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Abstract

We show that intuitionistic quantifiers admit the following temporal interpretation:
∀xA is true at a world w iff A is true at every object in the domain of every future
world, and ∃xA is true at w iff A is true at some object in the domain of some
past world. For this purpose we work with a predicate version of the well-known
tense propositional logic S4.t. The predicate logic Q◦S4.t is obtained by weakening
the axioms of the standard predicate extension QS4.t of S4.t along the lines Corsi
weakened QK to Q◦K. The Gödel translation embeds the predicate intuitionistic
logic IQC into QS4 fully and faithfully. We provide a temporal version of the Gödel
translation and prove that it embeds IQC into Q◦S4.t fully and faithfully; that is,
we show that a sentence is provable in IQC iff its translation is provable in Q◦S4.t.
Faithfulness is proved using syntactic methods, while we prove fullness utilizing the
generalized Kripke semantics of Corsi.

Keywords: Intuitionistic quantifiers, temporal interpretation, Gödel translation.

1 Introduction

Unlike classical connectives, intuitionistic connectives lack symmetry. It was
noted already by McKinsey and Tarski [17] that Heyting algebras (which are
algebraic models of intuitionistic propositional calculus IPC) are not symmetric
even in the weak sense, meaning that the order-dual of a Heyting algebra
may no longer be a Heyting algebra. In contrast, Boolean algebras (which
are algebraic models of classical propositional calculus) are symmetric in the
strong sense, meaning that the order-dual of a Boolean algebra A is not only a
Boolean algebra, but even isomorphic to A.

This non-symmetry has been addressed by several authors, resulting in the
concepts of bi-Heyting algebras and symmetric Heyting algebras. Bi-Heyting
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algebras are obtained by adding to the signature of Heyting algebras a binary
operation of co-implication, while symmetric Heyting algebras by adding a de
Morgan negation (and then co-implication becomes de Morgan dual of impli-
cation). The order-dual of a bi-Heyting algebra is again a bi-Heyting algebra,
and the order-dual of a symmetric Heyting algebra A is even isomorphic to A.
Thus, the class of bi-Heyting algebras is symmetric in the weak sense, while the
class of symmetric Heyting algebras is symmetric in the strong sense (hence
the name).

The Gödel translation of IPC into S4 extends to a translation of the Heyting-
Brouwer calculus HB of Rauszer [18] into the tense extension S4.t of S4, which
has the future S4-modality 2F and the past S4-modality 2P . The algebraic
models of HB are bi-Heyting algebras, and implication is interpreted using 2F
and co-implication using 2P .

This story of non-symmetry also extends to intuitionistic quantifiers. Let IQC
be the intuitionistic predicate calculus and QS4 the predicate S4. Not only the
intuitionistic quantifiers ∀x and ∃x are not definable from each other (unlike
the classical quantifiers), but the Gödel translation ( )t of IQC into QS4 is
asymmetric in that (∀xA)t = 2∀xAt and (∃xA)t = ∃xAt. This is manifested
in the interpretation of intuitionistic quantifiers in Kripke models. Indeed, a
world w of a Kripke model satisfies ∀xA iff A is true at every object of the
domain Dv of every world v accessible from w, while w satisfies ∃xA iff A is
true at some object in the domain Dw of w. If we think of the worlds of a
Kripke model as “states of knowledge,” and the order between the states is
temporal, then we can interpret the intuitionistic universal quantifier as “for
every object in the future,” while the existential quantifier as “for some object
in the present.”

In this article we present a more symmetric interpretation of intuitionistic quan-
tifiers as “for every object in the future” for ∀x and “for some object in the
past” for ∃x. We show that such interpretation is supported by translating IQC
fully and faithfully into a predicate tense logic by an appropriate modification
of the Gödel translation. As far as we know, this approach has not been con-
sidered in the past. One obvious obstacle is that it is unclear what predicate
tense logic to choose for such a translation. Indeed, a natural candidate would
be the standard predicate extension QS4.t of S4.t. However, since QS4.t proves
the Barcan formula, and hence the Kripke frames validating QS4.t have con-
stant domains, IQC does not translate fully into QS4.t. Instead we work with
a weaker logic in which the universal instantiation axiom

∀xA→ A(y/x)

is replaced by a weaker version

∀y(∀xA→ A(y/x)).

This approach is along the lines of Kripke [15], Hughes and Cresswell [13],
Fitting and Mendelsohn [6], and Corsi [3] who considered modal predicate logics
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without the Barcan and/or converse Barcan formulas. The generalized Kripke
frames considered in this semantics have two domains associated to each world,
an inner domain and an outer domain. The inner domains are always contained
in the outer domains and are not necessarily increasing. While variables are
interpreted in the outer domains, the scope of quantifiers is restricted to the
inner domains.

Utilizing this approach, we define a tense predicate logic Q◦S4.t which is sound
with respect to the generalized Kripke semantics with nonempty increasing
inner domains and constant outer domains. We modify the Gödel translation
to define a temporal translation of IQC into Q◦S4.t as follows:

⊥t = ⊥
P (x1, . . . , xn)t = 2FP (x1, . . . , xn) for each n-ary predicate symbol P

(A ∧B)t = At ∧Bt
(A ∨B)t = At ∨Bt

(A→ B)t = 2F (At → Bt)
(∀xA)t = 2F∀xAt
(∃xA)t = 3P∃xAt

Here 2F is the S4-modality interpreted as “always in the future” and 3P is
the S4-modality interpreted as “sometime in the past.” Thus, the modification
of the Gödel translation concerns the clause for ∃xA. Our main result states
that this translation is full and faithful in the following sense:

Main Theorem.

• For any formula A in the language of IQC, we have

IQC ` A iff Q◦S4.t ` ∀x1 · · · ∀xnAt

where x1, . . . , xn are the free variables in A.

• If A is a sentence, then

IQC ` A iff Q◦S4.t ` At.

The proof of this surprising result is along the lines of the standard proof of
fullness and faithfulness of the Gödel translation of IQC into QS4. We would
like to stress that the main challenge is not so much the proof itself, but rather
finding the “right” predicate tense modal logic into which to translate IQC. We
find it of interest to explore philosophical (as well as practical) consequences
of this new temporal point of view on IQC.

The paper is structured as follows. In Section 2 we recall the intuitionistic
predicate logic IQC and its Kripke completeness. In Section 3 we briefly re-
view the basics of modal predicate logics and their Kripke semantics, including
weaker modal predicate logics. In Section 4 we recall the tense propositional
logic S4.t, consider its standard predicate extension QS4.t, and then introduce
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its weakening Q◦S4.t which is our main tense predicate logic of interest. We
conclude the section by observing that Q◦S4.t is sound with respect to a ver-
sion of the generalized Kripke semantics studied by Kripke [15], Hughes and
Cresswell [13], Fitting and Mendelsohn [6], and Corsi [3]. Our main result, that
IQC embeds into Q◦S4.t fully and faithfully, is proved in Section 5. We prove
faithfulness syntactically, while fullness is proved semantically. We conclude
the paper with Section 6 in which we describe some open problems our study
has generated. Finally, the Appendix contains the proofs of some technical
lemmas used in Sections 4 and 5.

2 The intuitionistic predicate logic

Let IQC be the intuitionistic predicate logic. We recall that the language L of
IQC consists of countably many individual variables x, y, . . ., countably many
n-ary predicate symbols P,Q, . . . (for each n ≥ 0), the logical connectives
⊥,∧,∨,→, and the quantifiers ∀,∃. We do not add any constants to L since
this results in the temporal translation not being faithful (see Remark 5.11).

Formulas are defined as usual by induction and are denoted with upper case
letters A,B, . . .. Let x, y be individual variables and A a formula. If x is a free
variable of A and does not occur in the scope of ∀y or ∃y, then we denote by
A(y/x) the formula obtained from A by replacing all the free occurrences of x
by y.

The following definition of IQC is taken from [9, Sec 2.6]. We point out that,
unlike [9], we prefer to work with axiom schemes, and hence do not need the
inference rule of substitution.

Definition 2.1 The intuitionistic predicate logic IQC is the least set of for-
mulas of L containing all substitution instances of theorems of IPC, the axiom
schemes

(i) ∀xA→ A(y/x) Universal instantiation (UI)

(ii) A(y/x)→ ∃xA

(iii) ∀x(A→ B)→ (A→ ∀xB) with x not free in A

(iv) ∀x(A→ B)→ (∃xA→ B) with x not free in B

and closed under the inference rules

A A→ B
B

Modus Ponens (MP) A
∀xA Generalization (Gen)

We next describe Kripke semantics for IQC (see [16,8]).

Definition 2.2 An IQC-frame is a triple F = (W,R,D) where

• W is a nonempty set whose elements are called the worlds of F.

• R is a partial order on W .
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• D is a function that associates to each w ∈W a nonempty set Dw such that
wRv implies Dw ⊆ Dv for each w, v ∈ W . The set Dw is called the domain
of w.

Definition 2.3

• An interpretation of L in F is a function I associating to each world w and
any n-ary predicate symbol P an n-ary relation Iw(P ) ⊆ (Dw)n such that
wRv implies Iw(P ) ⊆ Iv(P ).

• A model is a pair M = (F, I) where F is an IQC-frame and I is an interpre-
tation in F.

• Let w be a world of F. A w-assignment is a function σ associating to each
individual variable x an element σ(x) of Dw. Note that if wRv, then σ is
also a v-assignment.

• Let σ and τ be two w-assignments and x an individual variable. Then τ is
said to be an x-variant of σ if τ(y) = σ(y) for all y 6= x.

We next recall the definition of when a formula A is true in a world w of a
model M = (F, I) under the w-assignment σ, written M �σw A.

Definition 2.4

M �σw ⊥ never
M �σw P (x1, . . . , xn) iff (σ(x1), . . . , σ(xn)) ∈ Iw(P )
M �σw B ∧ C iff M �σw B and M �σw C
M �σw B ∨ C iff M �σw B or M �σw C
M �σw B → C iff for all v with wRv, if M �σv B, then M �σv C
M �σw ∀xB iff for all v with wRv and each v-assignment τ

that is an x-variant of σ, M �τv B
M �σw ∃xB iff there exists a w-assignment τ

that is an x-variant of σ such that M �τw B

Definition 2.5

• We say that A is true in a world w of M, written M �w A, if for all w-
assignments σ, we have M �σw A.

• We say that A is true in M, written M � A, if for all worlds w ∈W , we have
M �w A.

• We say that A is valid in a frame F, written F � A, if for all models M based
on F, we have M � A.

We have the following well-known completeness of IQC with respect to Kripke
semantics.
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Theorem 2.6 ([16]) The intuitionistic predicate logic IQC is sound and com-
plete with respect to Kripke semantics; that is, for each formula A,

IQC ` A iff F � A for each IQC-frame F.

3 Modal predicate logics

Modal predicate logics were first studied by Barcan [1] and Carnap [2] in 1940s.
The semantic study of modal predicate logics was initiated by Kripke [14,15]
in late 1950s/early 1960s. Since then many completeness results have been
obtained with respect to Kripke semantics, but there is also a large body of
incompleteness results, which is one of the reasons that the model theory of
modal predicate logics is less advanced than that of modal propositional logics
(see, e.g., [9,10] and the references therein).

Let K be the least normal modal propositional logic and let QK be the standard
predicate extension of K. The language L2 of QK is the extension of L with the
modality 2. Since the modal logics we consider are based on the classical logic,
it is sufficient to only consider the logical connectives ⊥,→ and the quantifier
∀. The logical connectives ∧,∨,¬,↔, the quantifier ∃, and the modality 3 are
treated as usual abbreviations.

We next recall the definition of QK (see, e.g., [9, Sec 2.6], but note, as in
Section 2, that we work with axiom schemes instead of having the inference
rule of substitution).

Definition 3.1 The modal predicate logic QK is the least set of formulas of
L2 containing all substitution instances of theorems of K, the axiom schemes
(i) and (iii) of Definition 2.1, and closed under (MP), (Gen), and

A
2A

Necessitation (N)

The definition of QK-frames F = (W,R,D) is the same as that of IQC-frames
(see Definition 2.2) with the only difference that R can be an arbitrary relation.
Models are also defined the same way, but without the requirement that wRv
implies Iw(P ) ⊆ Iv(P ). The connectives and quantifiers are interpreted at each
world in the usual classical way, and

M |=σ
w 2A iff (∀v ∈W )(wRv ⇒M |=σ

v A).

Truth and validity of formulas are defined as usual.

We next give a brief history of first Kripke completeness results for modal pred-
icate logics. In 1959 Kripke [14] proved Kripke completeness of predicate S5.
In late 1960s Cresswell [4,5] (see also Hughes and Cresswell [12]), Schütte [19],
and Thomason [20] proved Kripke completeness of predicate T and S4. Kripke
completeness of QK was first established by Gabbay [7, Thm. 8.5] 2 :

2 We would like to thank Ilya Shapirovsky and Valentin Shehtman for useful discussions on
the history of Kripke completeness for modal predicate logics.
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Theorem 3.2 The modal predicate logic QK is sound and complete with re-
spect to Kripke semantics.

The following two principles play an important role in the study of modal
predicate logics. They were first considered by Barcan [1].

2∀xA→ ∀x2A converse Barcan formula (CBF)
∀x2A→ 2∀xA Barcan formula (BF)

It is easy to see that CBF is a theorem of QK. Indeed, this follows from
Theorem 3.2 and the fact that domains of each QK-frame are increasing. On
the other hand, a QK-frame validates BF iff it has constant domains, meaning
that wRv implies Dw = Dv, and we have the following well-known theorem
(see, e.g., [7, Thm. 9.3]):

Theorem 3.3 The logic QK + BF is sound and complete with respect to the
class of QK-frames with constant domains.

A modal predicate logic whose Kripke frames have neither increasing nor de-
creasing domains was considered already by Kripke [15]. Building on this work,
Hughes and Cresswell [13, pp. 304–309] introduced a similar predicate modal
logic and proved its completeness with respect to a generalized Kripke seman-
tics. Fitting and Mendelsohn [6, Sec. 6.2] gave an alternate axiomatization of
this logic. Building on the work of Fitting and Mendelsohn, Corsi [3] defined
the system Q◦K whose axiomatization contains a weakening of the universal
instantiation axiom.

Definition 3.4 The logic Q◦K is the least set of formulas of L2 containing all
substitution instances of theorems of K, the axiom schemes

(i) ∀y(∀xA→ A(y/x)) (UI◦)

(ii) ∀x(A→ B)→ (∀xA→ ∀xB)

(iii) ∀x∀yA↔ ∀y∀xA

(iv) A→ ∀xA with x not free in A

and closed under (MP), (Gen), and (N).

Remark 3.5 In Definition 3.4, replacing UI◦ with UI yields an equivalent def-
inition of QK. Therefore, Q◦K is contained in QK.

Kripke frames for Q◦K generalize Kripke frames for QK by having two domains,
inner and outer.

Definition 3.6 A Q◦K-frame is a quadruple F = (W,R,D,U) where

• (W,R) is a K-frame.

• D is a function that associates to each w ∈W a set Dw. The set Dw is called
the inner domain of w.



102 Temporal interpretation of intuitionistic quantifiers

• U is a nonempty set containing the union of all the Dw. The set U is called
the outer domain of F.

Definition 3.6 is a particular case of the frames considered by Corsi [3] where
increasing outer domains are allowed. For our purposes, taking a fixed outer
domain U is sufficient. We recall from [3] how to interpret L2 in a Q◦K-frame
F = (W,R,D,U).

Definition 3.7

• An interpretation of L2 in F is a function I associating to each world w and
an n-ary predicate symbol P an n-ary relation Iw(P ) ⊆ Un.

• A model is a pair M = (F, I) where F is a Q◦K-frame and I is an interpre-
tation in F.

• An assignment in F is a function σ that associates to each individual variable
an element of U .

• If σ and τ are two assignments and x is an individual variable, τ is said to
be an x-variant of σ if τ(y) = σ(y) for all y 6= x.

• We say that an assignment σ is w-inner for w ∈ W if σ(x) ∈ Dw for each
individual variable x.

We next recall from [3] the definition of when a formula A is true in a world w
of a model M = (F, I) under the assignment σ, written M �σw A.

Definition 3.8

M �σw ⊥ never
M �σw P (x1, . . . , xn) iff (σ(x1), . . . , σ(xn)) ∈ Iw(P )
M �σw B → C iff M �σw B implies M �σw C
M �σw ∀xB iff for all x-variants τ of σ with τ(x) ∈ Dw, M �τw B
M �σw 2B iff for all v such that wRv, M �σv B

Definition 3.9 A formula A is true in a model M = (F, I) at the world w ∈W
(in symbols M �w A) if for all assignments σ, we have M �σw A. The definition
of truth in a model and validity in a frame are the same as in Definition 2.5.

We have the following completeness result for Q◦K, see [3, Thm. 1.32] and its
proof.

Theorem 3.10 Q◦K is sound and complete with respect to the class of Q◦K-
frames.

Definition 3.11 Let F = (W,R,D,U) be a Q◦K-frame.

• We say that F has increasing inner domains if wRv implies Dw ⊆ Dv for
each w, v ∈W .
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• We say that F has decreasing inner domains if wRv implies Dv ⊆ Dw for
each w, v ∈W .

• If F has both increasing and decreasing inner domains, we say that it has
constant inner domains.

The following axiom scheme guarantees nonempty inner domains (hence the
abbreviation):

∀xA→ A with x not free in A (NID)

The next proposition is not difficult to verify (see, e.g., [6, Sec. 4.9] and [3,
pp. 1487–1488]).

Proposition 3.12 Let F = (W,R,D,U) be a Q◦K-frame.

• F validates CBF iff F has increasing inner domains.

• F validates BF iff F has decreasing inner domains.

• F validates NID iff F has nonempty inner domains.

We have the following completeness results for logics obtained by adding CBF,
BF, and NID to Q◦K (see [3, Thms. 1.30, 1.32, and Footnote 7]):

Theorem 3.13

• Q◦K + CBF is sound and complete with respect to the class of Q◦K-frames
with increasing inner domains.

• Q◦K+CBF+BF is sound and complete with respect to the class of Q◦K-frames
with constant inner domains.

• Adding NID to the above two logics or to Q◦K yields completeness of the
resulting logics with respect to the corresponding classes of frames which have
nonempty inner domains.

On the other hand, completeness of Q◦K + BF remains open (see [3, p. 1510]).

4 The logic Q◦S4.t

The tense predicate logic we will translate IQC into is based on the well-known
tense propositional logic S4.t. We use 2F (“always in the future”) and 2P
(“always in the past”) as temporal modalities. Then 3F (“sometime in the
future”) and 3P (“sometime in the past”) are usual abbreviations ¬2F¬ and
¬2P¬.

Definition 4.1 The logic S4.t is the least set of formulas of the tense proposi-
tional language containing all substitution instances of S4-axioms for both 2F
and 2P , the axiom schemes

(i) A→ 2P3FA
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(ii) A→ 2F3PA

and closed under (MP) and

A
2FA

2F -Necessitation (NF) A
2PA

2P -Necessitation (NP)

Relational semantics of S4.t consists of Kripke frames F = (W,R) where R
is reflexive and transitive. As usual, propositional letters are interpreted as
subsets ofW , classical connectives as the corresponding set-theoretic operations
on the powerset of W , and for temporal modalities we set:

w � 2FA iff (∀v ∈W )(wRv ⇒ v � A)
w � 2PA iff (∀v ∈W )(vRw ⇒ v � A)

It is well known that S4.t is sound and complete with respect to its relational
semantics.

Let LT be the bimodal predicate language obtained by extending L with two
modalities 2F and 2P .

Definition 4.2 The logic QS4.t is the least set of formulas of LT containing
all substitution instances of theorems of S4.t, the axiom schemes (i) and (iii)
of Definition 2.1, and closed under (MP), (Gen), (NF), and (NP).

The following are temporal versions of CBF and BF:

2F∀xA→ ∀x2FA converse Barcan formula for 2F (CBFF)
∀x2FA→ 2F∀xA Barcan formula for 2F (BFF)
2P∀xA→ ∀x2PA converse Barcan formula for 2P (CBFP)
∀x2PA→ 2P∀xA Barcan formula for 2P (BFP)

The proof that QK ` CBF (see, e.g., [15, p. 88]) can be adapted to prove that
QS4.t ` CBFF and QS4.t ` CBFP. It is also well known that CBFF and BFP,
as well as CBFP and BFF are derivable from each other in any tense predicate
logic. Therefore, all four are theorems of QS4.t. This is reflected in the fact that
QS4.t-frames have constant domains. Indeed, QS4.t is complete with respect
to this semantics (see Section 6). But this is problematic for translating IQC
fully into QS4.t since IQC-frames with constant domains validate the additional
axiom ∀x(A∨B)→ (A∨∀xB), where x is not free in A, which is not a theorem
of IQC (see, e.g., [8, p. 53, Cor. 8]).

Consequently, we need to work with a weaker logic than QS4.t. To this end, we
introduce the logic Q◦S4.t, which weakens QS4.t the same way Q◦K weakens
QK.

Definition 4.3 The logic Q◦S4.t is the least set of formulas of LT containing
all substitution instances of theorems of S4.t, the axiom schemes (i), (ii), (iii),
(iv) of Q◦K (see Definition 3.4), NID, CBFF, and closed under (MP), (Gen),
(NF), and (NP).
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As follows from Proposition A.1 in the Appendix, BFP is a theorem of Q◦S4.t.
In fact, CBFF and BFP are derivable from each other and the other axioms of
Q◦S4.t.

Definition 4.4 A Q◦S4.t-frame is a Q◦K-frame F = (W,R,D,U) (see Defini-
tion 3.6) with nonempty increasing inner domains whose accessibility relation
is reflexive and transitive.

Models and assignments are defined as in Definition 3.7. The clauses of when
a formula A of LT is true in a world w of a Q◦S4.t-model M = (F, I) under the
assignment σ, written M �σw A, are defined as in Definition 3.8, but we replace
the 2-clause with the following two clauses:

M �σw 2FB iff (∀v ∈W )(wRv ⇒M �σv B)
M �σw 2PB iff (∀v ∈W )(vRw ⇒M �σv B)

For formulas of LT we define truth in a model and validity in a frame as in
Definition 3.9.

Theorem 4.5 Q◦S4.t is sound with respect to the class of Q◦S4.t-frames; that
is, for each formula A of LT and Q◦S4.t-frame F, from Q◦S4.t ` A it follows
that F � A.

Proof. It is sufficient to show that each axiom scheme is valid in all Q◦S4.t-
frames and that each rule of inference preserves validity. This can be done
by direct verification. We only show that the axiom scheme CBFF is valid
in all Q◦S4.t-frames. Let M = (F, I) be a Q◦S4.t-model, w ∈ W , and σ an
assignment. If M �σw 2F∀xA, then for all v with wRv we have M �σv ∀xA.
This implies that for each x-variant τ of σ with τ(x) ∈ Dv we have M �τv A.
Since Dw ⊆ Dv, this is in particular true for x-variants τ of σ with τ(x) ∈ Dw.
Therefore, for each x-variant τ of σ with τ(x) ∈ Dw and for each v with wRv
we have M �τv A. Thus, for each x-variant τ of σ with τ(x) ∈ Dw, we have
M �σw 2FA. Consequently, M �σw ∀x2FA. This shows that F � 2F∀xA →
∀x2FA for each Q◦S4.t-frame F. 2

On the other hand, completeness of Q◦S4.t remains an interesting open prob-
lem, which is related to the open problem of completeness of Q◦K + BF (see
Section 6).

5 The translation

In this section we prove our main result that the temporal modification (de-
scribed in the Introduction) of the Gödel translation embeds IQC into Q◦S4.t
fully and faithfully. Our strategy is to prove faithfulness of the translation syn-
tactically, while fullness will be proved by semantical means, utilizing Kripke
completeness of IQC.
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Our syntactic proof of faithfulness is based on the following technical lemma,
the proof of which we give in the Appendix. To keep the notation simple, we
denote lists of variables by bold letters. If x = x1, . . . , xn, we write ∀x for
∀x1 · · · ∀xn. We point out that it is a consequence of axioms (ii) and (iii) of
Q◦K that from the point of view of provability in Q◦S4.t, the order of variables
in ∀x does not matter.

Lemma 5.1

(i) Let C be an instance of an axiom scheme of IQC and x the list of free
variables in C. Then Q◦S4.t ` ∀xCt.

(ii) Let A,B be formulas of L, x the list of variables free in A→ B, y the list
of variables free in A, and z the list of variables free in B. If Q◦S4.t `
∀x(A→ B)t and Q◦S4.t ` ∀yAt, then Q◦S4.t ` ∀zBt.

(iii) Let A be a formula of L, x a variable, y the list of variables free in A,
and z the list of variables free in ∀xA. If Q◦S4.t ` ∀yAt, then Q◦S4.t `
∀z (∀xA)t.

Proof. For (i) see the proof of Lemma A.5, for (ii) see the proof of Lemma A.6,
and for (iii) see the proof of Lemma A.7. 2

Theorem 5.2 Let A be a formula of L and x1, . . . , xn the free variables of A.
If IQC ` A, then Q◦S4.t ` ∀x1 · · · ∀xnAt.

Proof. The proof is by induction on the length of the proof of A in IQC. If A
is an instance of an axiom of IQC, then the result follows from Lemma 5.1(i).
Lemma 5.1(ii) takes care of the case in which the last step of the proof of A is an
application of (MP). Finally, if the last step of the proof of A is an application
of (Gen) to the variable x, use Lemma 5.1(iii). 2

Remark 5.3 We are prefixing the translation of A with ∀x1 · · · ∀xn because
it is not true in general that IQC ` A implies Q◦S4.t ` At. For example, if A
is an instance of the universal instantiation axiom, which is an axiom of IQC,
then At is not in general a theorem of Q◦S4.t.

Definition 5.4

• For an IQC-frame F = (W,R,D) let F = (W,R,D,U) where U =
⋃
{Dw |

w ∈W}.
• For an IQC-model M = (F, I) let M = (F, I).

Remark 5.5

• It is obvious that F is a Q◦S4.t-frame.

• If I is an interpretation in F, then I is also an interpretation in F because
for each n-ary predicate letter P we have Iw(P ) ⊆ Dn

w ⊆ Un. Therefore, M
is well defined.
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• The w-assignments in F are exactly the w-inner assignments in F.

The proof of the following technical lemma is given in the Appendix.

Lemma 5.6 If A is a formula of L, then Q◦S4.t ` At → 2FA
t.

Proof. See the proof of Lemma A.2. 2

Lemma 5.7 Let A be a formula of L, M = (F, I) a Q◦S4.t-model, and σ an
assignment in F. If v, w ∈W with vRw, then M �σv A

t implies M �σw A
t.

Proof. Suppose vRw and M �σv A
t. By Lemma 5.6 and Theorem 4.5, M �σv

At → 2FA
t. Therefore, M �σv 2FA

t, which yields M �σw A
t because vRw. 2

Proposition 5.8 Let A be a formula of L, M = (F, I) an IQC-model based on
an IQC-frame F = (W,R,D), and w ∈W .

(i) For each w-assignment σ,

M �σw A iff M �σw A
t.

(ii) If x1, . . . , xn are the free variables of A, then

M �w A iff M �w ∀x1 · · · ∀xnAt.

Proof. (i). Induction on the complexity of A. Let A be an atomic formula
P (x1, . . . , xn). Since wRv implies Iw(P ) ⊆ Iv(P ) and R is reflexive, we have

M �σw P (x1, . . . , xn) iff (σ(x1), . . . , σ(xn)) ∈ Iw(P )

iff (∀v ∈W )(wRv ⇒ (σ(x1), . . . , σ(xn)) ∈ Iv(P ))

iff M �σw 2FP (x1, . . . , xn)

iff M �σw P (x1, . . . , xn)t

The cases where A = ⊥, A = B ∧ C, and A = B ∨ C are straightforward.

If A = B → C, then using the inductive hypothesis, we have

M �σw B → C iff (∀v ∈W )(wRv ⇒ (M �σv B ⇒M �σv C))

iff (∀v ∈W )(wRv ⇒ (M �σv B
t ⇒M �σv C

t))

iff M �σw 2F (Bt → Ct)

iff M �σw (B → C)t
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If A = ∀xB, then using the inductive hypothesis, we have

M �σw ∀xB iff (∀v ∈W )(wRv ⇒ for each v-assignment τ that is

an x-variant of σ we have M �τv B)

iff (∀v ∈W )(wRv ⇒ for each assignment τ that is

an x-variant of σ with τ(x) ∈ Dv we have M �τv B
t)

iff M �σw 2F∀xBt

iff M �σw (∀xB)t

If A = ∃xB, then using the inductive hypothesis, reflexivity of R, Lemma 5.7,
and the fact that vRw implies Dv ⊆ Dw, we have

M �σw ∃xB iff there is a w-assignment τ that is an x-variant of σ

such that M �τw B

iff there is an assignment τ that is an x-variant of σ

with τ(x) ∈ Dw such that M �τw B
t

iff there is v ∈W such that vRw and an assignment ρ that is

an x-variant of σ with ρ(x) ∈ Dv such that M �ρv B
t

iff M �σw 3P∃xBt

iff M �σw (∃xB)t

(ii). By Definition 2.5, M �w A iff M �σw A for each w-assignment σ. As
noted in Remark 5.5, w-assignments in F are exactly the w-inner assignments
in F. Therefore, by (i), M �w A iff M �σw A

t for each w-inner assignment σ. It
follows from the interpretation of the universal quantifier in M that M �σw A

t

for each w-inner assignment σ iff M �w ∀x1 · · · ∀xnAt. Thus, M �w A iff
M �w ∀x1 · · · ∀xnAt. 2

Theorem 5.9 Let A be a formula of L and x1, . . . , xn the free variables of A.
If Q◦S4.t ` ∀x1 · · · ∀xnAt, then IQC ` A.

Proof. Suppose IQC 0 A. Theorem 2.6 implies that there is an IQC-
model M such that M 2w A for some world w. By Proposition 5.8(ii),
M 2w ∀x1 · · · ∀xnAt. Thus, Q◦S4.t 0 ∀x1 · · · ∀xnAt by Theorem 4.5. 2

By putting Theorems 5.2 and 5.9 together we arrive at the main result of the
paper mentioned in the introduction.

Theorem 5.10

• Let A be a formula of L and x1, . . . , xn the free variables of A. We have

IQC ` A iff Q◦S4.t ` ∀x1 · · · ∀xnAt.
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• If A is a sentence of L, then

IQC ` A iff Q◦S4.t ` At.

Remark 5.11 If we allow constants in L, Theorem 5.9 is no longer true in its
current form. Indeed, constants in IQC and Q◦S4.t behave like free variables
and we would have the problem described in Remark 5.3. However, it can be
adjusted as follows. Let A be a formula containing free variables x1, . . . , xn
and constants c1, . . . cm. If A(y1/c1, . . . , ym/cm) is the formula obtained by
replacing all the constants with fresh variables y1, . . . , ym, then IQC ` A iff
Q◦S4.t ` ∀x1 · · · ∀xn∀y1 · · · ∀ymAt(y1/c1, . . . , ym/cm).

6 Open problems

As follows from Theorem 4.5, Q◦S4.t is sound with respect to the class of
Q◦S4.t-frames. However, its completeness remains an interesting open problem.
The standard Henkin construction was modified by Hughes and Cresswell [13]
and Corsi [3] to obtain completeness of Q◦K. If we adapt their technique
to Q◦S4.t, we obtain two relations RF and RP on the canonical model, one
coming from 2F and the other from 2P . There does not seem to be an obvious
way to select an appropriate submodel in which the restrictions of these two
relations are inverses of each other because the outer domains of accessible
worlds are forced to increase by the construction. This problem disappears
when constructing the canonical model for QS4.t because the presence of BFF

and CBFP in each world allows us to select witnesses without expanding the
domains of accessible worlds, thus yielding that QS4.t is sound and complete
with respect to the class of QS4.t-frames.

The problem of completeness of Q◦S4.t seems to be closely related to the open
problem, stated in [3, p. 1510], of whether Q◦K + BF is Kripke complete. It
appears that answering one of these problems could also provide an answer to
the other.

One of the reviewers pointed out that another natural direction is to study the
intermediate predicate logics and the corresponding extensions of Q◦S4.t for
which our temporal translation remains full and faithful. Finally, it is worth
investigating whether other tense predicate logics (such as the ones considered
in [11]) could be used for translating IQC fully and faithfully. Some such systems
admit presheaf semantics which is more general than Kripke semantics.

Appendix

A Additional facts needed in Sections 4 and 5

Proposition A.1 Q◦S4.t ` BFP.

Proof. We first show that Q◦S4.t ` 3F∀xB → ∀x3FB for any formula B.
We have the proof
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1. ∀x(∀xB → B)
2. ∀x2F (∀xB → B)
3. 2F (∀xB → B)→ (3F∀xB → 3FB)
4. ∀x2F (∀xB → B)→ ∀x(3F∀xB → 3FB)
5. ∀x(3F∀xB → 3FB)
6. ∀x3F∀xB → ∀x3FB
7. 3F∀xB → ∀x3FB

Here 1 is an instance of UI◦; 2 is obtained from 1 by adding 2F inside ∀x by
applying (NF), CBFF, and (MP); 3 is a substitution instance of the K-theorem
2F (C → D) → (3FC → 3FD) for 2F ; 4 is obtained from 3 by first adding
and then distributing ∀x inside the implication by applying (Gen), axiom (ii)
of Q◦K, and (MP); 5 follows from 2 and 4 by (MP); 6 is obtained from 5 by
distributing ∀x; and 7 follows from 6 and axiom (iv) of Q◦K.

We now prove ∀x2PA→ 2P∀xA.

1. ∀x2PA→ 2P3F∀x2PA
2. 3F∀x2PA→ ∀x3F2PA
3. 2P3F∀x2PA→ 2P∀x3F2PA
4. 3F2PA→ A
5. ∀x3F2PA→ ∀xA
6. 2P∀x3F2PA→ 2P∀xA
7. ∀x2PA→ 2P∀xA

Here 1 is an instance of axiom (i) of S4.t; 2 is an instance of 3F∀xB → ∀x3FB
proved above; 3 and 6 follow from 2 and 5 by adding and distributing 2P in the
implication; 4 is an instance of the S4.t-theorem 3F2PC → C; 5 is obtained
from 4 by adding and distributing ∀x; and 7 follows from 1, 3, and 6. 2

Lemma A.2 If A is a formula of L, then Q◦S4.t ` At → 2FA
t and Q◦S4.t `

3PA
t → At.

Proof. We only prove that Q◦S4.t ` At → 2FA
t since it implies that Q◦S4.t `

3PA
t → At. The proof is by induction on the complexity of A. If A = ⊥, then

At = ⊥ and it is clear that Q◦S4.t ` ⊥ → 2F⊥.

If A is either an atomic formula P (x1, . . . , xn) or of the form B → C or ∀xB,
then At is of the form 2FD. Therefore, the 4-axiom 2FD → 2F2FD implies
that in all these cases Q◦S4.t ` At → 2FA

t.

If A = ∃xB, then At = 3P∃xBt. So 2FA
t = 2F3P∃xBt and Q◦S4.t `

3P∃xBt → 2F3P∃xBt because it is a substitution instance of the S4.t-
theorem 3PC → 2F3PC. Finally, if A = B ∧ C or A = B ∨ C, then we have
At = Bt ∧Ct or At = Bt ∨Ct. By inductive hypothesis, Q◦S4.t ` Bt → 2FB

t

and Q◦S4.t ` Ct → 2FC
t. Since Q◦S4.t ` (2FB

t ∧ 2FC
t) → 2F (Bt ∧ Ct)

and Q◦S4.t ` (2FB
t∨2FCt)→ 2F (Bt∨Ct), we obtain Q◦S4.t ` (Bt∧Ct)→

2F (Bt ∧ Ct) and Q◦S4.t ` (Bt ∨ Ct)→ 2F (Bt ∨ Ct). 2
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Lemma A.3 The following are theorems of Q◦S4.t:

(i) ∀y(A(y/x)→ ∃xA).

(ii) ∀x(A→ B)→ (A→ ∀xB) if x is not free in A.

(iii) ∀x(A→ B)→ (∃xA→ B) if x is not free in B.

Proof. Follows from [3, Lem. 1.3]. 2

Lemma A.4 For formulas A,B of L, the following are theorems of Q◦S4.t.

(i) 2F (2F∀xAt → At) if x is not free in A.

(ii) ∀y2F (2F∀xAt → A(y/x)t).

(iii) 2F (At → 3P∃xAt) if x is not free in A.

(iv) ∀y2F (A(y/x)t → 3P∃xAt).

(v) 2F (2F∀x2F (At → Bt)→ 2F (At → 2F∀xBt)) if x is not free in A.

(vi) 2F (2F∀x2F (At → Bt)→ 2F (3P∃xAt → Bt)) if x is not free in B.

Proof. Note that x is free in A iff it is free in At, and A(y/x)t = At(y/x).

(i). We have the proof

1. ∀xAt → At

2. 2F∀xAt → At

3. 2F (2F∀xAt → At)

where 1 is an instance of NID because x is not free in At; 2 is obtained from 1
by applying the T-axiom for 2F ; 3 is obtained from 2 by (NF).

(ii). We have the proof

1. ∀y(∀xAt → At(y/x))
2. ∀y(2F∀xAt → At(y/x))
3. ∀y2F (2F∀xAt → At(y/x))

where 1 is an instance of UI◦; 2 follows from 1 by applying the T-axiom for 2F
inside ∀y; 3 is obtained from 2 by introducing 2F inside ∀y.

(iii). We have the proof

1. At → ∃xAt
2. At → 3P∃xAt
3. 2F (At → 3P∃xAt)

where 1 is an instance of C → ∃xC, with x not free in C, which is equivalent
to NID; 2 follows from 1 by the T-axiom for 3P ; 3 is obtained from 2 by (NF).

(iv). We have the proof
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1. ∀y(At(y/x)→ ∃xAt)
2. ∀y(At(y/x)→ 3P∃xAt)
3. ∀y2F (At(y/x)→ 3P∃xAt)

where 1 follows from Lemma A.3(i); 2 follows from 1 by applying the T-axiom
for 3P inside ∀y; 3 is obtained from 2 by introducing 2F inside ∀y.

(v). We have the proof

1. ∀x(At → Bt)→ (At → ∀xBt)
2. ∀x2F (At → Bt)→ (At → ∀xBt)
3. 2F∀x2F (At → Bt)→ (2FA

t → 2F∀xBt)
4. 2F∀x2F (At → Bt)→ (At → 2F∀xBt)
5. 2F∀x2F (At → Bt)→ 2F (At → 2F∀xBt)
6. 2F (2F∀x2F (At → Bt)→ 2F (At → 2F∀xBt))

where 1 follows from Lemma A.3(ii); 2 follows from 1 by applying the T-axiom
for 2F ; 3 is obtained from 2 by adding and distributing 2F ; 4 follows from 3 by
Lemma A.2; 5 is obtained from 4 by adding and distributing 2F and getting
rid of one 2F in the antecedent using the 4-axiom; 6 follows from 5 by (NF).

(vi). We have the proof

1. ∀x(At → Bt)→ (∃xAt → Bt)
2. ∀x(At → Bt)→ (∃x3PA

t → Bt)
3. ∀x2F (At → Bt)→ (∃x3PA

t → Bt)
4. ∀x2F (At → Bt)→ (3P∃xAt → Bt)
5. 2F∀x2F (At → Bt)→ 2F (3P∃xAt → Bt)
6. 2F (2F∀x2F (At → Bt)→ 2F (3P∃xAt → Bt))

where 1 follows from Lemma A.3(iii); 2 follows from 1 by Lemma A.2; 3 follows
from 2 by applying the T-axiom for 2F ; 4 follows from 3 and the fact that
Q◦S4.t ` 3P∃xAt → ∃x3PA

t because it is a consequence of BFP; 5 is obtained
from 4 by adding and distributing 2F ; 6 follows from 5 by (NF). 2

Lemma A.5 If C is an instance of an axiom scheme of IQC and x is the list
of free variables in C, then Q◦S4.t ` ∀xCt.

Proof. If C is an instance of a theorem of IPC, then it follows from the faith-
fulness of the Gödel translation in the propositional case that Ct is a theorem
of Q◦S4.t (since 2F is an S4-modality). Applying (Gen) to each free variable
of Ct then yields a proof of ∀xCt in Q◦S4.t. Translations of the axiom schemes
of Definition 2.1 give:

(∀xA→ A(y/x))t = 2F (2F∀xAt → A(y/x)t)

(A(y/x)→ ∃xA)t = 2F (A(y/x)t → 3P∃xAt)
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(∀x(A→ B)→ (A→ ∀xB))t

= 2F (2F∀x2F (At → Bt)→ 2F (At → 2F∀xBt))

(∀x(A→ B)→ (∃xA→ B))t

= 2F (2F∀x2F (At → Bt)→ 2F (3P∃xAt → Bt))

If C is an instance of one of these axiom schemes, then we obtain a proof of
∀xCt in Q◦S4.t by Lemma A.4 and by applying (Gen) to the free variables of
C. More precisely, for the first axiom we use (i) of Lemma A.4 when x is not
free in A and (ii) when x is free in A. Similarly, for the second axiom we use
(iii) or (iv) of Lemma A.4. Finally, for the third axiom we use (v) and for the
fourth axiom we use (vi) of Lemma A.4. 2

Lemma A.6 Let A,B be formulas of L, x the list of variables free in A→ B,
y the list of variables free in A, and z the list of variables free in B. If Q◦S4.t `
∀x(A→ B)t and Q◦S4.t ` ∀yAt, then Q◦S4.t ` ∀zBt.

Proof. Let u be the list of variables free in A but not in B, v the list of
variables free in B but not in A, and w the list of variables free in both A
and B. We then have that x is the union of u, v, and w; y is the union
of u and w; and z is the union of v and w. Thus, we want to show that if
Q◦S4.t ` ∀u∀v ∀w(A → B)t and Q◦S4.t ` ∀u∀wAt, then Q◦S4.t ` ∀v ∀wBt.
We have the proof

1. ∀u ∀v ∀w2F (At → Bt)
2. ∀u ∀w ∀v2F (At → Bt)
3. ∀u∀w ∀v (2FA

t → 2FB
t)

4. ∀u∀w (2FA
t → ∀v2FB

t)
5. ∀u∀w2FA

t → ∀u ∀w ∀v2FB
t

6. ∀u∀wAt
7. ∀u∀w2FA

t

8. ∀u∀w ∀v2FB
t

9. ∀u∀w ∀vBt
10 ∀w ∀vBt
11 ∀v ∀wBt

where 1 and 6 are assumptions; 2 and 11 follow from 1 and 10 by switching
the order of quantification; 3 is obtained from 2 by distributing 2F inside the
universal quantifiers; 4 follows from Lemma A.3(ii) because all the variables in
v are not free in 2FA

t; 5 is obtained by distributing the universal quantifiers; 7
follows from 6 by introducing 2F inside the quantifiers; 8 is obtained by (MP)
from 5 and 7; 9 follows from 8 by the T-axiom for 2F ; 10 follows from 9 by
NID because no variable in u is free in Bt. 2

Lemma A.7 Let A be a formula of L, x a variable, y the list of variables
free in A, and z the list of variables free in ∀xA. If Q◦S4.t ` ∀yAt, then
Q◦S4.t ` ∀z (∀xA)t.
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Proof. If x is in y, then without loss of generality we may assume that y is
z concatenated with x. Therefore, by assumption we have Q◦S4.t ` ∀z ∀xAt.
If x is not in y, then y = z. Thus, by (Gen) for x and by switching the order
of quantifiers, we again obtain Q◦S4.t ` ∀z ∀xAt. We can then introduce 2F
inside the quantifiers to obtain Q◦S4.t ` ∀z2F∀xAt which means Q◦S4.t `
∀z (∀xA)t. 2
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