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Abstract

It is well-known that every quantified modal logic complete with respect to a first-
order definable class of Kripke frames is recursively enumerable. Numerous examples
are also known of “natural” quantified modal logics complete with respect to a class
of frames defined by an essentially second-order condition which are not recursively
enumerable. It is not, however, known if these examples are instances of a pattern,
i.e., whether every recursively enumerable, Kripke complete quantified modal logic
can be characterized by a first-order definable class of frames. While the question
remains open for normal logics, we show that, in the context of quasi-normal logics,
this is not so, by exhibiting an example of a recursively enumerable, Kripke complete
quasi-normal logic that is not complete with respect to any first-order definable class
of (pointed) frames.

Keywords: first-order modal logic, recursive enumerability, Kripke completeness,
first-order definability

1 Introduction

Some important (first-order) quantified modal logics are based on propositional
logics characterized by classes of frames defined by essentially second-order con-
ditions on their accessibility relations. Among them are the quantified provabil-
ity logics QGL (Quantified Gödel-Löb) and QGrz (Quantified Grzegorczyk),
as well as their “linear” counterparts QGL.3 and QGrz.3; quantified coun-
terparts QPDL, QCLT, and CTL∗ of propositional logics PDL, CTL, and
CTL∗; quantified epistemic logics with the common knowledge operator; and
the quantified logic of finite Kripke frames.
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A Kripke complete propositional modal logic can be extended to a (first-
order) quantified one in essentially two ways. Given a propositional logic L
complete with respect to a class of frames C, we can either consider the set
of quantified formulas true on all frames from C, or alternatively, add to L,
considered as a logical calculus, axioms and inference rules of the classical first-
order logic. If class C is defined by an essentially second-order condition, then
in either case, we obtain quantified logics with undesirable properties. If we
consider the set of quantified formulas true on all the frames of a propositional
logic with essentially second-order Kripke semantics, we obtain logics that are
not recursively enumerable, and thus cannot be represented as logical calculi—
this holds, for example, for logics of frames with the condition of non-existence
of infinite ascending chains, such as QGL, QGrz, QGL.3, and QGrz.3 [4];
for logics of frames where one binary relation is the reflexive and transitive
closure of another, such as QPDL and QCLT [7]; and for quantified logics of
finite Kripke frames [5]. If, on the other hand, we consider extending such a
propositional logic with classical first-order axioms and rules of inference, we
obtain logics that are Kripke incomplete, i.e., are not complete with respect
to any class of Kripke frames,—the proofs for QGL, QGrz, QGL.3, and
QGrz.3 can be found in [3], [4]; similar arguments apply to all the other logics
mentioned above.

It would thus appear that quantified extensions of propositional logics with
essentially second-order Kripke semantics are either Kripke incomplete or not
recursively enumerable. In other words, Kripke completeness with respect to
semantics with essentially second-order conditions and recursive enumerability
do not seem to sit well together for quantified modal logics. Whether this is
indeed so has, however, not been established. More precisely, it has not been
established whether every recursively enumerable, Kripke complete quantified
modal logic can be characterized by a class of frames defined by a classical
first-order condition. We note here that the converse is known to be true, i.e.,
every quantified modal logic Kripke complete with respect to a class of frames
defined by a classical first-order condition is recursively enumerable,—this is a
straightforward consequence of the fact that such a logic can be embedded into
the classical first-order logic through the so-called standard translation (see,
e.g., [2]).

For normal logics, the above question still remains open. In the present
paper, we show that for logics that are not required to be normal, i.e., closed
under necessitation, the answer is negative,—there do exist quasi-normal quan-
tified modal logics that are both recursively enumerable and Kripke complete,
but are not complete with respect to any first-order definable class of (pointed)
frames.

The paper is structured as follows. In section 2, we briefly introduce quanti-
fied modal logic and the associated Kripke semantics. In section 3, we present
an example of a recursively enumerable, Kripke complete quasi-normal logic
not complete with respect to any first-order definable class of pointed frames.
We conclude in section 4.
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2 Quantified modal logic

A (first-order) quantified modal language contains countably many individual
variables; countably many predicate letters of every arity; Boolean connectives
∧ and ¬; a modal connective 2; and a quantifier ∀. Formulas as well as the
symbols ∨, →, ∃, and 3 are defined in the usual way.

For every formula ϕ, we denote by md(ϕ) the modal depth of ϕ, which is
defined inductively, as follows:

md(P (y1, . . . , yn)) = 0;
md(ϕ1 ∧ ϕ2) = max{md(ϕ1),md(ϕ2)};

md(¬ϕ1) = md(ϕ1);
md(∀xϕ1) = md(ϕ1);
md(2ϕ1) = md(ϕ1) + 1.

Modal formulas can be interpreted using Kripke semantics. A (Kripke)
frame is a tuple F = 〈W,R〉, where W is a non-empty set (of worlds) and R is
a binary (accessibility) relation on W . A predicate (Kripke) frame is a tuple
FD = 〈W,R,D〉, where 〈W,R〉 is a frame and D is a function from W into a set
of non-empty subsets of some set (the domain of FD), satisfying the condition
that wRw′ implies D(w) ⊆ D(w′). We call the set D(w) the domain of w. If
a predicate frame satisfies the condition that wRw′ implies D(w) = D(w′), we
refer to it as a frame with constant domains.

A (Kripke) model is a tuple M = 〈W,R,D, I〉, where 〈W,R,D〉 is a pred-
icate Kripke frame and I is a function assigning to a world w ∈ W and an
n-ary predicate letter P an n-ary relation I(w,P ) on D(w). We refer to I as
the interpretation of predicate letters with respect to worlds in W .

An assignment in a model is a function g associating with every individual
variable y an element of the domain of the underlying frame.

The truth of a formula ϕ at a world w of a model M under an assignment
g is inductively defined as follows:

• M, w |=g P (y1, . . . , yn) if 〈g(y1), . . . , g(yn)〉 ∈ I(w,P );

• M, w |=g ϕ1 ∧ ϕ2 if M, w |=g ϕ1 and M, w |=g ϕ2;

• M, w |=g ¬ϕ1 if M, w 6|=g ϕ1;

• M, w |=g 2ϕ1 if wRw′ implies M, w′ |=g ϕ1, for every w′ ∈W ;

• M, w |=g ∀y ϕ1 if M, w |=g′
ϕ1, for every assignment g′ such that g′ differs

from g in at most the value of y and such that g′(y) ∈ D(w).

Note that, given a Kripke model M = 〈W,R,D, I〉 and w ∈ W , the tu-
ple Mw = 〈Dw, Iw〉, where Dw = D(w) and Iw(P ) = I(w,P ), is a classical
predicate model.

We say that ϕ is true at world w of model M and write M, w |= ϕ if
M, w |=g ϕ holds for every g assigning to free variables of ϕ elements of D(w).
We say that ϕ is true in M and write M |= ϕ if M, w |= ϕ holds for every
world w of M. We say that ϕ is true on predicate frame FD and write FD |= ϕ
if ϕ is true in every model based on FD. We say that ϕ is true on frame F and
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write F |= ϕ if ϕ is true on every predicate frame of the form FD. Finally, we
say that a formula is true on a class of frames if it is true on every frame from
the class.

Let M = 〈W,R,D, I〉 be a model, w ∈ W , and a1, . . . , an ∈ D(w).
Let ϕ(y1, . . . , yn) be a formula whose free variables are among y1, . . . , yn.
We write M, w |= ϕ[a1, . . . , an] to mean M, w |=g ϕ(y1, . . . , yn), where
g(y1) = a1, . . . , g(yn) = an.

Sometimes, semantics based on pointed frames, rather than frames, is use-
ful. A pointed Kripke frame is a tuple (F, w0), where F= 〈W,R〉 is a Kripke
frame and w0 ∈W is a distinguished world. A formula ϕ is true on a pointed
frame (F, w0) if it is true at w0 in every model based on F.

A (first-order) quantified (quasi-normal) modal logic is a set L of formulas
containing the validities of the classical first-order logic as well as the formula
2(p → q) → (2p → 2q), and closed under predicate substitution, modus
ponens, and generalization (if ϕ∈L, then ∀xϕ∈L). A normal modal logic is
a quasi-normal modal logic L that is closed under necessitation (if ϕ∈L, then
2ϕ∈L).

If C is a class of frames, then the set of formulas true on every frame in C
is denoted by L(C). If C is a class of pointed frames, then the set of formulas
true at the distinguished world of every frame in C is denoted by rL(C). If C is
a class of frames, then L(C) is a normal modal logic; if C is a class of pointed
frames, then rL(C) is a quasi-normal modal logic.

A quasi-normal logic is sound and complete with respect to a class of pointed
frames C if L = rL(C) for some class of pointed Kripke frames. We say that
a quasi-normal logic is Kripke complete if it is sound and complete with some
class of pointed frames. Analogously for normal logics and Kripke frames.

A class C of (pointed) frames is first-order definable if there exists a first-
order formula ϕ (for frames, ϕ contains no free variables; for pointed frames, a
single free variable), containing binary predicate letters R and = (and no other
predicate letters), such that F∈C if, and only if, ϕ is true in F considered as a
classical model (for pointed frames, the free variable of ϕ is interpreted as the
distinguished world).

Remark 2.1 If a class C of pointed Kripke frames is first-order definable, say,
by formula ϕ(x), then C considered as a class of frames—i.e., disregarding
the roots of the frames—is also first-order definable, namely by the formula
∃xϕ(x).

The following proposition is well-known (see, for example, [2], Proposition
3.12.8).

Proposition 2.2 Let C be a first-order definable class of frames. Then, L(C)
is recursively enumerable.

A similar proposition holds for pointed frames.

Proposition 2.3 Let C be a first-order definable class of pointed frames. Then,
rL(C) is recursively enumerable.
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In the strict sense, the converses of Proposition 2.2 and Proposition 2.3 are
known not to be true, as some recursively enumerable logics are not complete
with respect to any class of frames (i.e., are Kripke incomplete), and thus,
not complete with respect to any first-order definable class. Examples for
normal logics have been mentioned in the Introduction. An example of a Kripke
incomplete quasi-normal logic that is not normal is the quantified counterpart
of Solovay’s logic (see, e.g., [1]), which is obtained from the syntactically defined
QGL by adding the axiom 2p → p and removing the requirement of closure
under necessitation. A more interesting question, therefore, as noted above, is
whether every recursively enumerable Kripke complete logic is a logic of a first-
order definable class of frames. The main contribution of this paper is to show,
which we do in the next section, that this is not so for quasi-normal logics—
namely, we exhibit an example of a recursively enumerable Kripke complete
quasi-normal logic that is not complete with respect to any first-order definable
class of pointed frames.

3 Construction of the main counterexample

In this section, we present an example of a quasi-normal quantified modal logic
L0 that is recursively enumerable, Kripke complete, but not complete with
respect to any first-order definable class of frames. The logic L0 is defined as
the set of formulas true at the distinguished world of the following pointed
Kripke frame F. Let

W0 = {w0
0};

Wk+1 = Wk ∪{wk+1
0 , . . . , wk+1

k+1}.

For every n∈N, let Rn be a binary relation on Wn such that, for every
wk

m, w
t
s ∈Wn,

wk
mRnw

t
s ⇐⇒ t= k+ 1 and m= 0.

Let Fn denote the frame 〈Wn, Rn〉. Finally, let F= 〈W,R〉, where

W =
∞⋃
i=0

Wi, R =
∞⋃
i=0

Ri.

The frame F is depicted in Fig. 1. We define L0 to be the set of formulas that
are true at w0

0 in F; thus, L0 is a quasi-normal modal logic. By definition, L0

is complete with respect to a class of pointed Kripke frames (namely, the class
containing a single frame, F). We next show that L0 is recursively enumerable
and not complete with respect to any first-order definable class of frames.

To show that L0 is recursively enumerable, we effectively embed it into the
classical first-order logic with equality QClE.

First, notice that, since Fn is a finite frame, we can effectively construct a
classical first-order formula Fn describing Fn,—all we need to do is say what
worlds exist in Fn, that those worlds are pairwise distinct, that there are no
other worlds in Fn, and describe which worlds are related by the accessibility
relation.
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Fig. 1. The pointed frame F

Now, let R and D be binary, and W unary, predicate letters not occurring
in ϕ; intuitively, W (x) means “x is a world”, D(x, y) means “y is an element
of the domain of world x”, and R(x, y) means “y is accessible from x”. Note
that w0

0 is the only world in Fn that satisfies the property Root(x), defined as
follows:

Root(x) = ∀y ¬R(y, x).

Let STx(ϕ) be the standard translation of the formula ϕ into classical first-order
logic, defined as follows:

STx(P (y1, . . . , ym)) = P ′(y1, . . . , ym, x);
STx(ϕ1 ∧ ϕ2) = STx(ϕ1) ∧ STx(ϕ2);

STx(¬ϕ1) = ¬STx(ϕ1);
STx(2ϕ1) = ∀y (W (y)∧R(x, y)→STy(ϕ1));
STx(∀y ϕ1) = ∀y (¬W (y) ∧D(x, y)→STx(ϕ1)),

where the arity of P ′ is one greater than P , letter P ′ is distinct from letter Q′

if, and only if, P is distinct from Q, and all the newly introduced individual
variables are distinct from the previously used ones. Let M be the formula

M = ∃xW (x)∧∀x [W (x)→∃y D(x, y)]∧
∧∀x∀y∀z [W (x)∧W (y)∧¬W (z)∧D(x, z)∧R(x, y)→D(y, z)].

Intuitively, M describes general properties of predicate Kripke frames.
Lastly, for an arbitrary classical first-order formula with equality θ, induc-

tively define the formula θ∗ as follows:

(x= y)∗ = (x= y);
(R(x, y))

∗
= R(x, y);

(θ1 ∧ θ2)
∗

= θ∗1 ∧ θ∗2 ;
(¬θ1)∗ = ¬θ∗1 ;

(∀x θ1)
∗

= ∀x (W (x)→ θ∗1).

Lemma 3.1 For every closed modal formula ϕ with md(ϕ) = n, the following
holds:

(Fn, w
0
0) |=ϕ ⇐⇒ M ∧F ∗n→∀x [W (x)∧Root(x)→STx(ϕ)]∈QClE.
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Proof. It is well-known (see, e.g., [2]) that the standard translation has the
property that M, w |= ϕ if, and only if, M |= STx(ϕ)[w]. Thus, if (Fn, w) is a
(finite) pointed frame, then (Fn, w) |= ϕ if, and only if, M |= STx(ϕ)[w] holds
for all first-order models “based on” Fn (i.e., their domain and the interpreta-
tion of the binary relation R coincides with the set of worlds and the accessi-
bility relation, respectively, of Fn). In turn, the latter holds if, and only if, the
formula M ∧F ∗n→∀x [W (x)∧Root(x)→STx(ϕ)], which claims that STx(ϕ)
holds provided we evaluate it in a model that looks like Fn with x assigned to
the “root” node, is valid. 2

Proposition 3.2 L0 is recursively enumerable.

Proof. As, for a modal formula ϕ with md(ϕ) =n,

(F, w0
0) |=ϕ ⇐⇒ (Fn, w

0
0) |=ϕ,

it immediately follows from Lemma 3.1 that, given an arbitrary n ∈ N, the set
of theorems of L0 with modal depth n is recursively enumerable. Thus, using
the standard technique from recursion theory, we can recursively enumerate all
the theorems of L0. 2

It remains to show that L0 is not complete with respect to any first-order
definable class of pointed Kripke frames. To prove this, we need an auxiliary
Lemma, whose statement is a slight modification of a result from [5].

Lemma 3.3 Let L be a normal modal logic that is sound and complete with
respect to a class C of frames that satisfies the following conditions:

(i) if F∈C, then every world in F can see only finitely many worlds;

(ii) for every n ∈ N, there exist F= 〈W,R〉 in C and w∈W such that w can
see at least n worlds.

Then, L is not recursively enumerable.

Proof. Let ϕ be an arbitrary classical first-order formula and let T be a unary,
and E a binary, predicate letter not occurring in ϕ. Let Congr be a formula
saying that E is a congruence relation with respect to all predicate letters in ϕ
and let

A = ∀x3T (x)∧∀x∀y (3(T (x)∧T (y))→ E(x, y)).

Let QClFin be the classical first-order logic of finite models and let
ϕ∗ = (Congr∧A)→ ϕ. We can then show that

ϕ∈QClFin ⇐⇒ ϕ∗ ∈L.

Indeed, assume that ϕ /∈ QClFin; that is, there exists a classical model M
with a finite domain D = {a1, . . . , an} such that M 6|= ϕ. We construct a
model M∗, based on a frame from C, falsifying ϕ∗. By assumption, C contains
a frame F= 〈W,R〉 such that some w0 ∈W can see at least n worlds; select
exactly n out of those and bijectively map them to the elements of D; let the
world āi correspond to element ai, where i ∈ {1, . . . , n}. Let D∗(w) = D for
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every w ∈ W . Let M, w |= T [ai] if, and only if, w = āi, for i ∈ {1, . . . , n}. Let
I∗(w,E), for every w ∈ W , be the identity relation and let all the predicate
letters in ϕ be defined in every w ∈ W exactly as they are defined in M. It is
then easy to check that M∗, w0 6|= ϕ∗. As M∗ is based on a frame from C, we
conclude that ϕ∗ /∈ L.

Assume, on the other hand, that ϕ∗ /∈ L; that is, there exists a frame
F = 〈W,R〉 in C, w0 ∈W , and a model M∗ based on F such that M∗, w0 6|= ϕ∗.
We construct a finite classical model M falsifying ϕ. By assumption, w0 can see
only finitely many worlds, say w1, . . . , wn. As M∗, w0 |= Congr ∧ A, for every
b ∈ D∗(w0), we have w′ |=T [b] for at least one w′ accessible from w0, and for
every w accessible from w0, T holds for the elements of only one equivalence
class with respect to E. As w0 can see only finitely many worlds, D∗(w0)
contains only finitely many equivalence classes a1, . . . , an with respect to E.
Let D = {a1, . . . , an} and let I(P ) = I∗(w0, P ) for every predicate letter P
occurring in ϕ. Let M = 〈D, I〉. As M 6|= ϕ and D is finite, ϕ /∈ QClFin.

As QClFin is not recursively enumerable [6], the statement of the Lemma
follows.

2

Corollary 3.4 Let C be a class of frames satisfying the following conditions:

(i) if F∈C, then every world in F can see only finitely many worlds;

(ii) for every n ∈ N, there exist F= 〈W,R〉 in C and w∈W such that w can
see at least n worlds.

Then, C is not first-order definable.

Proof. Immediately follows from Lemma 3.3 and Proposition 2.2. 2

Proposition 3.5 Let C be a class of pointed frames such that L0 is sound and
complete with respect to C. Then, C is not first-order definable.

Proof. Let rL(C) be the set of formulas true at the distinguished world of
every frame in C. By the statement of the proposition, rL(C) =L0. For every
i, n∈N+ such that i6n, let

αi
n = 3(p1 ∧ . . . ∧ pi−1 ∧¬pi ∧ pi+1 ∧ . . . ∧ pn).

For every n∈N, let

βn = 2n¬(α1
n+3 ∧ . . . ∧αn+3

n+3).

As from every world wn
k of F, we can reach either 0 (if k > 0) or n+ 2 (if k= 0)

worlds, we have (F, w0
0) |=βn and, thus, βn ∈L0. As rL(C) = L0, for every

pointed frame (F′, w)∈C, we have (F′, w) |=βn. Therefore, each world in F′

reachable from w in n steps can see no more than n+ 2 worlds. As F′ is a
pointed frame with distinguished world w, every world in F′ can thus see only
finitely many worlds, and hence C satisfies the first condition of Corollary 3.4.

On the other hand, (F, w0
0) 6|=2βn; hence, 2βn /∈ L0, and thus C contains a

pointed frame (F′, w) such that (F′, w) 6|=2βn. Therefore, F′ contains a world
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w′ that can see at least n+ 3 worlds, and hence C satisfies the second condition
of Corollary 3.4.

Thus, in view of Corollary 3.4, C considered as a class of frames is not
first-order definable. Then, in view of Remark 2.1, C considered as a class of
pointed frames is not first-order definable, either, which concludes the proof.2

4 Discussion

We have exhibited an example of a quasi-normal quantified modal logic L0 such
that (1) L0 is recursively enumerable, (2) L0 is Kripke complete, and (3) L0 is
not complete with respect to any class of pointed frames defined by a classical
first-order condition. The logic L0 was defined as the logic of a particular
pointed Kripke frame, F; it is not, however, an isolated example. Recall that
the frame F is a tree where, for every n ∈ N, the nth level contains n + 1
worlds wn

0 , . . . , w
n
n+1 and where the world wn

0 can see all the worlds on level
n + 1. This construction can be generalized to use an arbitrary computable
function f not bound above by any n ∈ N so that the nth level of the tree
contains f(n) worlds, thus giving us countably many quasi-normal quantified
logics satisfying properties (1) through (3). We could also work with logics
whose Kripke semantics involves constant, rather than varying, domains.

The most important question for future research remains the one posed at
the beginning of the present paper—whether there exists a normal quantified
modal logic satisfying properties (1) through (3). It is not clear whether the
technique used in the present paper is transferable to normal logics.
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