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Abstract

We consider the language of Dynamic epistemic logic with knowledge operators, com-
mon knowledge operators and dynamic operators based on event models. First, we
prove that the model checking remains PSPACE-complete when common knowledge
is added. Second, we prove that the satisfiability problem is 2EXPTIME-complete.
We further address the model checking and the satisfiability problem for succinct
inputs: we prove that complexities remain unchanged.
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1 Introduction

Dynamic epistemic logic (DEL) [29] is a framework for reasoning about knowl-
edge and complex actions (public announcement, public actions, private an-
nouncements, etc.). On top of that, common knowledge (everybody knows
that everybody knows that...) is a condition for agents to act simultaneously
in distributed systems [14] , in games [2] and more generally in artificial intel-
ligence and computer science ([20], p. 45).

In this paper, we tackle both the model checking problem and the satisfia-
bility problem of DEL with common knowledge. Both notions are relevant and
have their advantages and drawbacks (see [16]).

• Model checking. It consists in checking whether a specification is true
in a specific multi-agent system, described here by means of a Kripke
model. Model checking allows for solving epistemic planning [5] but in its
bounded version. For instance, one may check that formula ϕplan? defined
by 〈{e1, e2}〉nCGp (there is a plan of length n made up of actions e1 or
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EL mc: P-c [23] 1

sat: PSPACE-c [18], [15]

DEL mc: PSPACE-c ([1],[6], [27])
sat: NEXPTIME-c [1]ELCK mc: P-c [23]

sat: EXPTIME-c [15]

DELCK mc: PSPACE-c (Th. 3.1)
sat: 2EXPTIME-c (Th. 4.1 and Th. 5.1)

Figure 1. Complexities for the model checking (mc) and the satisfiability (sat) prob-
lem.

e2 that leads to the common knowledge of p). Model checking has low
complexity in general but we only reason about one fully-described state.

• Satisfiability problem. It consists in checking consistency of a specifica-
tion. It allows for solving bounded planning/games not in only one initial
state but in a class of initial states, described by a formula ϕinit. Typi-
cally, we check that ϕinit → ϕplan? is valid (by proving that the negation
of it is unsatisfiable). Unfortunately, compared to model checking, the
satisfiability problem is more computationally expensive in general.

The use of complex formulas is relevant for checking bounded games in-
stead of bounded plans, by alternating diamond and box dynamic operators
(〈{e1, e2}〉[{e3, e4}]Cp). Furthermore, we can handle bounded implicit coordi-
nated plans [12], where each agent ai executing an event ei knows that the
rest of the plan will be correct, in the following sense: a formula of the form
Ka1〈e1〉Ka2〈e2〉 . . . ϕG where ϕG is a goal formula, is true.

The exact complexities were first investigated in [1] but the problem was left
open for common knowledge. Other papers address the model checking problem
but always without the common knowledge operator ([6], [27]). Figure 1 shows
the complexities of Dynamic epistemic logics (EL: epistemic logic without
common knowledge, ELCK: epistemic logic with common knowledge, DEL:
dynamic epistemic logic without common knowledge, DELCK: dynamic epis-
temic logic with common knowledge). Our paper solves open problems for the
complexity of DELCK:

• We show that model checking remains in PSPACE when formulas contain
common knowledge operators. The algorithm follows the same principle
than the one given in [1]. Interestingly, common knowledge is treated
via the divide-and-conquer paradigm [13]. Compared to [1], we also treat
postconditions in event models. The contribution is a neat analysis of the
complexity when event model update and common knowledge are mixed.

• We provide a double-exponential algorithm for the satisfiability problem of
DELCK by using the method Pratt developed for Propositional Dynamic

1 Hardness was proven for the EX, AX-fragment of temporal logic CTL, which is technically
the same logic as epistemic logic K.
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Logic [22].

• We show that the satisfiability problem with common-knowledge is actu-
ally 2EXPTIME-hard, already for public actions, and no constraint on the
frames, by providing a reduction from the halting problem of an alternat-
ing Turing machine running in exponential space (see [7]).

• Succinctness is a key concept in complexity theory (see [21]) and is central
in symbolic model checking. As shown in [10], a succinct representation
for event models is also relevant for modeling complex actions such as
attention-based announcements. Therefore, succinctness is even relevant
for the satisfiability problem where formulas contain event models pre-
sented in a succinct way. We show that our complexity results for model
checking and for the satisfiability problem still hold for succinct represen-
tations of Kripke models and event models. Incidentally, we simplify the
formalism introduced in [10].

The results are proven for arbitrary models but they also hold for S5 models,
in which epistemic relations are equivalence relations. In Section 2, we define
the logic DELCK and alternating Turing machines, which are relevant for the
proofs on the other sections. In Section 3 we prove that the model checking
problem against DELCK is Pspace-complete. In Sections 4 and 5 we prove
that the SAT problem of DELCK is in 2-Exptime and is 2-Exptime-hard
respectively. In Section 6 we prove that the same complexity results hold when
the input models are represented succinctly. Finally, in Section 7 we discuss
related work and conclude.

2 Background

2.1 Background on dynamic epistemic logic

We consider a countable set of atomic propositions AP and a finite set of agents
Ag. We recall that the language of epistemic logic with common knowledge
(ELCK), denoted by LELCK, is defined by the following BNF:

ϕ ::= > | p | ¬ϕ | (ϕ ∨ ϕ) | Kaϕ | CGϕ

with p ∈ AP , a ∈ Ag, G ⊆ Ag. Formula Kaϕ reads as “agent a knows
that ϕ holds” and CGϕ reads as “ϕ is common knowledge among the agents
of G”. As usual, we define the abbreviations (ϕ1 ∧ϕ2) for ¬(¬ϕ1 ∨¬ϕ2), K̂aϕ
for ¬Ka¬ϕ and ĈGϕ for ¬CG¬ϕ.

Definition 2.1 A Kripke model M = (W, (Ra)a∈Ag, V ) is defined by a non-
empty set W of epistemic worlds, epistemic relations (Ra)a∈Ag ⊆W ×W and
a valuation function V : W → 2AP .

We write RMa for the epistemic relation for agent a in model M. A pair
(M, w) is called a pointed epistemic model. The left part of Figure 2 shows a
pointed epistemic model M, w with two words w and u. As usual, formulas
are interpreted in pointed epistemic models and we defineM, w |= ϕ (ϕ is true
in M, w) by induction on ϕ (Boolean cases are omitted):
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E , e

e : pre : p
post : p ← ⊥ f : pre : >

post : /

b

a a, b

w : {p}

u : ∅

a, b

a, b

a, b

(w, e) : ∅ (w, f) : {p}

(u, f) : ∅

b

b

a

a, b

a, b

a, b

M, w M⊗E , (w, e)

Figure 2. Example of product.

• M, w |= p if p ∈ V (w);

• M, w |= Kaϕ if for all u ∈W,wRau implies M, u |= ϕ;

• M, w |= CGϕ if for all u ∈ W,wRGu implies M, u |= ϕ where RG is the
transitive and reflexive closure of

⋃
a∈GRa.

As usual, we define ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2 and
ϕ1 ↔ ϕ2 = (ϕ1 → ϕ2)∧ (ϕ2 → ϕ1). The dynamic of the system is modeled by
event models. An event model is like a Kripke model but epistemic worlds are
replaced by events labeled by a precondition and a postcondition.

Definition 2.2 An event model E = (E, (REa)a∈Ag, pre, post) is defined by a
non-empty set of events E, epistemic relations (REa)a∈Ag ⊆ E×E, a precondition
function pre : E → LELCK and a postcondition function post : E × AP →
LELCK.

A pair (E , e) with e ∈ E is called a pointed event model, where e represents
the actual event. A pair (E ,E0) with E0 ⊆ E is called a multi-pointed event
model, where E0 represents the set of possible actual events. Pointed event
models correspond to deterministic actions and multi-pointed event models
correspond non-deterministic actions. We may confuse (E , e) and (E , {e}).

Example 2.3 The top of Figure 2 shows an example of a pointed event model
with two events e and f . The actual event is e but agent b imagines event f
as the sole possible event.

Definition 2.4 Let M = (W, (Ra)a∈Ag, V ) be a Kripke model. Let E =
(E, (REa)a∈Ag, pre, post) be an event model. The product of M and E is
M⊗E = (W ′, (Ra)′, V ′) where:

• W ′ = {(w, e) ∈W × E | M, w |= pre(e)};
• (w, e)R′a(w′, e′) iff wRaw

′ and eREae
′;

• V ′((w, e)) = {p ∈ AP | M, w |= post(e, p)}.

Example 2.5 Figure 2 shows the product operation.
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An event is e is said executable in a world w if its precondition pre(e) holds
in w. The language LDELCK extends LELCK with dynamic modalities and is
defined by the following BNF:

ϕ ::= > | p | ¬ϕ | (ϕ ∨ ϕ) | Kaϕ | CGϕ | 〈E ,E0〉ϕ

with p ∈ AP , a ∈ Ag. Formula 〈E ,E0〉ϕ reads as “There is an executable
event in E0 and ϕ holds after having executed it”. In [29], the event models can
feature any formula of LDELCK, not just LELCK. The results of the paper still
hold for this definition, but for the sake of simplicity, we consider event models
to not feature dynamic constructions in preconditions and postconditions. We
define the dual construction [E ,E0]ϕ for ¬〈E ,E0〉¬ϕ, that is read as “For all
executable events in E0, ϕ holds after having executed it”.

Definition 2.6 We extend the definition M, w |= ϕ to LDELCK with:

• M, w |= 〈E ,E0〉ϕ if there exists e ∈ E0 s.t. M, w |= pre(e) and M ⊗
E , (w, e) |= ϕ.

A formula ϕ is satisfiable iff there exists a pointed epistemic model M, w
such that M, w |= ϕ. In the sequel, we suppose w.l.o.g. that, given a formula
ϕ, there is a common E and dynamic operators 〈E ,E0〉 and [E ,E0] are written
〈E0〉 and [E0] respectively. The idea is to set E to be the disjoint union of
all occurrences of event models in the formula. E.g. formula 〈E1, e1〉Kap ∧
〈E2, e2〉Kaq is rewritten as 〈e1〉Kap ∧ 〈e2〉Kaq with a common event model E
defined as the disjoint union of E1 and E2.

In the sequence, we take the abbreviation w−→e for (w, e1, . . . , en) and M
−→
E

for M, E1, . . . , En. We write M
−→
E , w−→e |= ϕ instead of M ⊗ E1 ⊗ · · · ⊗

En, (. . . (w, e1), . . . , en) |= ϕ. A sequence of events −→e is executable in w if

w−→e is in M
−→
E . The empty sequence of events is denoted by ε. The empty

sequence is of course executable in all worlds.

2.2 Background on alternation

In Sections 3 and 5, we will make use of alternation [8]. Formally, an alternating
Turing machine is a tuple M = (Q,Σ,Γ, δ, q0, qacc, qrej , g) where:

Q is the finite set of states of M ; Σ is the finite input alphabet; Γ is the
finite tape alphabet with Σ ⊆ Γ; δ ⊆ Q×Γ×Q×Γ×{−1,+1} is the transition
function; q0 ∈ Q is the initial state, qacc ∈ Q the accepting state and qrej ∈ Q is
the rejecting state; g : Q→ {∃,∀} is the quantification function for the states.

We suppose that only qacc and qrej are end states (i.e. have no outgoing
transitions to other states). The execution of the machine is controlled by two
players ∃ and ∀. When the current state q is existential (g(q) = ∃) (resp.
universal (g(q) = ∀)), player ∃ (resp. ∀) chooses the transition to apply. A
configuration is accepting if player ∃ has a winning strategy for reaching the
accepting state. An input word is accepted by the machine if the corresponding
initial configuration is accepting. Chandra and Stockmeyer [8] defined complex-
ity classes with respect to alternating Turing machines. E.g. Aptime is the
class of decision problems decided by an alternating Turing machine in polyno-
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mial time (the height of the computation tree is polynomial in the size of the
input). They proved that Aptime = Pspace and Aexpspace = 2-Exptime
[8].

The original definition of alternating Turing machine [8] also allows for
negative states. When the current state q is negative, the acceptance condition
is negated. We can get rid off negative states without changing the definition
of complexity classes (see [17], Lecture 7, Lemma 7.3, p. 47).

3 Model checking

The model checking for DELCK, given a pointed Kripke model M, w, a for-
mula Φ of LDELCK, asks to decide whether M, w |= Φ. In this section, we
prove the following theorem.

Theorem 3.1 The model checking problem for DELCK is Pspace-complete.

Hardness comes directly from the Pspace-hardness of the model checking
of DEL without common knowledge [1] (actually, it is already Pspace-hard for
single-pointed event models [6], but actually even when the Kripke model is S5
and event models are S5 and single-pointed [27]). For the Pspace-membership,
Figure 3 provides the pseudo-code of an alternating Turing machine that de-
cides the model checking problem for DELCK in polynomial time. In the
pseudo-code in Figure 3, existential (∃)(∃)(∃) and keyword or (resp. universal (∀)(∀)(∀)
choices and keyword and) corresponds to existential (resp. universal) states.
Keyword not corresponds to a negated state. The upper bound is proven since
Pspace = Aptime. The machine starts by calling mc(M, w,Φ). The specifi-
cations of the procedures mc, inval in, rel and rel∗ (see Figure 3) are given
in the following proposition:

Proposition 3.2 For all formulas ϕ, for all Kripke models M, for all se-

quences of event models
−→
E , for all worlds w−→e , u

−→
f of M

−→
E , for all agents a,

for all groups of agents G, for integers i that are powers of two,

mc(M
−→
E , w−→e , ϕ) is accepting iff M

−→
E , w−→e |= ϕ,

inval(p, w−→e ,M
−→
E ) is accepting iff p ∈ V (w−→e ),

in(w−→e ,M
−→
E ) is accepting iff w−→e ∈M

−→
E ,

rel(w−→e , u
−→
f , a,M

−→
E ) is accepting iff (w−→e , u

−→
f ) ∈ Ra,

and rel∗(w−→e , u
−→
f ,G, i,M

−→
E ) is accepting iff (w−→e , u

−→
f ) ∈

⋃
j≤i
(⋃

a∈GRa
)j

.

Proof The proposition is straightforwardly proven by induction since the
pseudo-code directly reflects the semantics of DELCK. The only difficulties
are:

• The induction works on the quantities given in Figure 3 and thanks to the
following Lemma 3.4.

•
⋃
j≤BM,Φ

(⋃
a∈GRa

)j
=
(⋃

a∈GRa
)∗

since the number of worlds in M
−→
E

in bounded by BM,Φ;

• The design of Procedure rel∗ relies on the divide and conquer paradigm.

For checking that u
−→
f is reachable by at most i

⋃
a∈GRa-steps from w−→e ,



Charrier and Schwarzentruber 109

procedure mc(M
−→
E , w−→e , ϕ) |M

−→
E |+ |ϕ|

case ϕ = p: inval(p,M
−→
E , w−→e )

case ϕ = (ϕ1 ∨ ϕ2): (∃)(∃)(∃) choose i ∈ {1, 2}; mc(M
−→
E , w−→e , ϕi)

case ϕ = ¬ψ: not mc(M
−→
E , w−→e , ψ).

case ϕ = Kaψ:

(∀)(∀)(∀) choose u
−→
f ∈M

−→
E

(∃)(∃)(∃) not in(u
−→
f ,M

−→
E ) or not rel(w−→e , u

−→
f , a,M

−→
E )

or mc(M
−→
E , u
−→
f , ψ)

case ϕ = 〈E0〉ψ:

(∃)(∃)(∃) choose e ∈ E0; (∀)(∀)(∀) mc(M
−→
E , w−→e , pre(e))

and mc(M
−→
E :: E , w−→e :: e, ψ).

Case ϕ = CGψ:

(∀)(∀)(∀) choose u
−→
f ∈M

−→
E

(∃)(∃)(∃) not in(u
−→
f ,M

−→
E ) or not rel∗(w−→e , u

−→
f ,G,BM,Φ,M

−→
E )

or mc(M
−→
E , u
−→
f , ψ)

procedure inval(p, w−→e ,M
−→
E ) |M

−→
E |

case
−→
E = ε: if p ∈ V (w) then accept else reject

case
−→
E =

−→
E ′::E and w−→e = w−→e ′::e: mc(M

−→
E ′, w−→e ′, post(e, p))

Procedure in(w−→e ,M
−→
E ) |M

−→
E |

case
−→
E = ε: accept

case
−→
E =

−→
E ′::E and w−→e = w−→e ′::e: (∀)(∀)(∀) mc(M

−→
E ′, w−→e ′, pre(e))

and in(w−→e ′,M
−→
E ′)

procedure rel(w−→e , u
−→
f , a,M

−→
E ) |M

−→
E |

case
−→
E = ε: if (w, u) ∈ RMa then accept else reject

case
−→
E =

−→
E ′ :: E , −→e = −→e ′ :: e and

−→
f =

−→
f ′ :: f :

(∀)(∀)(∀) rel(w−→e ′, u
−→
f ′, a,M

−→
E ′) and if (e, f) ∈ REa then accept

else reject

procedure rel∗(w−→e , u
−→
f ,G, i,M

−→
E ) |M

−→
E |+ log i

case i = 1: if u
−→
f = w−→e then accept else (∃)(∃)(∃) choose a ∈ G;

rel(w−→e , u
−→
f , a,M

−→
E )

case i ≥ 2:

(∃)(∃)(∃) choose v−→g ∈M
−→
E

(∀)(∀)(∀) in(v−→g ,M
−→
E ) and rel∗(w−→e , v−→g ,G, i/2,M

−→
E ) and

rel∗(v−→g , u
−→
f ,G, i/2,M

−→
E )

Figure 3. Model checking procedures for DELCK (in gray: quantities associated to
each procedure call).
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we guess an intermediate world v−→g ∈M
−→
E and check that v−→g is reachable

by at most i
2

⋃
a∈GRa-steps from w−→e and that u

−→
f is reachable by at most

i/2
⋃
a∈GRa-steps from v−→g .

2

Better than giving a tedious and straightforward proof of Proposition 3.2,
let us explain the algorithm on the example of mc(M, w, 〈E ,E0〉¬CGp).The
procedure starts by choosing e in E0. Then, we check that both pre(e) holds
in w and that ¬CGp holds in we. Checking that ¬CGp holds in we leads to a
negated configuration: we negate the fact that CGp holds in we. It is followed

by a universal choice of u
−→
f ∈M

−→
E . For each choice of uf ∈ME , we progress

in an existential configuration that checks that either uf is not a world ofME ,
either wf is not reachable from we by at most BM,Φ

⋃
a∈GR

ME
a -steps or that p

in uf . Checking that p holds in uf is performed by the call of inval(p, uf,ME),
which itself check that the postcondition post(e, p) holds in u.

The quantities associated to each procedure call used for the proofs by
induction require a careful definition. They depend on the input (M, w,Φ) of
the model checking problem. Let BM,Φ be the smallest power of two that is

greater than the number of worlds in Kripke model M
−→
E where

−→
E is the list

of all event models appearing in the formula Φ.

Definition 3.3 |M|, |E| and |ϕ| are defined by mutual induction. First, |M|
(resp. |E|) are the number of bits to encode Kripke model M (resp. event
model E). In particular, |E| takes into account the memory needed to store

the precondition and the postcondition functions. Then, |M
−→
E | denotes |M|+∑n

i=1 |Ei|. Second |ϕ| denotes the length of ϕ, defined by induction as usual
except for the two following cases:

• |〈E ,E0〉ϕ| := |E|+ 1 + |ϕ|; • |CGϕ| := log2BM,Φ + 1 + |ϕ|.

Lemma 3.4 The quantities given in gray in Figure 3 are strictly decreasing
along a branch of the computation tree.

Proof Let us discuss the following cases (the other ones are left to the reader):

• The quantity for mc(M
−→
E , w−→e , CGϕ) is |M

−→
E | + |CGϕ| + 1 = |M

−→
E | +

log2BM,Φ + |ϕ| + 1 and is strictly greater than the quantity for

rel∗(w−→e , u
−→
f ,G,BM,Φ,M

−→
E ), which is |M

−→
E |+ log2BM,Φ.

• The quantity for mc(M
−→
E , w−→e , 〈E ,E0〉ϕ) is |M

−→
E | + |E| + ϕ| + 1 and

is strictly greater than the quantity for mc(M
−→
E , w−→e , pre(e)), which is

|M
−→
E |+ |pre(e)| < |M

−→
E |+ |E|.

• The quantity for inval(p, w−→e ,M
−→
E ) is |M

−→
E ′E| = |M

−→
E ′| + |E| and is

strictly greater than the quantity for mc(M
−→
E ′, w−→e ′, post(e, p)) which

|M
−→
E ′|+ post(e, p).

2
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Proposition 3.5 mc(M, w,Φ) is executed in polynomial time in the size of
the input (M, w,Φ).

Proof The time is bounded the height of the computation tree rooted in
mc(M, w,Φ). Thanks to Lemma 3.4, the height of the computation treeis

bounded by the quantity associated to mc(M
−→
E , w−→e , ϕ), that is |M| + |ϕ|.

This quantity is not the size of the input (M, w,Φ): for instance the weight
of CG-modalities is log2BM,Φ. However this quantity is polynomial in the the
size of the input (M, w,Φ).

At each node of the computation tree, the computation performed in a

single node is polynomial. For instance, the instruction ‘(∀)(∀)(∀) choose u
−→
f ∈M

−→
E ’

consists in choosing each bit of u
−→
f , thus is polynomial in the size of the input.

To conclude, the execution time on each branch in the computation tree is
polynomial. 2

4 Upper bound of SAT

The satisfiability problem for DELCK, given a DELCK-formula Φ, asks to
decide Φ is satisfiable. In this section, we prove the following upper bound
result:

Theorem 4.1 The satisfiability problem of DELCK is in 2-Exptime.

In order to prove Theorem 4.1, we will proceed as for proving that Propo-
sitional Dynamic Logic is in Exptime and use the method of Pratt [22], but
we will simulate tableau method rules of the same kind that in [1]. To ease the
reading, we will w.l.o.g consider that formulas are in negative normal form, that
is, negations are in front of atomic propositions, and we will use all connectives
∨, ∧, Ka, K̂a, Ca, Ĉa, 〈e〉, [e]. The negation of a formula ϕ is the formula in
negative normal form obtained by negating all connectives, e.g. the negation of
CG((K̂a¬q) ∧ 〈e〉p) is formula ĈG(Kaq ∨ [e]¬p). The dynamic modal depth of
a formula Φ, noted dmd(Φ), is the modal depth by only counting the dynamic
operators. E.g. the dynamic modal depth of Ka[e][e′]p ∧ [e′]CGq is 2.

Definition 4.2 The closure 2 of formula Φ is the set Cl(Φ) that contains el-
ements in−→e and (−→e , ψ) where −→e is a sequence of events in E of length at
most dmd(Φ), and ψ is a subformula (or negation) of Φ or a subformula (or
negation) of a precondition or postcondition in E, under the condition that
dmd(ϕ) + |−→e | ≤ dmd(Φ).

The intended meaning of in−→e is that the current world survives the sequence
of events −→e . The intended meaning of (−→e , ϕ) is that formula ϕ is true after
having executed the sequence of events −→e .

2 The definition given here contains ‘too many’ formulas. We could have given a much more
thorough definition, but the definition would have been more complicated to understand and
the closure would have had the same asymptotic size.
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Example 4.3 Let us take the event model E of Figure 2
and formula Φ := [e]Ka[f ]q. The closure Cl(Φ) is the set
{inε, ine, inef , inf , infe, (ε,Φ), (ε,Ka[f ]q), (e,Ka[f ]q), . . . }.

Proposition 4.4 The size of the closure of Φ is exponential in |Φ|.

Proof There is a direct correspondence between a subformula of Φ and a
node in the syntactic tree of Φ. Therefore, the number of subformulas of Φ is
in O(|Φ|). The number of possible ψ is then bounded by O(|Φ|) (the size of Φ
is the number of memory cells needed to write down Φ, all the information of
the event model E included). The number of possible sequences −→e is |E|dmd(Φ),
thus exponential in |Φ|. 2

A Hintikka set (see Definition 4.5) is a maximal subset of Cl(Φ) that is
consistent with respect to propositional logic (points 2-4), common knowledge
reflexivity (point 5), dynamic operators (point 6-7), executability of events
(point 8-9) and postconditions (point 10).

Definition 4.5 A Hintikka set h over Cl(Φ) is a subset of Cl(Φ) that satisfies:
(1) If (−→e , ϕ) ∈ h then in−→e ∈ h;
(2) (−→e , ϕ ∧ ψ) ∈ h iff (−→e , ϕ) ∈ h and (−→e , ψ) ∈ h;
(3) (−→e , ϕ ∨ ψ) ∈ h iff (−→e , ϕ) ∈ h or (−→e , ψ) ∈ h;
(4) If in−→e ∈ h then (−→e , ϕ) ∈ h xor (−→e ,¬ϕ) ∈ h 3 ;
(5) If (−→e , CGϕ) ∈ h then (−→e , ϕ) ∈ h;
(6) (−→e , 〈E0〉ϕ) ∈ h iff there exists e ∈ E0 s.t. in−→e ::e ∈ h and

(−→e ::e, ϕ) ∈ h; 4

(7) (−→e , [E0]ϕ) ∈ h iff for all e ∈ E0, we have in−→e ::e ∈ h implies
(−→e ::e, ϕ) ∈ h;

(8) inε ∈ h;
(9) in−→e ::e ∈ h iff in−→e ∈ h and (−→e , pre(e)) ∈ h;
(10) (−→e ::e, p) ∈ h iff (−→e , post(e)(p)) ∈ h.

Point (1) means that if a Hintikka set contains (−→e , ϕ), then it means that
−→e should be executable (in the intuitive world represented by the Hintikka
set). Point (4) means that Hintikka sets are consistent. Point (5) says that
if ϕ is common knowledge then ϕ is true. Points (6) and (7) mimics the
truth condition given in Definition 2.6. Point (8) means the empty sequence
of events ε is always executable. Point (9) means that −→e ::e is executable iff −→e
is executable and the precondition of e holds after having executed −→e . Point
(10) means that the truth of atomic proposition p after a non-empty sequence
−→e ::e of events is given by the truth of its postcondition before the last event e.

Now, we define the following structure that takes care of the consistency of
the box modalities Ka, CG.

4 Formula ¬ϕ is the negation of ϕ in the following sense: the negative normal obtained by
negating all connectives in ϕ.
4 We explicitly mentioned in−→e ::e ∈ h for uniformity with the semantics. However, note that
it is implied by point (1).
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function isDELCK-sat?(Φ)
Compute the Hintikka structure H := (H, (Ra)a∈Ag) for Φ
repeat

Remove any Hintikka set h from H if
(K̂a) either there is (−→e , K̂aψ) ∈ h but no h′ ∈ Ra(h) with

(−→e ′, ψ) ∈ h with −→e →a −→e ′ and in−→e ′ ∈ h′;
(ĈG) or there is (−→e , ĈGψ) ∈ h but no path h = h0 →a1 h1 . . . hk

and no path −→e = −→e (0) →a1 −→e (1) · · · →ak −→e (k)
such that

(−→e (k)
, ψ) ∈ hk and a1, . . . , ak ∈ G and in−→e (i) ∈ hi.

until no more Hintikka sets are removed
if there is still a Hintikka set in H containing (ε,Φ) then accept
else reject

endFunction

Figure 4. Algorithm for the satisfiability problem of a DELCK-formula Φ.

Definition 4.6 The Hintikka structure for ϕ is H := (H, (Ra)a∈Ag) where:

• H is the set of all possible Hintikka sets over Cl(Φ);

• hRah
′ if the two following conditions holds:

(Ka) for all (−→e ,Kaϕ) ∈ h we have (−→e ′, ϕ) ∈ h′ for all −→e ′ such that −→e →a

−→e ′ and in−→e ′ ∈ h′,
(CG) for all (−→e , CGϕ) ∈ h we have (−→e ′, CGϕ) ∈ h′ for all −→e ′ such that

−→e →a −→e ′ with a ∈ G and in−→e ′ ∈ h′.
The size of the Hintikka structure is double-exponential in |ϕ|, since there

are a double-exponential number of different Hintikka sets. We finish by giv-
ing the algorithm isDELCK-sat? (see Figure 4) whose repeat...until loop
takes care of the consistency of diamond modalities, K̂a, Ĉa. The algorithm
starts with the full Hintikka structure. Points (K̂a), (Ĉa) remove worlds where
K̂aψ and Ĉaψ have no appropriate ψ-successor. We write −→e →a −→e ′ if for all
(−→e i,−→e

′
i) ∈ REa . Actually, the algorithm decides in double-exponential time

whether a DELCK-formula is satisfiable (Propositions 4.7 and 4.8).

Proposition 4.7 Algorithm isDELCK-sat? of Figure 4 runs in double-
exponential time in |Φ|.
Proof The computation of H can be performed by brute-force: enumerate all
subsets of Cl(Φ) and discard those which do not satisfy all conditions (1)-(10)
of Definition 4.5. Compute Ra according to Definition 4.6. The loop is repeated

at most the number of Hintikka sets in H, that is O(22|Φ|) times, since at least
one Hintikka set is removed or we exit the loop. Both tests (K̂a) and (ĈG)
can be performed by depth-first search algorithm running in polynomial time
in the size of the graph, that is of size double-exponential in |Φ|. 2

Proposition 4.8 Φ is DELCK-satisfiable iff isDELCK-sat? accepts Φ.

Proof (⇒) Let M, w such that M, w |= Φ. Given a world u, we note h(u)
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the Hintikka set obtained by taking in−→e if −→e is executable in u and (−→e , ψ) if
ψ holds in u,−→e . We show that no Hintikka set h(u) is removed from H. In
particular, h(w) is not removed, and contains (ε,Φ) so the algorithm isDELCK-
sat? accepts Φ.

(⇐) Suppose isDELCK-sat? accepts Φ. We construct a model M =
(W, (Ra)a∈Ag, V ) as follows:

• W is the set of Hintikka sets that remain in the structure at the end of
the algorithm;

• Ra is the relation for agent a at the end of the algorithm;

• V (h) = {p ∈ AP | (ε, p) ∈ h}.
The proof finishes by proving the following lemma:

Lemma 4.9 (truth lemma) The properties P(in−→e ) and P((−→e , ϕ)) defined be-
low hold:

• P(in−→e ): for all h ∈W , in−→e ∈ h iff −→e is executable in M, h;

• P((−→e , ϕ)): for all h ∈W , (−→e , ϕ) ∈ h iff M⊗E |−→e |, (h,−→e ) |= ϕ.

Proof The proof is performed by induction by assigning the following quanti-
ties: the quantity for in−→e is n|E|; the quantity for (−→e , ϕ) is n|E|+ |ϕ| where n
is the length of −→e , |E and |ϕ| are defined as in Definition 3.3, except that now
we use the traditional clause |CGϕ| := |ϕ|+ 1.

2

We conclude by applying the truth lemma (Lemma 4.9 to the Hintikka set
h that contains (ε,Φ) and we obtain that M, h |= Φ. 2

Remark 4.10 The 2EXPTIME upper bound also holds for the satisfiability
problem of DELCK in S5 Kripke models. We proceed as in [15] (p. 358). We
add the following clauses to definition 4.5:

(5’) If (−→e ,Kaϕ) ∈ h then (−→e , ϕ) ∈ h;

We add the following clause in the definition of Ra in Definition 4.6:

for all −→e →a −→e ′, if in−→e ∈ h and in−→e ′ ∈ h′ then (−→e ,Kaϕ) ∈ h iff
(−→e ′,Kaϕ) ∈ h′.

5 Lower bound of SAT

5.1 Reduction

The aim of this section is to prove the following theorem.

Theorem 5.1 The satisfiability problem of DELCK is 2-Exptime-hard.

Let us consider any 2-Exptime decision problem L. As Aexpspace =
2-Exptime [8], it is decided by an alternating Turing machine M that runs in
exponential space. W.l.o.g we suppose that all executions halt 5 and no state

5 If not, we add a double exponential counter to the machine and we abort the execution
after a double exponential number of steps.
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p∀, pwin

Control worlds ∼ computation tree skeleton Cell worlds ∼ Content of the tape
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. . .
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Figure 5. (Expected) Kripke model that represents the computation tree of M on
the input instance ω.

is a negated state. We will define a polynomial reduction tr from L to the
satisfiability problem of DELCK, that is tr will be computable in polynomial
time, and ω is a positive instance of L if and only if tr(ω) is a satisfiable
DELCK-formula.

The idea of tr(ω) is to enforce an expected form of a Kripke model as shown
in Figure 5 that represents the computation tree of M starting with ω on the
tape. The cursor of the machine remains in the N -first cell portion of the tape,
where N is exponential in |ω|. We define N0 = log2(N) for the rest of the
section. N0 is polynomial in |ω|.

We introduce two agents: agent ex for the transitions in the computation
tree and agent t for the linear structure of tapes. A configuration of the Turing
machine is represented by a sequence of worlds linked by agent t: one so-called
control world followed by cell worlds.

• The control world contains the type of the configuration: existential (resp.
universal) if p∃ (resp. p∀) is true. A special atomic proposition pwin tags
control worlds that correspond to winning configurations for player ∃.

• Cell worlds represent the cells of the tape and form a linear structure.
They are indexed by x from x = 0 (left-most cell) to x = N (right-most
cell). In each cell world, pa is true means that the corresponding cell
contains letter a ∈ Γ. A proposition of the form pq being true means that
the cursor is at that cell and the current state is q ∈ Q.

Besides atomic propositions p∃, p∀, pa, a ∈ Γ and pq, q ∈ Q, we also consider
the list of atomic propositions for the bits of the cell index x: x1, . . . , xN0

. We
also consider another such list for another cell index v: v1, . . . , vN0

. The index
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v will be used to compare cell worlds of tapes of a configuration and a successor
configuration different tapes during transitions.

(E i,Ei0)

ei

pre : >
post : vi ← >

t, ex

f i

pre : >
post : vi ← ⊥

t, ex

Figure 6: Multi-pointed event mod-
els (E i,Ei0).

The definition of tr(ω) needs
multi-pointed event models
(E i,Ei0) given in Figure 6 non-
deterministically and publicly choose
the ith bit of value v. We also con-
sider Boolean formulas x ≤ v, x = v,
x = v − 1 and finally Ktx = x + 1
(the value of Ktx0 . . .KtxN0

is equal
to x+ 1). We define the abbreviation
[choosev] = [E0,E0

0] . . . [EN0 ,EN0
0 ].

Technically, it corresponds to non-
deterministically choosing and
publicly announcing a value for v.

Definition 5.2 Formula tr(ω) is the conjunction of the formulas shown in
Table 1.

In formulas of Table 1, common knowledge operators Cex and Ĉex are used
to talk about any control world, while Ct and Ĉt talk about any cell world.

Importantly, notice that with DELCK, it is impossible to force the each
world to have exactly one successor. Thus in general, the expected Kripke
model is not as depicted in Figure 5. Instead, we ensure that cell worlds of
depth k have the value x = k. We use formula (ix) that imposes the value of x to
be the same in all successor cell worlds, and formula (x) saying that everywhere,
Ktx = x + 1. Formula (xi) states that only one pa is true in each cell world,
formula (xii) states that only one pq is true in some cell world, and formula
(xiii) states that if pq is true in a cell world, then no p′q is true in all the t-
successors. Formulas (xvii), (xviii) and (xix) define the initial tape. Transitions
are ensured by formulas (xiv) to (xvi). These formulas automatically ensure
that several cell worlds with the same index x have the same valuation over
x, pa, a ∈ Γ, pq, q ∈ Q.

Formulas that handle transitions use integer v to pinpoint a cell index in
the tape. It is used in formula (xiv) to tell that when the cursor is not in a cell
world, then the letter remains the same during any transition. It is also used in
formula (xv) to check the existence of all compatible transitions and in formula
(xvi) to check that all successor control worlds and their tapes correspond to
a transition.

Proposition 5.3 tr(ω) is satisfiable if and only if ω is a positive instance of L.

The lower bound given in Theorem 5.1 still holds for the variant of the
satisfiability problem where we require the model to be S5, that is, epistemic
relations, to be equivalence relations.
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Valuations for control worlds

(i) Cex(x = 0) x = 0 holds in all control worlds.

(ii)
Cex (p∃ ↔

∨
q|g(q)=∃ Ĉtpq)

∧ (p∀ ↔
∨
q|g(q)=∀ Ĉtpq)

p∀ and p∃ match the type of the state on the
tape.

(iii) Cex
(∧

a∈Γ ¬pa ∧
∧
q∈Q ¬pq

)
Every pa or pq is false.

Winning condition

(iv) Cex((Ĉtpqacc)→ pwin) If the current state is qacc the world is marked
as winning.

(v) Cex((Ĉtpqrej )→ ¬pwin) If the current state is qrej the world is marked
as losing.

(vi)
Cex((p∀ ∧ (Ct¬pqacc))
→ (pwin ↔ Kexpwin))

If the current state is not qacc and is uni-
versal, the world is marked as winning if all
successor worlds are marked as winning.

(vii)
Cex((p∃ ∧ (Ct¬pqacc))

→ (pwin ↔ K̂expwin))

If the current state is not qacc and is exis-
tential, the world is marked as winning if one
successor world is marked as winning.

Tape

(viii) CexKt(x = 0) The cell index of the left-most cell is 0.

(ix) CexKtCt
(∧N

i=0(Ktxi ∨Kt¬xi)
)

On any tape world, the value of x is the same
in all successors

(x) CexKtCt(Ktx = x + 1) On any tape world, the value of x is incre-
mented by 1 on all successors.

(xi) CexKtCt (⊕a∈Γpa) On any tape world, only one pa is true and
represent the current letter on the cell.

(xii) CexĈt (⊕q∈Qpq) On any tape, somewhere only one pq is true

(xiii) CexCt
∧
q∈Q

(
pq → Ct

∧
q′∈Q ¬pq′

)
Anywhere, if pq is true then no pq′ is true
anywhere on the rest of the tape.

Transitions
We define here ϕ(q,a,q′,b,d) = Ct((x = v → pb ∧ ¬pq) ∧ (x = v + d→ pq′))

(xiv)

[choosev]Cex
∧
a∈Γ Ĉt(

pa ∧
∧
q∈Q ¬pq ∧ x = v

)
→ KexCt(x = v → pa)

On the tape, if no pq is true and pa is true,
then at the same position on the successors’
tapes, pa is true.

(xv)

∧
(q,a,q′,b,d)∈δ[choosev](
Cex(Ĉt(pq ∧ pa ∧ x = v)

→ K̂exϕ(q,a,q′,b,d))
) If there is a transition it must be present on

the model.

(xvi)

[choosev]
∧
a∈Γ

∧
q∈Q Cex(

Ĉt(pq ∧ pa ∧ x = v)

→ Kex

∨
(q,a,q′,b,d)∈δ ϕ(q,a,q′,b,d)

) In every world, any ex-successor must corre-
spond to a transition.

Initial configuration

(xvii)
∧|ω|−1
i=0 Ct((x = i)→ pω(i))

The letters of the initial word are on the ini-
tial tape.

(xviii) Ct((x ≥ |ω|)→ p ) Cells of index |ω| are blank.

(xix) Ktpq0
Head in the left-most cell. Initially in the
initial state.

(xx) pwin The initial control world is winning.

Table 1
Clauses of DELCK-formula tr(ω) .
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6 Succinct models for Dynamic Epistemic Logic

We define the succinct models for DEL, i.e. succinct Kripke models and event
models. Such models were originally introduced in [9] and [10], but we propose
a simplification of the definitions compared to their original definitions. In
particular, the presentation of the new definitions of succinct Kripke models
and succinct event models are neater: their sets of atomic propositions and not
mixed as in [10].

6.1 Accessibility programs

Instead of describing the epistemic relations RaM and REa respectively in Kripke
models and event models in extension, we describe them in intention by using
accessibility programs. Technically, we use Dynamic Logic with Propositional
Assignments proposed by Herzig et al. ([3], [4],).

Definition 6.1 The syntax for accessibility programs is defined by the BNF
π ::= p←β | β? | (π;π) | (π ∪ π) where p ∈ AP , β is a Boolean formula.

Program p←β reads as “assign atomic proposition p to the truth value
of β”. Program β? reads as “test β”. Program π1;π2 reads as “execute π1

then π2”. Program (π1 ∪ π2) reads as “either execute π1 or π2”. We write
assign(p1, . . . , pn) = (p1←⊥ ∪ p1←>); . . . ; (pn←⊥ ∪ pn←>) for the program
setting arbitrary values to p1, . . . , pn.

Definition 6.2 The semantics of π is the binary relation over valuations de-
fined by induction on π as follows, where w and u are valuations:

• w
p←β−−−→ u if (u = w\{p} and w 6|= β) or (u = w ∪ {p} and w |= β);

• w
β?−→ u if w = u and w |= β?;

• w
π1;π2−−−→ u if there exists a valuation v such that w

π1−→ v and v
π2−→ u;

• w
π1∪π2−−−−→ u if w

π1−→ u or w
π2−→ u;

6.2 Succinct Kripke models

From now on, we suppose that we have a set AP to define the formulas.

Definition 6.3 A succinct Kripke model is a tuple M = 〈APM, βM, (πa)a∈Ag〉
where APM ⊇ AP is a finite set of atomic propositions, βM is a Boolean
formula over APM, and πa is a program over APM for each agent a.

The Boolean formula βM succinctly describes the set of epistemic states.
Intuitively, each πa succinctly describes the accessibility relation →a for an
agent a. A pointed succinct Kripke model is a pair M, w where M =
〈APM, βM, (πa)a∈Ag〉 is a succinct Kripke model and w is a valuation satis-
fying βM.

Definition 6.4 Given a succinct Kripke model M = 〈APM, βM, (πa)a∈Ag〉,
the Kripke model represented by M, noted M̂(M) is the model
M = (W, (Ra)a∈Ag, V ) where W = {w ∈ V(APM) | w |= βM}; Ra ={

(w, u) ∈W 2 | w πa−→ u
}

; V (w) = w.
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Example 6.5 In the muddy children example [19], each child does not know
whether she is muddy or not, but knows the muddiness of the other children.
If ma is a proposition for “child a is muddy”, a succinct Kripke model is
M = 〈APM, βM, (πa)a∈Ag〉 with APM = {ma, a ∈ Ag}, βM = > and πa =
assign(ma). This representation is polynomial in the number of agents |Ag|
whereas the non-succinct Kripke model has exponential size in |Ag|.

Any Kripke model can be represented as a succinct Kripke model of poly-
nomial size in the worst case. To do so, we define a succinct Kripke model MM
representing the Kripke model M with respect to a set of propositions AP .

Definition 6.6 Let M = (W, (Ra)a∈Ag, V ) be a Kripke
model. We define the succinct Kripke model MM =
〈APM, βM, (πa)a∈Ag〉 where: APM = AP ∪ {pw | w ∈W};
βM = ∃!({pw | w ∈W})∧

∧
w∈W pw → desc(V (w)); πa =⋃

wRau
pw?; assign(APM); pu?.

Example 6.7 The Kripke model M from Figure 2 is modeled by the
succinct Kripke model MM = 〈APM, βM, (πa)a∈Ag〉 with APM =
{p, pw, pu}, βM = ∃!({pu, pw}) ∧ (pw → p) ∧ (pu → ¬p) and πa =⋃
w1,w2∈W pw1

?; assign(APM); pw2
?.

6.3 Succinct event models

We define succinct event models in the same spirit than succinct Kripke models.

Definition 6.8 A succinct event model is a tuple E =
〈APE , χE , (πa,E)a∈Ag, pre, post〉 where APE is a set of atomic proposi-
tions disjoint from AP ; χE is a propositional formula over APE characterizing
the set of events; πa,E is a program over APE for all a ∈ Ag; pre is a
propositional formula over APE ∪ LEL(AP) (meaning that any atom from
APE cannot be under the scope of a K or a C operator); For all p ∈ AP ,
post(p) is a propositional formula over APE ∪ LEL(AP).

Definition 6.9 Given a succinct event model E =
〈APE , χE , (πa,E)a∈Ag, pre, post〉, the event model represented by E, noted

Ê(E) is the model (E, (REa)a∈Ag, pre, post) on AP where E = {ve ∈
V(APE) | ve |= χ};REa = {(ve, ve

′) | ve
πa,E−−−→ ve

′}; pre(ve) = pre ∧ desc(ve);
post(ve, p) = post(p) ∧ desc(ve).

Definition 6.10 Let E = (E, (REa)a∈Ag, pre, post) be an event model on AP .
We define the succinct event model EE = 〈APE , χE , (πa,E)a∈Ag, pre, post〉 where
APE = {pe | e ∈ E}; χE = ∃!(APE); πa,E =

⋃
eREaf

pe?; pe ← ⊥; pf ← >;

pre =
∧
e∈E(pe → pre(e)); post(p) =

∧
e∈E(pe → post(e, p)).

6.4 Complexity of decision problems

Naturally, the pointed Kripke model is replaced by a pointed succinct Kripke
model in the model checking. Formulas contain dynamic modalities 〈E, β0〉
where E, β0 is a pointed succinct event model, instead of 〈E ,E0〉. This new
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language is called LsucDELCK. We translate a succinct formula ϕ ∈ LsucDELCK

into a formula τ(ϕ) as follows:

• τ(〈E, β0〉ϕ) := 〈Ê(E), {ve ∈ V(APE) | ve |= β0}〉τ(ϕ).

Interestingly, the upper complexities of both the model checking problem and
the satisfiability problem remain the same in the succinct case: the core reason
is that 2poly(n) × . . . 2poly(n)︸ ︷︷ ︸

n times

= 2poly(n). Technical details are omitted due to

space restriction.

7 Conclusion

Complexity results for dynamic epistemic logic with common knowledge was
left open since the first complexity results in 2013 [1]. In this paper, we proved
that the model checking of DELCK remains in Pspace, even for succinct
models. This result somehow justifies that BDD techniques are applicable for
solving the model checking problem of DELCK in practice, as done in the tool
DEMO [25].

We proved that the satisfiability problem of DELCK is 2-Exptime-hard.
Actually, we only need trivial preconditions, Boolean postconditions and multi-
pointed event models to obtain this lower bound. As a direct corollary, it
implies that the satisfiability problem of the logic defined in [30] that con-
tains knowledge, common knowledge operators, public assignments and non-
deterministic ∪ over programs is also 2-Exptime-hard. The fall in Pspace
of the logic of public announcement and public assignment given in [28] is to
due the absence of the common knowledge operator in their specification lan-
guage. There is a long avenue of research to classify fragments of DELCK and
evaluate the exact complexity of them. For instance, the exact of complexity
of DELCK where event models are non-ontic (no postconditions) is an open
question.

We also proved that the satisfiability problem of DELCK is in 2-Exptime.
The proof technique is an adaptation of Pratt’s technique for proving that
PDL is in Exptime. Actually DELCK required such a deep machinery and
more direct proofs (for instance via reduction axioms [26]) were not successful.
We could infer a tableau method from our adaptation of Pratt’s technique.
We claim that one of the tableau rule requires an unbounded number of non-
deterministic choices (actually exponential in the size of the input formula).
Unfortunately, as far as we know, generic available tableau method provers, as
Mettel2 [24] or Lotrec [11], only allows for a fixed number of non-deterministic
choice in a given rule and do not provide any mechanism for allowing tableau
rules with an unbounded number of non-deterministic choices.
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