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Abstract

We show that the superintuitionistic predicate logic characterized by all Kripke frames
of finite height with constant domains is not strongly Kripke complete (as well as
some its extensions). This gives new examples of Kripke complete logics that are not
strongly complete, cf. Problem 1 in [5]; the previous examples of such logics found by
Takano were Π1

1-hard, while ours are Π2-arithmetical.
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H. Ono (the talk at L.E.J. Brouwer Centenary Symposium held in 1981,
cf. [5, Problem 1 (P34)]) asked if every Kripke complete intermediate predi-
cate logic is strongly Kripke complete. M. Takano found a counterexample,
mentioned by Ono in [5]: namely, the logic of any Kripke frame with a de-
numerable constant domain, whose set of worlds is an infinite ordinal, is not
strongly Kripke complete. Note that all these logics are Π1

1-hard (cf. [9,11,12]).
Here we consider the intermediate predicate logics LP∞ and LcP∞ charac-

terized by all Kripke frames of finite height (with expanding and with constant
domains respectively). We show that the logic LcP∞ (with constant domains)
is not strongly Kripke complete; moreover, a slightly weakened version of strong
completeness fails as well (for this logic and for many its extensions). The sim-
ilar question for the logic LP∞ (with expanding domains) remains open. Note
that the logics LP∞ and LcP∞ are not recursively axiomatizable (see [11]); on
the other hand, they are obviously Π2-arithmetical. Namely, LcP∞ =

⋂
n
LcPn,

where LcPn is a finitely axiomatizable logic of Kripke frames of height n (with
constant domains); and similarly for the case with expanding domains.

1 The research presented in this paper was supported by the RFBR project 16-01-00615.
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We do not know if every recursively axiomatizable (or at least every finitely
axiomatizable) Kripke complete predicate logic is strongly Kripke complete.

The main result of the paper was announced in [13].

Remark 0. By the way, H. Ono formulated a similar question for intermediate
propositional logics [5, Problem 1′ (P35)]. T. Shimura [8] found a family of
propositional counterexamples; namely, he obtained the following result:
(Sh): Intuitionistic logic is the only strongly complete intermediate

propositional logic weaker than GJ2 (Gabbay – de Jongh’s logic
of finite binary trees [1]).

This implies the following consequence for the predicate case: 2

(Sh)′ : Every intermediate predicate logic, the propositional fragment of which
is included in GJ2 and is non-intuitionistic (i.e., it is not equal
to intuitionistic logic), is not strongly Kripke complete.

In particular, we can see that for any n≥ 2, the predicate logics, charac-
terized by all Kripke frames (with constant and with expanding domains) over
finite n-ary trees, are not strongly Kripke complete (note that these logics are
Π2-arithmetical, and they are not RE by [10]). On the other hand, the claim
(Sh), as well as any similar result for the propositional case, obviously does not
give anything for predicate logics with the intuitionistic propositional fragment
(like LcP∞, LP∞, and many other logics considered in the present paper).

By the way, V. Shehtman [6] showed that every Kripke complete intermedi-
ate propositional logic is strongly Kripke complete in the topological semantics.
We do not know if this result transfers to predicate logics.

Section 1. Preliminary notions

We consider superintuitionistic predicate logics without equality and func-
tion symbols (called in this paper predicate logics, or sometimes even logics,
for short 3 ). These are defined as extensions of intuitionistic predicate logic
QH closed under modus ponens, generalization, and substitution of arbitrary
formulas for atomic ones (cf. e.g. [2, Definition 2.6.3]; the book contains the ba-
sic notions in the field). For these logics we use the standard predicate Kripke
semantics. Let us recall the corresponding definitions.

1.1 A predicate Kripke frame with expanding domains (or a Kripke frame, or
even a frame, for short) is a pair (M,U) with M a non-empty partially ordered
set (poset) and U a domain map defined on M such that, for any u, v∈M :

(i) U(u) 6= ∅, and (ii) u ≤ v ⇒ U(u) ⊆ U(v).
We say that (M,U) is a Kripke frame over the poset M . If U is a constant

mapping on M such that U(u) = X for all u∈M , then we write (M,λu.X) for
(M,U) and call it a Kripke frame with a constant domain. 4

2 In [8] this straightforward corollary was not mentioned and Ono’s Problem 1 (P34) was
not addressed.
3 in essence, we do not consider other sorts of logics
4 The notation (M,λu.X) was introduced in [10], while in [11] we used the notation (M ;X).
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The notions of a valuation and of validity of a predicate formula on a Kripke
frame are defined in a usual way (cf. e.g. [15]). Namely, a valuation on (M,U) is
a forcing relation u � A between points u∈M and formulas A (with parameters
replaced by elements of U(u)), satisfying monotonicity : u≤v, u�A ⇒ v�A
and the following inductive conditions:

u � (B&C) ⇔ (u � B) & (u � C); u � (B ∨ C) ⇔ (u � B) ∨ (u � C);
u � (B ⊃ C) ⇔ ∀v≥u [ (v � B)⇒ (v � C) ]; u 6� ⊥;
u � ∀xB(x) ⇔ ∀v≥u ∀c∈U(v) [ v � B(c) ];
u � ∃xB(x) ⇔ ∃c∈U(u) [u � B(c) ].

As usual, to obtain a valuation, it is sufficient to know u�A only for atomic
A, and by induction, the monotonicity condition for atomic A implies the
monotonicity for arbitrary (non-atomic) formulas A.

A Kripke frame with a valuation is called a Kripke model.
A predicate formula A(x1, . . . , xn) is said to be true (under a valuation �

on a frame (M,U) ) if u � A(a1, . . . , an) for any u∈M and a1, . . . , an ∈U(u).
A formula A is valid on a Kripke frame (M,U) if it is true under any valuation
on (M,U). The predicate logic L(M,U) of a Kripke frame (M,U) is the set
of all formulas valid on (M,U). It is well known that this set is indeed a
superintuituionistic logic.

1.2 The predicate logic of a class Z of Kripke frames is

L[Z] =
⋂

(L(M,U) : (M,U) ∈ Z ).

A predicate logic L is Kripke complete if L=L[Z] for some class Z of Kripke
frames. The Kripke completion of a logic L is L+ =

⋂
(L(M,U) : L⊆L(M,U) ),

the smallest (w.r.t. the inclusion) Kripke complete extension of L.
The predicate logic of a poset M is LM =

⋂
U

L(M,U)

and the predicate logic of a class Y of posets is LY =
⋂

(LM : M ∈Y ).
Analogously, we define the predicate logic with constant domains of a class Y:

LcY =
⋂

(L(M,λu.X) : M ∈Y, X 6=∅ ).

A poset M with the least element 0M is called rooted. A cone in a poset
M is Mu = {v∈M | u≤v} (for u∈M). The cone (Mu, U) of a Kripke frame
(M,U) is its restriction to Mu.
It is well known that (I) L(M,U) =

⋂
(L(Mu, U) : u∈M ),

hence (II) LY = L{Mu : M ∈Y, u∈M} for a class Y of posets
(and similarly with LcY). This means that rooted Kripke frames (and rooted
posets) are sufficient for the Kripke semantics of superintuitionistic logics.

1.3 Let us consider the constant domain principle:

D = ∀x(Q(x)∨p) ⊃ ∀xQ(x) ∨ p,



580 A Simpler Kripke Complete Logic That Is Not Strongly Complete

where p is a propositional symbol and Q is a unary predicate symbol. It is well
known that D is valid on any Kripke frame with a constant domain (i.e., on
any frame of the form (M,λu.X) with X 6=∅); hence D∈LcM for any poset
M and D∈LcY for any class Y of posets. Moreover, for a rooted poset M the
following equivalence holds:

D∈L(M,U) iff a frame (M,U) has a constant domain. (δ)

Note that for non-rooted M , this equivalence does not hold in general; e.g.,
D is valid on a disjoint union of two frames with different constant domains.

1.4 Recall that the height h[M ] of a poset M is the supremum of cardinalities
of chains (i.e., linearly ordered subsets) in M . Similarly, the width w[M ] of
a rooted poset M is the supremum of cardinalities of antichains (i.e., sets of
pairwise incomparable elements) in M . The width of an arbitrary poset is
w[M ] = sup(w[Mu] :u∈M) ).

Let Pn be the class of all posets of height h[M ]≤n (for n∈ω, n> 0) and
let P∞ =

⋃
n
Pn be the class of posets of finite height. Analogously, one can

introduce the class Wn of all posets of width w[M ]≤ n (and W∞ =
⋃
n
Wn ,

the class of posets of finite width).
Let Sn be an n-element chain, n>0; clearly, its height is n and its width is 1.

Denote S∞ = {Sn : n∈ω, n>0}. Then LS∞ =
⋂
n
LSn and LcS∞ =

⋂
n
LcSn;

similarly LP∞ =
⋂
n
LPn and LcP∞ =

⋂
n
LcPn, etc. Finally, let Fin be the

class of all finite posets. Obviously S∞ = P∞ ∩W1 and Fin = P∞ ∩W∞; so
S∞⊂Fin⊂P∞.

It can be easily shown (applying [3, Theorem 3.4]) that

LM⊆LSn and LcM⊆LcSn for any poset M of height h[M ]≥n, (σ)

because the n-element chain Sn is a p-morphic image of any poset M of height
h[M ]≥n (note that p-morphisms were called embeddings in [3, Section 3]).

Actually moreover: LM⊆LSn iff LcM⊆LcSn iff h[M ]≥n,
because Pn−1∈LM\LcSn if h[M ]<n (the formulas Pn of height n are defined
in Section 2).

Section 2. Main result

2.1 Let L be a logic and Γ,∆ be two sets of sentences. A pair (Γ,∆) is called

L-inconsistent if L ` (&Γ0 ⊃
∨

∆0) for some finite subsets Γ0⊆Γ, ∆0⊆∆. A
pair (Γ,∆) is satisfiable in a Kripke frame (M,U) if there exists a valuation in
(M,U) and a world u∈M such that u�A for all formulas A∈Γ and u 6�B for
all formulas B∈∆. We say that a predicate logic L is strongly Kripke complete
without parameters if every L-consistent pair (Γ,∆) of sets of sentences is sat-
isfiable in a Kripke frame validating L. The usual notion of strong Kripke com-
pleteness (given in [5]) is slightly stronger: namely, formulas with parameters
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(not necessarily sentences) are allowed in Γ and ∆; naturally, these parameters
would be evaluated by individuals taken from the corresponding domain U(u).

Lemma 1 (Main Lemma) There exists a predicate sentence A∗P∞
(or A∗ for

short) such that for every Kripke frame (M,U): A∗P∞
∈L(M,U) iff

for all u in M [ the height h[Mu] is finite, or the domain U(u) is finite ].

Hence for rooted Kripke frames with constant domains we have: 5

A∗P∞
∈ L(M,λu.X) iff [ the height h[M ] is finite, or the domain X is finite ].

Thus, clearly A∗P∞
∈ LP∞, so A∗P∞

&D ∈ LcP∞.

We present the proof of this lemma in Section 4.

2.2 Now we apply Main Lemma to show that strong Kripke completeness fails
for LcP∞; more precisely, we prove:

Theorem 1 The logic LcP∞ of frames of finite height with constant domains
is not strongly Kripke complete without parameters.

Take the following propositional formulas of finite heights:

P0 = ⊥ and Pn+1 = pn ∨ (pn⊃Pn) for n∈ω,

where p0,. . ., pn,. . . are different propositional symbols. It is well known that:
Pn ∈ L(M,U) iff h[M ] ≤ n. Hence Pn ∈ LPn and (Pn&D)∈LcPn for any
n > 0. By the way, note that LcPn = [QH + Pn&D] (cf. [4, Theorem 3.3]),
while LPn 6= [QH + Pn] (i.e., the logics [QH+Pn] are Kripke incomplete) for
n≥2 (see [4, Theorem 3.2]); by definition, [QH + P1] is classical logic. 6

Also take the sentences

Cm = ∀x1, . . . ,∀xm [&
i

Qi(xi) ⊃
∨
i<j

Qi(xj) ]

for m>1. Clearly, Cm ∈ L(M,λu.X) iff card(X)<m.
Take the set ∆∗ = {Pn : n > 0} ∪ {Cm : m> 1}. Then the pair (∅,∆∗)

is LcP∞-consistent (and moreover, it is LcS∞-consistent). Indeed, any finite
∆0⊆∆∗ is included in {Pn :n<n0} ∪ {Cm :m≤m0} for some n0, m0; then the
corresponding disjunction

∨
∆0 is falsified in every Kripke frame of height n0

(in particular, in Sn0) with an m0-element constant domain.
On the other hand, the subsequent claim shows that the pair (∅,∆∗) is

not satisfiable in LcP∞-frames; hence the logic LcP∞ is not strongly Kripke
complete without parameters.

5 For non-rooted M , this equivalence does not hold in general; e.g., A∗P∞
is valid on a disjoint

union M of all finite chains Sn (with an infinite constant domain), while h[M ] is infinite.
6 Note that the logics LPn are finitely axiomatizable for all n > 0; their axioms are P+

n ,
which are essentially predicate formulas similar to Pn (see [16]).
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Claim Let (M,U) be a rooted Kripke frame validating LcP∞.
Then L(M,U) ∩∆∗ 6= ∅.

Proof. Clearly, D ∈ LcP∞ ⊆ L(M,U), and so (M,U) has a constant domain
(due to (δ), see in Section 1). Now, if L(M,U)∩∆∗ = ∅, i.e., all Pn and Cm are
falsified in (M,U), then its domain is infinite and the height h(M) is infinite as
well. Thus A∗P∞

6∈ L(M,U) and so LcP∞ 6⊆ L(M,U) (since A∗P∞
∈ LcP∞).2

Actually, our argument gives a more general result:

Theorem 2 Let L be a predicate logic such that LcP∞ ⊆ L ⊆ LcS∞.
Then L is not strongly Kripke-complete without parameters.

Indeed, if L ⊆ LcS∞, then the pair (∅,∆∗) is L-consistent. And if
LcP∞ ⊆ L, then (∅,∆∗) is not satisfiable in L-frames. 2

Corollary 1 Let Y ⊆ P∞ be a class of posets of finite height such that
∀n ∈ ω(Y 6⊆ Pn) (i.e., Y contains posets of arbitrarily large heights). Then
the Kripke complete logic LcY is not strongly Kripke complete (even without
parameters).

Indeed, if Y 6⊆Pn, then LcY⊆LcSn, due to (σ) (see the end of Section 1). 2

Therefore, we conclude that the following Kripke complete logics (and many
other ones) are not strongly Kripke complete (without parameters): 7

LcP∞,L
cFin,LcS∞ = Lc(P∞∩W1),Lc(P∞∩Wm) = Lc(Fin∩Wm),

Lc(Pn∪(P∞∩Wm)) = LcPn∩Lc(Fin∩Wm) for every m,n∈(ω \{0}). (λ)

Note that all logics L mentioned in Theorem 2 (in particular, all logics listed
in (λ)) are not recursively axiomatizable, see [11, Theorem 1.2]. On the other
hand, all logics listed in (λ) are Π2-arithmetical, because the logics LcPn for
n<ω are finitely axiomatizable (see in Section 1) and all logics LcM for finite
posets M are recursively axiomatizable (in a uniform way), see e.g. [10]. 8

Section 3. A short discussion and open questions

3.1 Main Lemma shows that, for the Kripke semantics with constant do-
mains, the formula A∗P∞

(or, more precisely, A∗P∞
&D) describes the finite-

ness of height, up to a minor additional exception involving (arbitrary) Kripke
frames with finite constant domain. Now we will explain why this addition is
inevitable.

Let Krcm = {(M,λu.X) | M 6= ∅, card(X) = m} be the class of Kripke
frames with m-element constant domain (for m∈ω,m>0). Now, let

Krc∞ =
⋃
m
Krcm = { (M,λu.X) |M 6=∅, X is finite }

7 Note that all these examples are not covered by the claim (Sh)′ (see Remark 0 at the begin-
ning of the paper), because the propositional fragments of these logics are either intuitionistic
or not included in GJ2.
8 Moreover, they are finitely axiomatizable by [7, Theorem 3.7] (cf. our Proposition 2 in
Section 3).



Skvortsov 583

be the class of Kripke frames with finite constant domains.
Similarly, we introduce the classes of frames with finite M :

Fincm={(M,λu.X) |M is finite, card(X)=m}={(M,λu.X)∈Krcm |M ∈Fin}
and Finc∞ =

⋃
m
Fincm = {(M,λu.X) |M and X are finite } =

= {(M,λu.X)∈Krc∞ |M ∈Fin}.
Finally, we have analogous classes of frames of finite height:

Pc∞,m = {(M,λu.X) |M ∈P∞, card(X)=m} = {(M,λu.X) ∈ Krcm |M ∈P∞}
and Pc∞,∞ =

⋃
m
Pc∞,m = { (M,λu.X) |h[M ] and X are finite } =

= {(M,λu.X)∈Krc∞ |M ∈P∞}.
Clearly, Fincm ⊂ Pc∞,m ⊂ Krcm for any m, and so Finc∞ ⊂ Pc∞,∞ ⊂ Krc∞.

Also L[Krc∞] =
⋂
m
L[Krcm] and similarly with L[Finc∞], L[Pc∞,∞].

Lemma 2 L[Krcm] = L[Fincm],
and so L[Krcm] = L[Pc∞,m] = L[Fincm] for every m∈ω,m>0.

Therefore, L[Krc∞] = L[Pc∞,∞] = L[Finc∞].

In other words, for the Kripke semantics with finite constant domains, we have:

every finitely valid formula is generally valid, i.e.,
every formula valid on all finite posets is valid on all (non-empty) posets M .

Hence we obtain:

Corollary 2 LcFin ⊂ L[Krc∞], and thus LcP∞ ⊂ LcFin ⊂ L[Krc∞].

This means that any formula valid (in the semantics with constant domains)
on all frames (with arbitrary domains) over finite posets M (in particular, any
formula valid on all frames of finite height) is necessarily valid on all frames
with finite domains (with arbitrary posets M). That is why our sentence
A∗P∞

(presented in Lemma 1), which is valid on all frames of finite height, is
inevitably valid on all frames with finite constant domains (with arbitrary M).

Remark 1 By the way, the inclusion LcFin ⊂ L[Krc∞] is definitely proper.
Indeed, let A be a well-known formula (with one binary predicate symbol R)
that is classically valid on all finite domains and is not valid on infinite domains
(e.g. A=¬A0 for the formula A0 defined at the beginning of Section 4). Put
A′ = [∀x, y(R(x, y)∨¬R(x, y)) ⊃ A ]. Then A′ belongs to L[Krc∞]\QC, where
QC is classical predicate logic; so all the more it belongs to L[Krc∞]\LcFin.

Remark 2 The inclusion LcP∞ ⊂ LcFin is proper as well. Indeed, there
exists a formula A∗Fin (introduced in [10] and denoted by F ′ there) such that
(cf. our Lemma 1):

A∗Fin∈L(M,U) iff ∀u∈M [Mu or U(u) is finite ]. (ϕ)

Then clearly A∗Fin ∈ LFin\LcP∞, and so A∗Fin ∈ LcFin\LcP∞. Moreover, it
is easily seen that LFin 6⊆LcY for any class Y of rooted posets that contains
an infinite poset, and so LY⊂LFin and LcY⊂LcFin for any class Y⊃Fin
that contains a poset with an infinite cone. The similar statement holds for
LP∞ as well, due to our formula A∗P∞

.
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Now we prove Lemma 2.

Proof. Let Xm = {1, . . . ,m} be an m-element domain. To every k-ary predi-
cate symbol P and all j1, . . . , jk ∈ Xm, we assign a unique propositional symbol
P̄ (j1,...,jk). For a predicate formula A(i1, . . . , in) with parameters replaced by el-

ements of Xm one can easily construct a propositional formula Ā
(i1,...,in)
(m) , which

simulates A in a natural way; namely, we replace predicate atoms P (j1, . . . , jk)
with propositional atoms P̄ (j1,...,jk) and replace quantifiers ∀ and ∃ with the
conjunction and disjunction over all elements of Xm. One can easily show (by
induction) that the truth of A(i1, . . . , in) in (M,λu.Xm) (at a point v∈M) is

equivalent to the propositional truth of Ā
(i1,...,in)
(m) in M at the same point v (un-

der the corresponding valuations of symbols P in (M,λu.Xm) and P̄ (i1,...,ik) in
M). Therefore, we conclude that A ∈ L(M,λu.Xm) iff Ā(m) ∈ L(M)
for any sentence A and a poset (i.e., a propositional Kripke frame) M .

Finally, we use the following well-known fact: any propositional formula
valid on all finite posets M is intuitionistically provable, and so it is valid on
all (non-empty) M as well. 2

3.2 Hence we obtain:

Proposition 1 Let (M,U) be a rooted Kripke frame. Then the following
conditions are equivalent:

(1) LcP∞ ⊆ L(M,U);

(2) (LP∞ +D) ⊆ L(M,U);

(3) (A∗P∞
&D) ∈ L(M,U);

(4) (M,U) is a Kripke frame with constant domain X (i.e., it is (M,λu.X) )
and [ the height h(M) or the domain X is finite ].

Proof. The implication (1)⇒ (2) is obvious (since D ∈ LcP∞, see in Section
1). The implications (2)⇒(3)⇒(4) readily follow from Lemma 1 and (δ) (again
see in Section 1). And the implication (4)⇒(1) follows from Corollary 2. 2

Therefore, LcP∞ is the Kripke completion of (QH +A∗P∞
&D).

Note that the logic (QH + A∗P∞
&D) is Kripke incomplete, because its

Kripke completion LcP∞ is not recursively axiomatizable, as it was mentioned
in Section 2 (cf. [11]). The logic (QH+A∗P∞

) is Kripke incomplete as well; its
Kripke completion described by Lemma 1 is not RE (see [11, Theorem 2.2]). 9

Now let us state two related open questions:

Question 1 Is (LP∞ +D) equal to LcP∞?
In other words, is the logic (LP∞ +D) Kripke complete?

9 By the way, analogously, LcFin is the Kripke completion of the Kripke incomplete logic
(QH + A∗Fin&D), where A∗Fin is the formula mentioned in Remark 2 (and introduced in
[10]). The logic (QH +A∗Fin) is again Kripke incomplete; its Kripke completion is L[Fin∗],
where Fin∗ is the class of frames described by condition (ϕ) from our Remark 2, and this
completion is not RE as well (cf. [10, Corollary 4]).
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Question 2 Is the logic LP∞ strongly Kripke complete?

Note that we are still unable to directly transfer our proof for LcP∞ to
LP∞. Indeed, there exist rooted Kripke frames (M,U) with expanding do-
mains such that: (i) (∅,∆∗) is satisfiable in (M,U) (in the root of M), i.e.,
L(M,U)∩∆∗=∅, 10 and (ii) (M,U) validates A∗P∞

(i.e., it satisfies the condi-
tion described in Lemma 1). Namely, one can take a disjoint union of frames
of all finite heights (e.g. the disjoint union of all finite chains Sn) with infinite
domains (or with n-element domains Xn for all n > 0) and add the root u0
whose domain is finite (e.g. one-element). This means that unlike the proof
of Claim (see in Section 2), now definitely one cannot guarantee that every
frame (M,U) satisfying (∅,∆∗) falsifies LcP∞ ‘due to the formula A∗P∞

’. On
the other hand, we do not know if such Kripke frames (satisfying (∅,∆∗) and
validating A∗P∞

) validate the whole logic LP∞ as well. In other words, we
do not know, if A∗P∞

∈L(M,U) implies LP∞ ⊆L(M,U) (cf. the equivalence
(1)⇔(3) in Proposition 1).

This example is slightly related to the following open question:

Question 3 How to transfer (in a reasonable way) Lemma 2 and Corollary 2
to the case with expanding domains. 11

3.3 To conclude this section, note that the formula A∗Fin (see Remark 2) allows
us to obtain the following variant of Theorem 2:

Theorem 3 Let L be a predicate logic such that

LcFin ⊆ L ⊆
⋃

(L[Z] : Z is an unrestricted class of Kripke frames )

(here
⋃

denotes the set-theoretical union, but not the sum of logics!).

Then L is not strongly Kripke complete without parameters.

Here a class Z of Kripke frames is called unrestricted (cf. [10, Section 1.2] or
[11, Section 2.1]), if

∀n∈ω ∃(M,U)∈Z ∃u∈M (card(Mu)≥n, card(U(u))≥n).

The proof is similar to the proof of Theorem 2 given in Section 2; we use

10More precisely, in order to satisfy the pair (∅,∆) in a frame (M,U), it is required to falsify
all formulas from ∆ by a single valuation in (M,U). However, this is not a serious problem.
Our formulas Cm (for m> 1) look rather regularly, and so, if cardinalities of domains are
sufficiently large, it is easy to construct a valuation, which falsifies all these formulas (and
similarly with Pn: n>0).
11While preparing the final text of this paper, we found an answer to this question. The
proof of the corresponding claims for two different versions of Kripke semantics with finite
expanding domains will be presented in [14]; on the other hand, for the third natural version
of the semantics these properties do not hold.
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the formula A∗Fin for A∗P∞
and use the propositional formulas

Φn =
∨
i<j

(pi≡pj)

(in symbols p0, p1,. . ., pn) instead of Pn. 2

Again all logics mentioned in Theorem 3 are not recursively axiomatizable,
see Theorem from [10] and Theorem 2.1(2) from [11]; many of these logics are
Π2-arithmetical (cf. Section 2).

Also, for Kripke semantics with constant domains, we obtain the subsequent
criterion of strong Kripke completeness for logics characterized by classes of
finite posets (i.e., for logics of the form LcY with Y ⊆ Fin); cf. our Corollary
1 in Section 2 and [10, Corollary 3]:

Proposition 2 Let Y be a class of finite posets.

(I) The following conditions are equivalent:

(1) the logic LcY is strongly Kripke complete (with or without parameters);

(2) the logic LcY is recursively axiomatizable;

(3) the logic LcY is finitely axiomatizable;

(4) the logic LcY is ‘tabular’, i.e., it equals LcM for a finite poset M ;

(5) Y ⊆ Pn∩Wn for some n>0.

(II) If Y is a class of pairwise non-isomorphic finite rooted posets, then the
mentioned conditions (1) – (5) are equivalent to

(6) Y is finite.

Proof. The implication (1) ⇒ (5) readily follows from Theorem 3: namely,
if ∀n [Y 6⊆ Pn∩Wn ], then the class Z of all frames with constant domain
over posets from Y is unrestricted. Similarly, the implication (2)⇒ (5) is a
consequence of Theorem from [10].

Clearly, (5) implies (4), because the family of (non-isomorphic) rooted
posets from Pn∩Wn is finite, and LcY = LcY′ = LcM , where Y′ is the
(finite) family of cones in posets from Y and M is the disjoint union of posets
from Y′.

Now, the implications (4)⇒(1) and (4)⇒(3) follow from Shimura’s result
[7, Theorem 3.7]. Indeed, let A be a formula axiomatizing the (finitely ax-
iomatizable) propositional superintuitionistic logic of a finite poset M , and let
L = [QH+D&A]. The mentioned Shimura’s theorem claims the strong Kripke
completeness 12 of L. From its proof we also obtain that L=LcM .

Finally, the implication (3)⇒(2) is obvious. 2

12naturally, in the usual sense, i.e., with parameters (cf. the beginning of Section 2)
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Section 4. The proof of Main Lemma

Take a binary, unary, and 0-ary (i.e., propositional) symbols R,Q, p respec-
tively. Take the following formulas:

A0 = ∀x¬R(x, x) & ∀x∃yR(x, y) & ∀x∀y (R(x, y)∨¬R(x, y)) &
& ∀x∀y∀z (R(x, y)&R(y, z) ⊃ R(x, z)),

A1 = ∀x∀y [(¬R(x, y) ∨ p) ≡ ((Q(x)⊃Q(y)) ∨ p)],
A2 = ∀x∀y [(¬R(x, y) ∨ p) ≡ ((Q(y)⊃Q(x)) ∨ p)],
A3 = ∀x∀y [R(x, y)&(Q(x)⊃Q(y)) ⊃ Q(x)],
A4 = ∀x∀y [R(x, y)&(Q(y)⊃Q(x)) ⊃ Q(y)],
A′ = A0 & [(A1&A3) ∨ (A2&A4)];
A∗ = A′ ⊃ p .

4.1 IF PART. Suppose that A∗ 6∈L(M,U), i.e., u�A′ and u 6�p for some u∈M
and a valuation in (Mu, U); then we show that both U(u) and h[Mu] are in-
finite. Let us define the relation (a<b)⇔ (u�R(a, b)) on U(u). By A0, the
relation is transitive, irreflexive, and there exists a sequence of different ele-
ments a0<a1<. . . in U(u); hence U(u) is infinite. Also (a 6<b) ⇔ u�¬R(a, b)
for a, b∈U(u).

Now, let us assume that h[Mu]=n is finite. Put Θi={v∈Mu |v�Q(ai)}
for i∈ω.

First, let u � A1&A3. Then, by A1, for i, j∈ω we have:

(Θi ⊆ Θj) ⇔ u � (Q(ai)⊃Q(aj)) ⇔ u � ¬R(ai, aj) ⇔ ai 6<aj ⇔ j≤ i

(recall that u 6�p). Also, by A3, if i<j<k, then

∀v ∈ Θi\Θj ∃w ∈ Θj\Θk [v ≤ w].

Indeed, if j < k and v ∈ Θi\Θj , then v 6� Q(aj) and v � R(aj , ak), so
v 6� (Q(aj)⊃Q(ak)), i.e., v≤w for some w ∈ Θj\Θk.

Hence we obtain an (n+1)-element chain v0<v1<. . .<vn in Mu such that
vi ∈ Θi\Θi+1 for i<n. This is a contradiction.

Second, let u � A2&A4. Then, similarly, by A2,

(Θi ⊆ Θj) ⇔ u � ¬R(aj , ai) ⇔ i≤j,

and by A4, for i<j<k we have

∀v ∈ Θk\Θj ∃w ∈ Θj\Θi [v≤w].

Hence we obtain an (n+ 1)-element chain vn < . . . < v0, where vi ∈ Θi+1\Θi.

4.2 ONLY IF PART. Suppose that there exists u ∈M such that both U(u)
and h[Mu] are infinite; then we show that u 6�A∗ for a suitable valuation on
the cone (Mu, U).
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Take a denumerable subset X0 = {ai | i ∈ ω} of U(u). Let ν(ai) = i for
elements of X0 and ν(a) = 0 for all other elements from all U(v), v≥u.

First, assume that the cone Mu contains an ω-chain u = u0 < u1 < . . . .
Then we define the following valuation on (Mu, U):

v � R(a, b) ⇔ ν(a) < ν(b);
v � Q(a) ⇔ v 6≤ uν(a);
v � p ⇔ v 6= u.

Clearly, u � A0 and u 6� p. Also u � A1, because

u�¬R(a, b)⇔ (ν(b)≤ν(a)) ⇔ ∀v≥u [ v�Q(a)⇒ v�Q(b)]⇔ u�(Q(a)⊃Q(b)),

and v � p for all v>u.
Now, show that u�A3. Assume that a, b∈U(v), v � R(a, b)&(Q(a)⊃Q(b)),

v 6� Q(a). Then ν(a)<ν(b) and v ≤ uν(a) < uν(b). Hence v 6� (Q(a)⊃Q(b)),
since uν(b) � Q(a), uν(b) 6� Q(b). This is a contradiction.

Therefore, A∗ 6∈ L(M,U).

Second, assume, otherwise, that Mu does not contain ω-chains, i.e., Mu is
a dually well-founded poset. Take Θi = {v∈Mu | h[Mv]≤ i} for i<ω. Clearly,
∅ = Θ0 ⊂ Θ1 ⊂ . . . ⊂ Θi ⊂ Θi+1 ⊂ . . . (recall that h[Mu] is infinite). Take the
following valuation on (Mu, U):

v � R(a, b) ⇔ ν(a) < ν(b);
v � Q(a) ⇔ v ∈ Θν(a);
v � p ⇔ v 6= u.

Again u � A0 and u 6� p. Also u � A2, because

u � (Q(b)⊃Q(a)) ⇔ (Θν(b)⊆Θν(a)) ⇔ (ν(b)≤ν(a)) ⇔ u � ¬R(a, b).

Finally, u � A4. Indeed, assume that a, b ∈ U(v), v � R(a, b)&(Q(b)⊃Q(a)),
v 6� Q(b) for some v ≥ u. Then ν(a)<ν(b) and v 6∈ Θν(b), i.e., h[Mv] > ν(b).
Then there exists w∈Mv such that h[Mw] = ν(b) and so w ∈ Θν(b)\Θν(a), i.e.,
w�Q(b) and w 6�Q(a). This contradicts v � (Q(b)⊃Q(a)).

Hence again A∗ 6∈ L(M,U). 2

4.3 In conclusion, we can easily obtain the following variation of Lemma 1:

Lemma 3 There exists a predicate sentence A∗WFd
such that for every Kripke

frame (M,U): A∗WFd
∈L(M,U) iff

∀u∈M [ the domain U(u) is finite, or the cone Mu is dually well-founded
(i.e., it does not contain ω-chains) ].

Namely, put A∗WFd
= A′′ ⊃ p , where A′′ = A0&A1&A3 (i.e., we drop the

disjunct A2&A4 in the premise A′ of A∗ = A∗P∞
).

The proof of this lemma repeats the proof for Main Lemma, with obvious
changes. Namely, in the IF PART, using A1&A3, we can obtain an ω-chain
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v0<. . .<vi<. . . in Mu such that vi ∈ Θi\Θi+1 for all i∈ω (the argument with
A2&A4 is omitted now). And in the ONLY IF PART, we suppose that, for
some u∈M , the domain U(u) is infinite and the cone Mu contains an ω-chain
u=u0<u1<. . . ; the second case, with dually well-founded Mu, is omitted. 2

In particular, for Kripke frames with constant domains we have:

A∗WFd
∈ L(M,λu.X) iff [ M is dually well-founded, or X is finite ].

Note that here the restriction that M must be rooted (cf. footnote 5 in Section
2) is not required, because the class WFd of dually well-founded posets, unlike
P∞ (and Fin), has the following convenient property:

Every poset W 6∈WFd contains a cone Wu 6∈WFd. (c)

Clearly, A∗WFd
∈ LWFd, and so A∗WFd

&D ∈ LcWFd.

Finally, Lemmas 1 and 3, together with [10, Lemma 1] (cf. our Remark 2 in
Section 3), give the following chains of proper inclusions (here PO is the class
of all posets):

Corollary 3 QH = LPO ⊂ LWFd ⊂ LP∞ ⊂ LFin and
[QH+D] = LcPO ⊂ LcWFd ⊂ LcP∞ ⊂ LcFin.

In fact, LWFd 6⊆ [QH+D], LP∞ 6⊆ LcWFd, etc. Moreover, LWFd 6⊆LcY
for any class of posets Y 6⊆WFd; thus LY⊂LWFd and LcY⊂LcWFd for
any class Y⊃WFd (the corresponding statements for LFin and for LP∞ are
given in Remark 2; they involve additional restrictions related to cones or to
the rootedness, since the property (c) fails for Fin and for P∞).

Remark 3 By the way, note that

LWF = LPO = QH and LcWF = LcPO = [QH+D],

where WF is the class of well-founded posets, because the standard tree ω∗

(the ω-branching tree of height ω) is well-founded, and QH (resp., [QH+D])
is complete w.r.t. frames over ω∗ (with expanding domains and with constant
domains respectively), cf. [2, Theorem 6.4.17(1) and Proposition 7.6.15(1)].

Acknowledgements
The author would like to thank the anonymous referees, Valentin Shehtman,
and Evgeny Zolin for useful and fruitful comments, which helped improve the
exposition of the paper.

References

[1] Gabbay, D. and D. de Jongh, Sequence of decidable finitely axiomatizable intermediate
logics with the disjunction property, Journal of Symbolic Logic 39, No.1 (1974), pp.
67–78.

[2] Gabbay, D., V. Shehtman and D. Skvortsov, “Quantification in Nonclassical Logic Vol.1,”
Studies in Logic and the Foundation of Mathematics 153, Elsevier, 2009.



590 A Simpler Kripke Complete Logic That Is Not Strongly Complete

[3] Ono, H., A study of intermediate predicate logics, Publications of RIMS, Kyoto Univ. 8,
No.3 (1972-1973), pp. 619–649.

[4] Ono, H., Model extension theorem and Craig’s interpolation theorem for intermediate
predicate logics, Reports on Math. Logic 15 (1983), pp. 41–58.

[5] Ono, H., Some problems in intermediate predicate logics, Reports on Math. Logic 21
(1987), pp. 55–67.

[6] Shehtman, V., On strong neighbourhood completeness of modal and intermediate
propositional logics, 1, in: Advances in Modal Logic ’96, M. Kracht, M. De Rijke, H.
Wansing, M. Zakharyaschev, eds., CSLI Publications, 1997, pp. 209–222.

[7] Shimura, T., Kripke completeness of some intermediate predicate logics with the axiom
of constant domain and a variant of canonical formulas, Studia Logica 52, No.1 (1993),
pp. 23–40.

[8] Shimura, T., On completeness of intermediate predicate logics with respect to Kripke
semantics, Bulletin of the Section of Logic 24, No.1 (1995), pp. 41–45.

[9] Skvortsov, D., On axiomatizability of some intermediate predicate logics (summary),
Reports on Math. Logic 22 (1988), pp. 115–116.

[10] Skvortsov, D., The predicate logic of finite Kripke frames is not recursively
axiomatizable, Journal of Symbolic Logic 70 (2005), pp. 451–459.

[11] Skvortsov, D., On non-axiomatizability of superintuitionistic predicate logics of some
classes of well-founded and dually well-founded Kripke frames, Journal of Logic and
Computation 16, No.5 (2006), pp. 685–695.

[12] Skvortsov, D., On non-axiomatizability of some superintuitionistic predicate logics, I:
Predicate logics of well-ordered and dually well-ordered Kripke frames, in preparation.

[13] Skvortsov, D., A new (simpler) solution to Ono’s problem on the strong completeness for
intermediate predicate logics, in: Third St.Petersburg Days of Logic and Computability,
St.Petersburg, Russia, Abstracts, 2015, p. 20.

[14] Skvortsov, D., On superintuitionistic predicate logics of Kripke frames with finite
domains, I: Basic notions and the finite model property, in preparation.
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