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Abstract

We prove completeness for some normal modal predicate logics in the standard Kripke
semantics with expanding domains. We consider quantified versions of propositional
logics with the axiom of density plus some others (transitivity, confluence).
The method of proof modifies the technique developed for other cases (without den-
sity) by S. Ghilardi, G. Corsi and D. Skvorstov; but now we arrange the whole
construction in a game-theoretic style.
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1 Modal logics and Kripke frames

Let us recall some basic definitions and notation; most of them are the same
as in the book [3].

Atomic formulas are constructed from predicate letters Pnk (countably many
for each arity n ≥ 0) and a countable set of individual variables V ar, without
constants and function letters. Also we do not use equality. Modal (predicate)
formulas are obtained from atomic formulas by applying classical propositional
connectives (⊃,⊥), the quantifier ∀ and the modal operator �. All other
connectives (and ∃) are derived.

In modal propositional formulas only the proposition letters (P 0
k ) are used

as atoms.
A modal propositional logic is a set of modal propositional formulas contain-

ing classical propositional tautologies, the axiom of K (�(p ⊃ q) ⊃ (�p ⊃ �q),
where p, q are proposition letters) and closed under the basic inference rules:
Modus Ponens, �-introduction, and (propositional) Substitution.

1 This work is supported by the Russian Science Foundation under Project No. 16-11-10252
and was carried out at Steklov Mathematical Institute, Russian Academy of Sciences.
2 shehtman@netscape.net
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As usual K denotes the minimal modal propositional logic, Λ + A is the
smallest logic containing a logic Λ and a formula A, and K4 := K+�p ⊃ ��p.

Recall that Kripke semantics for propositional modal logics is given by
(propositional) Kripke frames of the form (W,R), where W 6= ∅, R ⊆W ×W .
The set of all propositional formulas valid in a frame F (the modal logic of F )
is denoted by ML(F). The class of all frames validating a propositional logic
Λ (Λ-frames) is denoted by V(Λ).

A p-morphism from (W,R) onto (W ′, R′) is a surjective map f : W −→W ′

such that for any x ∈ W f [R(x)] = R′(f(x)). In this case ML(W,R) ⊆
ML(W ′, R′) (the p-morphism lemma).

A cone in F = (W,R) with root u (denoted by F↑u) is the restriction of
F to the smallest subset V containing u and such that R(V ) ⊆ V ; obviously,
V = R(u) ∪ {u} if R is transitive. If F = F↑u, F itself is called rooted (or
a cone). So a transitive frame (W,R) is rooted with root u if W = R(u), or
equivalently, if it has a first cluster.

A modal predicate logic is a set of modal predicate formulas containing
classical predicate axioms, the axiom of K and closed under Modus Ponens,
Generalization, �-introduction, and (predicate) Substitution.

QΛ denotes the smallest predicate logic containing the propositional logic
Λ (the predicate version of Λ).

For predicate formulas we use the standard Kripke semantics. Recall that
a predicate Kripke frame over a propositional Kripke frame F = (W,R) is a
pair F = (F,D), in which D = (Du)u∈W , Du 6= ∅ and such that Du ⊆ Dv

whenever uRv.
For a class of propositional frames C, the class of all predicate frames (F,D)

with F ∈ C is denoted by KC.
A valuation ξ in F is a function sending every predicate letter Pnk to a family

of n-ary relations on the domains:

ξ(Pnk ) = (ξu(Pnk ))u∈W ,

where ξu(Pnk ) ⊆ Dn
u for n = 0 and ξu(P 0

k ) ∈ {0, 1}.
The pair M = (F, ξ) is a Kripke model over F. The definition of truth

in a Kripke model is standard. So at every point u ∈ W we evaluate modal
Du-sentences, i.e., modal formulas, in which all parameters (free variables) are
replaced with elements of Du; M,u � A means that A is true at u in M . Then

M,u � Pnk (a1, . . . , an) iff (a1, . . . , an) ∈ ξu(Pnk ),
M, u � P 0

k iff ξu(P 0
k ) = 1,

M, u � A ⊃ B iff (M,u 6�A or M,u � B),
M, u 6�⊥,
M, u � ∀xA(x) iff ∀a ∈ Du M,u � A(a),
M, u � �A iff ∀v ∈ R(u) M,v � A.

A modal formula A(x1, . . . , xn) is called true in M (in symbols, M �
A(x1, . . . , xn)) if M,u � A(a) for every u∈W and a∈Dn

u .
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A modal formula A is valid in a frame F (in symbols, F � A) if it is true in
every Kripke model over F. ML(F) := {A | F � A} is the modal logic of F.

The modal logic of a class of frames C (or the logic determined by C) is
ML(C) :=

⋂
{ML(F) | F ∈ C}. Logics of this form are called Kripke complete.

A modal predicate logic L is strongly Kripke complete if every L-consistent
theory (a set of sentences) is satisfied at a point of some Kripke model over a
frame validating L.

Similar definitions are given for modal propositional logics. Also recall
that a modal propositional logic has the finite model property (fmp) if it is
determined by some class of finite frames.

From the definitions it follows that for a predicate frame (F,D) and a
propositional formula A,

(F,D) � A iff F � A.

So for a propositional logic Λ and a predicate frame F

F � QΛ iff F ∈ KV(Λ).

2 Completeness and incompleteness in modal predicate
logic

In modal predicate logic there are too many examples of incompleteness, and
proofs of completeness can be rather nontrivial. For instance, for a proposi-
tional modal logic Λ ⊇ S4, QΛ is complete only if S5 ⊆ Λ or Λ ⊆ S4.3 (cf.
[5]). Still some logics QΛ are complete, in particular, for the well-known modal
logics Λ = K, K4, S4, S5, S4.2, S4.3 (cf. [3], theorems 6.1.29, 6.6.7, 6.7.12).
These results were obtained by different authors — S. Kripke, D. Gabbay, S.
Ghilardi, G. Corsi and others.

In this paper we are mainly interested in the logic K4Ad := K4+Ad, where

Ad := ��p ⊃ �p

is the axiom of density; (W,R) � Ad iff R is dense, i.e., R ⊆ R ◦R.
An extension of K4Ad is D4.3Ad obtained by adding the axiom of non-

branching (.3) and seriality (3>). It is well-known that D4.3Ad = ML(Q, <),
where Q denotes the set of rationals. Moreover, completeness transfers to the
predicate version [1]:

Q(D4.3Ad) = ML(K(Q, <)).

3 Trees and unravelling

A tree is a frame (W,R) with a root u0 such that R−1(u0) = ∅ and R−1(x) is
a singleton for any x 6= u0. A transitive tree is a transitive closure of a tree, so
it is a strictly ordered set (W,<) with the least element such that every subset
{y | y < x} is linearly ordered and finite.

Lemma 3.1 Every rooted transitive frame is a p-morphic image of a transitive
tree.
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A well-known proof is by unravelling: for a rooted frame F = (W,R) with
root u we construct a tree F ] = (W ], <), where W ] is the set of all finite paths
from u to points of W (i.e., finite sequences x0x1 . . . xn such that x0 = u and
xiRxi+1 for any i < n), and α < β iff β prolongs α. The required p-morphism
sends every path to its last point.

Hence we have

Proposition 3.2 K4 is determined by the class of all (at most) countable
trees.

This follows from lemma 3.1, the p-morphism lemma and the fmp of K4;
note that unravelling of a finite frame is finite or countable.

Definition 3.3 Let (W,<) be a tree, and consider a frame (W,<′), in which
<′ is obtained from < by making some points reflexive. Then (W,<′) is called
a semireflexive tree.

One can easily check that a semireflexive tree (W,<′) validates Ad iff its
irreflexive points can have only reflexive immediate successors. 3 Such a semire-
flexive tree is called dense.

Proposition 3.4 K4Ad is determined by the class of all (at most) countable
dense semireflexive trees.

Proof. A standard filtration argument shows that K4Ad has the fmp, so it is
determined by finite rooted K4Ad-frames (cf. [6]). Finite K4-frames consist
of clusters, some of which can be degenerate (i.e., irreflexive singletons), while
in finite K4Ad-frames successors of degenerate clusters are non-degenerate.

Now let us unravel a finite K4Ad-frame F = (W,R) with root u more
carefully than in lemma 3.1. Call a path x0 . . . xn long if

∀i < n∀y ∈ F (xiRyRxi+1 ⇒ yRxi ∨ xi+1Ry).

Consider the set W1 of all long paths from u to points in F and take the
restriction F1 := F ]|W1. This frame is a tree, and the map f sending a path
to its last point is still a p-morphism F1 −→ F . This is because every two
R-related points can be connected by a long path.

Now we extend the relation in F1 by making reflexive every point a such
that f(a) is reflexive. We obtain a semireflexive tree F2 and again f is a
p-morphism F2 −→ F .

F2 is a dense semireflexive tree. In fact, if in F2 we have an irreflexive a and
its successor b, then a is a long path in F ending at an irreflexive point f(a),
and the cluster of f(b) is a successor of f(a). So f(b) is reflexive, and thus b is
reflexive in F2.

To obtain a class of irreflexive transitive frames determining K4Ad we can
use Segerberg’s bulldozing method (cf. [6]). Viz., given a dense semireflexive
tree F2, we can replace each its reflexive point with a strict dense linear order

3 Henceforth by a ‘successor’ we mean an ‘immediate successor’.
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without the last element (e.g., the non-negative rationals Q+). Then we obtain
K4Ad-frame F3, and there is a p-morphism from F3 sending every irreflexive
point from F2 to itself and every copy of Q+ to the corresponding reflexive
point in F2. We call such a frame F3 a sprouting tree. So we have

Proposition 3.5 K4Ad is determined by the class of sprouting trees.

Remark 3.6 It is not clear if predicate frames over sprouting trees determine
the predicate logic QK4Ad. The completeness proof proposed below yields
more complicated frames.

4 Completeness of QK4Ad

To prove completeness for QK4Ad we use a method originating from G. Corsi’s
paper [1] and further developed by D. Skvortsov [8]; also cf. [3], sec. 6.4.

The main idea is to extract an appropriate submodel from a canonical
model of a given logic L and to make a sort of unravelling which leads to a
frame validating L. More exactly, this frame is obtained as a direct limit of
a sequence of finite trees. This sequence can be constructed by induction, or
equivalently, by playing a game.

First we recall some definitions from [3], sections 6.1, 6.3, with little changes.
We fix a denumerable set of extra constants S∗. A subset S′ ⊆ S∗ is called

small if the complement (S∗ − S′) is infinite.

Definition 4.1 For a modal predicate logic L, an L-place is a maximal L-
consistent theory (i.e, a set of sentences) Γ in the basic language with extra
constants from S∗ with the Henkin property: for any formula ϕ(x) with at most
one parameter x there exists a constant c such that (∃xϕ(x) ⊃ ϕ(c)) ∈ Γ. An
L-place is small if the set of its constants is small.

It is well-known that every L-consistent theory with a small set of constants
can be extended to a small L-place ([3], Lemma 6.1.9).

Definition 4.2 The canonical model VML is (V PL, RL, DL, ξL), where

• V PL is the set of all small L-places,

• ΓRL∆ iff �−Γ ⊆ ∆, where �−Γ := {A | �A ∈ Γ},
• (DL)Γ (also denoted by DΓ) is the set of constants occurring in Γ,

• (ξL)Γ(Pmk ) := {c ∈ (DΓ)m | Pm
k (c) ∈ Γ}

for m > 0, and
(ξL)Γ(P 0

k ) := 1 iff P 0
k ∈ Γ.

Note that �−Γ ⊆ ∆ impliesDΓ ⊆ D∆; this holds, since �(P 1
1 (c) ⊃ P 1

1 (c)) ∈
Γ for any c ∈ DΓ, so (P 1

1 (c) ⊃ P 1
1 (c)) ∈ ∆.

Then for any DΓ-sentence A

VML,Γ � A iff A ∈ Γ

(the Canonical model theorem).
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Note that for arbitrary L-places an analogue of this theorem does not
hold, but we still need them for further considerations. So put VM+

L :=
(V P+

L , RL, DL, ξL), where V P+
L is the set of all L-places, and RL, DL, ξL are

the same as above. 4 This VM+
L is actually a submodel of a canonical model

for some larger set of extra constants.

Definition 4.3 Let L be a predicate logic, F = (W,R) a propositional frame.
An L-network over F is a monotonic map from F to (V P+

L , RL), i.e. a map
h : W −→ V P+

L such that for any u, v ∈W

uRv ⇒ h(u)RLh(v).

The frame F is denoted by dom(h) and called the domain of h. An L-network
h is small if every h(u) is small and transitive if dom(h) is transitive.

With every L-network h we associate a predicate Kripke frame F(h) :=
(dom(h),D), where Du = (DL)h(u) for u ∈ W , and a Kripke model M(h) :=
(F(h), ξ(h)), where

ξ(h)u(Pmk ) := {c ∈ Dm
u | Pm

k (c) ∈ h(u)}

for m > 0 and

ξ(h)u(P 0
k ) := 1 iff P 0

k ∈ h(u).

We define the partial order on networks.

h ≤ h′ := dom(h) is a subframe of dom(h′) and ∀u ∈ dom(h) h(u) ⊆ h′(u).

Definition 4.4 A defect in a network h over a frame (W,R) is a pair (u,A)
such that u ∈ W and 3A ∈ h(u). A defect (u,A) is eliminated in h if there
exists v ∈ R(u) such that A ∈ h(v).

Henceforth in this section we assume that L contains QK4, so L-frames are
transitive.

We will call a transitive L-network h finite if it is small and dom(h) is a
finite transitive tree.

Lemma 4.5 (On elimination of defects) Let h be a finite L-network with a
defect (u,A). Then there is a finite L-network h′ ≥ h eliminating this defect.

Proof. If h eliminates (u,A), take h′ = h. Otherwise extend dom(h) by adding
a new successor v of u (such that v has no successors). Since 3A ∈ h(u), by
the properties of the canonical model VML, there exists a small L-place Γ such
that A ∈ Γ and h(u)RLΓ. So we can put h′(v) := Γ.

If Γ,∆ are L-places, Γ � ∆ denotes the restriction of Γ to the language of
∆.

Lemma 4.6 (Skvortsov’s extension lemma)

4 More exactly, RL is extended to V P+
L × V P+

L , etc.
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(1) Let Γ,∆ be L-places, Γ0 = Γ � ∆ and suppose that �−Γ0 ⊆ ∆. Then
there exists an L-place ∆′ ⊇ ∆ such that ΓRL∆′. ∆′ can be chosen small
if Γ,∆ are small.

(2) Let h be a finite L-network over a transitive tree F with root v, and let Γ
be an L-place, Γ0 = Γ � h(v), and suppose that �−Γ0 ⊆ h(v). Let F ′ be
the transitive tree obtained by adding a root u below F . Then there exists
a finite L-network h′ ≥ h over F ′ such that Γ = h′(u).

Proof. This is a reformulation of Lemma 6.4.28 from [3], and the proof follows
the same lines.

(1) The assumptions imply that the theory �−Γ ∪∆ is consistent (see the
details in [3]); so it extends to an L-place ∆′.

(2) We can argue by induction on the cardinality of F . By (1) there exists
an L-place ∆′ ⊇ h(v) such that ΓRL∆′. If v has no successors (i.e., F is a
singleton), we are done: take h′ defined on the chain {u, v} such that h′(u) =
Γ, h′(v) = ∆′.

Suppose v has successors v1, . . . vn, Fi = F↑vi. hi is the restriction of h to
Fi. Since we can rename the constants from D∆′ −Dh(v), we may assume that
they do not occur in any h(vi); thus h(v) = ∆′ � h(vi), and �−h(v) ⊆ h(vi).
Now by IH there exists h′i ≥ hi defined on the tree Fi with the added bottom
element v such that h′i(v) = ∆′. Then we define the following network h′ over
F ′:

h′(u) = Γ, h′(v) = ∆′, h′|Fi = h′i.

Now we assume that L contains QK4Ad.

Lemma 4.7 (On inserts) Let h be a finite L-network, and let v be a successor
of u in dom(h). Then there exists a finite L-network h′ > h such that v is not
a successor of u in dom(h′).

Proof. Suppose h(u) = Γ, h(v) = ∆, and let ∆0 = ∆ � Γ. It follows that
the set Γ′ := �−Γ ∪ {3A | A ∈ ∆0} is L-consistent. In fact, otherwise there
exist B ∈ �−Γ and A ∈ ∆0 such that {B,3A} is inconsistent (since the sets
�−Γ, ∆0 are closed under conjunction and 3(A1 ∧ A2) implies 3A1 ∧ 3A2).
So `L B ⊃ ¬3A, or equivalently, `L B ⊃ �¬A. Hence by the monotonicity of
�, `L �B ⊃ ��¬A; thus `L �B ⊃ �¬A by Ad. Since �B ∈ Γ and A is in
the language of Γ, this implies �¬A ∈ Γ. Since ΓRL∆, it follows that ¬A ∈ ∆,
which is a contradiction.

Then Γ′ can be extended to an L-place Θ (with new unused constants). Let
Θ0 = Θ � ∆ (= Θ � ∆0, since new constants of Θ do not occur in ∆).

It follows that �−Θ0 ⊆ ∆0. In fact, ¬A ∈ ∆0 implies 3¬A ∈ Γ′ ⊆ Θ, so
�A 6∈ Θ0, A 6∈ �−Θ0.

Consider the tree F ′ obtained from F = dom(h) by adding a new point z
between u and v. By Lemma 4.6 there exists a finite network h1 over F ′↑z
such that h1(z) = Θ and h1 ≥ h on F↑v. Now we can define h′ on F ′, which
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coincides with h1 on F ′↑z and coincides with h at all other points. This is a
network, since �−Γ ⊆ Θ, i.e., h′(u)RLh

′(z).

Definition 4.8 Let Γ0 be a small L-place. The selective game SGL(Γ0) is
played by two players, ∀ (the first) and ∃ (the second). A position after the
n-th turn is a finite network hn over a transitive tree Fn = (Wn, Rn). We also
assume 5 that Wn ⊆ ω.

At the initial position F0 is an irreflexive singleton 0 and h0(0) = Γ0.
For the (n+ 1)-th move the player ∀ has two options.
1. Selecting a defect, i.e., a pair (u,A) such that u ∈Wn and 3A ∈ hn(u).
2. A query for an insert, i.e., a pair (u, v) such that uRnv and there are no

points between u and v.
The player ∃ should respond with a network hn+1 ≥ hn such that
1. If the move of ∀ was a defect (u,A), then there exists v such that uRn+1v

and A ∈ hn+1(v).
2. If the move of ∀ was a query for an insert (u, v), then then there exists

w such that uRn+1wRn+1v.
The player ∃ wins if the play continues infinitely or ∀ cannot make his move.

Note that ∀ cannot make the (n+1)th move in the only case when n = 0 and
h0 has no defects. This happens if Γ0 is an endpoint in VML, i.e., RL(Γ0) = ∅.

Every infinite play of the game generates a sequence of networks h0 ≤ h1 ≤
. . . Then we define the resulting network hω, with dom(hω) = Fω := (Wω, Rω),
Wω :=

⋃
nWn, Rω :=

⋃
nRn, hω(u) :=

⋃
n≥m hn(u) for u ∈ Wm. One can

easily check that this is really a network (not necessarily finite or small).

Lemma 4.9 ∃ has a winning strategy in SGL(Γ0).

Proof. If ∀ cannot make the first move, there is nothing to prove. If the
(n+ 1)-th move of ∀ is a defect, ∃ can eliminate it by her next move according
to Lemma 4.5. If the move of ∀ is a query for an insert, ∃ can respond according
to Lemma 4.7.

Lemma 4.10 If Γ0 is not an endpoint in VML, then there exists a play of
SGL(Γ0) generating a sequence of networks such that Fω � K4Ad and for any
u, for any Dhω(u)-sentence A

M(hω), u � A iff A ∈ hω(u).

Proof. A dense tree is a rooted strictly ordered set (W,≺), in which every
subset {u | u ≺ w} is a dense chain. Let us construct an infinite play such that
Fω is a dense tree.

At the initial position F0 = (0,∅) and h0(0) = Γ0.
Let us choose the further strategy for ∀ as follows. Fix an enumeration of

the countable set ω × ω, and an enumeration of ω × Φ, where Φ is the set of
all modal sentences with constants from S∗. An odd move (n+ 1) of ∀ chooses

5 This technical detail is needed for the further proofs.
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the first new pair (u,A), which is a defect in hn. An even move (n + 1) of ∀
chooses the first new pair (u, v) ∈ ω × ω, which is a query for an insert in hn.

By lemma 4.9 there is a winning strategy for ∃. For the resulting network
we have

M(hω), u � A iff A ∈ hω(u).

This is checked by induction. The atomic case holds by the definition of ξ(h);
the cases of propositional connectives and quantifiers hold by the properties of
L-places.

Let us consider the case A = �B. SupposeM(hω), u 6�A; thenM(hω), v 6�B
for some v ∈ Rω(u). Since A is in the language of hω(u) and hω is a network,
we have hω(u)RLhω(v), so A (and B) is also in the language of hω(v). By IH
it follows that B 6∈ hω(v); hence A = �B 6∈ hω(u) by the definition of RL.

The other way round, suppose A 6∈ hω(u); then 3¬B ∈ hω(u), so
3¬B ∈ hn(u) (i.e., (u,3¬B) is a defect in hn) for some finite n. Choose
the minimal such n; so (u,3¬B) is a defect in hm for all m > n. Since the de-
fects subsequently appear as odd moves of ∀, there exists m such that (u,3¬B)
is his (m+ 1)-th move. By the response of ∃, we have ¬B ∈ hm+1(v) for some
v ∈ Rm+1(u). Hence ¬B ∈ hω(v), v ∈ Rω(u). By IH, we have M(hω), v 6�B.
Thus M(hω), u 6�A.

To check the density for Fω, we can use even moves. In fact, if uRωv, there
exists n such that uRnv. If v is a successor of u in Rn, the pair (u, v) must
show up as a later even move of ∀. By the response of ∃ we obtain w such that
uRωwRωv.

Definition 4.11 A modal predicate logic L is strongly Kripke complete if
every L-consistent set of sentences is satisfiable at some point of a Kripke
model over a frame validating L.

Theorem 4.12 QK4Ad is strongly Kripke complete.

Proof. Every L-consistent theory Γ without constants can be extended to a
small L-place Γ0. If Γ0 is an endpoint in VML, then for any A in its language

VML,Γ0 � A iff A ∈ Γ0

by the canonical model theorem. Since Γ0 is an endpoint, the truth at this
point reduces to the truth in a model over an irreflexive singleton.

In all other cases we can apply lemma 4.10. So there exists a model M(hω)
such that M(hω), u0 � Γ0 and Fω � K4Ad. Hence F(hω) � L.

Theorem 4.13 If Π is a set of closed (i.e., constructed only from ⊥, � and
⊃) propositional formulas, then QK4Ad + Π is strongly Kripke complete.

Proof. By the same argument as in the previous theorem. In this case Π ⊂ Γ
for all L-places Γ (where L := QK4Ad + Π), so M(hω) � Π. Hence Fω � Π,
and thus F (hω) � Π.
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5 Logics with n-density

Let us first notice that for the logic QKAd := QK+Ad one can use the same
method as in the previous section. Now we only need finite networks over
non-transitive frames. If (W,R) is a tree, R+ is the transitive closure of R
and R ⊆ R1 ⊆ R+, then (W,R1) is called an almost transitive tree. Lemmas
4.5, 4.6, 4.7 are transferred to almost transitive trees and proved by the same
arguments.

The analogue of lemma 4.10 also holds for QKAd. The same proof con-
structs a frame Fω validating KAd (but this frame should not be called a
“dense tree”).

Thus we obtain

Theorem 5.1 If Π is a set of closed propositional formulas, then QKAd + Π
is strongly Kripke complete.

Now recall the n-density axiom Adn generalizing Ad:

Adn :=

n∧
i=1

3pi ⊃ 3(

n∧
i=1

3pi).

This is a Sahlqvist formula, so for the logic KAdn := K+Adn we have

Proposition 5.2 KAdn is canonical and determined by the following first-
order condition on frames:

∀x, y1, . . . , yn (

n∧
i=1

xRyi ⊃ ∃z (xRz ∧
n∧
i=1

zRyi)).

Lemma 5.3 (On inserts) For L containing QKAdn let h be a finite L-network
over a frame (W,R) and suppose uRv1, . . . , uRvn. Then there exists a finite
L-network h′ > h and z such that uR′z, zR′v1, . . . , zR

′vn, where R′ is the
relation in dom(h′).

Proof. The same argument as in 4.7, with slight changes.
Let h(u) = Γ, h(vi) = ∆i, ∆i0 = ∆i � Γ. Then the set

Γ′ := �−Γ ∪
n⋃
i=1

{3A | A ∈ ∆i0}

is L-consistent.
For, otherwise there exist B ∈ �−Γ and Ai ∈ ∆i0 such that

{B,3A1, . . . ,3An} is L-inconsistent, i.e., `L B ⊃ ¬
∧
i

3Ai. Hence

`L �B ⊃ �¬
∧
i

3Ai;

thus
`L �B ⊃ ¬3

∧
i

3Ai,
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and
`L �B ⊃ ¬

∧
i

3Ai,

by Adn. However, �B ∈ Γ, so ¬
∧
i

3Ai ∈ Γ. On the other hand, every Ai is

in the language of Γ, Ai ∈ ∆i, and ΓRL∆i, which implies 3Ai ∈ Γ. Hence∧
i

3Ai ∈ Γ, which is a contradiction.

Then Γ′ can be extended to an L-place Θ such that DΘ−DΓ′ contains only
new constants. So we have Γ′ = Θ � ∆i, �−Γ′ ⊆ ∆i.

Consider the tree F ′ obtained from F = dom(h) by adding a new unique
successor z of u below all the vi. Let Fi := F↑vi, hi := h|Fi. Since
�−(Θ � ∆i) ⊆ ∆i, by Lemma 4.6 there exists a finite network h′i ≥ hi defined
on Fi with the added root z such that Θ = h′i(z). Then we can define the finite
network h′ over F ′ such that h′(z) = Θ, h′|Fi = hi and h′(x) = h(x) for all
x 6∈ R(u). This is a network, since �−Γ ⊆ Θ, i.e., h′(u) = h(u)RLh

′(z).

Now let L = QKAdn+Π, where Π is a set of closed propositional formulas.

Definition 5.4 The selective game SGL(Γ0) is defined as in definition 4.8, but
now a query for an insert at the (m+ 1)-th move is a tuple (u, v1, . . . , vn) such
that uRmv1, . . . , uRmvn and there is no z with uRmzRmvi for all i.

In a response for this move there must be w such that

uRm+1w, wRm+1v1, . . . , wRm+1vn.

Now we have analogues of lemmas 4.9, 4.10.

Lemma 5.5 ∃ has a winning strategy in SGL(Γ0).

Proof. By applying lemmas 4.5, 5.3.

Lemma 5.6 If Γ0 is not an endpoint in VML, then there exists a play of
SGL(Γ0) generating a sequence of networks such that F(hω) � L and for any
u, for any Dhω(u)-sentence A

M(hω), u � A iff A ∈ hω(u).

Proof. The same as for lemma 4.10, with the following change.
An odd move (m + 1) of ∀ is the first new tuple from ωn+1 which is an

insert query in hm. These moves guarantee the n-density for Fω.

Theorem 5.7 If Π is a set of closed propositional formulas, the logic
QKAdn + Π is strongly Kripke complete.

Proof. Similar to theorem 4.13. If an L-place Γ0 is not an endpoint in the
canonical model, we apply lemma 5.6 to obtain a model M(hω) satisfying Γ0,
with F(hω) � L.

A similar result holds for the transitive case; note that K4+Ad2 ` Adn for
any n.

Theorem 5.8 If Π is a set of closed propositional formulas, the logic
QK4+Ad2 + Π is strongly Kripke complete.
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6 Logics with confluence and density

Now let us consider logics containing the confluence (“Church–Rosser”) axiom

A2 := 3�p ⊃ �3p.

The semantical characterization of A2 is well-known:

Proposition 6.1 The logic K2 := K+A2 is canonical and determined by the
following condition on frames:

∀x, y, z (xRy ∧ xRz ⊃ ∃u (yRu ∧ zRu)).

For completeness proofs in this section we also need transitivity. So we will
consider extensions of QK4.2 := QK4+A2.

Lemma 6.2 K2 ` �3>.

Proof. On the one hand, it is clear that K ` 3> ⊃ 3�>, so K2 ` 3> ⊃
�3>.

On the other hand, K ` �⊥ ⊃ �3>; hence the statement follows.

In this section we deal with finite networks over transitive trees and infinite
networks over other frames (sums of trees).

Definition 6.3 A finite network h over a transitive tree (W,R) is called rich
if its satisfies the following condition.

Let u1, . . . , un be R-incomparable, and let v be their maximal common
predecessor. Then the sets Dh(ui) −Dh(v) are disjoint.

Lemma 6.4 Let ∆,Γ1,Γ2 be L-places for L ⊇ QK4.2 such that ∆RLΓ1,
∆RLΓ2 and DΓ1 ∩DΓ2 = D∆. Then the set �−Γ1 ∪�−Γ2 is L-consistent.

Proof. Suppose not. Since � distributes over conjunction, then there exist
�B1 ∈ Γ1, B2 ∈ Γ2 such that `L ¬(B1 ∧ B2). Every Bi can be presented as
Ai(ai,b) for a list ai of constants from DΓi − D∆, and a list b of constants
from D∆. By assumption, a1,a2 are disjoint.

By predicate logic, it follows that

`L ∀x1∀x2¬(A1(x1,b) ∧A2(x2,b))

for disjoint lists of variables x1,x2; hence

`L ¬(∃x1A1(xi,b) ∧ ∃x2A2(x2,b)).

Claim The rule A/�3A is admissible in L.

In fact, `L A implies `L > ⊃ A, and thus `L �3> ⊃ �3A, and finally
`L �3A by lemma 6.2.

Now by the Claim we have

`L �3¬(∃x1A1(xi,b) ∧ ∃x2A2(x2,b)),
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and so

`L ¬3�(∃x1A1(xi,b) ∧ ∃x2A2(x2,b)),

¬3�(∃x1A1(xi,b) ∧ ∃x2A2(x2,b)) ∈ ∆. (∗)

On the other hand, by confluence and transitivity we have

K4.2 ` 3�p1 ∧3�p2 ⊃ 3�(p1 ∧ p2),

thus

`L 3�∃x1A1(x1,b)∧3�∃x2A2(x2,b) ⊃ 3�(∃x1A1(x1,b)∧∃x2A2(x2,b)).
(∗∗)

Since ∆RLΓi and �Ai(ai,b) ∈ Γi, it also follows that �∃xiAi(xi,b) ∈ Γi,
3�∃xiAi(xi) ∈ ∆, so from (**) we obtain

3�(∃x1A1(x1,b) ∧ ∃x2A2(x2,b)) ∈ ∆

contradicting (*).

Lemma 6.5 (Cf. [3], Lemma 6.6.5) Let h be a rich finite small L-network
over a nontrivial tree (W,R) for L ⊇ QK4.2. Then there exists a small Θ
such that h(w)RLΘ for any w ∈W .

Proof. By induction on the cardinality of W .
If (W,R) is a two-element chain: W = {u, v}, uRv, then we can apply

lemma 6.4 to ∆ = h(u), Γ1 = Γ2 = h(v) and construct Θ ⊇ �−h(v).
The same argument goes through for any finite chain with the first element

u and the last element v.
So for the induction step we may assume that (W,R) has maximal points

u1, . . . , un, n > 1. By IH there exists Θ such that h(u1)RLΘ, . . . , h(un−1)RLΘ,
and by renaming constants we may also assume that all new constants in DΘ

do not occur in h(un). Let v = inf(u1, . . . , un). Since h is rich, it follows that
DΘ ∩ Dh(un) = Dh(v). So lemma 6.4 is applicable, which gives us a small Θ′

such that ΘRLΘ′, h(un)RLΘ′. It remains to note the RL is transitive.

Now let us consider the logics L := QK4.2+Ad or L := QK4.2+Ad+3>. 6

To define an appropriate game we need an increasing sequence (Sn)n≥1 of
subsets of the set of constants S∗ such that S1 and all the sets (Sn+1−Sn) are
infinite.

Definition 6.6 Let Γ0 be an S1-small L-place. The selective game SGL(Γ0)
is defined as in 4.8, with the some changes.

1. The length of the game is ω2.
2. A position after the turn α = ω ·m+n is a rich network hα over a finite

tree Fα = (Wα, Rα) such that Wα ⊆ ω and all L-places hα(u) are Sm+1-small.
3. Every tree Fω·m is an irreflexive singleton 0, h0(0) = Γ0.

6 The method also works for the logic QS4.2 (its completeness was first proved in [2]).
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4. If α = ω ·m + n, the player ∀ has the same two options for the move
α + 1 as in definition 4.8: selecting a defect or a query for an insert in hα. A
response of ∃ is also described in 4.8; it yields a network hα+1 ≥ hα.

5. A limit move α = ω · (m + 1) of the player ∀ is just waiting for the
response of ∃. For the response ∃ should construct the limit network h∗α over
F ∗α := (W ∗α, R

∗
α), where

W ∗α :=
⋃
n

Wω·m+n, R
∗
α :=

⋃
n

Rω·m+n, h
∗
α(u) :=

⋃
n≥k

hω·m+n(u) for u ∈Wω·m+k;

then she should choose an Sm+2-small L-place Γα such that h∗α(u)RLΓα for
any u ∈W ∗α. The resulting position would be the network hα : 0 7→ Γα.

6. The player ∃ wins if the play is of length ω2 or if ∀ cannot make one of
his moves.

In this game a position, at which ∀ cannot make the next move, may occur
only at the stage 0 if �⊥ ∈ Γ0. In fact, otherwise at every non-limit stage we
have 3> ∈ hα(0) and also 3> ∈ hα(u) for any u 6= 0 (since �3> ∈ Γ0 by
lemma 6.2 and hα(0)RLhα(u)); so ∀ can select a defect.

An ω2-play generates a sequence of networks h∗ω ≤ h∗ω·2 ≤ . . ..
The resulting network h+ is then defined as the sum

∑
m∈ω h

∗
ω·(m+1). So

dom(h+) = F+ = (W+, R+) :=
∑
m∈ω F

∗
ω·(m+1) (the ordered sum), i.e.,

W+ :=
⋃
m≥1

W ∗ω·m × {m}, (x,m)R+(y, l) iff (m < l ∨m = l & xR∗ω·my),

and

h+(x,m) := h∗ω·m(x) for x ∈W ∗ω·m.

One can easily see that h+ is really a network. In fact, it coincides with h∗ω·m
on each component. To show that (x,m)R+(x, l) implies h+(x,m)RLh

+(y, l)
for m < l, it is sufficient to consider the case l = m+ 1. In this case we have

h+(x,m) = h∗ω·m(x)RLh
∗
ω·(m+1)(0) = h+(0,m+ 1)RLh

+(y,m+ 1).

Lemma 6.7 ∃ has a winning strategy in SGL(Γ0).

Proof. For non-limit moves use lemmas 4.5, 4.7 with an extra observation that
the networks can be always kept rich by choosing new constants.

For a limit move α = ω · (m+ 1) a response of ∃ also exists. In fact, F ∗α has
the root 0, so h∗α(0)RLh

∗
α(u) for any u ∈W ∗α, u 6= 0. All these L-places h∗α(u)

are Sm+1-small.
We claim that the theory

Σ :=
⋃
{�−h(u) | u ∈W ∗α, u 6= 0}

is L-consistent.
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In fact, otherwise the set

S := �−h(u1) ∪ . . . ∪�−h(un)

is L-inconsistent for some finite n. Then there exist α = ω ·m + k such that
u1, . . . , un ∈ domh∗α. The network h∗α is finite and rich, so by lemma 6.5
there exists Θ such that h(ui)RLΘ for every i. So Θ contains S, which is a
contradiction.

Note that the set of constants of Σ is Sm+2-small, so this theory can be
extended to an Sm+2-small L-place Γα. It follows that h∗α(u)RLΓα for any
u ∈W ∗α, u 6= 0, and h∗α(0)RLΓα by transitivity.

Lemma 6.8 If Γ0 is not an endpoint in VML, then there exists a play of
SGL(Γ0) of length ω2 generating a network h+ such that F(h+) � L and for
any u, for any Dh+(u)-sentence A

M(h+), u � A iff A ∈ h+(u).

Proof. Similar to lemma 4.10. Such a play is provided by the winning strategy
of ∃ used against the following strategy of ∀.

At the initial position F0 = (0,∅) and h0(0) = Γ0.
The further strategy for ∀ will be the same as in lemma 4.10 for every

ω-sequence of moves ω ·m+ 1, ω ·m+ 2, . . ..
So we fix an enumeration of the countable set ω × ω, and an enumeration

of ω × Φ, where Φ is the set of all Sm+1-sentences.
An odd move (ω ·m+n+ 1) of ∀ chooses the first new (for this sequence of

moves) pair (u,A), which is a defect in hω·m+n. An even move (ω ·m+ n+ 1)
of ∀ chooses the first new (again for this sequence) pair (u, v) ∈ ω × ω, which
is a query for an insert in hω·m+n.

Let ∃ apply her winning strategy (lemma 6.7). We claim that the resulting
network h+ satisfies the statement of lemma 6.8.

In fact, the equivalence

u � A iff A ∈ h+(u)

is again checked by induction. In the case A = �B ‘if’ follows easily, since h+

is a network.
For ‘only if’ suppose A 6∈ h+(u), u = (x,m), x ∈ W ∗ω·m. Then the defect

(u,3¬B) appears as some move ω ·m + n of ∀, and by the strategy of ∃ we
obtain v ∈ R+(u) such that ¬B ∈ h+(v). Then v 6�B by IH, so u 6�A.

The density of F+ in every its component F ∗ω·m is provided by even moves.
For the points u = (x,m), v = (y,m′) in different components (m < m′) we
have uR+v, and there is always an intermediate point — any point accessible
from u in the same m-th component.

F+ is confluent, since the points (x,m), (y,m′) with m ≤ m′ both see the
root (0,m′ + 1) of a later component.

Theorem 6.9 The logics QK4.2+Ad, QK4.2+Ad+3> are strongly Kripke
complete.
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Proof. As above, either an L-place Γ0 is an endpoint in VML or by lemma
6.8 we can construct M(h+) satisfying Γ0.

Theorem 6.10 The logics QK4.2, QK4.2 + 3> are strongly Kripke com-
plete.

Proof. By applying the same method as in the previous theorem. The game
SGL(Γ0) is the same as in definition 6.6, but now at non-limit moves ∀ can
only select defects. An analogue of lemma 6.7 still holds, so we can construct
an appropriate network h+.

Theorem 6.11 The logics QK4.2 + Ad2, QK4.2 + 3> + Ad2 are strongly
Kripke complete.

Proof. We can use the same method. Now definition 6.6 changes for even
moves — they are queries for 2-inserts (cf. definition 5.4 for n = 2).

Then the resulting frame F(h+) is 2-dense: the 2-density of each component
is guaranteed by even moves, and points in a later component F ∗ω·m have a
common predecessor, the root (0,m).

7 Final remarks

Axiomatizing modal predicate logics of specific frames is usually a nontrivial
problem. In particular, we can be interested in predicate logics of relativistic
time. The only clear case is the following.

Theorem 7.1 Let F be the Minkowski lower halfspace with the causal future
relation: aRb iff a signal can be sent from a to b. Them ML(KF ) = QS4.

Proof. Every cone in F can be mapped p-morphically onto the infinite reflexive
binary tree IT2 [6]. It is also well-known that ML(KIT2) = QS4 (cf. [3],
section 6.4). Hence the claim follows.

However, the method does not work for the logic of chronological future.
Its propositional version was axiomatized in [7], this is Λ = K4.2 +Ad2 +3>.
It is hardly probable that QΛ fits for the predicate case, and we do not know
how to play a game constructing a chronological order on the Minkowski plane.

Also note that our method is inapplicable to the case of constant domains.
Moreover, the corresponding logic L′ := QK4Ad+Ba, where

Ba := ∀x�P (x) ⊃ �∀xP (x)

is the Barcan axiom, may be Kripke incomplete. In fact, incompleteness is
known for the logic QKAd + 3>+Ba (cf. [4]), and it probably extends to L′

(although the proof from [4] does not fit for L′, because of transitivity).

I would like to thank an anonymous referee for very useful comments on
the first version of this paper
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