Kripke Completeness of Strictly Positive Modal Logics Over Meet Semilattices with Operators

Stanislav Kikot

Birkbeck College, UK Institute for Information Transmission Problems, Russia

This talk is about a connection between various consequence relations for the fragment of propositional multi-modal logic that comprises implications $\sigma \to \tau$, where σ and τ are strictly positive modal formulas constructed from propositional variables using conjunction \wedge , unary diamond operators \diamond_i , and the constant 'truth' \top . We call such formulas SP-*implications* and we call sets of SP-implications SP-*theories*. These formulas can be interpreted on Kripke frames as well as on meet semilattices with unary monotone operators (SLOs). This gives rise to the following problem:

(completeness) identify SP-theories P that are complete in the sense that the two consequence relations $P \models_{\mathsf{Kr}}$ and $P \models_{\mathsf{SLO}}$ coincide, where for any SP-implication ι ,

 $P \models_{\mathsf{Kr}} \iota$ iff ι is valid in every Kripke frame validating P; $P \models_{\mathsf{SLO}} \iota$ iff ι is valid in every SLO validating P.

SP-implications are Sahlqvist, so for every modal formula φ and SP-theory P

 $P \models_{\mathsf{Kr}} \varphi$ iff $\varphi \in \mathbf{K} + P$ iff $\varphi \approx \top$ is valid in every BAO validating P, (1)

where BAO stands for *Boolean algebras with normal and* \lor -additive unary operators. Note that, by (1), the completeness problem is equivalent to

- (conservativity) the purely algebraic problem of whether the consequence relation $P \models_{\mathsf{BAO}}$ is conservative over $P \models_{\mathsf{SLO}}$ with respect to SP-implications, that is, $P \models_{\mathsf{SLO}} \iota$ iff $P \models_{\mathsf{BAO}} \iota$, for any ι ; and also to
- (axiomatisability) the problem whether P axiomatises the SP-implicational fragment of the normal modal logic $\mathbf{K} + P$ using the syntactic Birkhoff-type calculus corresponding to the algebraic consequence relation $P \models_{\mathsf{SLO}}$ (in other words, the problem whether P has a modal companion).

I am going to present two methods for proving completeness for SP-theories together with numerous sufficient conditions for their applicability. Note that incomplete SP-theories are easy to find, with two simplest ones being $\{\Diamond p \to p\}$ and $\{\Diamond p \to \Diamond q\}$.

This talk is based on a recent joint work with Agi Kurucz, Yoshihito Tanaka, Frank Wolter and Michael Zakharyaschev accessible at https://arxiv.org/pdf/1708.03403.pdf