long rule’ we prove undecidability. We also investigate connections of this system
with the standard inductive-style one.

Keywords: Lambek calculus, iteration, undecidability

1 Introduction

Iteration, or Kleene star, is one of the most basic and at the same time one
of the most intriguing algebraic operations appearing in theoretical computer
science. Following the line of work by Pratt [23] and Kozen [12], we con-
sider substructural (algebraic) non-commutative logics with two implications
(divisions) and iteration as a modality (cf. [24, § 9.5]). The idea of division
operations we consider throughout this paper goes back to Krull [14]. From
the logical point of view divisions were introduced in the Lambek calculus [19].
The Lambek calculus is a non-commutative intuitionistic variant of Girard’s
linear logic [7], in the multiplicative-only language (see Abrusci [1]). Thus, the
system we are going to consider is the Lambek calculus (or non-commutative
intuitonistic multiplicative-only linear logic) extended with iteration.

1 sk@mi-ras.ru
This work was performed at the Steklov International Mathematical Center and supported
by the Ministry of Science and Higher Education of the Russian Federation (agreement
no. 075-15-2019-1614).

426 The ‘Long Rule’ in the Lambek Calculus with Iteration

Action logic, denoted by ACT and introduced by Pratt and Kozen, in-
cludes, besides divisions and iteration, also lattice operations: join and meet.
Thus, action logic can be viewed as an extension of the multiplicative-additive
(‘full’) Lambek calculus. Following the standard definition of Kleene star as a
fixed point, Pratt axiomatizes it using an induction axiom (‘pure induction’).
In contrast, later works of Buszkowski and Palka [3,21,5] feature a stronger
system called infinitary action logic, ACTω, with an ω-rule for Kleene star.
Buszkowski and Palka show that ACTω is Π0

1-complete. Thus, it is undecid-
able and strictly stronger than action logic with induction axioms/rules of any
kind. (As noticed by the author in [16], there exist variations of induction
rules which yield systems which are strictly between ACT and ACTω.) The
question of decidability for ACT, posed by Kozen in 1994, was recently solved,
by the author of this paper, negatively [18]. This undecidability result applies
to the whole range of systems between ACT and ACTω. Moreover, its mod-
ification [17] gives Σ0

1-completeness for any logic in this range, provided it is
recursively enumerable.

This paper continues the line of [18] and [17]. We now focus on the extension
of the Lambek calculus with iteration, but without join and meet. Another
distinctive feature of the system considered here is the so-called Lambek’s non-
emptiness restiction. Algebraically it means that we allow models without the
unit. Lambek’s restriction was originally motivated by linguistic applications
of the Lambek calculus (see [20, § 2.5]). Here it will help to simplify some of
the technicalities in the proofs. We conjecture that our results will also be valid
without Lambek’s restriction. However, we do not yet claim this, since some
technicalities depend on the non-emptiness restriction.

In the presence of Lambek’s restriction, we cannot introduce Kleene star
itself: one of the axioms for Kleene star, 1 ` A∗, includes the unit (empty
antecedent). Instead, we introduce positive iteration, A+. Interestingly, in his
pioneering work [10], Kleene himself also avoided using the unit (‘empty event’)
and introduced a binary iteration operation A∗B, which means A∗ ·B (“several
times A, then B”). In Kleene’s notation, A+ is A ∗A.

2 Preliminaries

Let us formally introduce the Lambek calculus with positive iteration, denoted
by L+. Formulae of L+ are built from variables using three binary connectives:
· (product), \ (left division), / (right division), and one unary connective: +

(positive iteration). We formulate L+ as a sequent calculus, though cut is,
unfortunately, not going to be eliminable. Sequents of L+ are expressions of
the form A1, . . . , An ` B, where A1, . . . , An, B are formulae, n ≥ 1 (empty
antecedents are disallowed). Formulae are denoted by capital Latin letters;
capital Greek letters stand for sequences of formulae, possibly empty.

The core of L+ is the Lambek calculus L, with the following axioms and
rules of inference:

A ` A

Kuznetsov 427

Π ` A Γ, B,∆ ` C
Γ,Π, A \B,∆ ` C

A,Π ` B
Π ` A \B

, where Π is non-empty

Π ` A Γ, B,∆ ` C
Γ, B /A,Π,∆ ` C

Π, A ` B
Π ` B /A

, where Π is non-empty

Γ, A,B,∆ ` C
Γ, A ·B,∆ ` C

Π ` A ∆ ` B
Π,∆ ` A ·B

Π ` A Γ, A,∆ ` C
Γ,Π,∆ ` C (cut)

Axioms and rules for iteration reflect the idea that, algebraically, a+ should
be the least (that is, the strongest) b such that a ` b and a · b ` b:

A ` A+ A,A+ ` A+

A ` B A,B ` B
A+ ` B

As one can see, iteration here is axiomatized in a non-sequential style; thus,
cut is not eliminable in L+. Unfortunately, no cut-free sequential version for
the inductive axiomatization of iteration is known, in the presence of divisions.
Unsuccessful attempts were taken by Jipsen [9] and Pentus [22]. For the logic
of Kleene algebras, without division (but with join), a cut-free circular hyper-
sequential system was constructed by Das and Pous [6]. This became possible,
because for Kleene algebras the inductively axiomatized logic is complete, that
is, admits the ω-rule. For systems with division operations, this is not the case
due to complexity reasons (a recursively enumerable set of sequents could not
coincide with a Π0

1-hard one).
As shown by Pratt [23], in the presence of division operations left iteration

is also right. This means that the following axiom and rule are derivable in L+:

A+, A ` A+

A ` B B,A ` B
A+ ` B

A stronger version of L+ is obtained by introducing the ω-rule for iteration:

Γ, A,∆ ` B Γ, A,A,∆ ` B Γ, A,A,A,∆ ` B . . .

Γ, A+,∆ ` B

Axioms for iteration can also be reformulated in a sequential style:

Γ1 ` A . . . Γn ` A
Γ1, . . . ,Γn ` A+

(n ≥ 1)

and in this infinitary system, denoted by L+
ω, cut is eliminable. This is essen-

tially due to Palka [21], with necessary modifications connected with Lambek’s
restriction.

Adding join (∨) and meet (∧) with the following rules:

Γ, A1,∆ ` C Γ, A2,∆ ` C
Γ, A1 ∨A2,∆ ` C

Π ` Ai
Π ` A1 ∨A2

(i = 1, 2)

428 The ‘Long Rule’ in the Lambek Calculus with Iteration

Γ, Ai,∆ ` C
Γ, A1 ∧A2,∆ ` C

(i = 1, 2)
Π ` A1 Π ` A2

Π ` A1 ∧A2

to L+ and L+
ω yields ACT+ and ACT+

ω respectively. These are positive vari-
ants of ordinary and infinitary action logic. Complexity results for ACT+ and
ACT+

ω can be proved by slight modifications of the proofs for systems with-
out Lambek’s restriction and with Kleene star instead of positive iteration.
Thus, due to Buszkowski [3] and Palka [21] ACT+

ω is Π0
1-complete; ACT+ is

undecidable [18] (more precisely, Σ0
1-complete [17]).

In the infinitary case, Buszkowski’s Π0
1-hardness result can be strengthened:

L+
ω, the system without join and meet, is already Π0

1-hard [15]. In this paper,
we investigate the possibility of performing a similar strengthening of the un-
decidability result for ACT+ [18] to L+. Namely, we prove undecidability not
for L+ itself, but for a system very closely related to L+.

An important component of the undecidability proof for ACT+ is the so-
called ‘long rule’ [18], formulated as follows:

A ` B A,A ` B . . . Ak ` B Ak, A+ ` B
A+ ` B

Actually, this is a series of rules parametrized by k. In the presence of ∨,
this rule can be easily derived, for any k, using cut with A+ ` A ∨ A2 ∨ . . . ∨
Ak ∨ (Ak ·A). This can be also performed without ∨, but with ∧ and division
operations [17]. Notice that the ‘long rule’ itself includes neither ∨, nor ∧, but
its derivation in ACT+ requires one of these connectives.

By L+
` we denote L+ with the ‘long rule’ added as a rule of inference. More

precisely, we include instances of the ‘long rule’ for each k.
The rest of this paper is organized as follows. In Section 3, we prove un-

decidability of L+
` . In Section 4, we show that, unlike ACT+ and L+

ω, in L+

the ‘long rule’ is not derivable. The question whether a weaker property, ad-
missibility of the ‘long rule’ in L+, holds is left open. Section 5 includes some
concluding remarks and speculations.

We conclude this section by showing that the ‘long rule’ is derivable in L+
ω

and presenting a contextified (sequent-style) version of the ‘long rule.’

Lemma 2.1 The ‘long rule’ is derivable in L+
ω.

Proof. In L+
ω, one can easily derive An ` A+ for any n ≥ 1 (just use the right

rule for iteration with Γ1 = . . . = Γn = A).
Now, given the premises of the ‘long rule,’ let us establish Am ` B for any

m ≥ 1. Indeed, if m ≤ k, this sequent is explicitly given. If m > k, then we
use cut:

Am−k ` A+ Ak, A+ ` B
Am ` B (cut)

Now A+ ` B is derived by the ω-rule. 2

Kuznetsov 429

Lemma 2.2 The following ‘sequential version’ of the ‘long rule’ is derivable
in L+

` :

Γ, A,∆ ` B Γ, A,A,∆ ` B . . . Γ, Ak,∆ ` B Γ, Ak, A+,∆ ` B
Γ, A+,∆ ` B

Proof. If Γ = G1, . . . , Gs, let •Γ = G1 · . . . · Gs; similarly for •∆. Now
Γ, A+,∆ ` B is derived by cut from A+ ` •Γ \B / •∆ and Γ, •Γ \B / •∆,∆ `
B. The latter is derivable in L; the derivation for the former is by the ‘long
rule’:

Γ, A,∆ ` B
A ` •Γ \B / •∆ . . .

Γ, Ak,∆ ` B
Ak ` •Γ \B / •∆

Γ, Ak, A+,∆ ` B
Ak, A+ ` •Γ \B / •∆

A+ ` •Γ \B / •∆

2

3 Undecidability of L+
`

Theorem 3.1 The derivability problem in L+
` is undecidable.

The proof of Theorem 3.1 combines ideas of the undecidability proof for
ACT from [18] and the Π0

1-hardness proof for L+
ω from [15].

First we encode several kinds of Turing machine behaviour via totality-like
properties of context-free grammars. Then we follow the idea of Buszkowski [3]
and embed these grammars into the Lambek environment. However, instead of
the standard embedding (which goes back to Gaifman [2]) we use Safiullin’s [25]
construction of Lambek grammars with unique type assignment.

We consider only deterministic Turing machines, and suppose that each
Turing machine has a designated cycling state qc in which it gets stuck. (Rules
for qc are as follows: 〈qc, a〉 → 〈qc, a,N〉 for any letter a of the inner alphabet; N
stands for “no move.”) The cycling state can be added to any Turing machine,
even if it is not necessary: in this case it can be just made unreachable.

Following the standard way (see [13, Lect. 35]), we encode a configuration
of our Turing machine as b1 . . . bi−1qbibi+1 . . . bn, if the machine is in state q,
observing the i-th letter of the word b1 . . . bn in its memory. Protocols are
sequences of configurations separated by a special character #, also beginning
and ending with #. 2 Let Σ be the alphabet for protocols (including the inner
alphabet, the set of states, and #). A protocol is correct, if each configuration,
starting from the second one, is the successor of the previous configuration. A
protocol is a halting one, if the last configuration has no successor (the machine
cannot proceed one more step forward).

Given a Turing machine M and an input word x, one can effectively con-
struct (see [13, Lect. 35], for example) a context-free grammar GM,x which

2 In some other presentations of this construction in textbooks, the code of every second
configuration is inverted. For our purposes, this is irrelevant.

430 The ‘Long Rule’ in the Lambek Calculus with Iteration

generates all words over Σ, except the correct halting protocol of M on x (if
it exists). This construction gives a reduction of the non-halting problem for
Turing machines to the totality problem for context-free grammars, and thus
establishes Π0

1-hardness of the latter.
We suppose that GM,x is in Greibach normal form [8] and extend it by extra

rules for capturing the easy case of non-halting—getting stuck in qc:

S ⇒ #CU

U ⇒ aU for any a ∈ Σ

U ⇒ a for any a ∈ Σ

C ⇒ aC for any a ∈ Σ

C ⇒ qcU

C ⇒ qc

In these rules, non-terminal U generates all non-empty words and C generates
all words including qc. Thus, the rule S ⇒ #CU captures the idea that any
word including qc could not be a correct halting protocol.

We also suppose that GM,x has a subgrammar starting with a non-terminal
E which generates all words which are incorrect protocols and cannot be fixed
by extending to the right. Due to greibachization, the leading # gets removed.
For example, such a “bad” protocol could include a configuration which is
followed by another configuration which is not its successor. For more details,
see [18,17]. We express the idea that such a “bad” protocol cannot be fixed,
by adding the following rules:

S ⇒ #EU, S ⇒ aU for a 6= #.

(The second rule states that a good protocol should always start with #.)
We denote the extended grammar by G′M,x.
Next, in order to use reasoning in the style of [15], we restrict ourselves to

a two-letter alphabet {e, f}. Let Σ = {a1, a2, . . . , aN} and define a homomor-
phism h : Σ+ → {e, f}+ on letters as follows:

h(ai) = ef i = e f . . . f︸ ︷︷ ︸
i times

.

(Then h is uniquely propagated to words as a homomorphism.)
By h(G′M,x) we denote the image of G′M,x under homomorphism h. In order

to maintain it in Greibach normal form, for each old rule of the form A⇒ aiBC
we introduce a series of rules

A⇒ eX1, X1 ⇒ fX2, . . . , Xi−1 ⇒ fXi, Xi ⇒ fBC,

where X1, . . . , Xi are new non-terminal symbols (different for each rule of the
original grammar). Translations for rules of the forms A⇒ aiB and A⇒ ai is
similar.

Kuznetsov 431

Next, let us construct the grammar G̃M,x. We extend h(G′M,x) with rules
generating words with subwords of the form efm, where m > N = |Σ| (these
words are not in the image of h):

S ⇒ eF≥NW F ⇒ fF

S ⇒ eF≥N F ⇒ f

S ⇒ eFS′ F≥N ⇒ fF≥N−1

S′ ⇒ eFS′ F≥N−1 ⇒ fF≥N−2

S′ ⇒ eF≥NW . . .

S′ ⇒ eF≥N F≥3 ⇒ fF≥2

W ⇒ eFW F≥2 ⇒ fF

W ⇒ eF

Here S′, W , F , and F≥m (m = 2, . . . , N) are new non-terminal symbols.
Finally, we replace U with W in the ‘old’ part of the grammar. This will

not alter the language, since any word derived from W is either also derived
from U , or includes a subword of the form efm with m > N , which is of course
not an h-image of a correct protocol.

This finishes the construction of G̃M,x. From this construction, one can
easily see the following property:

Lemma 3.2 The grammar G̃M,x generates all words of the language generated
by the regular expression (ef+)+ if and only if M does not halt on x. If M does

halt on x, then G̃M,x generates all words of this language, except h(π), where
π is the halting protocol of M on x.

The next step uses Safiullin’s construction of Lambek grammar with unique
type assignment. This result was published by Safiullin as a short note [25]
without detailed proofs. A complete exposition is presented in the Appendix
of [15]. We shall need Safiullin’s result for grammars over a two-letter alphabet
in the following form.

Theorem 3.3 (Safiullin) Let G̃ be a context-free grammar over alphabet
{e, f} in Greibach normal form. Then there exist formulae E, F , and HA

for each non-terminal A, such that the following holds:

(i) a non-empty word w is generated by G̃ if and only if the sequent Γw ` HS

is derivable in L, where Γw is a sequence of formulae obtained from w
by replacing e with E and f with F (e.g., for w = effee we have Γw =
E,F, F,E,E);

(ii) for each rule of G̃ we have the following sequents derivable in L:

432 The ‘Long Rule’ in the Lambek Calculus with Iteration

Rule Sequent
A⇒ eBC E,HB , HC ` HA

A⇒ fBC F,HB , HC ` HA

A⇒ eB E,HB ` HA

A⇒ fB F,HB ` HA

A⇒ e E ` HA

A⇒ f F ` HA

In this theorem, the first statement is essentially the result on transforming
a context-free grammar into a Lambek grammar with unique type assignment
(E is the type for e, F for f , and HS is the goal type). The second statement is
actually a technical lemma (induction step) for proving the “only if” direction
in the first statement. However, we shall need the second statement explicitly.
Further details of Safiullin’s construction are irrelevant for us, we use it as a
black box.

Using induction and statement (ii), one can easily prove a strengthening of
the “only if” part of statement (i). Namely,

(iii) if a word α in the alphabet of both terminal and non-terminal symbols
is derivable in G from a non-terminal A (notation: A ⇒∗ α), then the
sequent Γα ` HA is derivable in L.

Here Γα is obtained from α by replacing e with E, f with F , and each non-
terminal B by the corresponding HB .

Consider the sequent

(E · F+)+ ` HS ,

where E, F and HS are obtained from G̃M,x by the construction from The-
orem 3.3. Now we proceed as in [18], proving one direction for L+

ω and non-
halting of M on x and the other direction for L+

` and M getting stuck in qc
while running on x.

Lemma 3.4 The sequent (E · F+)+ ` HS is derivable in L+
ω if and only if M

does not halt on x.

Proof. The ω-rule is invertible, by cut with A, . . . , A→ A+. Thus, (E ·F+)+ `
HS is derivable in L+

ω if and only if so is Γw ` HS for any word w from the
language of the regular expression (ef+)+. This sequent does not include the
iteration modality, so its derivability in L+

ω is equivalent to its derivability in
L. By Theorem 3.3, derivability of all these sequents is equivalent to the fact
that GM,x generates all words satisfying the regular expression (ef+)+. By
Lemma 3.2, this is equivalent to non-halting of M on x. 2

Lemma 3.5 If M gets stuck in qc when running on x, then (E · F+)+ ` HS

is derivable in L+
` .

Proof. Here the ‘long rule’ finally comes into play. Let n be the length (in
symbols, not in steps) of the protocol of M running on x until it reaches qc.

Kuznetsov 433

Using the ‘long rule,’ we derive (E · F+)+ ` HS from the following sequents:

(E,F+)k ` HS k ≤ n
(E,F+)n, (E · F+)+ ` HS

The first series of sequents, (E,F+)k ` HS , is also derived by exhaustive
application of the ‘long rule,’ in its form with sequential contexts (Lemma 2.2),
up to N = |Σ|. The sequents we now have to derive are of the form Π1, . . . ,Πk `
HS , where k ≤ n and each Πi is either E,F s, where s ≤ N , or E,FN , F+.

If all Πi’s are of the form E,F s, then Π1, . . . ,Πk ` HS does not include +

and is derivable in L by applying Lemma 3.4 and inverting the ω-rule.
The more interesting case is when our sequent includes E,FN , F+. Let Πi0

be the first Πi of this form. First we notice that F+ ` HF is derivable in L+
` :

F ` HF F,HF ` HF

F+ ` HF

Here the premises are derivable by Theorem 3.3(ii), due to the rules F ⇒ f
and F ⇒ fF . Thus, by cut, we can replace E,FN , F+ by E,FN , HF .

Moreover, since F≥N ⇒∗ fNF , we can apply cut with FN , HF ` HF≥N

and replace Πi0 with E,HF≥N
. For i 6= i0 we similarly replace Πi with E,HF ,

using either F ⇒∗ fNF or F ⇒∗ fk. Thus, the whole sequent is now of the
form

E,HF , . . . , E,HF , E,HF≥N
, E,HF , . . . , E,HF ` HS ,

which is derivable due to the following derivation in G̃M,x:

S ⇒ eFS′ ⇒∗ eF . . . eFS′ ⇒ eF . . . eFeF≥NW ⇒∗ eF . . . eFeF≥NeF . . . eF

for i0 6= 1, k and similarly (but using different rules of G̃M,x) for i0 = 1 and
i0 = k.

Finally, the second sequent, (E,F+)n, (E·F+)+ ` HS , is derived in a similar
fashion. We applying the ‘long rule’ with N exhaustively to the instances of
F+ in (E,F+)n and consider two cases for premises. If at least one of the
instances of E,F+ becomes E,FN , F+, then we again reduce to

E,HF , . . . , E,HF , E,HF≥N
, E,HF , . . . , E,HF , (E · F+)+ ` HS

Next, we notice derivability of (E · F+)+ ` HW :

F+ ` HF E,HF ` HW

E,F+ ` HW

(cut)

E · F+ ` HW

F+ ` HF E,HF , HW ` HW

E,F+, HW ` HW

(cut)

E · F+, HW ` HW

(E · F+)+ ` HW

The premises are derivable by Theorem 3.3(ii) due to W ⇒ eF and W ⇒ eFW ;
F+ ` HF was established above.

434 The ‘Long Rule’ in the Lambek Calculus with Iteration

Thus, we reduce to

E,HF , . . . , E,HF , E,HF≥N
, E,HF , . . . , E,HF , HW ` HS ,

which is derivable by statement (iii) below Theorem 3.3 due to

S ⇒∗ eF . . . eFeF≥NeF . . . eFW.

The second, more interesting case is when each instance of F+ becomes F si

for some i:
E,F s1 , . . . , E, F sn , (E · F+)+ ` HS .

Recalling (E · F+)+ ` HW (see above), we reduce to

E,F s1 , . . . , E, F sn , HW ` HS .

Next, this sequent can be rewritten in the form

Γh(w), HW ` HS ,

where w = as1 . . . asn . Since n is the number of letters in the protocol sufficient
for M on x to reach the cycling state qc, the word w either includes qc, or is
an incorrect (“bad”) protocol, or does not start with #.

In the first case, we have w = #w′ and C ⇒∗ w′ in G′M,x. Thus, we get

C ⇒∗ h(w′) in G̃M,x, and by statement (iii) derive

Γh(w′) ` HC .

Gathering things together and cutting, we get

Γh(#), HC , HW ` HS ,

which is derivable via statement (iii) and S ⇒∗ h(#)CW .
The case where w is a “bad” protocol is similar, using S ⇒∗ h(#)EW .

Finally, if w starts with as1 6= # we have

Γh(as1),Γh(w′), HW ` HS ,

which is derivable by cut from Γh(w′), HW ` HW and Γh(as1), HW ` HS . These
are derivable by statement (iii), using W ⇒∗ h(w′)W and S ⇒∗ as1W .

This finishes the proof of our key lemma. 2

Now we proceed exactly as in [18]. Let

H = {〈M, x〉 |M halts on x}
H = {〈M, x〉 |M does not halt on x}
C = {〈M, x〉 |M gets stuck in qc while running on x}
K = {〈M, x〉 | (E · F+)+ ` HS , where E, F , and HS come from G̃M,x,

is derivable in L+
` }

Kuznetsov 435

By Lemma 3.4 K ⊆ H (recall that L+
` is a subsystem of L+

ω by Lemma 2.1);
by Lemma 3.2 C ⊆ K. Since C and H are recursively inseparable, K is unde-
cidable, thus so is the derivability problem for L+

` . Theorem 3.1 proved.
Following the reasoning with effective inseparability of C and H, presented

in [17], we can show Σ1-completeness of L+
` and, moreover, any recursively

enumerable logic in the range between L+
` and L+

ω. This is performed exactly
as for action logic with meet and join.

4 Non-derivability of the ‘long rule’ in L+

As one can see from the previous section, the ‘long rule’ is a crucial component
of the undecidability proof. If we could derive this rule in L+, as it can be done
for ACT [18], we would get undecidability for L+.

Unfortunately, as we show in this section, this is not the case: the ‘long
rule’ is not derivable in L+.

Before proceeding further, let us notice a subtle difference between deriv-
ability and a weaker notion of admissibility of a new rule in a calculus. A rule
is called derivable, if there exists a derivation of the conclusion of this rule with
its premises as hypotheses. This derivation is allowed to use cut. On the other
hand, a rule (rule scheme) is admissible, if, for any substitution of concrete
formulae for meta-variables A, B, C, . . . , derivability of its premises implies
derivability of its conclusion.

Clearly, any derivable rule is admissible. The converse implication, however,
does not hold. For example, the rule A`A·A

B`C is admissible, but not derivable in
L+. The reason is that A ` A · A cannot be derivable for any A. This can be
proved by interpretation on language models, see [4]. Indeed, consider cofinite
languages over an alphabet. Product (pairwise concatenation) and divisions
(defined according to the rules of the Lambek calculus) of cofinite languages
yield again cofinite languages. Thus, if we interpret all variables as cofinite
languages, then the interpretation of A will be also cofinite, thus, non-empty.
But then the shortest word of A does not belong to A · A (the empty word
is not allowed due to Lambek’s non-emptiness condition). Thus, the rule in
question is admissible ex falso. On the other hand, it is clearly non-derivable,
since B ` C is absolutely foreign to A ` A ·A. Unfortunately, the author is not
aware of more interesting examples of admissible non-derivable rules—that is,
in which there exist derivable instances of the premises.

We claim only non-derivability of the ‘long rule.’ Its admissibility in L+ is
left as an open question.

Theorem 4.1 The special case of the ‘long rule’ for k = 1, 3

A ` B A,A+ ` B
A+ ` B

is not derivable in L+.

3 We could call it ‘short rule.’

436 The ‘Long Rule’ in the Lambek Calculus with Iteration

Proof. We prove non-derivability of this rule by presenting an algebraic
counter-model. The appropriate class of algebraic models for L+ is formed
by residuated semigroups with iteration (RSGI), defined as follows.

An RSGI is a partially ordered algebraic structure (S,�, ·, \, /,+), such
that:

(i) � is a partial order on S;

(ii) (S, ·) is a semigroup;

(iii) \ and / are residuals of · w.r.t. �:

x \ y = max
�
{z | x · z � y}, y / x = max

�
{z | z · x � y};

(iv) for each x ∈ S, x+ = min
�
{y | x � y and x · y � y}.

An interpretation function v is just a mapping of variables to elements of
S; then it is propagated to formulae. A sequent A1, . . . , An ` B is true under
v, if v(A1) · . . . · v(An) � v(B).

Clearly, the following strong form of soundness holds for L+ w.r.t. RSGI: if
a sequent is derivable from a set of hypotheses, and under a given v all these hy-
potheses are true, then so is the goal sequent. (The proof of soundness involves
using monotonicity of · w.r.t. �, which is due to Lambek [19]. Completeness
also holds, by a Lindenbaum – Tarski argument, but we shall not need it.)

We shall present an RSGI and its two elements a, b ∈ S, such that a � b,
a · a+ � b, but a+ 6� b. This will do the job, since if the rule in question were
derivable, then, in particular, one could derive p+ ` q from p ` q and p, p+ ` q
(p and q are variables). This conflicts soundness, by taking v(p) = a, v(q) = b.

Let us start with a standard example of RSGI, which reflects Lambek’s
original linguistic motivations,—the algebra of formal languages. For us, it
is sufficient to consider languages without the empty word over a one-letter
alphabet Σ = {s}. Such languages are in one-to-one correspondence with sets
of non-zero natural numbers (the word s . . . s︸ ︷︷ ︸

n

is represented by n). We denote

the set of all such sets by P(N+). The elements ∅ and N+ of P(N+) (the empty
and the total language) will play special rôles in our construction. The set of
all other languages is P0(N+) = P(N+)− {∅,N+}.

Our RSGI will be P(N+) extended by two extra elements:

S = P(N+) ∪ {ξ, η} = P0(N+) ∪ {∅,N+, ξ, η}.

The partial order � on S is defined as follows:

• on P(N+), the partial order is the subset relation;

• for any x ∈ P0(N+) ∪ {∅}, we have x ≺ ξ; ξ and N+ are incomparable;

• η is the maximal element: for any x ∈ P(N+) ∪ {ξ}, we have x ≺ η.

The product operation on S is commutative and defined as follows:

Kuznetsov 437

• for x, y ∈ P(N+), product is defined as pairwise addition:

x · y = {n+m | n ∈ x,m ∈ y};

• ∅ · ξ = ∅ · η = ∅;

• ξ · x = η for any x 6= ∅;

• η · x = η for any x 6= ∅.

Associativity of product, (x · y) · z = x · (y · z), is proved as follows. The
interesting case is when at least one of x, y, z is ξ or η: otherwise we refer to
associativity of formal language multiplication. If one of x, y, z is ξ or η and
another one is ∅, then (x·y)·z = x·(y ·z) = ∅; otherwise (x·y)·z = x·(y ·z) = η.

Now let us define residuals, that is, prove existence of the corresponding
maxima. Since our semigroup is commutative, we shall always have x \ y =
y / x, so it is sufficient to prove existence of x \ y.

• For x, y ∈ P(N+), if x 6= ∅, we have

x \ y = {n ∈ N+ | (∀m ∈ x)n+m ∈ y},

as in the algebra of formal languages. Indeed, inside P0(N+) this is the
maximal z such that x · z � y. As for ξ and η, we have (since x 6= ∅)
x · ξ = x · η = η 6� y.

• For any y we have ∅ \ y = η. Indeed, ∅ · z � y holds for any z (since
∅ · z = ∅), so we just take the maximum of the whole S.

• For any x, we have x \ η = η. Indeed, x · z � η holds for any z (since η is the
maximum).

• For any x ∈ P0(N+), we have x \ ξ = N+. Indeed, x · N+ belongs to P0(N+)
and therefore is below ξ in the sense of �. On the other hand, the only
two elements, which are not below N+, are ξ and η. For them we have
x · ξ = x · η = η 6� ξ.

• We also have N+ \ ξ = N+. This happens because of the lack of the empty
word (zero in N+): N+ · N+ = {n | n ≥ 2} � ξ. For ξ and η we have, again,
N+ · ξ = N+ · η = η 6� ξ.

• For any y 6= η, we have η \ y = ∅, since η ·∅ = ∅ ≺ y and η · z = η 6� y for
any z 6= ∅. (As shown above, η \ η = η.)

• Similarly, ξ \ η = η (shown above), and for any y 6= η we have ξ \ y = ∅ (in
particular, ξ \ ξ = ∅). Indeed, ξ ·∅ = ∅ ≺ y and ξ ·z = η 6� y for any z 6= ∅.

Finally, let us define iteration, that is, prove that for any x there exists
x+ = min�{y | x � y and x · y � y}.
• For x ∈ P(N+), its iteration x+ is defined traditionally: x+ = {n1+ . . .+nk |
k ≥ 1, ni ∈ x}. If x+ 6= N+, then it is indeed the necessary minimum: it is
the minimum in N+, and two other candidates, ξ and η, are above x+. The
case of x+ = N+ is a bit more interesting. Again, η � x+, so it is not a
rival; but ξ is incomparable with x+ = N+. Fortunately, ξ fails to satisfy the

438 The ‘Long Rule’ in the Lambek Calculus with Iteration

second condition on y to be considered as a candidate for x+. If x 6= ∅, then
x · ξ = η 6� ξ (if x = ∅, then x+ = ∅ 6= N+).

• ξ+ = η. Indeed, ξ+ should be ξ or η, and ξ does not suffice, since ξ ·ξ = η 6� ξ.
For η, everything is all right: ξ � η and ξ · η = η � η.

• η+ = η. Indeed, η � η and η · η = η � η. Smaller y’s are out of the game,
since η 6� y.

Having defined our specific RSGI S, now let a = {1} and b = ξ. We have:
a � b; a+ = N+, so a · a+ = {n | n ≥ 2} � b; but a+ 6� b (N+ and ξ are
incomparable). This finishes our proof. 2

An important observation on our RSGI S is that its partial order does
not form a lattice structure. Namely, N+ and ξ have no meet: any element
of P0(N+) is below both, and among them there is no maximal one. Dually,
a = {1} and a · a+ = {n | n ≥ 2} have no join: ξ and N+ are above both and
are incomparable. This is by design: once we have a lattice, or at least we have
a join of a and a · a+, we can apply the derivation of the ‘long rule’ in ACT+.

We also notice that in S iteration a+ is defined as a fixed point, not as a
supremum (that is, S is not *-continuous). Indeed, for a = {1} its iteration
a+ = N+ is the smallest y such that a � y and a · y � y. However, a+ is
not sup�{an | n ≥ 1}. Indeed, there are two incomparable upper bounds for
an = {n}, namely, N+ and ξ. The latter is a ‘fake’ iteration, since it is not a
fixpoint: a · ξ = η 6� ξ. The non-*-continuity of S is also for a good reason:
otherwise, S would model L+

ω, and in this system the ‘long rule’ is derivable
(Lemma 2.1).

5 Concluding Remarks

We have proved undecidability (and Σ1-completeness) of the Lambek calculus
with an inductively axiomatized positive iteration modality, extended with the
so-called ‘long rule’ of the form

A ` B A,A ` B Ak ` B Ak, A+ ` B
A+ ` B

This result refines the undecidability result for action logic [18], since now we
obtain undecidability for a system without additive connectives, meet and join
(∧ and ∨).

Another distinctive feature of this paper is the Lambek’s non-emptiness
restriction imposed on the calculus. We conjecture that the same results hold
without this restriction. However, this is left as an open question for further
research, since some technicalities, namely, Safiullin’s Theorem 3.3 and the
counter-model construction in Theorem 4.1, in their current state, depend on
Lambek’s restriction.

In action logic with meet and join, the ‘long rule’ is derivable; for the
multiplicative-only system L+ studied in this paper, this is not the case (The-
orem 4.1). The question of whether the ‘long rule’ is admissible in L+ is still

Kuznetsov 439

open. If the answer happens to be positive, we shall immediately get undecid-
ability of L+ (since in this case L+ and L+

` derive the same set of sequents). If
the answer is negative, then L+

` is strictly stronger than L+, and complexity of
the latter remains a separate open problem.

Moreover, non-derivability and potential non-admissibility of the ‘long rule’
brings some light upon the old question on constructing a cut-free calculus for
action logic with inductive axiomatizations for iteration. As noticed in the
Preliminaries, for systems with inductive-style rules for iteration no cut-free
sequential calculi are known. The issues with the ‘long rule’ discussed in this
paper are actually conservativity issues. Since the ‘long rule’ is not derivable
in L+, this calculus is not a strongly conservative fragment of ACT+. Namely,
consider three sequents p ` q, p, p+ ` q, and p+ ` q (premises and conclusion
of the ‘long rule’). These sequents are formulated in the language of L+, without
∨ and ∧. Actually, they use only one connective, +. However, one can derive
the third one from the first and the second ones only in ACT+ (via a detour
through ∨), not in L+. If the ‘long rule’ happens to be non-admissible, ordinary
conservativity would also fail. In this case, in particular, it would be an open
question which sequents without ∨ and ∧ are derivable in ACT+—are these
sequents exactly theorems of L+

` , or do they form a larger set?
However, if ACT+ were axiomatized by a sequent calculus (even with a

non-standard notion of proof, like a circular one), it would enjoy conservativity.
Thus, in view of the issues with the ‘long rule,’ it looks reasonable to extend our
approaches for axiomatizing ACT+ and search for hypersequential formalisms
where ∨ or ∧ is incorporated into the meta-syntax (cf. Kozak’s system for
distributive full Lambek calculus [11]). Notice that the sequents appearing in
the ‘long rule’ do not include division operations (only product and iteration).
Thus, the same conservativity issues could potentially appear in the logics of
Kleene algebras and lattices without residuals.

These considerations are quite coherent with the complete cut-free circular
proof system for Kleene algebras presented by Das and Pous [6]. Their calculus
is hypersequential, introducing join (∨) on the meta-syntactic level to the right-
hand sides of sequents. The counter-example for cut-free cyclic provability in
a system with traditional sequents given by Das and Pous is A · A∗ ` A∗ · A,
which is quite close to our ‘short rule’ in Theorem 4.1.

Acknowledgements The author is grateful to Lev Beklemishev, Anupam
Das, Max Kanovich, Fedor Pakhomov, Andre Scedrov, Daniyar Shamkanov,
and Stanislav Speranski for fruitful discussions. Being a Young Russian Math-
ematics award winner, the author thanks its jury and sponsors for this high
honour. (The work on this particular paper was funded from another source,
as mentioned on the first page.)

References

[1] Abrusci, V. M., A comparison between lambek syntactic calculus and intuitionistic linear
logic, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 36 (1990),

440 The ‘Long Rule’ in the Lambek Calculus with Iteration

pp. 11–15.
[2] Bar-Hillel, Y., C. Gaifman and E. Shamir, On the categorial and phrase-structure

grammars, Bulletin of the Research Council of Israel 9F (1960), pp. 1–16.
[3] Buszkowski, W., On action logic: equational theories of action algebras, Journal of Logic

and Computation 17 (2007), pp. 199–217.
[4] Buszkowski, W., Lambek calculus and substructural logics, Linguistic Analysis 36 (2010),

pp. 15–48.
[5] Buszkowski, W. and E. Palka, Infinitary action logic: complexity, models and grammars,

Studia Logica 89 (2008), pp. 1–18.
[6] Das, A. and D. Pous, A cut-free cyclic proof system for Kleene algebra, in: R. Schmidt and

C. Nalon, editors, Automated Reasoning with Analytic Tableaux and Related Methods.
TABLEAUX 2017, Lecture Notes in Computer Science 10501 (2017), pp. 261–277.

[7] Girard, J.-Y., Linear logic, Theoretical Computer Science 50 (1987), pp. 1–102.
[8] Greibach, S. A., A new normal-form theorem for context-free phrase structure grammars,

Journal of the ACM 12 (1965), pp. 42–52.
[9] Jipsen, P., From residuated semirings to Kleene algebras, Studia Logica 76 (2004),

pp. 291–303.
[10] Kleene, S. C., Representation of events in nerve nets and finite automata, in: C. E.

Shannon and J. McCarthy, editors, Automata Studies, Princeton University Press, 1956
pp. 3–41.

[11] Kozak, M., Distributive full Lambek calculus has the finite model property, Studia Logica
91 (2009), p. 201–216.

[12] Kozen, D., On action algebras, in: J. van Eijck and A. Visser, editors, Logic and
Information Flow, MIT Press, 1994 pp. 78–88.

[13] Kozen, D., “Automata and Complexity,” Springer-Verlag, New York, 1997.
[14] Krull, W., Axiomatische Begründung der algemeinen Idealtheorie, Sitzungsberichte der

physikalischmedizinischen Societät zu Erlangen 56 (1924), pp. 47–63.
[15] Kuznetsov, S., The Lambek calculus with iteration: two variants, in: J. Kennedy and

R. de Queiroz, editors, Logic, Language, Information, and Computation. WoLLIC 2017,
Lecture Notes in Computer Science 10388, 2017, pp. 182–198.

[16] Kuznetsov, S., *-continuity vs. induction: divide and conquer, in: G. Bezhanishvili,
G. D’Agostino, G. Metcalfe and T. Studer, editors, Proceedings of AiML ’18, Advances
in Modal Logic 12 (2018), pp. 493–510.

[17] Kuznetsov, S., Action logic is undecidable, arXiv preprint 1912.11273 (2019).
[18] Kuznetsov, S., The logic of action lattices is undecidable, in: 2019 34th Annual

ACM/IEEE Symposium on Logic in Computer Science (LICS) (2019), pp. 1–9.
[19] Lambek, J., The mathematics of sentence structure, American Mathematical Monthly

65 (1958), pp. 154–170.
[20] Moot, R. and C. Retoré, “The logic of categorial grammars: a deductive account of

natural language syntax and semantics,” Lecture Notes in Computer Science 6850,
Springer, 2012.

[21] Palka, E., An infinitary sequent system for the equational theory of *-continuous action
lattices, Fundamenta Informaticae 78 (2007), pp. 295–309.

[22] Pentus, M., Residuated monoids with Kleene star (2010), unpublished manuscript.
[23] Pratt, V., Action logic and pure induction, in: J. van Eijck, editor, JELIA 1990: Logics

in AI, Lecture Notes in Artificial Intelligence 478 (1991), pp. 97–120.
[24] Restall, G., “An introduction to substructural logics,” Routledge, 2000.
[25] Safiullin, A. N., Derivability of admissible rules with simple premises in the Lambek

calculus, Moscow University Mathematics Bulletin 62 (2007), pp. 168–171.

	Introduction
	Preliminaries
	Undecidability of L+
	Non-derivability of the `long rule' in L+
	Concluding Remarks
	References

