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Abstract

In this paper, we first offer basic results regarding modal logic: (1) a wide range
of modal systems can be syntactically reduced to the modal logic K in terms of
theoremhood and (2) we can restrict the forms of modal axioms without changing
their deductive power in that range of modal logics. Then, based on these results, we
offer a new, simple, uniform, and modular proof-theoretical proof of the realization
of a wide range of modal logics with possible combinations of modal axioms T,D, 4, 5
(including S5) in Justification Logic. We do not use a generalization of sequent
calculus, such as hypersequent and nested sequent calculi. We simply utilize the
standard cut-free sequent calculus for K and then show, in the realized proof in
Justification Logic (corresponding to K), how to recover the realizations of the modal
axioms by rewriting terms in the proof.

Keywords: Modal Logic, Justification Logic, Proof Theory, Realization Theorem.

1 Introduction

One of the most common interpretations of modal logic is the epistemic logical
interpretation: reading a modal formula 2A as “A is known.” However, the
machinery of epistemic logic does not refer to how the knowledge A is attained.
Justification Logic offers a tool to refer to a reason or justification for a propo-
sition; a modal formula is of the form s : A with a term s, which is read as “s is
a reason or justification for A.” Moreover, Justification Logic is equipped with
operators on terms: +, ·, ! and ?. The first two are binary and express the con-
catenation and an application of modus ponens, respectively; the latter two are
unary and express positive and negative introspections, respectively. Then, for
example, the logical omniscience problem could be avoided, in a sense; it could
be viewed as a problem of term complexity. As we deduce a more complicated
formula, we have a more complicated term with the formula at the same time.
Cf. [6]. We refer to [3], [4], and [25] for a general introduction to the family of
systems called Justification Logic.
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One of the fundamental results concerning Justification Logic is the real-
ization theorem, which acts as a bridge to the modal logics. There have been
many studies on the realization theorem for major modal logics. The realiza-
tion theorem for the modal logic S4 was provided in Artemov [1], [2] with the
Logic of Proofs, LP, which is the first system of Justification Logic. It makes
the following claim: for some realization, that is, some assignment of terms to
modality 2, a formula is provable in S4 if and only if the realization of the
formula is provable in LP. This result intended to give an arithmetical meaning
to S4; a realized modal formula s : A reads “s is a proof of A.”

The original proof of the realization theorem in [1], [2] was a proof-
theoretical one, using a standard cut-free sequent calculus of S4. Fitting [12]
proposed a possible-world semantics for LP and proved the realization theo-
rem using this semantics. The semantics has been studied well and extended
for various systems of Justification Logic. It is called Fitting semantics to-
day. Another semantical proof was offered for realization for LP in Fitting [15].
Substructural variants of LP were introduced, and the realization theorems
were proved for some modal substructural logics by a proof-theoretic method
in Kurokawa and Kushida [19].

Systems with the negative introspection operator were proposed by several
authors pursuing epistemological interpretation of LP. Those systems corre-
spond to the modal logic S5. Such a system was first introduced in Artemov
et al. [5] and Kazakov [18], and the realization theorem for S5 was proved by
a proof-theoretic method.

The negative introspection operator “?” that has been the subject of recent
studies is characterized by the formula ¬s : A →?s : ¬s : A. It was proposed
independently by Pacuit [27] and Rubtsova [28], [29]. The realization theorem
was proved for S5 via Fitting semantics in [28], [29].

Fitting [14] offered an elegant proof-theoretical proof of the realization for
S5 with the operator “?”. Kurokawa and Kushida [20] offered an S5 variant of
Linear Logic and proved the realization theorem for it with the corresponding
substructural justification logic using a proof-theoretical method.

Nested sequent calculus is an apparatus used to execute an inference rule
inside formulas. Although it is not clear if it is a natural expression of logical
reasoning, it has been a useful tool to handle some logical systems that are
not well-behaved proof-theoretically, such as S5. Motohashi [26] showed that
the Intuitionistic Logic can be faithfully embedded in the classical predicate
logic via a composition of Gödel’s embedding and the standard translation
(converting modality to quantifier). This result of [26] is one of the precursors
of the method of nested sequent calculus, although it would be difficult to
specify the first to have invented any similar kind of apparatus. In [21], the
method was applied to a wide range of major modal logics between K and S5
(including the two) in a uniform way; it was shown that those modal logics can
be faithfully embedded in the classical predicate logic by Motohashi’s method.
Later, we applied the method to the realization problem in light of Justification
Logic in [22]; it was shown that the modal logic GL can be realized in a variant
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of LP with free variables using Motohashi’s method.
While the realization of subsystems of S4 was proved in Brezhnev [8] proof-

theoretically, a proof for modal logics including S5 was offered in a uniform way
in Brünnler, Goetschi, and Kuznets [10]; Goetschi and Kuznets [17]; and Borg
and Kuznets [7]. They utilized nested sequent systems to prove the realization
for a wide range of modal logics between K and S5 (including the two). In
particular, the proof in [7] was modular as well as uniform.

In this paper, we offer a new, simple, uniform, and modular proof of the
realization of major modal logics extended by additional axioms: what we
call D,T, 4, 5. These systems are modal logic correspondents to Justification
Logic with the above-mentioned operators: ·,+, !, ?. 2 Our proof is a proof-
theoretical one, but we do not use a generalization of sequent calculus, such
as nested or hypersequent calculus; rather, we will simply use the standard
cut-free sequent calculus for the modal logic K. We will present a reduction
theorem of all of those extended modal logics over K. This result is concerned
with the research problem treated in Fitting [11] and will be of independent
interest apart from Justification Logic and the realization problem. Moreover,
we will point out that the form of axioms D,T, 4, 5 can be restricted to a kind
of normal form without changing their deductive power. This is a basic fact of
the nature of modal logic, which seems not to have been published so far. We
present the second reduction theorem using this normal form.

Then, we will make a realization for K to a basic system of Justification
Logic called J. Then, to obtain realization for the other logics, we will show
how to convert some realized formulas to the form of the axioms of Justification
Logic by rewriting terms in the proof of a realized formula in J. It will be seen
that a circular argument can be avoided in the rewriting algorithm, thanks to
the second reduction theorem.

This paper is organized as follows. In §2, we define the modal logics treated
in this study. Then, we offer two reduction theorems. It is also pointed out that
the well-known modal axioms can be restricted to a sort of normal form. In
§3, we define the systems of Justification Logic corresponding to those modal
logics and prove the internalization theorem for a basic system of Justification
Logic. In §4, we present our proof-theoretic proof of the realization theorem
for all the systems defined in a uniform and modular way.

2 Modal Logics and Reduction Theorem

Let us begin with a review of axiomatic systems of the modal logic K and its
normal extensions which we are going to handle in this paper. We adopt the
propositional connectives: →,¬. The other ones are defined in terms of the two,
which will be also used below. The unary modal operator 2 is added. The other

2 We do not handle the modal axiom called “B”. We restrict our attention to terms with
these operators in Justification Logic, while a new operator is needed to realize systems
including “B”, as was shown in [17], [7]. However, it is possible to apply our method to
prove the realization for those systems including “B”. We will touch on this point later in a
footnote.
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operator 3 can be defined in terms of 2, which is not considered in this paper.
We use the symbols ⊥ for the propositional constant and P,Q, . . . , P1, P2, . . .
for propositional variables. The formulas are constructed from atomic formulas
in the usual way.

The modal logic K is an axiomatic system for the propositional logic aug-
mented with the axiom 2(A → B) → (2A → 2B) and the inference rule
A/2A (Necessitation). We consider axioms called D,T, 4 and 5.

D ¬2⊥
T 2A→ A
4 2A→ 22A
5 ¬2A→ 2¬2A

Then we obtain from K the system KS1 · · · Sn extended with S1 · · ·Sn from
the schemas D,T, 4, 5. As usual, we follow the custom to call the systems KD,
KT, KT4, KT5 as D, T, S4, S5, respectively. (KT45 is equivalent to KT5.) By
the notation KS1 · · · Sn, we can cover ten systems: D, T, K4, K5, K45, KD4,
KD5, KD45, S4, S5. Let L denote any system from these systems.

Now, we show that L can be syntactically reduced to the modal logic K with
respect to theoremhood. For L, a finite set of modal formulas α and a natural
number n, we define the special formula X(α, n, L) as follows.

L X(α, n, L)

D
∧

0≤i≤n2
i¬2⊥

T
∧

2B∈α
∧

0≤i≤n2
i(2B → B)

K4
∧

2B∈α
∧

0≤i≤n2
i(2B → 22B)

K5
∧

2B∈α
∧

0≤i≤n2
i(¬2B → 2¬2B)

K45 X(α, n,K4) ∧X(α, n,K5)
KD4 X(α, n,D) ∧X(α, n,K4)
KD5 X(α, n,D) ∧X(α, n,K5)
KD45 X(α, n,KD4) ∧X(α, n,K5)
S4 X(α, n,T) ∧X(α, n,K4)
S5 X(α, n,T) ∧X(α, n,K5)

Here “2n” denotes “

n−many︷ ︸︸ ︷
2 · · ·2”.

Lemma 2.1 Let α, β be any finite set of modal formulas and n,m be any
natural numbers. Then we have the following.

(1) `K X(α ∪ β,max(n,m), L)→ X(α, n, L) ∧X(β,m, L);
(2) `K X(α, n+ 1, L)→ 2X(α, n, L).

Proof. For (1). Suppose n ≥ m. For any formula C, we have the following
derivation by propositional calculus.∧

2B∈α∪β
∧

0≤i≤n2
iC →

∧
2B∈α

∧
0≤i≤n2

iC ∧
∧

2B∈β
∧

0≤i≤n2
iC

→
∧

2B∈α
∧

0≤i≤n2
iC ∧

∧
2B∈β

∧
0≤i≤m2iC
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Thus, we have proven the cases when L is D, T, K4 or K5. By using these
results, we can prove the other cases; we handle the case L is KD5. (Other
cases are similar.) We have the following derivation by propositional calculus.

X(α ∪ β, n,KD5) = X(α ∪ β, n,D) ∧X(α ∪ β, n,K5)
→ X(α, n,D) ∧X(β,m,D) ∧X(α, n,K5) ∧X(β,m,K5)
→ X(α, n,KD5) ∧X(β,m,KD5)

Thus, (1) holds for this case.
For (2). When L is D, T, K4 or K5. For any formula C, we have the following

derivation in K.∧
2B∈α

∧
0≤i≤n+1 2

iC →
∧

2B∈α
∧

1≤i≤n+1 2
iC

→ 2
∧

2B∈α
∧

0≤i≤n2
iC

Thus, (2) holds for these cases.
The other cases can be established by using these results; again, we take

the case L = KD5 only, as the remaining cases are similarly proved. We have
the following derivation in K.

X(α, n+ 1,KD5) = X(α, n+ 1,D) ∧X(α, n+ 1,K5)
→ 2X(α, n,D) ∧2X(α, n,K5)
→ 2[X(α, n,D) ∧X(α, n,K5)]
= 2X(α, n,KD5)

Thus, this case has been proven for (2). 2

We call ‘2A’ in the above definition of D,T, 4, 5 the core of them. E.g.,
2(2P ∧ ¬P ) is the core of an axiom T: 2(2P ∧ ¬P ) → (2P ∧ ¬P ). For a
given proof in L, we define AS (axiom specification) to be the set {2A : 2A is
the core of an axiom D,T, 4 or 5 used in the proof}.

Lemma 2.2 For any formula A of modal logic,
if `L A with some AS, then `K X(AS, n, L)→ A, for some n.

Proof. We proceed by induction on the length of a proof of A in L with AS.
When the proof is an axiom of K, X(AS, n, L) = ∅. When the proof is an
axiom of D, T, 4 or 5, `K X(AS, 0, L)→ A.
• For modus ponens, suppose that A is derived from B → A and B. By the

induction hypothesis, for someAS1,AS2, n and m, we have `K X(AS1, n, L)→
(B → A) and `K X(AS2,m, L) → B. Then, we obtain `K X(AS1, n, L) ∧
X(AS2,m, L)→ A. By (1) of Lemma 2.1, `K X(AS1 ∪AS2,max(n,m), L)→
A.
• For necessitation, suppose that A = 2B is derived from B. By the

induction hypothesis, for some AS and n, we have `K X(AS, n, L) → B. By
necessitation and normality of ‘2’, we obtain `K 2X(AS, n, L)→ 2B. By (2)
of Lemma 2.1, `K X(AS, n+ 1, L)→ 2B. 2

Theorem 2.3 (the first Reduction Theorem) For any formula A of modal
logic, the following two are equivalent.
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(1) `L A with AS;
(2) `K X(AS, n, L)→ A, for some n. 3

Proof. It is easily seen that, for any α and any n, X(α, n, L) is provable in
L. Then, (2) obviously implies (1). The converse direction immediately follows
from Lemma 2.2. 2

We take an example to sketch a reduction of proof in KD5 to that in K in
Appendix I.

2.1 Restriction of Modal Axioms

Here, we show that modal logics under consideration have the same deductive
power if we restrict the form of the axioms in a certain way. We define a normal
form of formulas of modal logic as follows.

Definition 2.4 The normal form of formulas is defined as follows.
1. P1 ∧ · · · ∧ Pn → Q1 ∨ · · · ∨Qp is in normal form.
2. When B1, . . . , Bm, C1, . . . , Cq are in normal form, so is the following:

P1 ∧ · · · ∧ Pn ∧2B1 ∧ · · · ∧2Bm → Q1 ∨ · · · ∨Qp ∨2C1 ∨ · · · ∨2Cq
3. If B is equivalent (in propositional logic) to a formula in normal form,

B is also in normal form.

Theorem 2.5 (Normal Form Theorem) For any formula A of modal logic, A
is equivalent in K to a conjunction of formulas in normal form.

Proof. We define the degree of A, d(A), as follows. d(P ) = 0; d(A → B) =
d(A) + d(B); d(¬A) = d(A); d(2A) = d(A) + 1. We proceed by induction on
d(A). At first, by propositional logic, A can be transformed into a conjunction
of the forms:

(\) P1 ∧ · · · ∧ Pn ∧2B1 ∧ · · · ∧2Bm → Q1 ∨ · · · ∨Qp ∨2C1 ∨ · · · ∨2Cq.

Here, by this propositional transformation, the formulas (each Bi and each
Cj) inside the outmost occurrences of 2 are untouched.

Now, in the base case, A is a conjunction of the form P1 ∧ · · · ∧ Pn →
Q1 ∨ · · · ∨ Qp and is in normal form. In the induction step, let D denote
any Bi or any Cj . By the induction hypothesis, D can be equivalently in K
transformed into the form E1 ∧ · · · ∧ Er with each Ei in normal form. Hence,
`K 2D ↔ 2(E1∧· · ·∧Er)↔ 2E1∧· · ·∧2Er. So, we may assume that each Bi
in (\) is already in normal form. As to Cj in (\), assume that C1 = E1∧· · ·∧Er
where each Ei is in normal form. Then, (\) is equivalent to the following.∧

1≤i≤r[P1∧· · ·∧Pn∧2B1∧· · ·∧2Bm → Q1∨· · ·∨Qp∨2Ei∨2C2∨· · ·∨2Cq]
After all, A is equivalent in K to a conjunction of the forms of (\) where

each Bi and each Cj are in normal form. 2

3 We could restrict the set of modal formulas AS so that the elements come from subformulas
of A rather than axioms of a proof in L of A. This direction of research is found in [11].
Here, we cannot make such a restriction because our axiomatic systems do not enjoy the
subformula property. Anyway, our concern here lies in the realization of modal logics and
constructing AS this way is enough for our purpose.
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We show that the restriction of the core of modal axioms to normal form
does not change the deductive power of systems.

Theorem 2.6 If `L A, then `L A with AS consisting of formulas in normal
form.

Proof. It suffices to show that a general form of axiom of T, 4 and 5, respec-
tively, is derivable in K from a restricted form of T, 4 and 5 with the core
in normal form, respectively. By the Normal Form Theorem, a formula B is
equivalent to E1 ∧ · · · ∧ Er with each Ei in normal form. Note that Ei is in
normal form if and only if 2Ei is in normal form.

On T axiom: we have `K 2B → B = 2(E1 ∧ · · · ∧ Er) → (E1 ∧ · · · ∧
Er). ↔ (2E1 ∧ · · · ∧ 2Er) → (E1 ∧ · · · ∧ Er). Also, we have `K [(2E1 →
E1) ∧ · · · ∧ (2Er → Er)] → .(2E1 ∧ · · · ∧ 2Er) → (E1 ∧ · · · ∧ Er). Therefore,
`K [(2E1 → E1) ∧ · · · ∧ (2Er → Er)]→ .2B → B.

On 4 axiom, it is similar to the case of T axiom.
On 5 axiom, we have `K ¬2B → 2¬2B = ¬2(E1∧ · · ·∧Er)→ 2¬2(E1∧

· · ·∧Er).↔ (¬2E1∨· · ·∨¬2Er)→ 2(¬2E1∨· · ·∨¬2Er). On the other hand,
`K [(¬2E1 → 2¬2E1)∧ · · · ∧ (¬2Er → 2¬2Er)]→ .(¬2E1 ∨ · · · ∨ ¬2Er)→
(2¬2E1∨· · ·∨2¬2Er). As 2F∨2G implies 2(F∨G) in K for any F and G, we
obtain `K [(¬2E1 → 2¬2E1)∧· · ·∧(¬2Er → 2¬2Er)]→ .¬2B → 2¬2B.2

Now, we can sharpen the Reduction Theorem.

Theorem 2.7 (the second Reduction Theorem) For any formula A of modal
logic, the following two are equivalent.

(1) `L A;
(2) `K X(α, n, L)→ A, for some α and n such that α consists of formulas

in normal form.

Proof. Derived by Theorems 2.3 and 2.6. 2

Each of Theorems 2.3, 2.5, 2.6, 2.7 is a simple but general observation and
would belong to basics of modal logic, although it seems not commonly known.
Theorem 2.7 will be useful to give a uniform proof of realization theorem in the
following sections and could be thought of to reveal a hidden nature of modal
logics together with the realization. 4

3 Justification Logics and Internalization

Next, we review the corresponding systems of Justification Logic. The formulas
of Justification Logic are defined in the same way as modal logic except that

4 As we remarked in the Introduction, we do not handle the axiom “B” of the form
¬A → 2¬2A. Anyway, the whole argument in this section holds for “B” and the sys-
tems with it, and the realization for systems with “B” can be proved by our method
in the following sections. However, unfortunately, the modal logics GL and GLS do
not satisfy Theorems 2.6 or 2.7, while they do Theorem 2.3 where we have the defi-
nitions: X(α, n,GL) =

∧
2B∈α

∧
0≤i≤n 2i(2(2B → B) → 2B) and X(α, n,GLS) =

X(α, n,GL) ∧
∧

2B∈α(2B → B). See [23] for a recent development of the study of GLS.
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2A is replaced with s : A, where s is a justification term, or simply, term and
defined inductively as follows.

1. Constants c, d, e, . . . , c1, c2, . . . are justification terms.
2. Variables x, y, z, . . . , x1, x2, . . . are justification terms.
3. If s and t are justification terms, then so are s · t, s+ t, !s, and ?s.

For t = (t1, . . . , tn), by ·(t) we mean any concatenation of all terms of
(t1, . . . , tn) via the operator · in arbitrary order. The term +(t) is similarly
defined with + in place of ·. The basic system J is defined by the following
axioms and inference rules.

Axioms:
A1. Axioms of classical propositional logic
A2. s : (A→ B)→ .t : A→ (s · t) : B
A3. s : A→ (s+ t) : A; t : A→ (s+ t) : A

Rules of Inference:
R1. Modus Ponens: A,A→ B/B
R2. Iterated Axiom Necessitation: A/c1 : c2 : · · · : cn : A,
where each ci (1 ≤ i ≤ n) is a constant and A is an axiom.

The constant specification, CS, in a proof is defined to be the set of formulas
introduced by R2 in the proof. We introduce the axioms named Dj , T j , 4j , 5j

as follows.

Dj ¬s : ⊥
T j s : A→ A
4j s : A→!s : s : A
5j ¬s : A→?s : ¬s : A

For modal logic L= KS1 · · · Sn, the system JL is provided by J augmented
with the axioms: Sj1, . . . , S

j
n.

Let us prove the internalization theorem for J, which is a fundamental prop-
erty of Justification Logics. Below, for any term s and formula A, by at(s) and
at(A) we mean a set of atomic terms (that is, constants and variables) appear-
ing in s and A, respectively.

Theorem 3.1 (Internalization for J) For any formula A of J,
`J A implies `J ·(c) : A, for some term of the form ·(c) such that at(·(c)) ∩
at(A) = ∅.
Proof. We proceed by induction on the length of a proof of A in J. When
the proof is an axiom itself, we can take any fresh constant c so that c : A is
provable in J by R2. In the induction step, for the case of R1, by the induction
hypothesis, we have terms ·(c) and ·(d) such that the following hold.

`J ·(c) : A `J ·(d) : (A→ B)
at(·(c)) ∩ at(A) = ∅ at(·(d)) ∩ at(A→ B) = ∅
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If at(·(c)) ∩ at(B) 6= ∅, we can substitute fresh constants for some of c to
make it empty. (This is possible because any constants of c are introduced in
R2 and we can choose any constants in applying R2.) By using A2 and R1, we
have `J (·(c) · ·(d)) : B and at(·(c) · ·(d)) ∩ at(B) = ∅.

For the case of R2, when we have cn : cn−1 : · · · : c1 : A from an axiom A,
we can also have cn+1 : cn : cn−1 : · · · : c1 : A from A by R2. Here, cn+1 is a
fresh constant and the desired term. 2

We note that Theorem 3.1 is a refinement of the standard form of the Inter-
nalization Theorem, which just claims that provability of A implies provability
of s : A for some term s.

The following corollary follows straightforwardly; we put the proof to Ap-
pendix II due to the lack of space.

Corollary 3.2 For any formulas B1, B2, . . . , Bn, A and any terms t1, t2, . . . , tn
of J,
`J B1 ∧B2 ∧ · · · ∧Bn.→ A implies `J t1 : B1 ∧ t2 : B2 ∧ · · · ∧ tn : Bn.→ [·(c) ·
t1 ·t2 · · · · ·tn] : A, for some justification term ·(c) such that at(·(c))∩at(A) = ∅.
5

4 Realization of modal logics

A realization of a formula of modal logic is a replacement of each occurrence of
2 in the formula with a justification term. Such a realization is denoted by r
(possibly with integer subscripts) and the result of realization r for a formula
A is denoted by Ar. Our aim is to prove the following realization theorem for
L.

Theorem 4.1 For any formula A of modal logic,
`L A iff, for some r, `JL Ar.
We are going to prove Theorem 4.1 by reducing it to the following Theorem

4.2 (the realization of K).

Theorem 4.2 For any formula A of modal logic,
`K A iff, for some r, `J Ar.
Theorem 4.2 was first proved in Brezhnev [8] by utilizing sequent calculus

method initiated by Artemov [2]. We modify the method slightly and naturally;
the operator + will be used when two positive occurrences of 2 merge in a proof
in K.

We make use of the standard sequent calculus for K. A sequent is of the
form Γ =⇒ ∆. 6 The sequent calculus for K, which we also call K, is defined
to be the extension of the sequent calculus for classical propositional logic LK
with the following rule. (See, for example, [30] for the full description of LK.)

5 Here, we follow the notation of “association to the left” in restoring brackets of the form
s1 · s2 · · · · · sm. That is, s1 · s2 · · · · · sm is read as (· · · ((s1 · s2) · s3) · · · · · sm). On the other
hand, ·(c) is read according to our previous definition of this notation; it can be any term
consisting of constants c and the operator ·.
6 As usual, by greek capital letters, we mean finite sequences of formulas.
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Γ =⇒ A
2Γ =⇒ 2A

2

We assume the well-known facts: (i) this sequent calculus is equivalent to
the axiomatic system K with respect to theoremhood and (ii) it enjoys the
cut-elimination theorem.

For a sequent S = Γ =⇒ ∆, its formula image, fi(S), is defined to be∧
Γ→

∨
∆.

Proof of Theorem 4.2. The ‘if’ part is proved by using what is called the
forgetful projection, say f : for any formula B of modal logic and any realization
r, (Br)f = B. It is easily shown that (Ar)f = A is provable in K by induction
on the length of a proof of Ar in J.

Now we handle the other part. Let us recall the ‘normality’ of realization
introduced in [2]. A normal realization of a formula is one that assigns a variable
to each negative occurrence of 2. A realization of a sequent S = Γ =⇒ ∆ is
defined by: Sr = (fi(S))r. Sr can be also expressed by Γr =⇒ ∆r. r for S is
normal if Sr is normal.

Let P be a cut-free proof of S in K. In P , we restrict the initial sequent
A =⇒ A to the case when A is an atomic formula. For an application of
inference rule, an occurrence of 2 in a upper sequent has the (obviously) related
occurrence of 2 in the lower sequent. Thus, all occurrences of 2 form a ‘forest’
in P , where occurrences of 2 are nodes and in-between inference rules are
edges. Each occurrence of 2 in the end-sequent is the ‘root’ of a ‘tree’. All of
the occurrences of 2 belonging to a specific ‘tree’ have the same polarity. We
call a tree which has positive occurrences of 2 a positive tree and one which
has negative occurrences of 2 a negative tree in P .

We present the Realization Algorithm which assigns a term to each occur-
rence of 2 in P so that each realized sequent is provable in J.

Realization Algorithm
(Step 1) Assign distinct variables to each negative tree in P , and replace

all the nodes 2 in a tree with the assigned variable.
(Step 2) Fix a positive tree in P . We proceed from top to bottom.
2.1. Assign a distinct variable for each leaf of the tree which is introduced

by the rule ‘2’. Also, assign a uniform variable to all leaves of the tree which
are introduced otherwise.

2.2. Keep on assigning the same term in each branch until another branch
meets with it or the root is reached.

2.2.1. When two branches of the tree merge by ‘c’ (contraction) or logical
rules, connect the two obtained terms by the operator + and assign the new
term to the next node. We take an example of the case when ‘c’ is involved.

B(2C), B(2C),Γ =⇒ ∆

B(2C),Γ =⇒ ∆
c

Here, 2C occurs negatively in B and positively in the whole sequent. Sup-
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pose that one indicated occurrence of 2 of 2C is replaced with +(x) and the
other is replaced with +(y). Then, replace the related occurrence of 2 in the
lower sequent with [+(x)] + [+(y)].

(Step 3) Update r by replacing variables x used in (Step 2) for the leaves
of positive trees introduced by 2 rule as follows.

B1, . . . , Bn =⇒ C

2B1, . . . ,2Bn =⇒ 2C
2

Suppose that (2B1, . . . ,2Bn =⇒ 2C)r has become y1 : Br1 ∧ · · · ∧ yn :
Brn → x : Cr in (Step 1, 2). By Corollary 3.2, there is some ·(d) such that
if Br1 ∧ · · · ∧ Brn. → Cr is provable in J then so is y1 : Br1 ∧ · · · ∧ yn : Brn →
(·(d) · y1 · · · · · yn) : Cr. Update r so that ·(d) · y1 · · · · · yn is substituted for x.

(The end of the Realization Algorithm)

It is easily seen that this algorithm halts eventually. Also, it surely works
correctly. We put the argument for the correctness in Appendix III.

In this way, we can obtain a normal realization of a formula provable in K
such that the resulting formula is provable in J. This completes the proof of
Theorem 4.2. 2

We note the following point on the normal realization we have constructed
from a cut-free proof in K in the proof of Theorem 4.2.

Note. We can take fresh constants for ·(d) in (Step 3) for each application
of rule 2, because those constants are introduced from the rule R2 and we can
choose any constant in applying R2. Thus, each leaf in a positive tree is realized
to a term which does not share variables or constants with other leaves, and
they can merge with the operator + in ‘c’ or logical inferences, while in the
original algorithm in [2], all the nodes in a positive tree have the same term.

Proof of Theorem 4.1. For the ‘if’ part, it is similarly proved to Theorem
4.2. For the ‘only if’ part. Suppose that A is provable in L. In light of the
second Reduction Theorem (Theorem 2.7), there is a cut-free proof P in K of
X1, . . . , Xp =⇒ A. Here, X(α, n, L) = X1 ∧ · · · ∧Xp for some n and some set
α composed of formulas in normal forms; each Xi is X(α, n,D), X(α, n,T),
X(α, n,K4) or X(α, n,K5).

Fix any Xa. We impose the following condition.

(\\) There is no application of c : l (contraction on the left hand side) in P
on any subformula of Xa.

We can transform P so that (\\) is satisfied; any such application of c : l
can be permuted with the following inference so that Xa may be duplicated in
the end-sequent. We show this. Proceed from top to bottom. We distinguish
cases by the inference below such an application of c : l, among which we pick
up two cases: →: r and 2. When it is →: r, we can move the application of
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c : l to the right by permuting them, as follows.

A,A,Γ⇒ ∆, B

A,Γ⇒ ∆, B
c : l �

Γ⇒ ∆, A→ B
→: r

A,A,Γ⇒ ∆, B

A,Γ⇒ ∆, A→ B
→: r

A,Γ⇒ ∆, A→ B,B
w

Γ⇒ ∆, A→ B,A→ B
→: r

Γ⇒ ∆, A→ B
c : r

When it is the rule 2, we can exchange it with the application of c : l, as
follows.

A,A,Γ⇒ B

A,Γ⇒ B
c : l

2A,2Γ⇒ 2B
2 �

A,A,Γ⇒ B

2A,2A,2Γ⇒ 2B
2

2A,2Γ⇒ 2B
c : l

After all, we may suppose that (\\) holds. Now we apply the Realization
Algorithm to the proof P to obtain a proof, say P ∗, in J of Xr

1 , . . . , X
r
p =⇒ Ar

with some normal realization r. Fix any Xa. Xa has one of the forms:

2i(2B → B);
2i(2B → 22B);
2i(¬2B → 2¬2B).

Here, B is in normal form and can be ⊥. Each form has two occurrences
of a formula B such that the corresponding occurrences of 2 have the opposite
polarities inside B. Thus, the normal realization of them can be different: Br1

and Br2. The realization of Xa is one of the forms:

x1 : · · ·xi : (u : Br2 → Br1);
x1 : · · ·xi : (u : Br2 → y1 : y2 : Br1);
x1 : · · ·xi : (¬y1 : Br1 → y2 : ¬u : Br2).

Our first task is to reconcile Br1 and Br2 by rewriting terms in P ∗ and so
updating the realization. If B contains no 2, there is nothing to do here. Also,
propositional variables are unimportant for the task. Thus, we may suppose
that B is of the form:

2C1 ∧ · · · ∧2Cn → 2D1 ∨ · · · ∨2Dm

Here, each Ci and Dj are in normal form. Suppose that Br1 and Br2 are
of the following forms.

Br1 = s1 : Cr1 ∧ · · · ∧ sn : Crn → z1 : Dr
1 ∨ · · · ∨ zm : Dr

m

Br2 = w1 : Cr1 ∧ · · · ∧ wn : Crn → t1 : Dr
1 ∨ · · · ∨ tm : Dr

m

By induction on deg(B), we show that the realization can be so updated
that (i) Br1 and Br2 are identical, and (ii) the realization of other parts of
X(α, n, L) → A than Xa can change in such a way that only positive occur-
rences of a variable are replaced with a term.

As a result, the realization will be no longer normal. By the induction
hypothesis, we assume that the realizations of each Ci and Dj in Br1 and Br2

are identical. We apply the following algorithm.
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Rewriting Algorithm
(Step 1) For all 1 ≤ i ≤ n, replace wi in P ∗ with si. For all 1 ≤ j ≤ m, let

t+j be a term obtained from tj by this replacement.

(Step 2) For all 1 ≤ j ≤ m, replace zj in P ∗ with t+j .
(The end of Rewriting Algorithm)

Clearly, this algorithm halts eventually, as occurrences to be replaced are
finite in each step and the number of those occurrences is reduced after each
replacement. Also, the algorithm works correctly; we put the detailed argument
in Appendix IV. Here, we note that (Step 1) and (Step 2) essentially reconcile
the antecedent of Br1 and Br2 and the succedent of Br1 and Br2, respectively,
and (Step 2) does not change that antecedent anymore (as no si contains any
zj), thanks to the second Reduction Theorem and the property (\\). This is
why we could avoid a circular argument in reconciling Br1 and Br2. 7

Also, note that (Step 1, 2) both take the form: for negative occurrences
of variables, replace all (negative and positive) occurrences of them with some
term. So, even if some preceding application of this Rewriting Algorithm to
another conjunct altered some variables which occur only positively in the con-
junct Xr

a under consideration it does not lose the applicability of the Rewriting
Algorithm to Xr

a .
We have updated the realization r, which is not normal now, so that

X(α, n, L)r → Ar is provable in J where each conjunct Xr
a of X(α, n, L)r is

of the following form.

x1 : · · ·xi : (u : Br → Br);
x1 : · · ·xi : (u : Br → y1 : y2 : Br);
x1 : · · ·xi : (¬y1 : Br → y2 : ¬u : Br).

Our remaining task is to make these forms provable in JL. First, for each
conjunct Xa, there are outermost realized modalities, x1, . . . , xi. Take fresh
constants c1, . . . , ci. For each 1 ≤ a ≤ i, replace xa in P ∗ with ca. Then, we
distinguish cases according to L. X(α, n, L)−X(α, n, L0) is a formula obtained
from X(α, n, L) by removing X(α, n, L0). For systems L0 and L1, we write L0 ⊆
L1 to mean the latter extends the former.

(Case 1) When D ⊆ L, ¬u : ⊥ is an axiom in JL. By R2, c1 : · · · ci : (¬u : ⊥)
is provable in JL. Therefore, `JL X(α, n, L)r −X(α, n,D)r.→ Ar.

(Case 2) When T ⊆ L, u : Br → Br is an axiom in JL, and, by R2,
`JL c1 : · · · ci : (u : Br → Br). Therefore, `JL X(α, n, L)r −X(α, n,T)r.→ Ar.

(Case 3) When K4 ⊆ L, first replace y1 and y2 in P ∗ with u and !u, respec-
tively. Then, u : Br →!u : u : Br is an axiom in JL and, by R2, c1 : · · · ci : (u :
Br →!u : u : Br) is provable in JL. Hence, `JL X(α, n, L)r−X(α, n,K4)r.→ Ar.

(Case 4) When K5 ⊆ L, first replace y1 and y2 in P ∗ with u and ?u, respec-
tively. Then, ¬u : Br →?u : ¬u : Br is an axiom in JL. By applying R2, `JL c1 :

7 The second Reduction Theorem and the property (\\) are actually based on the same idea:
we can rule out positive occurrences of ∧ in modal axioms without changing deductive power.
(They are negative in the whole sequent.)
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· · · ci : (¬u : Br →?u : ¬u : Br). Hence, `JL X(α, n, L)r −X(α, n,K5)r.→ Ar.

The obtained figure is surely a proof in J, because all replacement we exe-
cuted is so that variables are converted to terms. Each conjunct of X(α, n, L)r

is now of the following form.

c1 : · · · ci : (u : Br → Br);
c1 : · · · ci : (u : Br →!u : u : Br);
c1 : · · · ci : (¬u : Br →?u : ¬u : Br).

In this way, we can eliminate every conjunct of E(α, n, L)r in JL and we
obtain the result of provability of Ar in JL. This finishes the proof of Theorem
4.1. 2

The realization which we finally constructed is not normal. However, it
is obtained from the normal realization we obtained through the Realization
Algorithm by assigning terms to variables. Thus, positive occurrences of terms
are still composed of negative occurrences of terms. In this sense, the final
realization would keep a flavor of normality.

5 Conclusion Remark

In this paper, we offered the reduction theorems of modal logics to the system
K, and we proved a basic fact that modal axioms can be restricted to a sort
of normal form without changing their deductive power. Then, based on these
results, we presented a uniform and modular proof of the realization of major
modal logics in Justification Logics using a proof-theoretical method.

As further research problems, it would be intriguing to clarify a semantical
meaning of the reduction theorems and normal form theorem (in terms of both
possible-world and algebraic semantics.) Also it would be interesting to invest-
gate the extension of the theorems to second-order modal logics. Moreover, it
would be intriguing to ask how far our method can be generalized, as recently
it turned out in Fitting [16] that there exist infinitely many modal logics that
have counterparts in Justification Logic. 8

Appendix

I. Example of reduction of proof.
Here we sketch an example of reduction (as in Theorem 2.3) of proof in

KD5 to that in K. Let us consider the formula 2(¬P ∨ ¬2Q) → 22¬2(P ∧
Q) provable in KD5. We permit (i) putting hypotheses in a proof, where of
course we cannot apply Necessitation to a formula depending on hypotheses and
(ii) applying an inference rule introducing ‘→’ discharging some hypotheses,
a conjunction of which occur as the antecedent of the introduced ‘→’. This
relaxation is justifiable in the standard axiomatic system for propositional logic
and, therefore, our system K. Here is a sketch of its proof in KD5.

8 The question concerning algebraic model was suggested to me by an anonymous referee.
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1. 2(¬P ∨ ¬2Q) Hypothesis
...

n1. ¬2Q→ 2¬2Q Axiom 5...
n2. 2(¬P ∨2¬2Q)

...
n3. ¬2¬2Q→ 2¬2¬2Q Axiom 5

...
n4. 2(2¬P ∨2¬2Q)

...
n5. ¬2⊥ Axiom D...
n6. 2(¬2P ∨2¬2Q)...
n7. ¬2P → 2¬2P Axiom 5...
n8. 2(2¬2P ∨2¬2Q)...
n9. 22¬2(P ∧Q)

n10. 2(¬P ∨ ¬2Q)→ 22¬2(P ∧Q) 1

Then, we can convert this proof to the following proof in K.

1. [2(¬P ∨ ¬2Q)] Hypothesis
...

n1. 2(¬2Q→ 2¬2Q) Hypothesis
...

n2. 2(¬P ∨2¬2Q)
...

n3. 2(¬2¬2Q→ 2¬2¬2Q) Hypothesis
...

n4. 2(2¬P ∨2¬2Q)
...

n5. 2¬2⊥ Hypothesis...
n6. 2(¬2P ∨2¬2Q)...
n7. 2(¬2P → 2¬2P ) Hypothesis...
n8. 2(2¬2P ∨2¬2Q)...
n9. 22¬2(P ∧Q)

n10. 2(¬P ∨ ¬2Q)→ 22¬2(P ∧Q) 1

n11. X(α, 1,KD5)− → .2(¬P ∨ ¬2Q)→ 22¬2(P ∧Q) n1, n3, n5, n7...
n12. X(α, 1,KD5)→ .2(¬P ∨ ¬2Q)→ 22¬2(P ∧Q)

Here, X(α, 1,KD5)− is a conjunction of the formulas n1, n3, n5, n7 and
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α = {2Q,2¬2Q,2⊥,2P}. Note that X(α, 1,KD5) = X(α, 0,KD5) ∧
X(α, 1,KD5)−.

II. Proof of Corollary 3.2.
Suppose `J B1 ∧ B2 ∧ · · · ∧ Bn. → A. Then, `J B1 → (B2 → · · · (Bn →

A) · · · ). By Theorem 3.1, for some ·(c), `J ·(c) : [B1 → (B2 → · · · (Bn →
A) · · · )] such that at(·(c)) ∩ at(A) = ∅. We work in J and by induction on n.
Suppose that we obtain:

t1 : B1 → .t2 : B2 → . · · · ti : Bi →
(·(c) · t1 · t2 · · · · · ti) : [Bi+1 → (· · · (Bn → A) · · · )].

The following is an axiom from A2.

(·(c) · t1 · t2 · · · · · ti) : [Bi+1 → (· · · (Bn → A) · · · )]→ .
ti+1 : Bi+1 → (·(c) · t1 · t2 · · · · · ti · ti+1) : [Bi+2 → (· · · (Bn → A) · · · )]

Then, by propositional calculus with the last two formulas, we obtain:

t1 : B1 → .t2 : B2 → . · · · ti : Bi → .ti+1 : Bi+1 →
(·(c) · t1 · t2 · · · · · ti · ti+1) : [Bi+2 → (· · · (Bn → A) · · · )].

Thus, we have:

t1 : B1 → .t2 : B2 → . · · · tn : Bn → (·(c) · t1 · t2 · · · · · tn) : A.

and, by propositional calculus,

t1 : B1 ∧ t2 : B2 ∧ · · · ∧ tn : Bn.→ (·(c) · t1 · t2 · · · · · tn) : A.

Here, the desired property on terms is preserved.

III. Argument for the correctness of the Realization Algorithm.
We verify the correctness of the algorithm: every realized sequent obtained

in there is provable in J. We proceed from top to bottom in P . For an initial
sequent S of the form A =⇒ A or ⊥,Γ ⇒ ∆, Sr is an axiom of J. It is easily
checked that for every application of a rule, if the realizations of the upper
sequents are provable in J then so is that of the lower sequent, except the case
when two branches of a positive tree merge via ‘c’ or logical inferences. These
cases are similarly treated. We handle the case of ∧ : r here.

B(2C),Γ =⇒ ∆, D B(2C),Γ =⇒ ∆, E

B(2C),Γ =⇒ ∆, D ∧ E ∧ : r

Here, 2C occurs negatively in B and positively in the whole sequent. Sup-
pose that the upper sequent is realized as follows.

Br(s : Cr),Γr =⇒ ∆r, Dr Br(t : Cr),Γr =⇒ ∆r, Er
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It is easily seen that we can replace the related occurrences of s (the in-
dicated term of s : Cr), corresponding to some branches of the positive tree
in P , with s + t, keeping all the inferences in J; and we can do the same for
the related occurrences of t (the indicated term of t : Cr), corresponding to
other branches of the positive tree in P . Then we obtain a proof of the realized
sequent

Br((s+ t) : Cr),Γr =⇒ ∆r, Dr Br((s+ t) : Cr),Γr =⇒ ∆r, Er

Thus, we can know the realization of the lower sequent of ∧ : r is provable
by propositional inferences (corresponding to ∧ : r) in J.

IV. Argument for correctness of the Rewriting Algorithm.
We consider only the case of the conjunct Xa = 2i(2B(2) → B(1)). The

other cases can be treated similarly. Let B(1) and B(2) be occurrences of B
which have become Br1 and Br2 by the realization, respectively. In the proof
P in K, there can be some applications of →: l to introduce 2B(2) → B(1).

P1 P2

.. . .. . .. . ......

.. . .. . .. . ......

Γ =⇒ ∆,2B(2) B(1),Γ =⇒ ∆

2B(2) → B(1),Γ =⇒ ∆
→: l

...

2i(2B(2) → B(1)), X
−(α, n, L) =⇒ A

In the subproof P1, there can be applications of →: r introducing B(2).

...

2C1 ∧ · · · ∧2Cn,Σ =⇒ Θ,2D1 ∨ · · · ∨2Dm

Σ =⇒ Θ,2C1 ∧ · · · ∧2Cn → 2D1 ∨ · · · ∨2Dm
→: r

.. . .. . .. . ......

Γ =⇒ ∆,2B(2)

By the Realization Algorithm, the principal formula of such an application
of →: r becomes of the form:

w1 : Cr1 ∧ · · · ∧ wn : Crn → t′1 : Dr
1 ∨ · · · ∨ t′m : Dr

m

Here, each t′i is a subterm of the corresponding ti in Br2; they become identical
when more + are added.

Fix any wi (1 ≤ i ≤ n). We show wi does not appear in any Crj or Dr
k.
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There can be several occurrences of 2Ci the 2 of which belongs to the same
negative tree and is realized to wi. Since they must be contracted eventually
in P , it cannot appear in any Cj or Dk.

Also, there can be occurrences of 2E which is the right principal formula
of applications of 2 : r having a left principal formula 2Ci and is realized to
wi. 2E may be some 2Dk. Two formulas (Cj and 2E) (j = i or j 6= i) and
(Dk and 2E) are never contracted in cut-free P . This is because to contract
such two, Cj of 2Cj or Dk of 2Dk must have 2E as a subformula and 2E
should have one more 2 outside itself. However, since the rule 2 increases the
number of 2 by one for each auxiliary formula, 2Cj or 2Dk would have also
one more 2 outside. Thus, such two formulas are never contracted. 9

Hence, firstly, the realization inside each Ci and Dk does not use any vari-
able wi (1 ≤ i ≤ n), and (Step 1) does not change the realization of any Ci or
Dk. 10

Next, the root of the negative tree which is associated with wi appears inside
Xa and is obviously the only negative occurrence of wi in the end-sequent, while
the roots of the positive trees associated with terms containing wi can appear
inside or outside Xa = 2i(2B(2) → B(1)) in the end-sequent. So, secondly, for
other part of X(α, n, L) → A than Xa, (Step 1) can replace only the positive
occurrences of variables of wi(1 ≤ i ≤ n).

Thus, the execution of (Step 1) guarantees that the antecedents of Br1 and
Br2 become identical and satisfies the desired property (ii).

Concerning (Step 2), we turn to look at P2. In the subproof P2, there can
be applications of →: l introducing B(1).

...

Σ =⇒ Θ,2C1 ∧ · · · ∧2Cn 2D1 ∨ · · · ∨2Dm,Σ =⇒ Θ

2C1 ∧ · · · ∧2Cn → 2D1 ∨ · · · ∨2Dm,Σ =⇒ Θ
→: l

.. . .. . .. . ......

B(1),Γ =⇒ ∆

By the Realization Algorithm, the principal formula of such an application
of →: l becomes of the form:

s′1 : Cr1 ∧ · · · ∧ s′n : Crn → z1 : Dr
1 ∨ · · · ∨ zm : Dr

m

9 This is formally proved by induction on the number of applications of rules between each
2 rule which introduce some 2Cj and the end-sequent.
10 In other words, we do not have a self-referential realization on any 2Ci and 2Dk. Generally,
this kind of self-reference phenomenon can be avoided in realization of the modal logic K and
D, which was shown in Kuznets [24]. Here, we proved the possibility to avoid self-referentiality
for a specific form of formulas in a cut-free proof in K.
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Here, each s′i is a subterm of the corresponding one in Br1; they become iden-
tical when more + are added.

Fix any zi (1 ≤ i ≤ m). There can be applications of 2-rule which have
2Di as a left principal formula. Let 2E be the right principal formula of any
such application of 2-rule. By a similar argument to P1, 2E cannot merge
with any Cj or Dk. So, the realization does not use any zi there, and (Step 2)
does not change any Crj or Dr

k.
Moreover, in the subproof above the left upper sequent of the application

of →: l, there is no such application of 2-rule. Because: if there is, 2Di

appears in the lower sequent of it, it must be contracted below the →: l with
the occurrence of 2Di in the right upper sequent of the→: l, but it contradicts
(\\). Therefore, 2E never merges with any 2Ci. (So, what cannot merge with
2E is not only Ci but 2Ci.) Hence, no term of sj (1 ≤ j ≤ n) contains any zi,
and (Step 2) does not change any sj . This guarantees that (Step 2) does not
change the outcome of (Step 1), and we obtain non circularity of the Rewriting
Algorithm. 11

Finally, by a similar argument to P1, for other part of X(α, n, L) → A
than Xa, (Step 2) can replace only the positive occurrences of variables of
zi(1 ≤ i ≤ n).

Thus, the execution of (Step 2) guarantees that the succedents of Br1 and
Br2 become identical, the antecedents remain untouched, and satisfies the de-
sired property (ii). Note that after each step of the rewriting process, the
obtained figure is surely a proof in J.
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