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Abstract

In “A Problem in Possible-World Semantics,” David Kaplan presented a consistent
and intelligible modal principle that cannot be validated by any possible world frame
(in the terminology of modal logic, any neighborhood frame). However, Kaplan’s
problem is tempered by the fact that his principle is stated in a language with propo-
sitional quantification, so possible world semantics for the basic modal language with-
out propositional quantifiers is not directly affected, and the fact that on careful in-
spection his principle does not target the world part of possible world semantics—the
atomicity of the algebra of propositions—but rather the idea of propositional quan-
tification over a complete Boolean algebra of propositions. By contrast, in this paper
we present a simple and intelligible modal principle, without propositional quanti-
fiers, that cannot be validated by any possible world frame precisely because of their
assumption of atomicity (i.e., the principle also cannot be validated by any atomic
Boolean algebra expansion). It follows from a theorem of David Lewis that our logic is
as simple as possible in terms of modal nesting depth (two). We prove the consistency
of the logic using a generalization of possible world semantics known as possibility se-
mantics. We also prove the completeness of the logic (and two other relevant logics)
with respect to possibility semantics. Finally, we observe that the logic we identify
naturally arises in the study of Peano Arithmetic.

Keywords: modal logic, Kripke incompleteness, Kripke inconsistency, atomic
inconsistency, possibility semantics, algebraic semantics, Kaplan’s paradox

1 Introduction

In his paper “A Problem in Possible-World Semantics” [17], written for a
festschrift for Ruth Barcan Marcus, David Kaplan argued that there is “a
problem in the conceptual/mathematical foundation of possible-world seman-
tics (PWS) which threatens its use as a correct basis for doing the model theory
of intensional languages” (p. 41). The problem is that certain consistent and
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intelligible modal principles cannot be true in any possible world model. Ka-
plan’s example is the following principle, stating that for any proposition p,
it is possible that the property expressed by Q holds of p and only p (up to
necessary equivalence of propositions):

∀p3∀q(Qq ↔ 2(p↔ q)). (A)

For what sentential operators Q does (A) hold? As Kaplan writes:

Perhaps, for every proposition, it is possible that it and only it is Queried
[That is, it is asked whether it is the case that p. . . .]. Or Perhaps not. It
shouldn’t really matter. There may be no operator expressible in English
which satisfies (A). Still, logic shouldn’t rule it out. (p. 43)

Yet standard possible world semantics rules out (A). For if propositions are in
one-to-one correspondence with sets of possible worlds, 3 and 3ϕ (resp. 2ϕ)
is true if and only if ϕ is true at some (resp. all) worlds, then the truth of
(A) requires that for every set P of worlds, there is a world wP where the Q-
property holds only of P . In other words, the truth of (A) requires an injective
function sending every set of worlds to a world, contradicting Cantor’s theorem.

Kaplan’s paradox, as it has come to be called, has been much discussed (see,
e.g., [19,20,27,1,24]). From our perspective, it has at least two weaknesses as a
problem for possible world semantics. First, as (A) involves quantification over
propositions in the object language, Kaplan’s paradox does not pose a direct
problem for possible world semantics for modal languages without propositional
quantifiers. Second, even if we want propositional quantification, on careful
inspection (A) does not in fact target the world part of possible world semantics.

To see why not, let us first consider a general algebraic semantics for proposi-
tional modal logic with propositional quantifiers as in, e.g., [12,3,4]. We expand
a Boolean algebra B with a unary operation f on B. A valuation v assigns
to each propositional variable an element of B as its semantic value. Semantic
values are then assigned recursively to all formulas of the language with respect
to v using operations on B associated with the sentential connectives. Boolean
connectives are interpreted using the corresponding Boolean operations in B;
the sentential operator Q is interpreted using the operation f ; and 3 (resp. 2)
is interpreted using the operation that sends a to > if a 6= ⊥, and otherwise
sends a to ⊥ (resp. the operation that sends a to > if a = >, and otherwise
sends a to ⊥). Finally, the most natural way to interpret the propositional
quantifiers is to assume that B is a complete Boolean algebra and then to take
the semantic value of ∀pϕ with respect to v to be the meet in B of all the
semantic values of ϕ with respect to every valuation that differs from v at most
in the semantic value it assigns to p.

This algebraic semantics does not make the crucial “world” assumption of

3 General frame semantics, in the terminology of modal logic (see, e.g., [2, § 5.5]), is not
committed to the view that every set of worlds corresponds to a proposition, so it does not
fall under what we call “standard possible world semantics” here.
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possible world semantics—that the algebra of propositions is atomic—and yet
on this algebraic semantics, the semantic value of (A) must still be ⊥. 4 Thus,
(A) targets the idea of propositional quantification over a complete Boolean
algebra of propositions. Over an incomplete Boolean algebra of propositions,
there is a way of interpreting (A) as true—see [14, § 4].

In this paper, we present another problem in possible world semantics,
which is not subject to the two criticisms of Kaplan’s problem above. After a
brief review of possible world semantics in Section 2, in Section 3 we present a
simple and intelligible modal principle, without propositional quantifiers, that
cannot be validated by any possible world frame precisely because of their
assumption of atomicity, i.e., the principle also cannot be validated by any
atomic Boolean algebra expansion. It follows from a theorem of David Lewis
[18] that our logic is as simple as possible in terms of modal nesting depth
(two). Using a generalization of possible world semantics known as possibility
semantics, reviewed in Section 4, we prove the consistency of the logic in Section
5. We also prove the completeness of the logic (and two other relevant logics)
with respect to possibility semantics, via completeness with respect to algebraic
semantics in Section 6. In Section 7, we observe that the logic we identify
naturally arises in the study of Peano Arithmetic. Finally, we conclude in
Section 8 with some open questions for future research.

2 Possible World Semantics

We are interested in semantics for the following bimodal language.

Definition 2.1 Let L be the language generated by the following grammar:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | 2ϕ | Qϕ,

where p belongs to a countably infinite set Prop of propositional variables. We
treat the other connectives ∨, →, and ↔ as abbreviations as usual, and we
define 3ϕ := ¬2¬ϕ.

According to possible world semantics, propositions (what sentences ex-
press) are in one-to-one correspondence with sets of possible worlds, as propo-
sitions are in one-to-one corresopndence with truth conditions and truth condi-

4 For if not, then noting that the semantic value of a formula of the form 3ϕ is either ⊥ or
>, no matter what the valuation of p is the semantic value of ∀q(Qq ↔ 2(p↔ q)) must not
be ⊥. Given that the semantic value of 2(p ↔ q) is either > or ⊥, and it is the former iff
the valuations of p and q are the same, we see that the semantic value of Qq ↔ 2(p ↔ q)
is either just the semantic value of Qq in case that p and q have the same value, or it is the
complement of the semantic value of Qq in case that p and q have different values. Taking
the meet of them as we vary the value of q, if the value of p is b ∈ B, then the value of
∀q(Qq ↔ 2(p↔ q)) is h(b) := f(b) ∧

∧
b′∈B\{b} ¬f(b′), and as we said, h(b) > ⊥. However,

it is also easy to see that for any b1 6= b2 in B, h(b1)∧h(b2) ≤ f(b1)∧¬f(b2)∧f(b2) = ⊥, and
given that both h(b1) and h(b2) are not ⊥, h(b1) 6= h(b2). Thus, we have found an antichain
C = {h(b) | b ∈ B} in B, whose cardinality is the same as the cardinality of B. But this
is impossible: by the completeness of B, any subset of C has a join in B, and for any two
different subsets, they have different joins, rendering the cardinality of B to be 2|C| > |C|.
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tions are satisfied or not satisfied at possible worlds. On this view, neighborhood
models [22,25,23] give us the most general way to model propositional opera-
tors, operators that do not distinguish different syntactic ways of expressing
the same proposition. We review the definitions in the current bimodal setting.

Definition 2.2 A neighborhood frame is a tuple F = 〈W,N2, NQ〉 where:

(i) W is a nonempty set,

(ii) N2 : W → ℘(℘(W )) and NQ : W → ℘(℘(W )).

A model based on F is a pair M = 〈F, V 〉 where V : Prop→ ℘(W ).

Definition 2.3 Given a model M = 〈F, V 〉 based on F = 〈W,N2, NQ〉,
w ∈W , and formula ϕ, we define M, w � ϕ as follows:

(i) M, w � p iff w ∈ V (p);

(ii) M, w � ¬ϕ iff M, w 2 ϕ;

(iii) M, w � (ϕ ∧ ψ) iff M, w � ϕ and M, w � ψ;

(iv) M, w � 2ϕ iff {v ∈W | M, v � ϕ} ∈ N2(w);

(v) M, w � Qϕ iff {v ∈W | M, v � ϕ} ∈ NQ(w).

Moreover, for each formula ϕ, let JϕKM = {w ∈W | M, w � ϕ}.
Definition 2.4 A neighborhood frame F = 〈W,N2, NQ〉 validates a formula
ϕ (F � ϕ) iff for any model M based on F and w ∈W , M, w � ϕ.

On the logical side, we start with the definition of congruential modal log-
ics, which can be seen as the broadest class of extensions of classical logic
with propositional operators (under the assumption that formulas are logi-
cally equivalent iff they express the same proposition). For any frame F,
{ϕ ∈ L | F � ϕ} is such a logic.

Definition 2.5 A congruential modal logic for L is a set L of formulas con-
taining all propositional tautologies and closed under modus ponens, uniform
substitution, and the congruence rule for each O ∈ {2, Q}: if ϕ↔ ψ ∈ L, then
Oϕ ↔ Oψ ∈ L. L is inconsistent if L = L. For any Γ ⊆ L, let Cong(Γ) be
the smallest congruential modal logic extending Γ. For any congruential modal
logic L and ϕ ∈ L, define L + ϕ to be Cong(L ∪ {ϕ}).

3 The Split Principle

Let S be the smallest congruential modal logic containing 2> and

p→
(
3(p ∧Qp) ∧3(p ∧ ¬Qp)

)
. (Split)

Suppose 2 is the knowledge modality of an agent a. Then intuitively (Split)
says that if p is true, then it is compatible with a’s knowledge that p is true
while property Q holds of p, and it is also compatible with a’s knowledge that
p is true while property Q does not hold of p. For example, if we interpret
Qp as Kaplan suggested, as p is queried, then (Split) says that if p is true,
then it is compatible with a’s knowledge that p is true while p is queried by
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some agent, and it is also compatible with a’s knowledge that p is true while
p is not queried by some agent. We do not think that semantics should forbid
an epistemic logic for reasoning about a’s knowledge in which (Split) is a
theorem. 5 (Later we will see an arithmetic interpretation validating (Split)
in which 3 has an “epistemic” reading as consistency in Peano Arithmetic;
and before then we will see an interpretation involving future contingents after
Theorem 5.2.) And yet, it is forbidden by possible world semantics:

Theorem 3.1 No neighborhood frame validates S.

In fact, no atomic Boolean algebra expansion validates S, but for readers more
familiar with possible world semantics we first give the proof in terms of neigh-
borhood frames (see Proposition 6.5 for the algebraic analogue).

Proof. Suppose F = 〈W,N2, NQ〉 validates S. Define a model M = 〈F, V 〉
such that for some w ∈ W , V (p) = {w}, so M, w � p. Then since F validates
(Split), we haveM, w � 3(p∧Qp)∧3(p∧¬Qp), i.e., J¬(p∧Qp)KM 6∈ N2(w)
and J¬(p∧¬Qp)KM 6∈ N2(w). Since V (p) is a singleton set, either Jp∧QpKM =
∅ or Jp ∧ ¬QpKM = ∅, so J¬(p ∧ Qp)KM = W or J¬(p ∧ ¬Qp)KM = W .
Combining the previous two steps, we have W 6∈ N2(w), which contradicts the
fact that F validates 2>. 2

Syntactically, this logic is inconsistent with some additional principles for
Q that are common in the study of specific propositional operators such as
necessity and knowledge. However, these principles should not be imposed
on arbitrary propositional operators (and they are even dubious for a certain
notion of querying).

Proposition 3.2

(i) S + (Q(p ∧ q)→ Qp) is inconsistent. In other words, the Q operator in S
cannot be monotone.

(ii) S + (Q(p ∨ q)→ Qp) is inconsistent. In other words, the Q operator in S
cannot be antitone.

(iii) In S, the following two rules are derivable:

ϕ→ Qϕ

¬ϕ
,

ϕ→ ¬Qϕ
¬ϕ

.

(iv) If we expand the language with propositional quantifiers and consider SΠ,
the congruential extension of S with the standard axioms and rules for
propositional quantifiers (see [3] for the axioms and rules), then ∃pQp
and hence 2∃pQp are derivable.

5 One objection, suggested by a referee, is to consider p being the proposition nothing is
queried. Then it is not plausible that it is consistent with a’s knowledge that p∧Qp. Indeed,
(Split) only makes sense in an epistemic logic for reasoning about the knowledge of an agent
a who knows that some proposition is queried (see Proposition 3.2.iv below). Once again,
however, semantics should not forbid such an epistemic logic with (Split) as a theorem.
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Proof. In S + (Q(p ∧ q)→ Qp), we have the following derivation:

1 ` Q(p ∧ ¬Qp)→ Qp [Monotonicity]

2 ` ((p ∧ ¬Qp) ∧Q(p ∧ ¬Qp))↔ ⊥ [Boolean reasoning]

3 ` 3((p ∧ ¬Qp) ∧Q(p ∧ ¬Qp))↔ ⊥ [Congruence and 2>]

4 ` (p ∧ ¬Qp)→ 3((p ∧ ¬Qp) ∧Q(p ∧ ¬Qp)) [(Split), Boolean reasoning]

5 ` (p ∧ ¬Qp)↔ ⊥ [From 3 and 4]

6 ` 3(p ∧ ¬Qp)↔ ⊥ [Congruence and 2>]

7 ` p→ 3(p ∧ ¬Qp) [(Split) and Boolean reasoning]

8 ` p↔ ⊥ [Boolean reasoning]

Clearly, then, S + (Q(p ∧ q) → Qp) is inconsistent. For S + (Q(p ∨ q) → Qp),
we have the following derivation:

1 ` p↔ ((p ∧Qp) ∨ p) [Boolean reasoning]

2 ` Qp↔ Q((p ∧Qp) ∨ p) [Congruence]

3 ` Qp→ Q(p ∧Qp) [Boolean reasoning and Antitonicity]

4 ` ((p ∧Qp) ∧ ¬Q(p ∧Qp))↔ ⊥ [Boolean reasoning]

5 ` 3((p ∧Qp) ∧ ¬Q(p ∧Qp))↔ ⊥ [Congruence and 2>]

6 ` (p ∧Qp)→ 3((p ∧Qp) ∧ ¬Q(p ∧Qp)) [(Split) and Boolean reasoning]

7 ` (p ∧Qp)↔ ⊥ [From 5 and 6]

8 ` 3(p ∧Qp)↔ ⊥ [Congruence and 2>]

9 ` p→ 3(p ∧Qp) [(Split) and Boolean reasoning]

10 ` p↔ ⊥ [Boolean reasoning]

For the two rules, note that if ` ϕ → Qϕ, then ` (ϕ ∧ ¬Qϕ) ↔ ⊥. Then
by the congruence of 3 and 2>, ` 3(ϕ ∧ Qϕ) ↔ ⊥. Using (Split), we have
` ϕ → 3(ϕ ∧ Qϕ). Thus ` ¬ϕ. The derivation for the other rule is similar,
using ` ϕ→ 3(ϕ ∧ ¬Qϕ).

Finally, we derive ∃pQp:
1 ` ¬∃pQp→ 3(¬∃pQp ∧Q¬∃pQp) ∧3(¬∃p¬Qp ∧ ¬Q¬∃pQp) [(Split)]

2 ` Q¬∃pQp→ ∃pQp [Π-principles]

3 ` (¬∃pQp ∧Q¬∃pQp)→ (¬∃pQp ∧ ∃pQp) [Boolean reasoning]

4 ` (¬∃pQp ∧Q¬∃pQp)↔ ⊥ [Boolean reasoning]

5 ` 3(¬∃pQp ∧Q¬∃pQp)↔ ⊥ [Congruence and 2>]

6 ` ¬∃pQp→ ⊥ [From 1 and 5]

7 ` ∃pQp [Boolean reasoning]

Since we have the congruence rule and 2>, we can necessitate ∃pQp and then
obtain 2∃pQp. 2

Remark 3.3 A referee informed us of a paper by Hansson and Gärdenfors [10]
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in which four bimodal axioms are identified that are (i) valid in an atomless
Boolean algebra expanded with two operations for interpreting the two modal-
ities but (ii) not valid on any neighborhood frame. The congruential logic
axiomatized by these four axioms is strictly stronger than S (but weaker than
the logic EST below). We will go beyond Hansson and Gärdenfors by proving
the soundness and completeness of our neighborhood-inconsistent logic S—and
the logics ES and EST below—with respect to complete Boolean algebra ex-
pansions, as well as by providing an arithmetic interpretation of EST.

4 Possibility Semantics

Below we will prove that S is consistent using a generalization of possible world
semantics known as possibility semantics [16,11,13]. A key feature of possibility
semantics is that it does not require the algebra of propositions to be atomic.
The basic ideas are that (i) formulas are evaluated at partial possibilities, or-
dered by a refinement relation v, so that x v y (“x refines y”) implies that x
settles as true (resp. false) every formula that y settles as true (resp. false) and
possibly more; (ii) a formula is true (resp. false) at a possibility iff there is no
refinement of the possibility that makes the formula false (resp. true); and (iii)
a possibility settling a formula as false is equivalent to settling its negation as
true (so it suffices to keep track of just the relation  of settling true), and a
possibility settling a conjunction as true is equivalent to settling both conjuncts
as true. As for the modal operators, we interpret them using the neighborhood
version of possibility semantics from [11, Remark 2.42] and [13] defined below.

Given a partially ordered set 〈S,v〉, let RO(S,v) be the collection of all
X ⊆ S that are regular downsets of 〈S,v〉:

(i) for every x ∈ X, ↓x := {x′ ∈ S | x′ v x} ⊆ X (“persistence”);

(ii) for every x 6∈ X, ∃x′ v x ∀x′′ v x′ x′′ 6∈ X (“refinability”).

In possibility semantics, propositions are regular downsets in a poset of pos-
sibilities. Below we define the analogue of neighborhood frames in possibility
semantics, which differ from neighborhood frames in possible world semantics
by (i) replacing the set W of worlds with a poset 〈S,v〉 or possibilities and (ii)
putting conditions on the neighborhood functions such that for any operator
O and proposition X ∈ RO(S,v), the set {x ∈ S | X ∈ NO(x)} of possibilities
in which “O(X) is true” is also a proposition in RO(S,v).

Definition 4.1 A neighborhood possibility frame is a tuple F = 〈S,v, N2, NQ〉
where:

(i) 〈S,v〉 is a partially ordered set;

(ii) N2 : S → ℘(RO(S,v)) and NQ : S → ℘(RO(S,v)) are such that for
O ∈ {2, Q}:
(a) if X ∈ NO(x) and x′ v x, then X ∈ NO(x′) (“persistence”);
(b) if X 6∈ NO(x), then ∃x′ v x ∀x′′ v x′ X 6∈ NO(x′′) (“refinability”).

A model based on F is a pair M = 〈F, V 〉 where V : Prop→ RO(S,v).
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Definition 4.2 Given a model M = 〈F, V 〉 based on F = 〈S,v, N2, NQ〉,
x ∈ S, and formula ϕ, we define M, x  ϕ as follows:

(i) M, x  p iff x ∈ V (p);

(ii) M, x  ¬ϕ iff for all x′ v x, M, x′ 1 ϕ

(iii) M, x  (ϕ ∧ ψ) iff M, x  ϕ and M, x  ψ;

(iv) M, x  2ϕ iff {y ∈ S | M, y  ϕ} ∈ N2(x);

(v) M, x  Qϕ iff {y ∈ S | M, y  ϕ} ∈ NQ(x).

Moreover, for each formula ϕ, let JϕKM = {x ∈ S | M, x  ϕ}.

Lemma 4.3 For any formula ϕ and model M based on a neighborhood possi-
bility frame F = 〈S,v, N2, NQ〉, JϕKM ∈ RO(S,v).

Definition 4.4 A neighborhood possibility frame F = 〈S,v, N2, NQ〉 vali-
dates a formula ϕ iff for any model M based on F and x ∈ S, M, x  ϕ.

Proposition 4.5 Given a model M = 〈F, V 〉 based on F = 〈S,v, N2, NQ〉,
x ∈ S, and formulas ϕ and ψ:

• M, x  (ϕ ∨ ψ) iff ∀x′ v x ∃x′′ v x′: M, x′′  ϕ or M, x′′  ψ;

• M, x  (ϕ→ ψ) iff ∀x′ v x, if M, x′  ϕ, then M, x′  ψ;

• M, x  (ϕ↔ ψ) iff ∀x′ v x, M, x′  ϕ iff M, x′  ψ.

5 Consistency

Our goal in this section is to show that S is consistent by constructing a pos-
sibility frame validating it. For this, we first extend S so that we can treat 2

in the simplest way possible and focus on the behaviour of Q.

Definition 5.1 Let ES be the smallest congruential modal logic extending S
with the following axioms:

2p→ p, p→ 23p, 2p→ 22p, 2(p↔ q)→ 2(Qp↔ Qq).

Let EST be the smallest congruential modal logic extending ES by the T axiom
for Q: Qp→ p.

Note that in ES, the first three extra axioms make 2 an S5 box. The last
extra axiom 2(p↔ q)→ 2(Qp↔ Qq) intuitively says that if two propositions
are indistinguishable by 2, then their Q’ed versions are also indistinguishable
by 2. The reason we can further add the T axiom forQ and retain consistency 6

is, roughly speaking, that what Qp ∧ ¬p means is not essential to the validity
of (Split). More precisely, letting Q∗ϕ abbreviate (Qϕ∧ϕ), note that (Split)
is in a congruential modal logic if and only if

p→ (3(p ∧Q∗p) ∧3(p ∧ ¬Q∗p))

6 We make no claim that the T axiom should hold for a particular operator Q such as
Queried, but the stronger the logic we prove to be consistent, the stronger our result.
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is also in the logic, since simply by Boolean reasoning, p ∧ Q∗p is provably
equivalent to p ∧Qp, and p ∧ ¬Q∗p is provably equivalent to p ∧ ¬Qp. Clearly
Q∗p → p is in any congruential modal logic. Thus, Q∗p is in a sense the
essential part of Qp that makes (Split) valid, and Qp ∧ ¬p is not relevant to
the splitting of p by Q. Now we show that not only is S consistent, but in fact
the stronger logic EST is consistent.

Theorem 5.2 The logic EST is consistent.

Proof. Consider the full infinite binary tree 2<ω:

ε

0 1

00 01 10 11
. .

. . . . . .
. . . .

. . .. .
.. . .. .

.

For x ∈ 2<ω, let Par(x) be the parent of x in the tree and x0 and x1 the
two extensions of x by 0 and 1, respectively. In general, when y is an initial
segment of x, we write x v y (refinements are lower down). To facilitate the
definition of NQ, for any P ∈ RO(2<ω) := RO(2<ω,v) and any x ∈ 2<ω, if
x ∈ P , let Firstin(x, P ) be the shortest initial segment of x that is in P , and
otherwise let it be undefined. Since P is a downset, Firstin(x, P ) is also the only
y such that x v y, y ∈ P , and Par(y) 6∈ P . Moreover, P =

⋃
x∈P ↓Firstin(x, P ).

Now define NQ by the following clause: for any P ∈ RO(2<ω) and x ∈ w<ω,

P ∈ NQ(x) iff x ∈ P and x v Firstin(x, P )0. (1)

We can also define NQ inductively as follows:

NQ(ε) = ∅;

NQ(x0) = NQ(x) ∪ {P ∈ RO(2<ω) | x ∈ P, Par(x) 6∈ P};
NQ(x1) = NQ(x);

but this definition is slightly harder to work with. We invite readers to verify
that the inductive definition is equivalent to the definition by (1).

To show that this definition will give us a possibility frame, we claim that
for any P ∈ RO(2<ω), Q(P ) := {x ∈ 2<ω | P ∈ NQ(x)} ∈ RO(2<ω). Pick any
P ∈ RO(2<ω). Now we show the two requirements for Q(P ) ∈ RO(2<ω).

• Suppose that P ∈ NQ(x) and x′ v x. By (1), x ∈ P and x v
Firstin(x, P )0. Since P is a downset, x′ ∈ P . By the definition of Firstin,
clearly Firstin(x′, P ) = Firstin(x, P ). Hence x′ v x v Firstin(x, P )0 =
Firstin(x′, P )0. Thus, P ∈ NQ(x′). This shows that Q(P ) is a downset.

• Suppose that x 6∈ Q(P ), that is, P 6∈ NQ(x). Now we want to find a x′ v x
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such that ↓x′ ∩Q(P ) = ∅. If x 6∈ P , then given that P ∈ RO(2<ω), pick
x′ such that x′ v x and ↓x′ ∩ P = ∅. Clearly, by the first conjunct
of (1), Q(P ) ⊆ P , and so ↓x′ ∩ Q(P ) = ∅. Hence we are left with
the case where x ∈ P . In this case, since P 6∈ NQ(x), it must be that
x 6v Firstin(x, P )0. But then, for any x′ v x, Firstin(x′, P ) = Firstin(x, P ),
and hence x′ 6v Firstin(x′, P )0 (note that we are in a tree here, and there
can be only one path from Firstin(x, P ) to x′ through x). Thus, every
x′ v x fails the second conjunct of (1), and ↓x∩Q(P ) = ∅. This concludes
the case where x ∈ P . Note that the above proof establishes the following:

whenever x ∈ P yet x 6∈ Q(P ), ↓x ∩Q(P ) = ∅. (2)

This will be useful when we show that (Split) is valid.

Now define N2 such that for every x ∈ 2<ω, N2(x) = {2<ω}. Then it is
easy to see that for any P ∈ RO(2<ω),

2(P ) := {x ∈ 2<ω | P ∈ N2(x)} =

{
2<ω if P = 2<ω

∅ otherwise.

Clearly, either way, 2(P ) ∈ RO(2<ω). Hence, T := 〈2<ω,v, N2, NQ〉 is a
possibility frame. It is routine to verify that T validates 2p → p, p → 23p,
and 2p → 22p. They all amount to discussing two cases: V (P ) = 2<ω and
V (P ) 6= 2<ω. It is also not hard to verify 2(p↔ q)↔ 2(Qp↔ Qq). The cases
to discuss here are V (p) = V (q) and V (p) 6= V (q). In the former case, for all
x ∈ 2<ω, 〈T, V 〉, x  p↔ q and 〈T, V 〉, x  Qp↔ Qq. Hence the same goes for
2(p ↔ q) and 2(Qp ↔ Qq). In the case that V (p) 6= V (q), 〈T, V 〉, ε 6 p ↔ q.
Then trivially for any x ∈ 2<ω, 〈T, V 〉, x  2(p↔ q)→ 2(Qp↔ Qq).

Now consider (Split) = p → (3(p ∧ Qp) ∧ 3(p ∧ ¬Qp)). To see that
this is valid, first note that 〈T, V 〉, x  3ϕ iff there exists x′ ∈ T such that
〈T, V 〉, x′  ϕ. Now suppose that 〈T, V 〉, x  p. This means that x ∈ V (p).
Now consider y = Firstin(x, V (p)). Clearly, by definition, y0 ∈ Q(V (p)) and
hence 〈T, V 〉, y0  Qp. Now consider y1. Clearly, y1 ∈ V (p) since V (p) is
a downset. But y1 6∈ Q(V (p)) since y1 6v y0 = Firstin(y1, V (p))0. Hence
↓y1 ∩ Q(V (p)) = ∅ by (2). Thus, 〈T, V 〉, y1  ¬Qp. By the semantics of 3

and ∧ then, 〈T, V 〉, x � (3(p∧Qp)∧3(p∧¬Qp)). Since V and x are arbitrary,
we have shown that (Split) is valid on T. 2

The possibility frame T in the above proof can be given a natural interpreta-
tion. The partially ordered set 〈2<ω,v〉 naturally models the finitary outcomes
of an infinite sequence of coin flips (say that 0 represents heads and 1 represents
tails), and a crucial property is that every possibility can be further extended
into two incompatible possibilities. This matches our intuitive understanding
of a world with future contingencies such as random coin flips: at any time,
there is at least one more coin to be flipped, and either outcome is possible.

Then our formal definition of NQ clearly makes Qϕ express the following:
ϕ is now true, and the first coin flipped after ϕ became true landed heads up.
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We can also avoid temporal talk and instead speak of truth-making: ϕ, and the
coin after the one that (exactly) makes ϕ true lands heads up. On this reading
of Q, (Split) says that if ϕ is true, then it is possible that ϕ is true and the
coin after the one that makes ϕ true lands heads up, and it is also possible that
ϕ is true and the coin after the one that makes ϕ true lands tails up.

In addition to consistency, we will prove the following completeness theorem.

Theorem 5.3 The logic EST (resp. ES, S) is the logic of all neighborhood
possibility frames that validate EST (resp. ES, S). In other words, EST, ES,
and S are possibility complete.

This will be a corollary of the completeness theorem in the next section based
on algebraic semantics.

6 Completeness

In this section, we consider algebraic semantics that generalizes possible world
semantics and possibility semantics. This will help us understand exactly what
it takes to validate S, ES, and EST and show that they are possibility complete.

Definition 6.1 A Boolean algebra expansion (BAE) B is a triple 〈B,2, Q〉
where B is a Boolean algebra and 2, Q are two unary functions on B. We
define 3 and other derived operations on B as usual. For convenience, we omit
the parentheses for the argument of unary functions as appropriate.

A valuation V on B is function V : Prop→ B. Then the semantics for L is
defined by extending V to V̂ : L → B homomorphically:

• V̂ (p) = V (p) for p ∈ Prop;

• V̂ (¬ϕ) = ¬V̂ (ϕ); V̂ (ϕ ∧ ψ) = V̂ (ϕ) ∧ V̂ (ψ);

• V̂ (2ϕ) = 2V̂ (ϕ); V̂ (Qϕ) = QV̂ (ϕ).

To highlight the algebra whose operations are used when obtaining V̂ from
V , especially when V may be regarded as a valuation on two different BAEs,
we may write V̂ B. We say that ϕ is valid on B if for all valuation V on B,
V̂ (ϕ) = >, where > is the top element of B.

Considering the structure of the underlying Boolean algebra, we call a BAE
complete or a C-BAE (resp. atomic, an A-BAE) if its Boolean algebra part is
a complete (resp. atomic) Boolean algebra. Then CA-BAEs are complete and
atomic BAEs. On the logical side, for X ∈ {C,A, CA}, we say a set of formulas
Γ is X-consistent iff there is an X-BAE validating Γ, and we say that it is
X-complete iff it is the logic of the class of X-BAEs validating it (cf. [21]).

From the algebraic perspective, neighborhood frames correspond to CA-
BAEs while neighborhood possibility frames corresponds to C-BAEs. We spell
this out for possibility frames, the key fact being that the regular downsets of
〈S,v〉—which are just the regular open sets in the topology on S whose opens
are downsets of 〈S,v〉—form a complete Boolean algebra (see, e.g., [9, § 4]).
For proofs and further discussion of the following facts relating neighborhood
possibility frames and BAEs, see [13].
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Proposition 6.2 For any possibility frame F = 〈S,v, N2, NQ〉, let Fb =
〈RO(S,v),2, Q〉 where:

• RO(S,v) is the complete Boolean algebra of regular downsets of 〈S,v〉;
• O(P ) = {x ∈ S | P ∈ NO(x)} for O ∈ {2, Q}.

Then Fb is a C-BAE, and any valuation V : Prop→ RO(S,v) on F is also a
valuation on Fb and vice versa. Moreover, by a simple induction, for any ϕ,
JϕK〈F,V 〉 = V̂ (ϕ). Hence F validates ϕ iff Fb validates ϕ.

Proposition 6.3 For any complete Boolean algebra B, let B⊥ be the result of
deleting ⊥ from B and ≤⊥ the result of restricting ≤, the lattice ordering of B,
to B⊥. Then RO(B⊥,≤⊥) is isomorphic to B through the least upper bound
lub operation. (Note that lub(∅) = ⊥.)

Thus, for any C-BAE B = 〈B,2, Q〉, define Bu = 〈B⊥,≤⊥, N2, NQ〉 where
NO(b) = {P ∈ RO(B⊥,≤⊥) | b ≤ O(lub(P ))} for O ∈ {2, Q}. Then Bu is a
possibility frame, and (Bu)b is isomorphic to B, again through lub. Hence B
validates a formula ϕ iff Bu validates ϕ.

A simple corollary of these two propositions is that a congruential modal
logic is possibility complete iff it is C-complete. Hence to show that S, ES, and
EST are possibility complete, we show first that they are C-complete. To this
end, we begin by translating the two defining axioms of S into their conditions
for being valid on BAEs.

Proposition 6.4 A BAE B = 〈B,2, Q〉 validates S iff the following hold:

(i) 3⊥ = ⊥ and

(ii) for any b ∈ B, 3(b ∧Qb) ≥ b and 3(b ∧ ¬Qb) ≥ b.
A simple corollary is the following (cf. the more complicated A-inconsistent

normal polymodal logic in [28]).

Proposition 6.5 If a BAE validates S, then it is atomless. Hence S is A-
inconsistent.

Proof. Suppose a BAE B validates S. Pick any b ∈ B such that b 6= ⊥. Then
consider b1 = b ∧ Qb and b2 = b ∧ ¬Qb. Since B validates S, by the previous
proposition, we have (i) and (ii). By (ii), 3b1 ≥ b and 3b2 ≥ b. Hence neither
b1 nor b2 is ⊥ since 3⊥ = ⊥ by (i). But clearly b1 ∨ b2 = b. Hence neither of
them is b as otherwise the other is ⊥. Thus, ⊥ < b1 < b, so b is not an atom.2

Now we are already able to show that S is C-complete.

Theorem 6.6 S is the logic of the C-BAEs validating it. Indeed, letting H =
〈H,2, Q〉 be the Lindenbaum algebra of S and H+ the MacNeille completion
of the Boolean algebra H, there is a way to extend 2 and Q to 2+ and Q+ on
H+ such that H is a subalgebra of H+ = 〈H+,2+, Q+〉 (so that H+ refutes all
formulas not in S) and H+ still validates S.

Proof. Let H = 〈H,2, Q〉 be the Lindenbaum algebra of S. By standard
algebraic logical theory, H validates S, and for every ϕ 6∈ S, there is a valuation
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Vϕ on H such that V̂ϕ(ϕ) 6= >. Since H validates S, by Proposition 6.5, H
is atomless. Now let H+ be the MacNeille completion of H, which is the
unique (up to isomorphism) complete Boolean algebra with H being a dense
subalgebra of it (in the sense that for every b ∈ H+ such that ⊥ < b, there
is a b′ ∈ H such that ⊥ < b′ ≤ b). (See Chap. 25 of [7] for more.) Clearly
then H+ is also atomless. Now we extend 2 and Q to H+. First, note that
for any b ∈ H+ \H, there exist b1, b2 ∈ H+ \H such that b = b1 ∨ b2. To find
such b1 and b2, first by density pick an a ∈ H such that ⊥ < a < b (note that
b 6∈ H and hence ⊥ < b). Then b′ = b ∧ ¬a must not be in H since otherwise
b = a ∨ b′ would also be in H. Now that H is atomless, pick a1, a2 ∈ H \ {⊥}
such that a = a1∨a2. Then let b1 = a1∨b′ and b2 = a2∨b′. Clearly b = b1∨b2.
To see that b1 6∈ H, note that if it is in H, then b′ = b1 ∧ ¬a1 must also be
in H, contradicting that b′ 6∈ H. The same reasoning applies to b2. To fix
the construction of b1 and b2, we can first fix an enumeration of H, which is
countable, and then pick a and a1, a2 by going through this enumeration.

Now we define 2+ and Q+ by the following:

2+b =

{
2b if b ∈ H
⊥ if b ∈ H+ \H,

Q+b =

{
Qb if b ∈ H
b1 if b ∈ H+ \H.

Then it is easy to see by the construction of b1 and b2 that for every b ∈ H+\H,
b ∧Q+b (which is just b1) and b ∧ ¬Q+b (which is just b2) are also in H+ \H.
Also, 3+b := ¬2+¬b = > for all b ∈ H+ \H since b 6∈ H iff ¬b 6∈ H. Hence
for any b ∈ H+ \ H, 3+(b ∧ Q+b) = 3+(b ∧ ¬Q+b) = > ≥ b. Thus, by a
simple discussion by cases, Proposition 6.4 applies, and H+ validates S. By
construction, H is a subalgebra of H+. So H+ does not validate any formula
not in S since H does not. Therefore, S is the logic of H+, a C-BAE. 2

The above strategy by MacNeille completion applies almost identically to
ES and EST except that we need to focus on simple S5 algebras, those BAEs
such that the 2 operator essentially tests whether a proposition is > or not, so
that the 2+ defined in the above proof does not destroy the validity of the S5
axioms. To this end, we first need the following definitions.

Definition 6.7 Let B = 〈B,2, Q〉 be a BAE. Then:

• B is simple S5 if for any b ∈ B, if b = ⊥ then 3b = ⊥, and otherwise
3b = >;

• B is splitting if for any b ∈ B, if b 6= ⊥, then b∧Qb 6= ⊥ and b∧¬Qb 6= ⊥;

• B is deflationary if Qb ≤ b for all B ∈ B;

• B is properly deflationary if it is both splitting and deflationary; note that
this is equivalent to: ⊥ < Qb < b for all b ∈ B \ {⊥} and Q⊥ = ⊥.

Proposition 6.8 A simple S5 BAE validates ES (resp. EST) iff it is also split-
ting (resp. properly deflationary).

Proof. Let B be a simple S5 BAE. Then automatically B validates the S5
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axioms for 2 and also the axiom 2(p ↔ q) → 2(Qp ↔ Qq), since for any

valuation V on B, V̂ (2(p↔ q)) is either > or ⊥. If it is ⊥, the axiom is trivially

evaluated to >. If it is >, then V̂ (p↔ q) = >, and hence V (p) = V (q). Then

V̂ (Qp) = V̂ (Qq) and hence V̂ (2(Qp↔ Qq)) is also >.

For (Split), it is enough to see that V̂ (3(p∧Qp)) (resp. V̂ (3(p∧¬Qp))) is
either > or ⊥, and it is the former iff V (p)∧QV (p) 6= ⊥ (resp. V (p)∧¬QV (p) 6=
⊥). Then the validity of (Split) translates to the condition that B is splitting
by a simple discussion of whether V (p) = ⊥.

For the axiom Qp→ p, clearly it is valid iff B is deflationary. 2

Theorem 6.9 ES is complete with respect to the class of all simple S5 splitting
C-BAEs. EST is complete with respect to the class of all simple S5 properly
deflationary C-BAEs.

Proof. Let L be either ES or EST. Then take an arbitrary δ 6∈ L. We need to
find a simple S5 splitting C-BAE that refutes δ, and in the case that L = EST,
the algebra should also be deflationary.

Consider the Lindenbaum algebra H of L, with [·] the function that sends
formulas to their equivalence classes under the provable equivalence relation
in L. Since δ 6∈ ES, [δ] 6= >H. Let U be an ultrafilter of the Boolean algebra
base of H that does not contain [δ]. Now define ∼ on H by [ϕ] ∼ [ψ] iff
2(ϕ↔ ψ) ∈ U . This is well defined because if both ϕ↔ ϕ′ and ψ ↔ ψ′ are in
ES ⊆ L, then 2(ϕ↔ ψ)↔ 2(ϕ′ ↔ ψ′) is also in ES ⊆ L. More importantly, ∼
is a congruence relation because in L we have the following theorems, with the
last being a defining axiom:

• (2(ϕ↔ ψ) ∧2(ϕ′ ↔ ψ′))→ 2((ϕ ∧ ϕ′)↔ (ψ ∧ ψ′));
• 2(ϕ↔ ψ)→ 2(¬ϕ↔ ¬ψ);

• 2(ϕ↔ ψ)→ 2(2ϕ↔ 2ψ);

• 2(ϕ↔ ψ)→ 2(Qϕ↔ Qψ).

Hence we can take the quotient S = H/∼. Let π be the quotient map for ∼,
and let V be the composition of π after [·]. Now we make three claims:

(i) S validates L. It is a standard exercise to show that H validates L. Since
S is a quotient of H, S also validates L.

(ii) S is a simple S5 algebra. For this, we just need to show that if b ∈ S is
not >S , then 2Sb = ⊥S . This is again standard using the S5 axioms.

(iii) V |Prop is a valuation on S, V = V̂ |Prop, and V (δ) 6= >S .

By Proposition 6.5 and 6.8, we know then that S is atomless and splitting.
Thus S is a simple S5 splitting algebra that refutes δ by V , and moreover if
L = EST, S is also deflationary. Thus, all that is left to do is to complete S while
preserving the three properties: being simple S5, splitting, and deflationary (if
S is deflationary). For this, write S = 〈S,2, Q〉, and let S+ be the MacNeille
completion S. Then pick a function j : S+ → S+ such that for every non-
bottom b ∈ S+, ⊥ < j(b) < b. Such a j exists since S and hence S+ are
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atomless. In fact, since S is dense in S+ by the construction of MacNeille
completion, j(b) can be picked in S according to an enumeration of S (note
that S is countable). Then define S+ = 〈S+,2+, Q+〉 by

2+b =

{
> if b = >
⊥ otherwise,

Q+b =

{
Qb if b ∈ S
j(b) if b ∈ S+ \ S.

Then clearly:

• S embeds into S+ by the identity map, and hence VProp is also a valuation

on S+ and V = V̂ |Prop;
• S+ is a simple S5 splitting algebra since b ∧ j(b), b ∧ ¬j(b) > ⊥;

• if S is deflationary, meaning that Qb ≤ b for all b ∈ S, then S+ is also
deflationary, since j(b) ≤ b for all b ∈ S+ \ S as well;

• S+ is complete.

Hence δ is refuted by V on S+, a simple S5 splitting C-BAE that is deflationary
if L = EST. 2

An important observation about the two proofs of the C-completeness of
S, ES, and EST is that the refuting C-BAEs we constructed are very special:
their Boolean reducts are all (isomorphic to) the MacNeille completion of the
countable atomless Boolean algebra, since the Lindenbaum algebra of S and the
quotients of the Lindenbaum algebra of ES and EST are all countable (since the
language we started with is countable) and atomless (since they all validate S).
Let us call this special complete Boolean algebra Bmca. Then we can say that
S, ES, and EST are not just C-complete, but also Bmca-complete. A corollary of
this is that these three logics are not just possibility complete but also complete
with respect to possibility frames based on the full infinite binary tree 2<ω.

To see this, we observe that just as C-completeness and possibility com-
pleteness are equivalent by Propositions 6.2 and 6.3, Bmca-completeness and
2<ω-completeness are also equivalent. The following proposition is the core of
this new equivalence.

Proposition 6.10 RO(2<ω) is (isomorphic to) the MacNeille completion of
the countable atomless Boolean algebra.

Proof. Given the defining property of MacNeille completion, it is enough to see
that there is a dense subalgebra of RO(2<ω) that is countable and atomless.
The subalgebra generated by principal downsets (i.e., downsets of the form
{x ∈ 2<ω | x v s} for s ∈ 2ω) is such a subalgebra. 2

With the above proposition, we can state the analogues of Proposition 6.2
and Proposition 6.3.

Proposition 6.11 For any possibility frame F = 〈2<ω, N2, NQ〉 based on 2<ω,
Fb is of the form 〈Bmca,2, Q〉, a BAE based on Bmca.

Proposition 6.12 For any BAE 〈Bmca,2, Q〉 based on Bmca, define neigh-
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borhood functions N2 and NQ on 2<ω by the following clause where σ is any
isomorphism from RO(2<ω) to Bmca: for any O ∈ {2, Q}, s ∈ 2<ω, and
X ∈ RO(2<ω), X ∈ NO(s) iff s ∈ σ−1(O(σ(X))). Then, (〈2<ω, N2, NQ〉)b ∼=
〈Bmca,2, Q〉 with σ being the isomorphism.

Thus, a logic is complete with respect to neighborhood possibility frames
based on 2<ω iff it is complete with respect to BAEs based on Bmca. This
completes the proof of the following strengthening of Theorem 5.3.

Theorem 6.13 The logic S (resp. ES, EST) is the logic of all neighborhood
possibility frames based on 2<ω that validate S (resp. ES, EST).

Now that we have seen that S, which is defined by two very simple axioms, is
consistent and C-complete yet A-inconsistent, we briefly comment on whether
we may have a logic that is also consistent and A-inconsistent but is defined
by even simpler axioms. Recall that given a set Γ of formulas, Cong(Γ) is the
smallest congruential modal logic containing Γ. Now let BAE(Γ) be the class
of BAEs validating Γ. Then the following theorem is due to Lewis [18].

Theorem 6.14 (Lewis) For every set Γ of formulas of modal depth at most
1, Cong(Γ) is complete with respect to all finite BAEs in BAE(Γ). Since finite
BAEs are all complete and atomic, Cong(Γ) is CA-complete.

Hence, {2>, (Split)} is optimal in terms of modal depth: depth 2. We can
also show that it is optimal in terms of the number of propositional variables
used: just 1. For this, let the language L now include the propositional constant
> 6∈ Prop such that for any valuation V , V̂ (>) = > on any BAE. Then we have
the following simple theorem.

Theorem 6.15 If Γ ⊆ L contains only formulas that do not use any proposi-
tional variable in Prop, then Cong(Γ) is CA-complete.

Proof. Let Γ be a set of variable-free formulas and L = Cong(Γ). L is trivially
CA-complete if it is inconsistent. Hence we assume that it is consistent. Con-
sider H = 〈H, 〈∇i〉i≤n〉, the Lindenbaum algebra of L (here we do not assume
that L has only 2 and Q as modalities). Let H+ be the BAE where its Boolean
base H+ is the canonical extension of H, and its operations ∇+

i are defined by

∇+
i (a) =

{
∇L(a) if a ∈ Harity(∇i)

> otherwise.

Then let V1 be the constantly > valuation V1 on H+, which is also a valuation

on H. Since by construction H is a subalgebra of H+, V̂1
H+

= V̂1
H

. In

particular, for any ϕ ∈ Γ, V̂1
H+

(ϕ) = V̂1
H

(ϕ) = > since ϕ is valid on H. But
a variable-free formula is valid iff it is evaluated to > in any valuation. So all
formulas in Σ are still valid on H+. Since H is a subalgebra of H+, formulas
that are invalid in H are still invalid in H+. Hence the validities of H+ are
precisely Cong(Γ). Since H+ is a canonical extension, H+ is a CA-BAE. Hence
Cong(Γ) is CA-complete. 2
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However, {2>, (Split)} is not optimal in terms of the number of modal
operators used. Peter Fritz in his presentation [6] of his paper [5] defined
the unimodal logic Uni3, the smallest congruential modal logic containing the
following axioms:

(2> ∧ p)↔ 2(2> → (p ∧2(2> ∧ p))) (Uni3Ax1)

(2> ∧ p)↔ 2(2> → (p ∧ ¬2(2> ∧ p))) (Uni3Ax2)

222> (Uni3Ax3)

¬2⊥. (Uni3Ax4)

It can be shown that Uni3 is consistent yet A-inconsistent. Hence, an open
problem here is whether there is a consistent yet A-inconsistent logic that
can be axiomatized by using only 1 modal operator, 1 (or more) propositional
variables, and modal depth 2. It is also not known whether Uni3 is C-complete.

7 Split in Peano Arithmetic

In this section, we show how EST arises naturally in the study of Peano Arith-
metic and in particular the problem of uniform density [26]. Following [26],
define the following sequence of subtheories of PA:

AR0 = I∆0 + Exp, ARn+1 = IΣn+1.

Recall that Exp is the formula stating the totality of the exponential function
defined by a ∆0 formula (see [8, p. 299]), I∆0 is Peano Arithmetic with the
induction schema applied only to ∆0 formulas, and IΣn+1 is Peano Arithemetic
with the induction schema only applied to Σn+1 formulas. For each n, ARn+1

extends ARn, with their union being the usual PA. AR0 is also known as
elementary arithmetic (EA). These theories are uniformly recursively axioma-
tized. Hence there is a formula with two free variables, Prov(x, y), such that
Prov(n, dϕe) expresses “ϕ is provable in ARn” in PA. For convenience, let Prxϕ
stand for Prov(x, dϕe). Then define Qϕ to be

ϕ ∧ ∀x(Prx(ϕ→ Prx(ϕ→ ⊥))→ Prx(ϕ→ ⊥)).

If we write Connϕ for “ϕ is consistent in ARn”, then Qϕ can be equivalently
defined as

ϕ ∧ ∀x(Conxϕ→ Conx(ϕ ∧ Conxϕ)).

For example, Q> is equivalent to the formula ∀x(Conx> → ConxConx>), which
intuitively says that for every n, if ARn is consistent, then it is consistent in
ARn that the system ARn is consistent. While it sounds trivial to us, PA is not
able to prove or disprove this Q>. The following two lemmas are shown in [26]
(note that their notation is Cϕ instead of Qϕ).

Lemma 7.1 ([26], Lemma 3.4) For any ϕ and ψ, if PA ` ϕ ↔ ψ, then
PA ` Qϕ↔ Qψ.
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Lemma 7.2 ([26], Lemma 3.5) If ϕ is consistent in PA, then both ϕ ∧ Qϕ
and ϕ ∧ ¬Qϕ are consistent in PA.

Then it follows immediately from Proposition 6.8 that the logic of this
arithmetic Q is at least EST.

Theorem 7.3 Let H be the Lindenbaum algebra of PA. Let 2 be defined on
H by 2[ϕ] = [>] if PA ` ϕ and 2[ϕ] = [⊥] otherwise. Define Q on H by
Q[ϕ] = [Qϕ]. Then 〈H,2, Q〉 validates EST.

Thus, (Split) is not only consistent and intelligible but even has a natural
arithmetic interpretation.

8 Conclusion

As with other results showing that certain modal logics are incomplete with
respect to possible world semantics but complete with respect to more general
semantics (see [15] and references therein), we take the results of this paper to
be more positive than negative, as they lead to interesting new questions for
the foundations of modal logic. We conclude by mentioning a few questions.

First, on the more philosophical side, we would like to identify more modal
operators for which (Split) is intuitively valid. We think that the study of
truth-makers or counterfactuals is the most promising path. A related question:
as we have shown in Theorem 5.2, monotonicity is inconsistent with S, but what
other principles are inconsistent with S? Answering this question will help us
narrow down possible interpretations of the 2 and Q operators validating S.

On the more technical side, a first question is whether there are congruential
extensions of S (or ES or EST) that are not C-complete. This is essentially a
test of how widely applicable our method of MacNeille completion is in proving
completeness with respect to C-BAEs. A further question is which extensions
of S (or ES or EST) are tree complete, that is, complete with respect to a class
of possibility frames whose underlying posets of possibilities are trees or even
finitely branching trees. We have seen in Theorem 6.13 that the three logics,
S, ES, and EST, are all tree complete (indeed, 2<ω-complete). But the general
picture for congruential logics extending these logics is not clear. It may also
be interesting to see how we can axiomatize the logic of the possibility frame
based on 2<ω defined in the proof of Theorem 5.2.

Finally, as we mentioned in Section 6, it remains to be seen whether there
is a consistent but A-inconsistent congruential modal logic axiomatized using
1 modality, 1 propositional variable, and modal nesting depth 2.
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