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Abstract

We define and study the notion of ‘indexed frames’, i.e., tuples (W1,W2, R1, R2)
where each Ri is a binary relation on W1 ×W2 such that Ri(w1, w2)(v1, v2) implies
wi = vi. They generalise, among other things, products of Kripke frames. We show
that the logic of indexed frames is the fusion logic K ⊕ K. We show the relation
between indexed frames and relativised products and we obtain the different logics
of indexed frames when we impose certain constraints on the relations R1 and R2.
Indexed frames were seemingly first used in [8], whithin a proposal for a broader multi-
modal framework called Epistemic Logic of Friendship, allowing for both an epistemic
accessibility relation and a ‘friendship’ relation. The set of agents is encoded in the
semantics, and these agents are named using nominal variables (a notion borrowed
from hybrid logic) with the novelty that these nominals only refer to the elements of
one of the sets. [7] provided an axiomatisation for a fragment of the language. We
give a simplified proof of this result and we axiomatise an extension of this fragment.

1 Introduction

This paper is concerned with the very interesting (and, to our knowledge, un-
charted) mathematical structure that underlies the framework of Epistemic
Logic of Friendship introduced by Seligman, Liu and Girard in [8]. (Also stud-
ied in [9,10]).

It is not in our scope to study the epistemic and social aspects of EFL. Let
us nonetheless briefly recall this framework here: we start off with a bimodal
language L, defined as:

φ ::= p|⊥|¬φ|(φ ∧ φ)|Kφ|Fφ,

where p ∈ Prop, a countable set of propositional variables. K is meant to be
read as an epistemic modality (“I know p”), whereas F is a ‘frienship’ modality
(“all my friends p”). We use K̂ and F̂ as the duals of these operators. Models
are of the form (W,A,∼,�, V ), where W and A are nonempty sets (“states”
and “agents”, respectively), ∼= {∼a: a ∈ A} is a family of binary relations on
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W indexed by A (∼a⊆ W 2 represents agent a’s epistemic accessibility), and
�= {�w: w ∈ W} is a family of binary relations on A indexed by W (each
representing which agents are friends at world w). V : Prop → 2W×A is a
valuation.

We interpret formulas of L with respect to pairs (w, a) ∈W ×A, as follows:
(w, a) |= Kφ iff (v, a) |= φ for all v such that w ∼a v;
(w, a) |= Fφ iff (w, b) |= φ for all b such that a �w b.

To illustrate this, see the following diagram. It represents a situation with
three agents, Alice, Bob and Charlie, wherein at world w Alice has a friend
with the property p (represented by the grey nodes) yet she does not know
that:

a b

c

a b

c

a b

c

ba

w w′ w′′

Indeed, it holds that w, a |= F̂ p∧¬KF̂p. We could also express more complex
things such as “Alice does not know Bob and Charlie are friends”. In order
to do this, we would need to extend the language, as we shall show later. For
now, let us focus on this relational structure.

Indexed frames. We have a multi-relational Kripke frame, whose relations
are indexed by a set A, in which each state contains a distinct Kripke frame
having A as its underlying set.

We shall call these structures indexed frames. In Section 2 we study them
and provide the complete axiomatisation of the modal logic they give rise to.
Note that indexed frames generalise other ways to combine Kripke frames,
such as products: recall that, given two Kripke frames (W1, R1), (W2, R2),
their product is the birelational Kripke frame (W1 × W2, R

H
1 , R

V
2 ), where

RH1 (w1, w2)(w′1, w
′
2) iff w2 = w′2 and R1w1w

′
1, and RV2 (w1, w2)(w′1, w

′
2) iff

w1 = w′1 and R2w2w
′
2. RH1 and RV2 are referred to as the horizontal and

vertical relations, respectively.
One can easily see that a product of two Kripke frames is simply an indexed

frame where ∼a=∼b and �w=�v for all a, b, w, v. In Subsection 2.2 we show
that any subframe of a product of Kripke frames can be turned in a truth-
preserving manner into an indexed frame, which will grant us a bunch of extra
completeness results.

In Section 3 we show that every formula that is satisfied in an indexed frame
can be satisfied in a finite indexed frame.

Naming the agents. Let us go back to the notion “Alice does not know
Bob and Charlie are friends”. In order to express this in our language, we
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need to name the agents. This is done in [8] via the introduction of nominal
variables and modality @n, directly imported from hybrid logic: see [1,3,5,6].
The language L(@) extends L with the atom n and the operator @nφ, where
n belongs to Nom, a countable set of nominal variables. A model for L(@) is
a tuple (W,A,∼,�, V ), as defined above, with the exception that V : Prop ∪
Nom → 2W×A and, for each n ∈ Nom, V (n) is of the form W × {a} for some
a ∈ A. The nominal n can thus be seen as the name of agent a. We now have:
w, a |= n iff V (n) = W ×{a}, and w, a |= @nφ iff w, b |= φ, where b is the agent
named by n.

A complete axiomatisation of L(@) was provided for the first time by Sano
in [7]. The proof of completeness works (roughly) as follows: first, a cut-
free tree sequent calculus is introduced, which is then shown to be sound and
complete. Then Sano shows that a formula which is provable in the Hilbert-
style system can be converted into a provable tree sequent and, conversely, that
from a provable tree sequent one can obtain a formula which is derivable in the
Hilbert-style system.

In the conclusion of [7] it is suggested that finding a proof of this result
using canonical models is an interesting area of future research. We present
such a proof in Section 4 (Subsection 4.1), along with a proof that the logic
possesses the finite model property (Subsection 4.2).

Back to friendship logic. For most of this paper we ignore many of the
constraints imposed in [8] upon the models in order to make them a realistic
framework for a logic of knowledge and friendship, namely: the set of agents A
should be finite, the epistemic relations ∼a should be equivalence relations, the
friendship relations �w should be symmetric and irreflexive, and, optionally, it
should be the case that an agent always knows who her friends are (if w ∼a v
and a �w b, then a �v b). We address these properties in Subsection 4.3 and
use all the previous results to provide a logic for the exact class of models
proposed in [8]. (It is worth noting that, although in Section 4 we stick to
the ∼ and � symbols to maintain the notation of [8,7], until this moment the
reader should not assume they denote equivalence or symmetric relations.)

Another extension. Another operator from hybrid logic is considered in [8].
The operator ↓x.φ allows to name the current agent x, making it possible to
refer to it indexically. The resulting extension of L(@), let us call it L(@↓),
allows to express things like “I have a friend who knows n is friends with me”,
↓x.F̂K@nF̂ x. In Section 5 we provide a sound and complete axiomatization
for L(@↓).

Some proofs have been moved to the Appendix.

2 Indexed Frames

Definition 2.1 An indexed frame is a tuple (W,A,R, S) where W and A are
nonempty sets, and R ⊆ A ×W 2, S ⊆ W × A2 are ternary relations. We use
Raww

′ and Swaa
′ to denote, respectively, (a,w,w′) ∈ R and (w, a, a′) ∈ S.

We can see R and S as families of binary relations {Ra}a∈A and {Sw}w∈W .
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Alternatively, we can see indexed frames as tuples (W,A,R, S) where R and
S are binary relations on W × A such that R(w, a)(w′, a′) implies a = a′ and
S(w, a)(w′, a′) implies w = w′.

Let Prop be a countable set of propositional variables. We will consider a
language L as defined in the introduction. We leave aside the epistemic and
social considerations and call our modal boxes �1 and �2 instead of K and F .

Thus our language L will be φ ::= p|⊥|¬φ|(φ∧ φ)|�1φ|�2φ, with p ∈ Prop.
We define the other Boolean connectives as usual, the dual modalities 3iφ :=
¬�i¬φ for i = 1, 2, and we adopt the standard rules for omission of the paren-
theses. Given φ ∈ L we define its set of subformulas subfφ in the standard way,
and its modal depth, md(φ), recursively as follows:
md(p) = md(⊥) = 0, md(¬φ) = md(φ), md(φ1 ∧ φ2) = maxi=1,2 md(φi),
md(�iφ) = 1 + md(φ).

Definition 2.2 An indexed model for L is a tuple M = (W,A,R, S, V ) where
(W,A,R, S) is an indexed frame and V : Prop→ 2W×A is a valuation.

We interpret formulas of L on indexed models with respect to pairs (w, a) ∈
W ×A as follows:

(w, a) |= �1φ iff w′, a |= φ for all w′ ∈W such that Raww
′;

(w, a) |= �2φ iff w, a′ |= φ for all a′ ∈ A such that Swaa
′.

Global truth of formulas in models and validity of formulas in frames are
defined as usual.

2.1 The logic of indexed models

Definition 2.3 Given a unimodal logic L, let FrL be the class of Kripke frames
F such that F |= L. Given unimodal Kripke-complete logics L1 and L2 we
define L1 ◦ L2 as the logic of indexed frames (W,A,R, S) such that (W,Ra) ∈
FrL1 for all a ∈ A and (A,Sw) ∈ FrL2 for all w ∈W .

Assuming no constraints on the relations Ra and Sw, the logic of indexed
models is the fusion logic K⊕K, i.e., the least normal modal logic in L containing
the axioms of the minimal modal logic K for each of the �i. To express this in
terms of the above definition:

Theorem 2.4 K ◦ K = K⊕ K.

This result can be proven using a step-by-step construction. For such a
proof, see the Appendix. In the next Subsection we shall prove a more general
result, and for this we will employ the notion of relativized products, studied in
[4].

2.2 Indexed frames and relativized products

The following definitions can be found in [4]:

Definition 2.5 Given two families of frames K1 and K2, let K1 × K2 be the
family of products of Kripke frames F1×F2 such that Fi ∈ Ki. Given Kripke-
complete unimodal logics L1, L2, we define their (arbitrary) relativized product
as the logic of arbitrary subframes of products of Kripke frames F1 ×F2 such
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that Fi ∈ FrLi, i.e.,

(L1 × L2)SF = Log{G : G ⊆ F for some F ∈ FrL1 × FrL2}.

(We say G = (W ′, R′1, ..., R
′
n) is a subframe of F = (W,R1, ..., Rn), denoted

G ⊆ F , whenever W ′ ⊆W and each R′i is the restriction of Ri to W ′.)

A logic L is a subframe logic if F ∈ FrL and G ⊆ F implies G ∈ FrL.
(Example: S4, because a subframe of a preorder is a preorder; nonexample:
the logic of serial frames K + 3>, because any finite subframe of (N, <) is not
serial.) The following holds:

Proposition 2.6 ([4, Thm. 9.2]) If L1, L2 are subframe logics, L1 ⊕ L2 ⊆
(L1 × L2)SF .

Moreover, if L1, L2 ∈ {K,T,K4,S4,S5,S4.3}, then L1 ⊕L2 = (L1 ×L2)SF .

Let us use these results to give a proof of completeness for the logic of
indexed frames. Let Fi = (Wi, R

′
i) for i = 1, 2. Let F = (W,R1, R2) be a

subframe of F1 × F2. This means that W ⊆ W1 ×W2, and R1 and R2 are
the restrictions to W of the horizontal and vertical relations (R′1)H and (R′2)V

respectively.
Consider the indexed frame G = (W1,W2, R

H , RV ), where, for w2 ∈W2,

RHw2
w1w

′
1 iff

{
(w1, w2) ∈W and (w′1, w2) ∈W and (w1, w2)R1(w′1, w2); or

(w1, w2) /∈W and w′1 = w1.

and, for w1 ∈W1,

RVw1
w2w

′
2 iff

{
(w1, w2) ∈W and (w1, w

′
2) ∈W and (w1, w2)R2(w1, w

′
2); or

(w1, w2) /∈W and w′2 = w2.

Now, let V be a valuation on F and set V ′(p) = V (p) as a valuation on the
indexed frame (W1,W2, R

H , RV ). The following holds:

Proposition 2.7 Let φ be a formula in the bimodal language, and let
(w1, w2) ∈W . Then F , V, (w1, w2) |= φ iff G, V ′, (w1, w2) |= φ.

Proof. By induction on φ. Let us see for instance the case φ = �1ψ.
If F , V, (w1, w2) |= �1ψ, then let w′1 such that RHw2

w1w
′
1. Since (w1, w2) ∈

W , by definition we have that (w′1, w2) ∈ W and (w1, w2)R1(w′1, w2) in
F , which means that F , V, (w′1, w2) |= ψ, and, by induction hypothesis
G, V ′, (w′1, w2) |= ψ. But since this is true for all w′1 such that RHw2

w1w
′
1,

we have that G, V ′, (w1, w2) |= �1ψ. The converse is analogous, noting that
(w1, w2)R1(w′1, w2) implies RHw2

w1w
′
1. 2

Moreover, we have the following:

Lemma 2.8 Suppose F is a subframe of (W1, R
′
1) × (W2, R

′
2). Suppose R′1

(respectively R′2) has one of the following properties: reflexive; transitive; sym-
metric; connected; Euclidean. Then, for all w2, RHw2

(resp. for all w1, RVw1
)

has the same property.
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Proof. Straightforward by construction of RH and RV . 2

As a consequence:

Theorem 2.9 If L1, L2 ∈ {K,T,K4,S4,S5,S4.3}, then L1 ◦ L2 = L1 ⊕ L2.

Proof. The inclusion L1◦L2 ⊇ L1⊕L2 holds by definition of L1◦L2. It suffices
to see that L1 ◦ L2 ⊆ L1 ⊕ L2. If φ /∈ L1 ⊕ L2, then by Proposition 2.6 there
exist frames (W1, R

′
1) ∈ FrL1 and (W2, R

′
2) ∈ FrL2, a frame F = (W,R1, R2) ⊆

(W1, R
′
1)× (W2, R

′
2), a valuation V on F and a world (w1, w2) ∈W such that

F , V, w1, w2 6|= φ. But then, the above construction G = (W1,W2, R
H , RV )

satisfies: (W1, R
H
w2

) ∈ FrL1 and (W2, R
V
w1

) ∈ FrL2 for all w1, w2 (Proposition
2.8), and G, V ′, w1, w2 6|= φ (Proposition 2.7); therefore, φ /∈ L1 ◦ L2. 2

3 Finite Indexed Model Property

All the logics mentioned so far have the Finite Model Property in the sense
that, if a formula is consistent in the logic, there will be a finite model satisfying
it 1 . But can we find a finite indexed model satisfying such a formula? The
answer is affirmative.

Definition 3.1 A logic L is said to have the Finite Indexed Model Property
(iFMP) if, given φ /∈ L, there exists an indexed model M = (W,A,R, S, V )
such that W and A are finite, (W,A,R, S) |= L, and, for some (w, a) ∈W ×A,
we have M, w, a 6|= φ.

Given Kripke-complete unimodal logics L1 and L2, let (L1 ◦ L2)f be the
logic of finite indexed frames of L1 ◦ L2.

Theorem 3.2 K⊕ K has the iFMP, i.e., (K ◦ K)f = K ◦ K = K⊕ K.

Proof. This amounts to showing that, if a formula φ0 is satisfied in an in-
dexed model, then there is a finite indexed model that satisfies it. Let
M = (W,A,R, S, V ) and (w0, a0) ∈W ×A such that M, w0, a0 |= φ0.

We define relations R and S on W ×A as follows: (w, a)R(w′, a′) iff a = a′

and Raww
′, and (w, a)S(w′, a′) iff w = w′ and Swaa

′. We will consider chains
starting at (w0, a0), of the form

α = (w0, a0)T1(w1, a1)...Tk(wk, ak),

with k ≥ 0, Ti ∈ {R,S} and (wi−1, ai−1)Ti(wi, ai) for 1 ≤ i ≤ k. We shall say
that such a chain has length k (and thus (w0, a0) is a chain of length 0). We
will call lastα = (wk, ak).

Fix n to be the modal depth of φ0. We shall construct a finite set of chains
of length up to n, in n steps. Let F0 = {(w0, a0)}. For 0 ≤ k ≤ n− 1, suppose
Fk is a finite set of chains of length k. Let Fk+1 be a finite set of minimal
cardinality satisfying the following property for all α ∈ Fk and all T ∈ {R,S}:

for any (w, a) ∈ W × A, if (lastα)T(w, a), then there exists an element
(w′, a′) ∼φ0

(w, a) such that αT(w′, a′) ∈ Fk+1,

1 Indeed, every logic in the set {K,T,K4, S4, S5, S4.3} has the FMP and this property is
preserved by fusions: see [11].
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where ∼φ0 is the equivalence relation

(w, a) ∼φ0
(w′, a′) iff for all ψ ∈ subf φ0(M, w, a |= ψ iff M, w′, a′ |= ψ).

It is not hard to see that there is a set of cardinality at most 2 · |Fk| ·2| subf φ0|

satisfying this property. Indeed, for any of the |Fk| choices of α and 2 choices
of T, Fk+1 will contain an element αT(w, a) for (at most) one representative
of each of the (at most) 2| subf φ0| equivalence classes of ∼φ0

.
Let F ′ = F0 ∪ ... ∪ Fn. Let F be the closure of F ′ under the following

property:

if α ∈ F , length(α) < n, T ∈ {R,S}, w ∈ W and a ∈ A occur in F , and
(lastα)T(w, a), then αT(w, a) ∈ F .

Obviously, F ′ is finite, and so is F .
We construct our finite model Mf = (W f , Af , Rf , Sf , V f ) where W f and

Af are the restrictions of W and A to those elements occuring in F , i.e,

W f = {w ∈W : w occurs in F}; Af = {a ∈ A : a occurs in F};

and Rf , Sf and V f are the corresponding restrictions of R, S, and V . The
following holds:

Lemma 3.3 Let α ∈ F be a chain of length k, i.e,

α = (w0, a0)T1(w1, a1)...Tk(wk, ak),

with Ti ∈ {R,S}. Let φ be a subformula of φ0 such that md(φ) ≤ n−k. Then,
M, wk, ak |= φ if and only if Mf , wk, ak |= φ.

This proves our theorem: it suffices to apply the previous Lemma to the
chain (w0, a0) of length 0 to obtain Mf , w0, a0 |= φ0. 2

Remark 3.4 The fact that we are taking a submodel of M grants us that we
can preserve the universal properties of the relations. This means that, if R
is reflexive/ transitive/ symmetric/ connected/ Euclidean, so is Rf . Likewise
for S and Sf . This fact, paired with Theorem 2.9, gives us the following result
immediately:

Theorem 3.5 If L1, L2 ∈ {K,T,K4,S4,S5,S4.3}, then L1⊕L2 has the iFMP.
In other words, (L1 ◦ L2)f = L1 ◦ L2 = L1 ⊕ L2.

4 Epistemic Logic of Friendship

We now consider the framework for an ‘epistemic logic of friendship’ proposed
by [8]. For now, this amounts to adding a set Nom = {n,m, ...} of nominal
variables to our language, and extending the language to L(@), defined as:

φ ::= p|n|⊥|¬φ|(φ ∧ φ)|Kφ|Fφ|@nφ,

where p ∈ Prop, n ∈ Nom.
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Definition 4.1 Models for L(@) are of the shape M = (W,A,∼,�, V ), where
(W,A,∼,�) is an indexed frame and V : Prop ∪ Nom → 2W×A is a valuation
function with the property that, for each n ∈ Nom, V (n) = W × {a} for some
a ∈ A. We refer to this unique a as a = nV (or a = n if there is no risk of
ambiguity).

A model is named whenever, for each a ∈ A, there exists n ∈ Nom such
that n = a. (Note that, in a named model, A is at most countable.)

We interpret formulas of L(@) in named models with respect to pairs
(w, a) ∈W ×A as follows:
M, w, a |= n iff (w, a) ∈ V (n) (iff n = a);
M, w, a |= @nφ iff M, w, n |= φ.

4.1 Axiomatising L(@) via canonical models

It is proven in [7], via an argument that employs a tree sequent calculus, that
the logic of L(@) is the system EFL, defined in the table below:

(Taut) all propositional tautologies (MP) from φ and φ→ ψ, infer ψ
(KK) K(φ→ ψ)→ (Kφ→ Kψ) (NecK) from φ, infer Kφ
(KF ) F (φ→ ψ)→ (Fφ→ Fψ) (NecF ) from φ, infer Fφ
(K@) @n(φ→ ψ)→ (@nφ→ @nψ) (Nec@) from φ, infer @nφ
(Ref) @nn (Selfdual) ¬@nφ↔ @n¬φ
(Elim) @nφ→ (n→ φ) (Agree) @n@mφ→ @mφ
(Back) @nφ→ F@nφ (DCom) @nK@nφ↔ @nKφ
(Rigid=) @nm→ K@nm (Rigid6=) ¬@nm→ K¬@nm

(Name) From @nφ infer φ, where n is fresh in φ

(LBG) From L(@nF̂m→ @mφ) infer L(@nFφ), m fresh in L(@nFφ).

In the last line of the above table, the necessity forms L(#) are defined as:

L ::= #|φ→ L|@nKL.

In this section we present a novel proof of this result using canonical models.
To do this, we consider instead the logic EFL+, obtained by replacing the rule
(LBG) in EFL by the following:

(LBG+) From L(@nF̂m→ @mφ) for all m fresh in L(@nFφ), infer L(@nFφ).
The following Lemma can be proven by a straightforward induction on

derivations.

Lemma 4.2 EFL and EFL+ prove the same formulas.

We thus prove completeness of EFL+. The following validities will be useful:

Proposition 4.3 The following are derivable in EFL:
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(T1) ` @m@nφ↔ @nφ;
(T2) ` n→ (@nφ↔ φ);
(T3) ` @nm→ (@nφ↔ @mφ);
(T4) ` @nm↔ @mn;
(T5) ` @n(φ→ ψ)↔ (@nφ→ @nψ);
(T6) ` @nm→ (φ[k/n]↔ φ[k/m]), where φ[k/n] is the formula obtained

from φ by replacing each occurrence of k by n.
(T7) ` @nm→ @iK@nm, and ` @n¬m→ @iK@n¬m;

(T8) ` @nF̂m ∧@mφ→ @nF̂ φ;

(T9) ` @nFψ ∧@nF̂m→ @mψ;

(R1) if ` @nF̂m ∧@mφ→ ψ, then ` @nF̂ φ→ ψ,
with m 6= n fresh in φ and ψ.

We will say that a formula in L(@) is a named formula whenever it is of the
form @nφ. A BCN formula is a Boolean combination of named formulas, and
we use BCN to denote the set of such formulas. The following is an immediate
consequence of (T1), (T5) and (Selfdual):

Corollary 4.4 If φ ∈ BCN , n ∈ Nom, then ` @nφ↔ φ.

A formula φ is consistent if ¬φ is not derivable. The following lemma will
be useful later.

Lemma 4.5 If n does not occur in φ, then φ is consistent if and only if @nφ
is consistent.

Proof. If φ is inconsistent we have ` ¬φ and thus by (Nec@), ` @n¬φ, which
by (Selfdual) gives that ` ¬@nφ. If @nφ is inconsistent then ` ¬@nφ which by
(Selfdual) means ` @n¬φ and thus, by (Name), ` ¬φ. 2

Now we can start our completeness proof. The two above results allow us
to focus only on BCN formulas. A theory is a set of BCN formulas T such that:

i. EFL+ ∩BCN ⊆ T ;

ii. T is closed under Modus Ponens;

iii. If L(@nF̂m → @mφ) ∈ T for all m 6= n not occurring in L or in φ, then
L(@nFφ) ∈ T .

A theory is consistent whenever @n⊥ /∈ T (for any/all n). It is easy to see
that EFL+∩BCN is the least consistent theory. A consistent theory is maximal
if no proper superset of it is a consistent theory.

Lemma 4.6 Given a theory T , the set

TKn
= {ψ ∈ BCN : ` ψ ↔ @nφ for some @nKφ ∈ T}

is a theory.

Proof. Note the following: for any φ ∈ BCN , we have that φ ∈ TKn iff
@nKφ ∈ T . Indeed,if φ ∈ TKn

, then ` φ ↔ @nψ for some @nKψ ∈ T . But
then, using (NecK), (Nec@) and (DCom) in that order we obtain ` @nKφ ↔
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@nKψ, and thus @nKφ ∈ T . The other direction is trivial and uses that
` @nφ↔ φ. With this:

Rule i. If φ ∈ EFL+∩BCN , m ∈ Nom, @nKφ ∈ EFL+∩BCN (by applying
two Nec rules) and thus @nKφ ∈ T , so φ ∈ TKn

.
Rule ii. If φ and φ → ψ ∈ TKn , then @nKφ, @nK(φ → ψ) ∈ T and, by

applying the K axioms and modus ponens, @nKψ ∈ T , and thus ψ ∈ TKn .
Rule iii. If L(@kF̂m→ @mφ) ∈ TKn

for all fresh m, then @nKL(@kF̂m→
@mφ) ∈ T for all fresh m, and thus, since @nKL is an admissible form,
@nKL(@kFφ) ∈ T , whence L(@kFφ) ∈ TKn

.

Lemma 4.7 Given a theory T and a formula φ ∈ BCN , the set Tφ = {ψ ∈
BCN : φ→ ψ ∈ T} is a theory containing T and including the formula φ, and
it is consistent whenever T is consistent and ¬φ /∈ T .

Proof. Rule i. If ψ ∈ EFL+∩BCN , then φ→ ψ ∈ EFL+∩BCN , thus ψ ∈ Tφ.
Rule ii. Follows from classical propositional logic.
Rule iii. Follows from the fact that, if L is an admissible form, so is φ→ L.
The fact that φ ∈ Tφ ⊇ T is because ` φ → φ and ` ψ → (φ → ψ). If

¬φ /∈ T , then @n¬φ /∈ T , thus @n(φ → ⊥) /∈ T . Using the K axiom and
` φ↔ @nφ, we obtain φ→ @n⊥ /∈ T , and thus @n⊥ /∈ Tφ.

Now,

Lemma 4.8 (Lindenbaum’s lemma) A consistent theory can be extended
to a maximal consistent theory.

Proof. Let T0 be a consistent theory and (φk)k∈ω be an enumeration of BCN
where each formula occurs infinitely many times.

Given a consistent theory Tk, we define a consistent theory Tk+1 (which
extends Tk) as follows:

• If ¬φk /∈ Tk, then Tk+1 = (Tk)φk
.

• If ¬φk ∈ Tk, then:
· If ¬φk is of the form ¬L(@nFφ), then for some fresh m it must be the

case that L(@nF̂m → @mφ) /∈ Tk, for otherwise we would have by rule
iii. that L(@nFφ) ∈ Tk, contradicting its consistency. Then we set Tk+1 =
(Tk)¬L(@nF̂m→@mφ).
· Otherwise, Tk+1 = Tk.

Let T =
⋃
k∈ω Tk. Then T is a maximal consistent theory. Consistency

is obvious, for each Tk is consistent. Maximality comes from the fact that,
for every formula φk, either ¬φk was already in Tk, or φk was added to Tk+1,
therefore it cannot have consistent supersets closed under modus ponens. To
see that it is a theory, it suffices to check that Rule iii. is satisfied. And
indeed, if L(@nFφ) /∈ T , then ¬L(@nFφ) ∈ Tk for some k. Consider some
k′ > k such that φk′ = ¬L(@nFφ). Then, by construction, Tk′+1 must contain
¬L(@nF̂m → @mφ) for some fresh m, and therefore it is not the case that
L(@nF̂m→ @mφ) ∈ T for all fresh m.

Let MCT denote the set of maximal consistent theories. Given T, S ∈
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MCT , and n ∈ Nom, we define: T ∼n S iff TKn ⊆ S.

Lemma 4.9 (Diamond Lemma) Let T ∈MCT . We have:

i. If @nK̂φ ∈ T , then there exists S ∈MCT such that T ∼n S 3 @nφ.

ii. If @nF̂ φ ∈ T , then there is some m 6= n fresh in φ such that @nF̂m ∧
@mφ ∈ T .

Proof. i. Take the consistent theory (TKn
)@nφ and extend it to the desired

successor using Lindenbaum’s lemma. Note that TKn
is consistent, for if not,

@n⊥ ∈ TKn
, and thus @nK@n⊥ ∈ T . But, since @n⊥ is equivalent to ⊥,

this means that @nK⊥ ∈ T , contradicting @nK̂φ ∈ T . Note moreover that
¬@nφ /∈ TKn , for if that was the case, @nK¬@nφ ∈ T , which is equivalent to
¬@nK̂φ ∈ T : contradiction. Thus (TKn

)@nφ is consistent.

ii. If @nF̂m ∧@mφ /∈ T for all fresh m, then ¬(@nF̂m) ∨ ¬(@mφ) ∈ T for
all fresh m, and thus, by logical equivalence, @nF̂m→ @m¬φ ∈ T for all fresh
m, which entails @nF¬φ ∈ T , and therefore ¬@nF̂ φ ∈ T .

Lemma 4.10 Let i ∈ Nom. If Γ ∼i ∆ then, for any n,m ∈ Nom, we have:
@nm ∈ Γ if and only if @nm ∈ ∆.

Proof. By (T7) of Prop. 4.3: if @nm ∈ Γ, then @iK@nm ∈ Γ, which entails
@i@nm ∈ ∆, and therefore, by the (Agree) axiom, @nm ∈ ∆. If @nm /∈ Γ, by
maximal consistency and the (Selfdual) axiom we have that @n¬m ∈ Γ and we
can proceed similarly to obtain that @n¬m ∈ ∆ and thus @nm /∈ ∆. 2

Let φ0 be a consistent formula and let us build a model satisfying it. Take
a nominal n0 not occurring in φ0 and note that @n0

φ0 is a consistent BCN
formula (by Lemma 4.5) and thus the consistent theory (BCN ∩ EFL+)@n0

φ0

can be extended (by Lindembaum’s lemma) to Γ0 ∈MCT .
Let W be the set of elements reachable from Γ0 by the ∼n relations, i.e.

W ={∆ ∈MCT : Γ0 = ∆0 ∼n1 ∆1 ∼n2 ... ∼nk
∆k = ∆

for some n1, ..., nk ∈ Nom,∆0, ...,∆k ∈MCT}.

Note that this construction guarantees (by Lemma 4.10) that for any Γ ∈ W ,
@nm ∈ Γ iff @nm ∈ Γ0. Note moreover that the theorems

` @nn (Ref); ` @nm↔ @mn (T4); ` @nm ∧@mi→ @ni (conseq. of T3)

guarantee that the binary relation on Nom defined as n ≡ m iff @nm ∈ Γ0 is
an equivalence relation. Let [n] denote the equivalence class of n ∈ Nom and
let A = {[n] :∈ Nom}.

For [n] ∈ A, we define ∼[n]=∼n. Let us see that this is well-defined, which
amounts to showing that ∼n=∼m whenever n ≡ m. But given Γ,∆ ∈W , and
n ≡ m, the fact that @nm ∈ Γ ∩∆ paired with (T3) give us that @nKφ ∈ Γ
iff @mKφ in Γ, and @nφ ∈ ∆ iff @mφ ∈ ∆, which entails Γ ∼n ∆ iff Γ ∼m ∆.

For Γ ∈W we define

[n] �Γ [m] iff @nF̂m ∈ Γ.
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Let us see that this definition does not depend on the choice of representative
for the equivalence classes: suppose @nF̂m ∈ Γ and take n′ ∈ [n],m′ ∈ [m].
We have that @n′ F̂m ∈ Γ, by (T3), and therefore, by (T6), @n′ F̂m′ ∈ Γ.

Finally we define a valuation by setting

V (p) ={(Γ, [n]) ∈W ×A : @np ∈ Γ}, p ∈ Prop;

V (n) ={(Γ, [n]) : Γ ∈W}, n ∈ Nom.

Note that we have defined V so that n = [n]. We have that

MC = (W,A,∼[n]∈A,�Γ∈W , V )

is a named model and, moreover:

Lemma 4.11 (Truth Lemma) For any formula φ ∈ L(@), it is the case that
MC ,Γ, [n] |= φ if and only if @nφ ∈ Γ.

Proof. By induction on φ. For the case φ = m ∈ Nom we recall that m = [m].
For the case φ = Kψ, we use the Diamond Lemma. For the case φ = Fψ, we
use the Diamond Lemma for one direction and (T9) for the other. 2

With this:

Theorem 4.12 EFL+ (and therefore EFL) is complete with respect to the class
of (not necessarily finite) named indexed models.

Proof. If φ0 is consistent, so is @n0φ0 for n0 not occurring in φ0, and thus we
can construct MC as above and we have that MC ,Γ0, [n0] |= φ0. 2

4.2 Finite models

The following also holds:

Theorem 4.13 EFL is complete with respect to the class of finite named in-
dexed models.

This is a consequence of a result very similar to Theorem 3.2: if a formula
is satisfied in a model (W,A,∼,�, V ), then there is a finite submodel which
satisfies it.

The proof of this result has minimal changes with respect to the proof of
Thm. 3.2, and it is sketched in the Appendix.

4.3 Extensions of EFL

In [8] some assumptions are made about the epistemic and social relations in
the models. The epistemic relations ∼a are equivalence relations, whereas the
friendship relation �w is irreflexive and symmetric.

One would expect, for instance, that if the relations ∼a that give the se-
mantics of the knowledge modality K are reflexive, transitive and symmetric,
then this modality should follow the axioms of S5, namely:

` Kφ→ φ; ` Kφ→ KKφ; ` φ→ K¬K¬φ.
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Similarly, if ∼a is a preorder, the extra axioms of S4 (i.e. the first two
above), should be included to the logic. Let EFL+S5K denote the logic resulting
from adding these three axioms to EFL, and let EFL+S4K be the logic resulting
from adding the first two. And indeed:

Theorem 4.14 ([7]) EFL + S5K is sound and complete with respect to the
class of models where the ∼a are equivalence relations. Moreover, EFL + S4K
is sound and complete with respect to the class of models where each ∼a is a
preorder.

The proof of this result in [7] consists in adding corresponding rules to the
tree sequent calculus and showing that a provable formula in the Hilbert-style
system can be transformed into a provable sequent and vice versa. With the
canonical models presented in this text this proof becomes quite straightfor-
ward. First, note that thanks to (T5) the following are easily provable in
EFL + S5K (and the first two in EFL + S4K):

` @nKφ→ @nφ; ` @nKφ→ @nKKφ; ` @nφ→ @nK¬K¬φ.

With this, the proof of the following lemma is straightforward:

Lemma 4.15 If the axioms of S5 for K (resp. S4) are present in the logic,
each relation ∼n in the canonical model is an equivalence relation (resp. a
preorder).

Remark 4.16 Given that @n distributes over →,∧,∨,¬, one can see that
there are many examples of formulas φ defining a certain frame property from
which it is trivial to compute a formula @nψ defining the same property in
the ∼n relations of indexed frames. Some obvious questions arise: is this true
of any Sahlqvist formula? Can we adapt the notion of Sahlqvist formula to
this setting and prove an analogue of the Sahlqvist Completeness Theorem ([2,
Thm. 4.42])? We conjecture the answer is affirmative.

Similarly, as pointed out by [7] the following axioms encode irreflexivity and
symmetry of the friendship relation �w:

(irr) ¬@nF̂ n (sym) @nF̂m→ @mF̂ n

The proof of this lemma is also straightforward:

Lemma 4.17 If (irr) and (sym) are present in the logic, each relation �Γ in
the canonical model is irreflexive and symmetric.

Therefore, and since the rest of the completeness proof proceeds as before,
we have a complete axiomatisation of the models proposed by [8]:

Theorem 4.18 EFL+S5K +(irr)+(sym) is the logic of finite indexed frames
(W,A,∼,�) where each ∼a is an equivalence relation and each �w is irreflexive
and symmetric.

Finally, an optional further constraint is that an agent should not doubt
who her own friends are. For this one would consider frames with the property:
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if w ∼a v, then a �w b implies a �v b. We will call these KYF frames (for
“know your friends”). It is again very easy to check that, by adding to the
logic the axiom

(kyf) F̂m→ KF̂m,

the resulting canonical model is a KYF frame.

5 Axiomatisation of L(@↓)
In [8] another operator is borrowed from hybrid logic, namely ↓x.φ, which
names the current agent ‘x’, allowing to refer to her indexically. We now have,
on top of Prop and Nom, a countable set SVar = {x, y, ...} of state variables.
L(@↓) is simply L(@) extended with x and ↓x.φ, where x ∈ SVar. Formulas
are read on named indexed models with respect to triples (g, w, a), where g :
SVar→ A is an assignment function, as follows:
M, g, w, a |= x iff g(x) = a;
M, g, w, a |= ↓x.φ iff M, gxa , w, a |= φ,

where gxa(y) = g(y) for y 6= x and gxa(x) = a.
Given a formula φ and a nominal n, we define φ[x/n] to be the formula

resulting from replacing each free occurence of x in φ by n. Formally:

Definition 5.1 Given x ∈ SVar, n ∈ Nom and φ ∈ L(@↓):
φ[x/n] = φ if φ = p ∈ Prop,⊥,m ∈ Nom or y ∈ SVar\{x}; x[x/n] = n;
(φ ∧ ψ)[x/n] = φ[x/n] ∧ ψ[x/n]; (↓x.φ)[x/n] = ↓x.φ;
(Bφ)[x/n] = B(φ[x/n]) if B = ¬,K, F,@m, or ↓y (y 6= x);

With this, we can define the logic of the fragment L(@↓):
Definition 5.2 EFL↓ is the logic containing the axioms and rules of EFL plus
the following axiom and rule:

(DA) @n(↓x.φ↔ φ[x/n]).
(FV) from φ[x/n] (with n fresh in φ), infer φ.

The fact that (DA) is sound can be checked by just unpacking the semantics.
The soundness of the (FV) rule is a consequence of the following Lemma, whose
proof is an easy induction on φ:

Lemma 5.3 Let φ ∈ L(@↓) and n be fresh in φ. Let M = (W,A,∼, R, V ) be
a model and g an assignment. We define a new valuation in M by: V ′(n) =
W × {g(x)}, V ′(m) = V (m) for n 6= m, V ′(p) = V (p) for p ∈ Prop. Let
M′ = (W,A,∼, R, V ′). Then M, w, a, g |= φ iff M′, w, a, g |= φ[x/n].

For completeness we shall use these two lemmas; respectively an application
of the (FV) rule, and a straightforward induction on φ:

Lemma 5.4 If φ is consistent and n1,...,nk are fresh, then φ[x1/n1]...[xk/nk]
is consistent.

Lemma 5.5 Let M be a model, φ be a formula, g an assignment and
x1, ..., xk ∈ SVar. Let n1, ..., nk ∈ Nom such that ni = g(xi). Then

M, w, a, g |= φ iff M, w, a, g |= φ[x1/n1]...[xk/nk].
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Now, we construct our canonical model exactly like before with one caveat:
our sets MCT will only contain BCN formulas without free variables (i.e. BCN
sentences). We prove the following variant of the Truth Lemma:

Proposition 5.6 Let g be an assignment and φ a formula whose free variables
are x1, ..., xk. Let [ni] = g(xi). Then

M,Γ, [n], g |= φ iff @nφ[x1/n1]...[xn/nk] ∈ Γ.

With this we can prove completeness:

Theorem 5.7 EFL↓ is complete with respect to indexed models.

Proof. Suppose φ0 is a consistent formula. Let x1, ..., xk be the free variables
of φ0 and n0, n1, ..., nk fresh. Then φ0[x1/n1]...[xk/nk] is a consistent sentence
(by Lemma 5.4) and so is

@n0φ0[x1/n1]...[xk/nk]

(by Lemma 4.5). We extend this to Γ0 ∈MCT , we construct the corresponding
canonical model and we let g be any assignment such that g(xi) = [ni]. Then
we have by Prop. 5.6 that M,Γ0, [n0], g |= φ0. 2

6 Conclusion

In this paper we have studied several aspects of indexed frames, introduced for
the first time (as far as we know) in [8]. We have as well provided axiomatisa-
tions for the fragments L (with several constraints in the relations) and L(@↓),
on top of a novel proof of completeness of EFL for the fragment L(@).

Some interesting directions for future work include studying the decidability
of L(@↓), resolving the conjecture in Remark 4.16, or otherwise providing a
more general version of Thm. 2.9.

But perhaps the most fruitful direction to go from here would be the ap-
plication of indexed frames to different modal logics wherein some interdepen-
dence between the modalities exists. Just as an example, we could think of an
epistemic temporal logic where each possible world is a timeline and the set of
epistemically accessible worlds changes at every time, modelled using indexed
frames.
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Appendix
Proof of Theorem 2.4. First we introduce a notion of indexed pseudo-model.

Definition .1 An indexed pseudo-model is a tuple (W,A,R, S, σ) where (W,A,R, S)
is an indexed frame and σ is a function which assigns to every pair (w, a) ∈ W × A
a K⊕ K-maximal consistent set, with the following properties:

(C1) If �1φ ∈ σ(w, a) and Raww
′, then φ ∈ σ(w′, s);

(C2) If �2φ ∈ σ(w, a) and Swaa
′, then φ ∈ σ(w′, s′).
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The right-to-left direction of C1 and C2 need not hold for certain formulas φ and
pairs (w, a). We call these situations defects. Formally:

Definition .2 A 1-defect is a tuple (φ,w, a) such that ¬�1φ ∈ σ(w, a) and, for all
w′ ∈ W such that Raww

′, φ ∈ σ(w′, a). A 2-defect is a tuple (φ,w, a) such that
¬�2φ ∈ σ(w, a) and, for all a′ ∈ A such that Swaa

′, φ ∈ σ(w, a′).

Given a 1-defect (φ,w, a) we can update our pseudo-model into a new pseudo-
model without this defect by simply adding a point, as we detail below.

Let M = (W,A,R, S, σ) be an indexed pseudo-model and (φ,w, a) be a 1-defect.
That means that ¬�1φ ∈ σ(w, a) yet φ ∈ σ(w′, a) for all w′ such that Raww

′. Note
that the set {¬φ} ∪ {ψ : �1ψ ∈ σ(w, a)} is consistent,therefore it can be extended by
Lindenbaum’s lemma to a maximal consistent set ∆. Let w0 /∈ W . We define a new
pseudo-model in which the defect is not present by M′1 = (W ′, A′, R′, S′, σ′), where:

• W ′ = W ∪ {w0}; A′ = A;

• R′ = R ∪ {(a,w,w0)}; S′ = S;

• for all a′ ∈ A, σ′(w0, a
′) = ∆ and σ′(w′, a′) = σ(w′, a′) for w′ 6= w0.

M′1 is an indexed pseudo-model. Indeed, suppose �1ψ ∈ σ′(w′, a′) and Ra′w
′w′′.

If w′′ 6= w0, then σ′(w′′, a′) = σ(w′′, a′) 3 ψ. Otherwise, if w′′ = w0, then by
construction we have that w′ = w and a′ = a. Therefore, since �1ψ ∈ σ′(w′, a′) =
σ(w, a) we have by construction that ψ ∈ ∆ = σ′(w′′, a′). Moreover, we have built
M′1 such that (φ,w, a) is no longer a 1-defect.

In a completely analogous manner, given a 2-defect (φ,w, a) we can add an extra
point a0 to A to build a pseudo-model which does not present this defect: M′2 =
(W ′, A′, R′, S′, σ′) with W = W ′, A′ = A ∪ {a0}, R′ = R, S′ = S ∪ {(w, a, a0)}, and
σ′(w′, a) = ∆, for some maximal consistent set ∆ containing {ψ : �2ψ ∈ σ(w, a)} ∪
{¬φ}.

Definition .3 Given an indexed pseudo-model M = (W,A,R, S, σ) and a 1-defect
(resp. a 2-defect) (φ,w, a), the (1, φ, w, a)-update (resp. (2, φ, w, a)-update) of M is
M′1 (resp. M′2) as constructed above.

We can now prove that K⊕ K is the logic of indexed frames.
Fix a maximal consistent set Σ0. Let us construct a chain of indexed pseudo-

models
(Mk)k∈ω = (W k, Ak, Rk, Sk, σk)k∈ω

such that, for all k,

i. Σ0 is in the image of σk;

ii. W k ⊆W k+1 ⊆ Q and Ak ⊆ Ak+1 ⊆ Q;

iii. Rk ⊆ Rk+1 and Sk ⊆ Sk+1;

iv. σk+1(w, a) = σk(w, a) if (w, a) ∈W k ×Ak.

Initial step: Take w0, a0 ∈ Q and set W 0 = {w0}, A0 = {a0}, R0 = S0 = ∅, and
σ0(w0, a0) = Σ0.

Recursive step. Let (in, ψn, wn, an)n∈ω be an enumeration of the set {1, 2} ×
L × Q × Q in which every element appears infinitely many times. Suppose we have
constructed Mk = (W k, Ak, Rk, Sk, σk). Then:

• If ik = 1 and (wk, ak) ∈W k ×Ak and (ψk, wk, ak) is a 1-defect of Mk, then Mk+1

is the (1, ψk, wk, ak)-update of Mk;
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• If ik = 2 and (wk, ak) ∈W k ×Ak and (ψk, wk, ak) is a 2-defect of Mk, then Mk+1

is the (2, ψk, wk, ak)-update of Mk;

• Otherwise, Mk+1 = Mk.

Finally, let Mω = (Wω, Aω, Rω, Sω, σω), where:

• Wω =
⋃
k∈ωW

k; Aω =
⋃
k∈ω A

k;

• Rω =
⋃
k∈ω R

k; Sω =
⋃
k∈ω S

k;

• σω is the unique function such that σω|Wk×Ak = σk for all k.

We have:

Lemma .4 Mω is an indexed pseudo-model with no defects.

Proof. The fact that Mω is an indexed pseudo-model is rather straightforward. Sup-
pose �1φ ∈ σ(w, a) and Rωaww

′ for some φ ∈ L, w,w′ ∈ Wω and a ∈ Aω. Let k ∈ ω
be the least natural number such that w,w′ ∈ W k and a ∈ Ak. Then we have that
�1φ ∈ σk(w, a) and Rkaww

′, and thus φ ∈ σk(w′, a) = σ(w′, a). Therefore, (C1) is
satisfied (and (C2) too via an analogous reasoning).

Let us now see there are no 1-defects (the proof that there are no 2-defects is
completely analogous). Suppose that (φ,w, a) is a 1-defect of Mω, i.e., ¬�1φ ∈
σω(w, a) yet φ ∈ σω(w′, a) whenever Rωaww

′.
Let us consider the least k ∈ ω such that (w, a) ∈W k×Ak and the least n ≥ k such

that (1, φ, w, a) = (in, ψn, wn, an) in the aforementioned enumeration. Then we have
that (φ,w, a) is a 1-defect in Mn, and therefore it gets “fixed” in the update Mn+1,
i.e., there exists some w′ ∈ Wn+1 \Wn such that Rn+1

a ww′ and ¬φ ∈ σn+1(w′, a).
But this means that Rωaww

′ and ¬φ ∈ σω(w′, a): a contradiction. 2

Now,

Lemma .5 (Truth lemma.) Define a valuation V on Mω by:

V (p) = {(w, a) ∈Wω ×Aω : p ∈ σω(w, a)}.

Then for all w ∈Wω, a ∈ Aω and φ ∈ L, Mω, w, a |= φ if and only if φ ∈ σω(w, a).

Proof. By induction on the structure of φ. If φ = p, then the definition of V gives
us the result trivially. The induction steps corresponding to ¬φ and φ1 ∧ φ2 are
straightforward.

Now let φ = �1ψ. If w, a |= �1ψ, this means that (w′, a) |= ψ for every w′ ∈
Wω such that Rωaww

′. But then by induction hypothesis ψ ∈ σω(w′, a) whenever
Raww

′. So, if �1ψ /∈ σω(w, a), then ¬�1ψ ∈ σω(w, a) and thus (ψ,w, a) is a 1-
defect, in contradiction with Lemma .4. Thus �1ψ ∈ σω(w, a). Conversely, suppose
�1ψ ∈ σω(w, a) and Rωaww

′. By (C1), this means that ψ ∈ σω(w′, a) which entails,
by induction hypothesis, that (w′, a) |= ψ. Since this is true for all w′ with Raww

′,
we have that w, a |= �1ψ.

The case φ = �2ψ is analogous. 2

With all this, we can prove the following theorem, from which Thm. 2.4 immedi-
ately follows:

Theorem .6 The fusion logic K⊕ K is complete with respect to indexed models.

Proof. Given a consistent formula φ, extend it to a maximal consistent set Σ0 and
construct Mω by the procedure described above, making sure that Σ0 is in the image
of σ0. Then we have that there exist w0, a0 ∈Wω×Aω such that σω(w0, a0) = Σ0 3 φ,
and therefore by the Truth Lemma w0, a0 |= φ. 2
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Remark .7 It is not hard to tweak this proof to show, for instance, that the fusion
logic S4�1

⊕ K�2
is the logic of indexed models (W,A,R, S) where Ra is a preorder

for all a ∈ A, or that K�1
⊕ S5�2

is the logic of indexed models wherein the Sw are
equivalence relations. More generally, this procedure can easily be tweaked in order to
provide a proof for every individual instance of Thm. 2.9. However, this proof can
help us to go beyond that Theorem and allows us to show, for instance, that the result
is true of the logic of serial frames, i.e., (K+3>)◦ (K+3>) = (K+3>)⊕ (K+3>).

Proof of Lemma 3.3. By induction on φ. The cases for φ = p and φ = > are
trivial, and so is the inductive step for φ = ¬ψ.

Case φ = ψ1 ∧ ψ2. If M, wk, ak |= ψ1 ∧ ψ2, then M, wk, ak |= ψi for i = 1 and
2. But then, since mdψi ≤ mdψ ≤ n − k, we have by induction hypothesis that
Mf , wk, ak |= ψi and thus Mf , wk, ak |= φ. The converse is analogous.

Case φ = �1ψ. Suppose that Mf , wk, ak |= �1ψ and take w such that Rakwkw.
Note that k < n because n − k ≥ md�1ψ > 0, and thus Fk+1 is defined and
contains an element αR(wk+1, ak+1) such that ak+1 = ak, Rakwkwk+1 (and therefore
Rfakwkwk+1) and (wk+1, ak+1) ∼φ0 (w, ak). We have that Mf , wk+1, ak+1 |= ψ and,
since n− (k + 1) = n− k − 1 ≥ md(�1ψ)− 1 = mdψ, induction hypothesis gives us
that M, wk+1, ak+1 |= ψ. By the ∼φ0 relation, this means that M, w, ak |= ψ, and we
have thus proven that M, wk, ak |= �1ψ.

Conversely, suppose M, wk, ak |= �1ψ and Rfakwkw. We have that Rakwkw
and thus M, w, ak |= ψ. Since αR(w, ak) ∈ F and its length is k + 1, and since
n − (k + 1) ≥ mdψ, induction hypothesis applies and we have that Mf , w, ak |= ψ.
This entails Mf , wk, ak |= �1ψ.

The case φ = �2ψ is completely analogous. 2

Proof of Prop. 4.3.
(T1) to (T6) are proven in Prop. 3 of [7] and Lemma 2 of [3].

(T7) ` @nm→ @iK@nm.

` @nm→ K@nm (Rigid=)
` @i@nm→ @iK@nm (K@+Nec@)
` @nm→ @iK@nm (T1)

The derivation of ` @n¬m → @iK@n¬m is identical but using (Rigid 6= + Selfdual)
in the first step.

(T8) ` @nF̂m ∧@mφ→ @nF̂ φ.

` @nF̂m ∧@mφ→ @nF̂m ∧ F@mφ (Back)

` @nF̂m ∧@mφ→ @nF̂m ∧@nF@mφ (Nec@+K@+T1)

` @nF̂m ∧@mφ→ @nF̂ (m ∧@mφ) (by modal reasoning:
�A ∧3B → 3(A ∧B))

` @nF̂m ∧@mφ→ @nF̂ φ (by T2: ` m ∧@mφ→ φ)

(T9) ` @nFψ ∧@nF̂m→ @mψ.

` @nFψ ∧@nF̂m→ @nF̂ (m ∧ ψ) (modal reasoning:
�A ∧3B → 3(A ∧B))

` m ∧ ψ → @mψ (T2)

` @nFψ ∧@nF̂m→ @nF̂@mψ (two above lines)

` F̂@mψ → @mψ (dual of Back)

` @nFψ ∧@nF̂m→ @mψ (two above lines plus (T1))

Before showing (R1), let us show this rule:
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(Name’) If ` φ→ @mψ and m is fresh, then ` φ→ ψ.

` φ→ @mψ (Premise)
` @mφ→ @m@mψ (Nec@+K@)
` @mφ→ @mψ (Agree)
` @m(φ→ ψ) (T5)
` φ→ ψ (Name)

With this:

(R1) If ` @nF̂m ∧@mφ→ ψ,

then ` @nF̂ φ→ ψ,
with m 6= n fresh in φ and ψ.

` @nF̂m ∧@mφ→ ψ (Premise)

` @i@nF̂m ∧@i@mφ→ @iψ (Nec@+K@, i fresh)

` @nF̂m ∧@mφ→ @iψ (T1)

` @nF̂m ∧@mφ→ @m@iψ (Nec@+K@+T1)

` @nF̂m→ @m(φ→ @iψ) (T5)
` @nF (φ→ @iψ) (BG)

` @nF̂ φ→ @nF̂@iψ (�(A → B) → (3A →
3B))

` @nF̂ φ→ @n@iψ (Back)

` @nF̂ φ→ @iψ (T1)

` @nF̂ φ→ ψ (Name’)

Proof sketch of Thm. 4.13. Like Thm. 3.2, this amounts to showing that, given
a model satisfying a formula φ0, there is a finite submodel satisfying it.

We define nomφ0 to be the (finite) set of nominal variables occuring in φ0, we define
R, S as in Thm. 3.2 and, for n ∈ nomφ0 , we let (w, a)An(w′, a′) iff w = w′ and a′ = n.
Given a formula φ, we let mod φ be the total number of K, F and @n modalities
occurring in φ and we letN = mod φ0. We construct a finite set F of chains of length
at most N , with the property that, for each relation T ∈ {R,S,An : n ∈ nomφ0},
and each α ∈ F of length less than N , at least one T-successor of α per equivalence
class occurs in F .

Then we consider Mf to the the corresponding restriction of M to F and we prove
that, given a chain α of length k ≤ N and a subformula ψ of ψ0 with mod ψ ≤ N−k,
it is the case that M, lastα |= ψ iff Mf , lastα |= ψ. This is almost identical to the
proof of Lemma 3.3 with the addition of a straightforward induction step for the case
ψ = @nθ. This finishes the proof. 2

Proof of Prop. 5.6. First we note that if a formula has no free variables, the
assignment g does not play a role in the semantics (and thus M,Γ, [n], g |= ψ iff
M,Γ, [n], g′ |= ψ for any g, g′) and, with this in mind, we first prove:

If ψ is a sentence, then M,Γ, [n], g |= ψ iff @nψ ∈ Γ. (*)

This suffices to prove our result: let x1, ..., xk be all the free variables of φ. Then
M,Γ, [n], g |= φ if and only if (by Lemma 5.5, noting that g(xi) = [ni] = ni)

M,Γ, [n], g |= φ[xi/ni]
k
i=1,
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if and only if (by the result we just proved, noting that φ[xi/ni]
k
i=1 has no free

variables) @nφ[xi/ni]
k
i=1 ∈ Γ.

We prove (*) by induction on the length of ψ. It is exactly like the proof of
Lemma 4.11, with one extra induction step:
@n↓x.ψ ∈ Γ if and only if (by the (DA) axiom) @nψ[x/n] ∈ Γ, if and only if (by
induction hypothesis, since ψ[x/n] has no free variables) M,Γ, [n], g |= ψ[x/n], if
and only if (because the choice of g does not affect the truth value of a sentence)
M,Γ, [n], gxn |= ψ[x/n], if and only if (by Lemma 5.5) M,Γ, [n], gxn |= ψ, which is the
same as M,Γ, [n], g |= ↓x.ψ.

References

[1] Areces, C. and B. ten Cate, Hybrid logics, Handbook of Modal Logic (2006), pp. 821–868.
[2] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge University Press,

2001.
[3] Blackburn, P. and B. ten Cate, Pure extensions, proof rules, and hybrid axiomatics,

Studia Logica 84 (2006), pp. 277–322.
[4] Gabbay, D. M., A. Kurucz, F. Wolter and M. Zakharyaschev, “Many-dimensional Modal

Logics: Theory and Applications,” Elsevier North Holland, 2003.
[5] Gargov, G. and V. Goranko, Modal logic with names, Journal of Philosophical Logic 22

(1993), pp. 607–636.
[6] Passy, S. and T. Tinchev, An essay in combinatory dynamic logic, Information and

Computation 93 (1991), pp. 263–332.
[7] Sano, K., Axiomatizing epistemic logic of friendship via tree sequent calculus, in:

International Workshop on Logic, Rationality and Interaction, Springer, 2017, pp. 224–
239.

[8] Seligman, J., F. Liu and P. Girard, Logic in the community, in: Indian Conference on
Logic and Its Applications, Springer, 2011, pp. 178–188.

[9] Seligman, J., F. Liu and P. Girard, Facebook and the epistemic logic of friendship, in:
Proceedings of the 14th Conference on Theoretical Aspects of Rationality and Knowledge
(TARK 2013), 2013, pp. 230–238.

[10] Seligman, J., F. Liu and P. Girard, Knowledge, friendship and social announcements, in:
Logic across the university: Foundations and applications: Proceedings of the Tsinghua
Logic Conference, 2013.

[11] Wolter, F., Fusions of modal logics revisited., Advances in modal logic 1 (1996), pp. 361–
379.


	Introduction
	Indexed Frames
	The logic of indexed models
	Indexed frames and relativized products

	Finite Indexed Model Property
	Epistemic Logic of Friendship
	Axiomatising L(@) via canonical models
	Finite models
	Extensions of EFL

	Axiomatisation of L(@"3223379 )
	Conclusion
	References

