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Abstract

Following the tradition of labelled sequent calculi for modal logics, we present a
one-sided, cut-free sequent calculus for the bimodal logic of subset spaces. In labelled
sequent calculi, semantical notions are internalised into the calculus, and we take care
to choose them close to the original interpretation of the system. To achieve this, we
introduce a variation of the standard method, considering structured labels instead
of simple tokens, in our particular case pairs of labels. With this new device, we can
formulate a calculus with extremely simple frame rules and good proof-theoretical
properties. The logical rules are invertible, structural rules are admissible. We show
the admissibility of cut and relate our system to the well-known Hilbert-style axioma-
tisation of the logic. Finally, we present a direct proof of completeness based on proof
search.

Keywords: proof theory, cut-free sequent calculus, labelled deduction, direct
completeness proof, logic of subset spaces.

1 Introduction
The logic of subset spaces SSL discussed here is a bimodal logic introduced in
[1] for formalising reasoning about points and sets. Its extension topologic can
be considered a refinement of Tarski’s and McKinsey’s topological interpreta-
tion [20,15] for the modal system S4. SSL is also called a logic of knowledge
and e↵ort. The relation to epistemic logic is investigated further in [17]. More
recently, an interpretation of the language of public announcement logic in sub-
set models was given [21]. Several extensions of the language of SSL have been
studied, for example the addition of an overlap operator as a third modality
[11] or announcement operators [2]. In the present work, however, we study
the original language and its meaning given by subset spaces.

Subset frames consist of a set X of points and a collection O of non-empty
subsets of X called opens. Worlds are pairs (x, u) where x is a point and u
is an open containing x. The first set k, l of SSL-modalities corresponds to
quantification over points in the same environment, while the second set 2,3
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refers to the worlds obtained by shrinking the environment of a fixed point
x. So the relation ◆ for opens determines the 23-reachability. A sound and
complete Hilbert style axiomatisation is presented in [1]. It combines S4-axioms
for 2,3 with S5-axioms for k, l and further axioms known as persistence for
literals and cross axioms. As S5 is contained as a subsystem, a corresponding
cut-free sequent calculus is not straightforward (see [19] for a discussion of the
case of S5), and the combination with a second set of modalities generates
further di�culties.

Labelled calculi provide not only a solution for S5 but also a general method
to construct sequent systems for modal logics, see [18,7]. In that approach, the
semantics is to a certain extent internalised into the calculus. The labels denote
worlds in a Kripke frame. The basic judgements of the calculus have the form
x : A or xRy which can be read as “A holds at x” or “y is reachable from x”,
respectively. In addition to the logical rules, one has frame rules that reflect
the conditions for the Kripke frames of the logic.

We want to define a labelled calculus in that style based on subset frames.
Corresponding to the structure of worlds in subset spaces, we use pairs (x, u)
of simple labels x, u in judgements (x, u) : A of our calculus and introduce
formal judgements for “(x, u) is a world” and “u can be shrunk to obtain
v”. 2 The frame rules of the calculus reflect basic properties of these relations.
From a semantic point of view, we generalise the class of models: the second
components of pairs need not be sets and relations W and R are included in
the frame, which have to satisfy some essential conditions but need not be
identical to 2 and ◆. We call the elements of this more general class of models
abstract subset spaces. As we keep the basic structure of pairs and the frame
conditions for W and R are satisfied by 2 and ◆, subset spaces are a special
case of abstract subset spaces, without any transformation of primitive notions.

Now the setting is di↵erent from the standard labelled systems but the
general strategy can be employed to develop a cut-free calculus. In contrast
to [18], we use a one-sided sequent system in the Schütte-Tait style. The
logical rules correspond to the right rules of a two-sided system, the dual left
rules are avoided. This cuts down the number of rules, although we retain all
modalities. The interpretation of the modal operators as explained above and
the conditions for abstract subset spaces determine the rules of the calculus.

As SSL does not have the finite model property w.r.t. subset spaces, the
class of cross axiom models has also been introduced in [1] and has been used for
the proof of the decidability. Alternatively to the approach presented here, we
could have chosen these as the starting point and applied directly the method
presented in [18], as all frame conditions satisfy the prerequisites. This leads to
a cut-free system for SSL ([6]), as validity in all subset spaces and validity in all
cross axiom models coincide but then the internalised semantics is significantly
di↵erent from the original one. Obviously, the argument that is formalised in
the deduction then uses the reachability relations instead of the notions given

2 More precisely for their negations, see below.
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by the models itself. More important, the frame rules are no longer regular
rule schemes. The accessibility relations in cross axiom frames must satisfy
the so-called cross condition. This can be rewritten to a geometric formula in
the sense of [18] but turning it into a proof rule in the natural way yields a
frame rule which — read from bottom to top — generates new worlds via the
involved eigenvariable.

In contrast to this, the requirements for abstract subset spaces are just clo-
sure conditions. Given any W0 ✓ X ⇥ O and R0 ✓ O ⇥ O, there is a least
extension to an abstract subset space (X,O,W,R) and this can be obtained
by a combination of standard relational operations (composition, inversion,
reflexive-transitive closure). The corresponding frame rules are very simple.
They are not subject to eigenvariable conditions. They could be readily re-
placed by a computation of this closure alternating with the logical rules or by
complex application conditions for the logical rules that refer to that closure.

We proceed as follows: In Section 2 we present some basics concerning the
logic of subset spaces and sequent calculi. Based on the model class of abstract
subset spaces presented in Section 3, we develop a labelled calculus LSSL-p
for SSL in Section 4. We show several proof-theoretic properties in Sections
5 and 6, in particular the invertibility of logical rules and the admissibility of
weakening, contraction and cut. Derivations in LSSL-p of the Hilbert axioms
from [1] are presented. Completeness, however, is proved directly in the style
of [13,12]. In contrast to the proof in [1], the argument in Section 7 shows
how to produce a derivation for valid formulas and yields a (in general infinite)
countermodel for non-valid formulas.

2 Preliminaries

2.1 The logic of subset spaces

Following [1], a subset frame is a pair X = (X,O) where X is a set of points and
O is a set of non-empty subsets of X called opens. We presuppose a fixed set
PV of propositional letters. The formulas of the logic of subset spaces are built
from the elements of PV using propositional connectives and the modalities
2,3,k, l where 2,3 are dual to each other and so are k, l. The value of a
propositional letter in a particular world is a truth value. For us, a valuation
for a subset frame is a mapping V : X ! (PV ! B) where B denotes the
set of Boolean truth values, and a subset space X = (X,O,V) consists of a
subset frame (X,O) and a valuation V for it. A world (x, u) consists of a point
x 2 X and an open u that contains it. The satisfaction relation |=X is given
by the usual interpretation of the propositional connectives plus the following
conditions for all (x, u) 2 X ⇥ O such that x 2 u and arbitrary formulas A:

x, u |=X kA i↵ y, u |=X A for all y 2 u
x, u |=X 2A i↵ x, v |=X A for all v 2 O such that x 2 v ✓ u
x, u |=X lA i↵ there exists y 2 u such that y, u |=X A
x, u |=X 3A i↵ there exists v 2 O such that x 2 v ✓ u and x, v |=X A
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Here x is a point and u an open such that x 2 u. Hence validity in a subset
frame is just validity in the corresponding Kripke frame (W, S,R) with the set
W := {(x, u) 2 X ⇥ O | x 2 u} of worlds and the accessibility relations

S := {((x, u), (y, u)) | x, y 2 X and {x, y} ✓ u 2 O}
R := {((x, u), (x, v)) | x 2 v ✓ u}

for 2,3 and k, l respectively.
Cross axiom frames and cross axiom models are introduced in [1] in order

to prove the decidability of subset space logic (also see [14] for a simplified
proof). A cross axiom frame (W, S,R) consists of a set W, an equivalence
relation S on W and a preorder R on W so that R; S ✓ S;R. Here and in
the sequel we use standard notation for operations on relations: “;” stands
for relational composition (not �), ·+ for the transitive closure and ·⇤ for the
reflexive-transitive closure. A cross axiom model (W, S,R,V) is a cross axiom
frame (W, S,R) together with a valuation V : W ! (PV ! B) so that V(w) =
V(w0) whenever (w,w0) 2 R. It can easily be checked that the transformation
for subset frames into Kripke models described above yields a cross axiom
frame. Extending this with the valuation V0 : W ! (PV ! B) given by
V0((x, u)) := V(x), we obtain a cross axiom model, in which the same formulas
are valid. 3

The reason for introducing cross axiom models as an auxiliary concept lies
in the fact that they enjoy the finite model property, in contrast to subset
spaces. In particular, this tells us that there are cross axiom models which are
not isomorphic to a Kripke frame induced by a subset space. A characterisation
of those cross axiom frames that are isomorphic copies of transformed subset
frames is presented by Heinemann in [10]. However, validity in all subset models
and validity in all cross axiom models coincide, similar for satisfiability. This
is a consequence of the fact that the Hilbert-system given below is sound w.r.t.
cross axiom models (and hence also w.r.t. subset spaces) and complete w.r.t.
subset spaces (and hence also w.r.t. cross axiom models).

The axioms of subset space logic, see Table 1, are given in [1]. The instances
of the axiom scheme (ca) are called cross axioms, and (pers) is the persistence
for literals. Furthermore, we have S5-axioms for k and S4-axioms for 2. The
rules of inference are modus ponens and the usual rules of necessitation for
2,k. We denote the (Hilbert style) deductive system given by the axioms and
rules in Table 1 by HSS.

In [1], the modalities 3, l (as well as _,!) are defined notions. There, 3A
stands for ¬2¬A, and lA stands for ¬k¬A. As the focus is on the modalities,
we prefer to keep all four of them as primitives, and reduce the number of
logical operators in a di↵erent way: negation on non-atoms and implication
are taken as defined. That means that ^,_ can be used freely in building a
formula, while ‘!’ is excluded and ‘¬’ restricted to the case of propositional
variables. This can also be understood as presupposing a second set of negative

3 For the more general case of abstract subset spaces, see 3.3.
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Axioms in the system HSS:
all substitution instances of tautologies of propositional logic
(P ! 2P ) ^ (¬P ! 2¬P ) (pers) for propositional letters P
k2A ! 2kA (ca)
kA ! (A ^ kkA) 2A ! (A ^22A)
k(A ! B) ! (kA ! kB) 2(A ! B) ! (2A ! 2B) lA ! klA

Rules :
A ! B A

B
A
2A

A
kA

Table 1
The system HSS - axioms and rules of the logic of subset spaces

literals ¬P,¬Q,¬P 0,¬Q, . . . equipped with a bijection ‘¬’, mapping positive
literals (i.e. propositional variables) to negative literals. This mapping is used
in the semantics of the language as well as in the logical axioms of the calculi.
Negation for non-atoms is given by

¬2A :⌘ 3¬A ¬3A :⌘ 2¬A ¬kA :⌘ l¬A ¬lA :⌘ k¬A
¬¬P :⌘ P ¬(A ^B) :⌘ ¬A _ ¬B ¬(A _B) :⌘ ¬A ^ ¬B

and A ! B stands for ¬A _ B. For one-sided sequent systems, a significant
simplification is achieved by using this defined negation for compound formulas.
It is a prerequisite for the GS-calculi in [9] and part of the Schütte-Tait-style,
which we will adopt for the calculus in Section 4.

2.2 One-sided labelled sequent calculi

As our starting point, we choose a propositional, one-sided sequent calculus in
the Schütte-Tait style where weakening and contraction are absorbed into the
logical rules, i.e. the propositional, cut-free part of the calculus GS3 in [9]:

(ax)
�, P,¬P

�, A �, B
(^)

�, A ^B
�, A,B

(_)
�, A _B

Here and in the sequel, sequents are multisets of formulas. A two-sided sequent
A1, . . . , Am ) B1, . . . , Bn corresponds to ¬A1, . . . ,¬Am, B1, . . . , Bn. Negri’s
system G3K [18] can readily be rewritten in the one-sided style. Originally,
the elements of sequents are relational atoms xRy or labelled formulas x : A,
where x, y are labels taken from a fixed set, A is a modal formula, and R is a
binary relation symbol that stands for the accessibility relation. Logical axioms
for the relational atoms are present but it is pointed out in [18] that they are
only needed for deriving properties of the accessibility relation. Hence they
can safely be removed. As a consequence, atoms tRs would be needed in the
original setting on the left side of sequents only. Correspondingly, they would
occur negated only in the one-sided system. So we can introduce relational
symbols R for the complement relation right from the beginning and avoid
negation. Now we obtain the system GS3K in Table 2. Here !(y) abbreviates
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(ax)
�, x : P, x : ¬P

�, x : A �, x : B
(^)

�, x : A ^B
�, x : A, x : B

(_)
�, x : A _B

�, xR y, y : A
(2) !(y)

�, x : 2A

�, xR y, x : 3A, y : A
(3)

�, xR y, x : 3A

Table 2
The system GS3K

the usual eigenvariable condition that y does not occur in the conclusion.
In [18] a general method for generating cut-free sequent calculi for modal

logics is presented. It applies to normal modal logics which are characterised by
universal axioms or, more generally, geometric implications as frame conditions.
The latter are formulas of the form 8x̄ (A ! B) where A,B are formulas
not containing 4 ! or 8. Geometric frame conditions can be transformed
schematically into left rules of the calculus. For example, the conditions for
S4 and S5 are universal formulas. Using R as a symbol for the accessibility
relation, they can be written as

(reflexivity) 8x (xRx) (S4,S5)
(transitivity) 8x8y8z (xRy ^ yRz ! xRz) (S4,S5)
(symmetry) 8x8y (xRy ! yRx) (S5)

which yield the rules:

xRx,� ) �
Ref

� ) �
xRz, xRy, yRz,� ) �

Trans
xRy, yRz,� ) �

yRx, xRy,� ) �
Sym

xRy,� ) �

By reformulating these for one-sided sequents we obtain

�, xRx
Ref

�

�, xR z, xR y, y R z
Trans

�, xR y, y R z

�, y R x, xR y
Sym

�, xR y

Adding the corresponding rules to GS3K, we obtain labelled systems for
S4 and S5. The two-sided versions of these systems, the general method, as
well as systems for further modal logics are studied in detail in [18].

3 Abstract subset spaces
We introduce a class of models which is slightly more general than subset spaces.
As in subset spaces, the worlds are pairs from a setX⇥O but O need not consist
of subsets of X. The relation W determines which pairs are indeed worlds. In
subset spaces this is fixed to be 2. Similar to subset spaces, the accessibility

4 In this context, negation is defined using !,?, hence also excluded from A,B.
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relation for k can be described as “equality of the second components” and
the accessibility relation for 2 is determined by a relation on O but the latter
relation need no longer be ◆.

Definition 3.1 An abstract subset frame (X,O,W,R) consists of sets X,O, a
relationW ✓ X⇥O and a preorder R ✓ O⇥O so thatW;R�1 ✓ W. An abstract
subset space (X,O,W,R,V) consists of an abstract subset frame (X,O,W,R)
and a valuation V : X ! (PV ! B).

Setting W = {(x, u) 2 X ⇥ O | x 2 u} and R = {(u, v) 2 O ⇥ O | v ✓ u}
turns every subset space into an abstract subset space. Choosing a set of
properties for the definition of abstract subset frames can be interpreted as
looking for a set of (simple and natural) axioms for 2,◆ that is su�cient for
our purpose. We use reflexivity and transitivity of ◆ as well as the obvious
8x 2 X8u, v 2 O (x 2 u ^ u ✓ v ! x 2 v). Antisymmetry of ◆ is simply not
needed.

The assignment of cross axiom models to subset spaces is generalised to the
case of abstract subset spaces in the straightforward way:

Definition 3.2 Let (X,O,W,R) be an abstract subset frame. The correspond-
ing accessibility relations Ŝ, R̂ are defined as follows:

Ŝ := {((x, u), (y, u)) | (x, u), (y, u) 2 W}
R̂ := {((x, u), (x, v)) | (x, u), (x, v) 2 W and (u, v) 2 R}

If V : X ! (PV ! B) is a valuation for that frame, then the mapping V̂ : W !
(PV ! B) is given by V̂(x, u) := V(x) for all (x, u) 2 W.

Lemma 3.3 Let (X,O,W,R) be an abstract subset frame. Then (W, Ŝ, R̂) is
a cross axiom frame. If furthermore V : X ! (PV ! B) is a valuation for that
abstract subset frame, then (W, Ŝ, R̂, V̂) is a cross axiom model.

Proof. Straightforward verification. We present the proof of the properties
which are most characteristic for cross axiom models.
Cross property : Let (x, u)R̂(y, v) and (y, v)Ŝ(z, w). Then x = y, v = w, (u, v) 2
R, and the pairs (x, u), (y, v), (z, w) are worlds in W. As W;R�1 ✓ W, we can
infer that (z, u) 2 W. Hence (x, u)Ŝ(z, u) and (z, u)R̂(z, v) = (z, w).
Persistence: Let (x, u), (y, v) 2 R̂. Then x = y, and we have V̂(x, u) = V(x) =
V(y) = V̂(y, v). 2

The validity of formulas in abstract subset spaces is defined as usual, us-
ing the accessibility relation Ŝ for k, l and R̂ for 2,3. Hence the use of k, l
amounts to quantification over worlds with the same second component, and
2,3 refer to all worlds with the same first and an R-reachable second compo-
nent. Furthermore, validity in an abstract subset space coincides with validity
in the induced cross axiom model. The soundness of HSS w.r.t. abstract
subset spaces is immediate from the soundness w.r.t. cross axiom models, and
completeness follows from completeness w.r.t. subset spaces. So the di↵erence
lies in the class of models, not in the set of valid sentences.
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Comparing abstract subset spaces with subset spaces, we find first that
they are conceptually close. Some specific choices, however, are replaced by
postulated properties, and this is part of the development of the rule set in
Section 4. Second, we observe that cross axiom models induced by abstract
subset spaces satisfy Heinemann’s conditions in [10] for isomorphic copies of
cross axiom models induced by subset spaces.

In contrast to subset spaces and cross axiom models, the requirements for
abstract subset spaces are simple closure conditions. Hence, given arbitrary
sets W0 ✓ X ⇥ O and R0 ✓ O⇥ O, there is a unique least extension that is an
abstract subset frame:

Lemma 3.4 Let X,O be sets and W0,R0 relations so that W0 ✓ X ⇥ O and
R0 ✓ O ⇥ O. Then (X,O, (W0; (R⇤

0)
�1),R⇤

0) is the least abstract subset frame
(X,O,W,R) so that W0 ✓ W and R0 ✓ R. It is called the abstract subset frame
generated by (X,O,W0,R0).

Proof. The relation R⇤
0 is a preorder. Furthermore:

(W0; (R
⇤
0)

�1); (R⇤
0)

�1 = W0; (R
⇤
0;R

⇤
0)

�1 ✓ W0; (R
⇤
0)

�1

Let (X,O,W,R) be an abstract subset frame satisfying W0 ✓ W and R0 ✓ R.
Then the reflexive-transitive closure R⇤

0 is a subset of R, and consequently
W0; (R⇤

0)
�1 ✓ W;R�1 ✓ W. 2

4 The labelled sequent calculus LSSL-p

4.1 Axioms and rules of LSSL-p

Now we define a calculus LSSL-p, a labelled calculus for subset space logic,
following the general method of constructing labelled calculi but introducing
pairs as labels.

For LSSL-p, we need two disjoint sets L1, L2 of labels. We use the symbols
x, y, z, x0, x1, . . . for the elements of L1 and u, v, w, u0, u1, . . . for the elements
of L2. Our judgements are relational atoms xW u or uR v or of the form
(x, u) : A where (x, u) 2 L1 ⇥ L2 and A is an SSL-formula as given above.
Some of the rules are subject to a condition which is abbreviated to j(. . .) and
will be discussed below. The !(. . .) stands for the usual eigenvariable condition
that the label does not occur in the conclusion.

The letters W , R in formulas stand for the complement of the correspond-
ing relations. The judgement (x, u) : A should be read as “if (x, u) is a world,
then A holds at (x, u)”. Note that (x, u) might be no world, in which case
“A holds at (x, u)” makes no sense. This is true for abstract subset spaces
— where the set of worlds is given by W — as well as for the original subset
spaces where x, u |= . . . is defined only in case that x 2 u. To put it di↵er-
ently, the “term” (x, u) is a partial term, as it may have no value in the given
model. The statement not xW u — (x, u) is a world — then corresponds to
“(x, u) denotes”. From (y, u) : A we could only deduce “if (y, u) is a world
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then (x, u) : lA”. 5 Instead of introducing yW u together with (x, u) : lA, we
postulate that it is already present in the context. As (y, u) : B corresponds to
“if (y, u) is a world then . . . ”, any judgement (y, u) : B in the context would do
the job. Consequently, in the formulation of the calculus we use the condition:

j(y, u) : “The conclusion contains some judgement (y, u) : B or yW u.”

The rule (l) could be split into

�, y W u, (x, u) : lA, (y, u) : A

�, y W u, (x, u) : lA

�, (y, u) : B, (x, u) : lA, (y, u) : A

�, (y, u) : B, (x, u) : lA

which makes the similarity to the usual rule for ‘possibly A’ more explicit but
the condition above abbreviated by j(y, u) provides a way to combine these
two possibilities. As we interpret the judgements in subset spaces where only
certain pairs are worlds, it seems adequate to read the complex label (x, u)
as a partial term but it comes with a straightforward totalisation: extend the
domain to X⇥O and map (x, u) to the corresponding pair, then read (x, u) : A
(again) as: “(x, u) is no world or it is a world, at which A holds.” This extension
eliminates the partiality if desired. Still, “(y, u) is no world” does not imply
(x, u) : A. So the side condition will be kept in the calculus. Also note that in
a proof search this side condition restricts the instantiation to worlds that are
already present in the lower sequent. A similar remark applies to the 3-rule,
which is also subject to a condition j(. . .). Due to the (3ref )-rule, we do not
need a reflexivity rule for R. The reflexivity of the accessibility relation for k/l
is built into the system.

Now let us consider the necessitation rules. For soundness, the atom xW u
in the premiss of the 2 and k-rules would not be necessary. If preferred, we
can generalise the rule so that xW u need not be present in the upper sequent.
As weakening is admissible, this makes no big di↵erence (except shortening
some sequents in the derivation). We will, however, use the fact that an atom
xW u can be contracted into the (x, u) : 2A or (x, u) : kA built in a (2)/(k)-
inference. This improves the permutability of rules. To see this, consider a
derivation ending with

� , w Ru , (x,w) : 3B , (x, u) : B , (x, v) : A , uR v , xW u
(2)

� , w Ru , (x,w) : 3B , (x, u) : B , (x, u) : 2A
(3)

� , w Ru , (x,w) : 3B , (x, u) : 2A

in which (2) can be permuted downward.
The rules (R-trans) and (RW ) just reflect the conditions for abstract subset

frames. An example for the use of (RW ) can be found in the derivation of
the cross axiom in the proof of Lemma 5.5. Persistence can be combined

5 Compare this with Beeson’s axiom ([3], p. 98)

A{t/x} ^ t #! 9xA
where t # stands for “t denotes”.
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(ax)
�, (x, u) : P, (x, v) : ¬P

�, (x, u) : 3A, (x, u) : A
(3ref )

�, (x, u) : 3A

�, xW u, uR v, (x, v) : A
(2) !(v)

�, (x, u) : 2A

�, uR v, (x, u) : 3A, (x, v) : A
(3) j(x, v)

�, uR v, (x, u) : 3A

�, xW u, (y, u) : A
(k) !(y)

�, (x, u) : kA

�, (x, u) : lA, (y, u) : A
(l) j(y, u)

�, (x, u) : lA

�, (x, u) : A �, (x, u) : B
(^)

�, (x, u) : A ^B

�, (x, u) : A, (x, u) : B
(_)

�, (x, u) : A _B

�, uR v, v Rw, uRw
(R-trans)

�, uR v, v Rw

�, v R u, xW v
(RW ) j(x, u)

�, v R u

Table 3
System LSSL-p

conveniently with the logical axioms. Note that this axiom is simpler than the
persistence condition for cross axiom models which refers to the R-accessibility
relation. The full system is given in Table 3. We use ` for derivability and `n

for the existence of a derivation of height  n.

Definition 4.1 Let M = (X,O,W,R,V) be an abstract subset spaces, and
`1 : L1 ! X and `2 : L2 ! O mappings. Then, based on the validity of
formulas, we define the validity of judgements and sequents as follows:

(M, `1, `2) |= (x, u) : A () ((`1(x), `2(u)) 2 W implies (`1(x), `2(u)) |=M A)
(M, `1, `2) |= xW u () (`1(x), `2(u)) 62 W

(M, `1, `2) |= uR v () (`2(u), `2(v)) 62 R

(M, `1, `2) |= � () (M, `1, `2) |= J for some judgement J in �

Lemma 4.2 (Soundness) If ` � then (M, `1, `2) |= � for all abstract subset
spaces M = (X,O,W,R,V) and mappings `1 : L1 ! X and `2 : L2 ! O.

Proof. Induction on the height of a LSSL-p derivation. 2

Corollary 4.3 LSSL-p is sound with respect to subset spaces.

4.2 The role of pairs

We have presented the axioms and rules of LSSL-p and argued that it is rather
natural, as it is close to the subset space semantics. Before we demonstrate
that the calculus enjoys the desired proof-theoretical properties, we want to
discuss its design in relation to alternative approaches.

Labelled sequent systems have been used before in connection with non-
relational semantics. Gilbert and Ma↵ezioli [8] for example develop sequent
calculi for several modal logics which are weaker than the smallest normal
modal logic. Semantics for these languages is usually based on neighbourhood
frames. The calculi utilise a translation into a multi-modal system with normal
modalities. Negri and Olivetti [16] present a sequent calculus for preferential
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conditional logic PCL. They internalise the weak neighbourhood semantics for
PCL. Similar to our approach, the set of judgements is extended in both cases.
In [8] we have relational judgements that do not state accessibility in the orig-
inal setting but refer to accessibility in the multi-modal system. In [16] the
extension is taken even further. In order to deal with the quantifier alterna-
tion in the semantical explanation of the conditional, new primitives for certain
subexpressions of that definition are introduced. Note that the shift from the
topological semantics (see [4]) to the bimodal system of topologic (see [1]), also
eliminates the alternation of quantifiers in the semantic definition

9u 2 O(x 2 u ^ 8y 2 u“A holds at y”)

of “necessarily A”. The universal modality is mapped to 3k in topologic (see
[1], p. 103). However, the worlds in topologic and in the weaker subset space
logic contain a component ‘point’ as well as a component ‘set’. Points and sets
play a role also in [8] and [16]. In [8] the labels in the calculus stand for worlds
in the translated system, which are points or sets of points where the points
are distinguished with the help of the modality ‘�’. In [16], two types of labels
are used instead. In contrast to both settings, the worlds in subset spaces are
pairs of points and sets, and so we use pairs also in the judgements.

A noticeable feature of LSSL-p is the simplicity of the frame rules. They
are based on universal axioms only. We could even replace them by complex
application conditions for 3 and l that refer to the computed closure. To this
end, let

L1(�) = {x 2 L1 | x occurs in �}
L2(�) = {u 2 L2 | u occurs in �}
R0(�) = {(u, v) | uR v occurs in �} ✓ L2(�)⇥ L2(�)
W0(�)= {(x, u) | xW u or some (x, u) : A occurs in �}
R(�) =R0(�)⇤ ✓ L2(�)⇥ L2(�)
W(�) =W0(�);R(�)�1

for multisets � of judgements. If we generalise (3) and (l) to

�, (x, u) : 3A, (x, v) : A
(3⇤)

if (x, v) 2 W(�, (x, u) : 3A)
and (u, v) 2 R(�, (x, u) : 3A)�, (x, u) : 3A

�, (x, u) : lA, (y, u) : A
(l⇤) if (y, u) 2 W(�, (x, u) : 3A)

�, (x, u) : lA

then we can remove the frame rules. This is also the first step in the develop-
ment of the ‘compressed’ version of the system which is used for proof search
in Section 6.

Still, the cross axiom models o↵er an alternative way to define a calculus
without introducing pairs [6]. The only frame condition that has not already
been studied is the cross condition R; S ✓ S;R which can be transformed to
the geometric formula 8x, y, y(xRy ^ ySz ! 9y0(xSy0 ^ y0Rz)) and yields the
cross rule:
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�, xR y, y S z, x S y0, y0 Rz

�, xR y, y S z

The set of derivable formulas of these two systems coincide but neither can
be translated just by replacing every step locally by a sequence of steps of
the other system. Passing from the system based on cross axiom models to
LSSL-p would require choosing an appropriate substitution of pairs for simple
labels so that the R/S-relations are reduced to the special form in abstract
subset spaces and, in particular, the applications of the cross rule with their
eigenvariables can be removed. The other direction is a bit simpler, as we
can leave the labelled formulas unchanged. The frame judgements have to be
translated according to the transformation of abstract subset spaces into cross
axiom models. Instead of translating the applications of frame rules one by
one, the block of frame rules needed for the computation of the closure should
be transformed as a whole. Further analysis of the class of derivations obtained
by this translation might be useful for advanced proof-theoretic investigations
of SSL but then one could use LSSL-p right away.

5 Basic properties of LSSL-p
We start with some simple properties of the calculus.

Lemma 5.1 The following holds for LSSL-p:

(i) (renaming) Let d be a derivation with endsequent � and x, y 2 L1 (or
u, v 2 L2) where y (or v) does not occur in d. Then replacing every
occurrence of x in d by y (or u by v respectively) yields a derivation of the
endsequent �{y/x} (or �{v/u} respectively).

(ii) (label substitution) Let x1, . . . , xn be pairwise distinct elements of L1

and u1, . . . , um be pairwise distinct elements of L2. Then `n � implies
`n �{y1/x1, . . . , yn/xn, v1/u1, . . . , vm/um} for all y1, . . . , yn 2 L1 and
v1, . . . , vm 2 L2.

(iii) (weakening) `n � =)`n �, J for every judgement J

(iv) (R-contraction) `n �, uR v, uR v =)`n �, uR v

(v) (W -contraction)
(a) `n �, xW u, xW u =)`n �, xW u
(b) `n �, xW u, (x, u) : A =)`n �, (x, u) : A

(vi) (R-reflexivity) `n �, uRu =)`n �

Proof. Straightforward induction on the height of the given derivation. The
proof of Facts (ii),(iii) need Fact (i) in order to avoid a clash with eigenvariables.
Intuitively, Fact (v)(b) holds because (x, u) : A is treated throughout as if it
were of the form xW u_ . . . and we can contract several occurrences of xW u.
Technically, we use the fact that the j(x, u)-condition can also be fulfilled by an
occurrence of (x, u) : A, not only xW u, and that an occurrence of xW u can
be contracted into the constructed formula 2B or kB in 2/k-inferences. In the
cases where A is constructed by 2,k we use (v)(a) in the proof. Furthermore,
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Facts (iv) and (v) are used in the proof of (vi) in the case of frame rules. 2

With Fact (i), we can always rename eigenvariables in a proof so that they
become di↵erent from each other and from every other variable in a given
judgement, sequent or second derivation. We make use of this fact in many of
the proofs below without mentioning it explicitly.

Lemma 5.2 The HSS-rules of necessitation are admissible.

Proof. Let (x, u) : A be derivable. Then, by label substitution, also (x, v) : A
and (y, u) : A are derivable for fresh v 2 L2, y 2 L1. By the admissibil-
ity of weakening we obtain the derivability of xW u , uR v , (x, v) : A and of
xW u , (y, u) : A. Application of (2) or (k) respectively yields a derivation of
(x, u) : 2A or (x, u) : kA. 2

For (3) and (l), inversion is just an instance of weakening. So the theorem
below yields the height-preserving invertibility of all logical rules.

Theorem 5.3 (Invertibility of logical rules) The following holds for the
calculus LSSL-p:

(i) (^-inversion) `n �, (x, u) : A ^B =)`n �, (x, u) : A and `n �, (x, u) : B

(ii) (_-inversion) `n �, (x, u) : A _B =)`n �, (x, u) : A, (x, u) : B

(iii) (2-inversion) `n �, (x, u) : 2A =)`n �, uR v, xW u, (x, v) : A for every
v 2 L2

(iv) (k-inversion) `n �, (x, u) : kA =)`n �, xW u, (y, u) : A for all y 2 L1

Proof. By induction on the height of the derivation. In the proof of Fact (iii)
and (iv), the additional xW u is used in the case where (x, u) : 2A or (x, u) : kA
is necessary to meet the context condition j(x, u) for the last inference in the
given derivation. 2

Theorem 5.4 (Admissibility of contraction) If `n �, (x, u) : A, (x, u) : A
then `n �, (x, u) : A

Proof. By induction on the height of the derivation. In the case that one of
the distinguished occurrences of (x, u) : A is constructed by the last inference
(and the principle symbol of A is not 3 or l), we combine inversion with the
induction hypothesis. In the case of (2), i.e.:

...
� , (x, u) : 2A , xW u , uR v , (x, v) : A

(2) !(v)
� , (x, u) : 2A , (x, u) : 2A

we use height-preserving inversion of (2) first, then the IH, followed by (R-
contraction) and (W -contraction), and finally an application of (2) to build
the desired derivation. The case of (k) is similar, without (R-contraction). 2

Next we demonstrate the strength of the calculus by presenting derivations
for the HSS axioms. With negation defined as above, this is provided by the
derivability of the sequents (ii)-(ix) in the next lemma.
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Lemma 5.5 For all SSL-formulas A,B, predicate letters P , x 2 L1, and u 2
L2, the following sequents are derivable in LSSL-p:

(i) (x, u) : A , (x, u) : ¬A
(ii) (x, u) : A where A is a substitution instance of a tautology of classical

propositional logic

(iii) (x, u) : (¬P _2P ) ^ (P _2¬P ) for propositional letters P

(iv) (x, u) : l¬A , (x, u) : A ^ kkA

(v) (x, u) : 3¬A , (x, u) : A ^22A

(vi) (x, u) : l(A ^ ¬B) , (x, u) : l¬A , (x, u) : kB

(vii) (x, u) : 3(A ^ ¬B) , (x, u) : 3¬A , (x, u) : 2B

(viii) (x, u) : k¬A , (x, u) : klA

(ix) (x, u) : l3¬A , (x, u) : 2kA

Proof. For Fact (i), we proceed by straightforward induction on A as usual.
One can obtain a derivation as required in Fact (ii) from a cut-free derivation
of the tautology in GS3. We present the derivation of sequent (ix), the cross
axiom:

Fact (i), weakening

(x, u) : l3¬A, (y, u) : 3¬A, (y, v) : ¬A, xW u, xW v, yW u, (y, v) : A, uR v
(3)

(x, u) : l3¬A , (y, u) : 3¬A , xW u , xW v , yW u , (y, v) : A , uR v
(l)

(x, u) : l3¬A , xW u , xW v , yW u , (y, v) : A , uR v
(RW )

(x, u) : l3¬A , xW u , xW v , (y, v) : A , uR v
(k) !(y)

(x, u) : l3¬A , xW u , (x, v) : kA , uR v
(2) !(v)

(x, u) : l3¬A , (x, u) : 2kA

The remaining derivations are given in the appendix. 2

6 Admissibility of cut

Lemma 6.1 If `n � , (x, u) : A and `m ⇧ , (x, u) : ¬A, then ` �,⇧ , xWu.

Proof. By induction on A, side induction on n+m.
Case 1: (x, u) : A is of no relevance for the last inference in the first of the
given derivations, or (x, u) : ¬A is of no relevance for the last inference in the
second derivation. If the corresponding conclusion is an axiom then �,⇧ is an
axiom. Otherwise, use the side induction hypothesis. (Rename eigenvariables
first if necessary.)
Case 2: (x, u) : A is relevant for the last inference but only to meet the context
condition j(x, u):

�0 , (x, u) : A
� , (x, u) : A

By side induction hypothesis we obtain �0,⇧, xW u, from which we can deduce
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�,⇧, xW u.
Case 3: (x, u) : ¬A is relevant for the last inference but only to meet the context
condition j(x, u): similar
Case 4: (x, u) : A and (x, u) : ¬A are the principal formulas in the last inference
of the respective derivations. Then we distinguish cases according to A.

If A is a literal, then �, (x, u) : A and ⇧, (x, u) : ¬A are axioms with prin-
cipal formulas (x, u) : A and (x, u) : ¬A respectively. In that case � contains
(x, v) : ¬A for some v and ⇧ contains (x,w) : A for some w. Hence �,⇧ is an
axiom.

Furthermore, we present in detail the case of the principal symbols 2/3 in
A/¬A. The remaining cases are similar, even a bit simpler.

W.l.o.g. A ⌘ 2B and ¬A ⌘ 3¬B. Then the derivations have the form:

d1 :

...
� , xW u , uR v , (x, v) : A

(2) !(v)
� , (x, u) : 2A

and

d2 :

...
⇧0 , (uRw , )(x, u) : 3¬A , (x,w) : ¬A

(3/3ref ) j(x,w)
⇧0 , (uRw , )(x, u) : 3A

where uRw may be missing if u = w, and ⇧ = ⇧0, uRw otherwise. First
we obtain ` �,⇧0, (uRw , )(x,w) : ¬A , xW u by side induction hypothesis.
Second, applying substitution to the immediate subderivation of d1, we obtain
a derivation of � , xW u , uRw , (x,w) : A. Combining these and using the
(main) induction hypothesis, we get:

` � , xW u , uRw , � , ⇧0 , (uRw , ) , xW u , xW w

Subcase 1: The inference introducing ¬A ⌘ 3¬B was 3ref . Then the sec-
ond uRw is missing, ⇧0 = ⇧ and u = w. In that case, we use the admissibility
of the reflexivity rule and (W-contraction) to obtain ` � , xW u , � , ⇧.

Subcase 2: Otherwise. Then ⇧ = ⇧0, uRw and ⇧ contains xW w or
a judgement of the form (x,w) : B. Now we apply (R-contraction), (W-
contraction) of type (a), and (W-contraction) of type (a) or (b) to obtain again
` � , xW u , � , ⇧.

In both cases, the proof is completed by applying (contraction) for the
formulas in �. 2

Corollary 6.2 Let �,⇧ be sequents so that �,⇧ contains xW u or some judge-
ment of the form (x, u) : B. If ` � , (x, u) : A and ` ⇧ , (x, u) : ¬A, then ` �,⇧.

Proof. Use 6.1 and (W-contraction). 2

Lemma 6.3 The rule modus ponens is admissible.

Proof. Let (x, u) : A ! B and (x, u) : A be derivable. By (_)-inversion, the
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sequent (x, u) : ¬A , (x, u) : B is also derivable. Using 6.2, we can conclude
that (x, u) : B is derivable. 2

Lemma 6.4 If HSS ` A then LSSL-p ` (x, u) : A for all x 2 L1, u 2 L2.

Proof. By induction on the length of a derivation in HSS, using 5.5, 5.2 and
6.3. 2

As it has been proved in [1] that HSS is complete w.r.t. subset spaces, we
have the following theorem:

Theorem 6.5 LSSL-p is complete w.r.t. abstract subset spaces.

In the next section we present a direct proof of this result based on proof
search in LSSL-p.

7 Direct proof of completeness
In this section, we present the definition of a search tree which reflects bottom-
up proof search for LSSL-p and use it for the proof of completeness. Com-
pleteness proofs in this style for labelled calculi have been presented before e.g.
in [7,5,16]. Our calculus, however, does not belong to the class considered in
[7,5], and we can not expect to construct a finite countermodel, as we are work-
ing with (abstract) subset spaces. In particular, we will not obtain a decision
procedure. However, we get a reasonable strategy for the construction of proofs,
as evidence for validity, which produces an output for all valid formulas. To
simplify a our procedure, we consider a compressed version of derivations and
a corresponding system LSSL-pc:

• Frame rules are never applied explicitly. We reformulate the application
conditions instead. To this end, we use the relations R,W defined in Sec.
4.2. on page 278.

• All reductions corresponding to disjunctive rules, i.e. rules introducing
_,3, l are performed in one step. For this, we let D(�) denote the least
multiset extending � that satisfies:
· (x, u) : A and (x, u) : B are in D(�) if (x, u) : A _B is in D(�).
· (x, v) : A is in D(�) if (x, v) 2 W(�) and (x, u) : 3A is in D(�) for some u
so that (u, v) 2 R(�)

· (y, u) : A is in D(�) if (y, u) 2 W(�) and (x, u) : lA is in D(�) for some x

Note that in the definition of R(�) we build the reflexive-transitive closure
on L2(�). As a consequence, the sets R(�) and W(�) are finite. Obviously,
D(�) is also finite and can be computed in a straightforward way. Applying
the rule (R-trans) from bottom to top, we can turn every � into a sequent
which contains uR v for every pair in R0(�)+. With the help of (RW ) we can
then obtain a sequent which satisfies the j(x, v)-condition for all pairs (x, v)
in W(�). With this in mind, we see that a derivation of D(�) can be turned
into a derivation of � by applications of (weakening), (contraction), disjunctive
rules (i.e. (3), (3ref ), (l), (_)) and frame rules.
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�, (x, u) : A �, (x, u) : B
(^)

�, (x, u) : A ^B
(ax)

�, (x, u) : P, (x, v) : ¬P
D(�)

(D)
�

�, xW u, uR v, (x, v) : A
(2) !(v)

�, (x, u) : 2A

�, xW u, (y, u) : A
(k) !(y)

�, (x, u) : kA

Table 4
System LSSL-pc

Now we consider trees (finite and infinite) of sequents built according to the
rules in Table 4. We write seq(N) for the sequent at node N .

The rules (^), (2), (k) and their constructed principal formulas as well as
the corresponding judgements are called conjunctive. An expansion step for
such a formula consists of adding nodes with the corresponding premisses as
children. The expansion step for a judgement (x, u) : A ^ B at leaf N will
be performed only if neither (x, u) : A nor (x, u) : B occurs on the path ↵(N)
leading from the root to N . Similarly, the step for (x, u) : 2A at N will be
performed only if no judgement (x, v) : A satisfying (u, v) 2 R(�) occurs on
↵(N), and the expansion for (x, u) : kA is subject to the restriction that no
judgement (y, u) : A occurs on ↵(N). Furthermore, we apply these steps only
to nodes which are no axioms.

Applying these steps successively to all conjunctive judgements at leaves
that meet these conditions (but not to conjunctive formulas produced by this
transformation) is called a C-step for the tree T . A D-step for it consists in
adding a child N 0 to every leaf N and let seq(N 0) := D(seq(N)).

To search for a derivation of (x, u) : A, we proceed as follows: Start with
the one-node-tree with (x, u) : A at its root, and add a single child N with
seq(N) = D((x, u) : A). As long as there are still leaves N so that seq(N)
is no axiom and all thoses leaves are expandable, perform a C-step followed
by a D-step. Now, if this procedure terminates with a tree where all leaves
contain axioms, then we have found a derivation of (x, u) : A in LSSL-pc
which can be uncompressed to give a derivation of (x, u) : A in LSSL-p. If the
procedure terminates with a leaf with no axiom that is not expandable, then we
consider the path ↵ from the root to that node, and let (�i)i2I with appropriate
I = {0, . . . , n} be the corresponding sequence of sequents. Otherwise, the
procedure generates an infinite tree which contains an infinite branch ↵, and
we let ↵ = (�i)i2I with I = N denote the infinite sequence of corresponding
sequents. In both cases, we let � :=

S

i2I �i.
Now it remains to be shown that we can obtain a countermodel based on

a path ↵ as described above. To this end, we extend the definitions in Sec.
4.2, page 278, to infinite �, and let X := L1(�), O := L2(�), W(�) := W(�),
and R := R(�). Then (X,O,W,R) is the abstract subset frame generated by
(X,O,W0(�),R0(�)).

Due to the construction of the tree, judgements (x, u) : P or (x, u) : ¬P for
P 2 PV occur in every �j with j � i if they occur in �i, and we know that no
�i is an axiom. As a consequence, there is a valuation V for (X,O,W,R) so
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that
V(y)(P ) = t if (y, v) : ¬P occurs in ↵ for some v 2 L2

V(y)(P ) = f if (y, v) : P occurs in ↵ for some v 2 L2

Let M = (X,O,W,R,V), choose `1, `2 so that `1(y) = y for all y 2 L1 and
`2(v) = v for all v 2 L2.

The construction of the tree also ensures that judgements uR v, xW u,
(x, u) : A_B, (x, u) : 3A, (x, u) : lA occur in every �j with j � i if they occur
in �i. Furthermore, if some �i satisfies the j(x, u)-condition, then so does every
�j with j � i. This is used in proving the following facts:

(i) R(�i�1) ✓ R(�i) for all i 2 N+ \ I and R =
S

i2I R(�i)

(ii) W(�i�1) ✓ W(�i) for all i 2 N+ \ I and W =
S

i2I W(�i)

(iii) If (y, v) : B ^ C in � then (y, v) : B in � or (y, v) : C in �

(iv) If (y, v) : B _ C in � then (y, v) : B in � and (y, v) : C in �

(v) If (y, v) : 3B in � then (y, w) : B in � for all w so that (v, w) 2 R and
(y, w) 2 W.

(vi) If (y, v) : lB in � then (z, v) : B in � for all z so that (z, v) 2 W.

(vii) If (y, v) : 2B in � then there is w so that (v, w) 2 R and (y, w) : B in �
(and hence also (y, w) 2 W).

(viii) If (y, v) : kB in � then there is z so that (z, v) : B in � (and hence also
(z, v) 2 W).

To see Fact (viii), assume that kB is in �. Then at some point of the construc-
tion, the tree had a node of ↵ containing kB as a leaf and the corresponding
expansion was considered. Either the expansion was performed, in which case
the next node of ↵ contains some (z, v) : B, or the expansion was rejected. If
it was rejected then there is some (z, v) : B earlier in ↵.

We present the proof of Fact (v) as an example for the disjunctive con-
nectives: Let (y, v) : 3B be in �i, (v, w) 2 R and (y, w) 2 W. By Facts (i)
and (ii) we get j, k 2 I so that (v, w) 2 R(�j) and (y, w) 2 W(�k). Now let
m � max{i, j, k} so that �m+1 = D(�m). Then (y, v) : B is in �m+1.

The remaining cases are similar. With these facts, an easy induction on
B shows that (M, `1, `2) 6|= (y, v) : B for all (y, v) : B in ↵, in particular M 6|=
(x, u) : A.

8 Conclusion and further work
The logic of subset spaces is a bimodal logic with no obvious, pure, cut-free
sequent system. The labelled approach, however, o↵ers an alternative. Intro-
ducing a new variant which makes use of compound expressions for worlds and
an “is-world”-predicate, we obtain a solution which is satisfactory in several
ways: it is close to the original semantics and it uses only simple frame rules.
The completeness proof is based on proof search, producing a (possibly infinite)
countermodel for non-valid formulas.

The cut-free sequent calculus LSSL-p has been developed as a contribution
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to the proof theory of subset space logic. It has the subformula and separation
property, and it provides a promising starting point for further proof-theoretic
investigations of this logic and its extensions. If the focus is on automatic de-
duction, other types of calculi may be preferable. The study of tableau systems
for SSL based on cross axiom models is current work of others. However, the
development of termination conditions for LSSL-p could yield an interesting
candidate for comparison.

Based on subset space logic, topologic is also introduced in [1]. A natural
continuation of our work would be an extension to that system.

The labelled approach is sometimes criticised for not being purely proof-
theoretic, as the semantics is internalised in the system. Although it constitutes
a very convincing method for constructing calculi in di�cult cases as SSL, the
quest for a fine, “pure” system remains interesting. The calculus LSSL-p
presented here provides new insights which may prove helpful also for this
goal. However, even if alternatives will be developed, the labelled LSSL-p is
still a rather simple and natural solution.

Acknowledgement. I would like to thank the referees for the many helpful
suggestions and comments.

Appendix

A Derivability of the HSS axioms
In most of the derivations below we use Fact 1 in 5.3 plus weakening.
Cross axiom: see Section 5; Persistence: Let ⇧ :⌘ uR v , xW u in:

(ax)
(x, u) : ¬P , (x, v) : P , ⇧

(2) !(v)
(x, u) : ¬P , (x, u) : 2P

(_)
(x, u) : ¬P _ 2P

(ax)
(x, u) : P , (x, v) : ¬P , ⇧

!(v)
(x, u) : P , (x, u) : 2¬P

(_)
(x, u) : P _ 2¬P

(^)
(x, u) : (¬P _ 2P ) ^ (P _ 2¬P )

T and K4 for 2:
(x, u) : 3¬A , (x, u) : ¬A , (x, u) : A

(3ref )
(x, u) : 3¬A , (x, u) : A

(x, u) : 3¬A , (x,w) : ¬A , (x,w) : A , xW v , v Rw , xW u , uR v , uRw
(3)

(x, u) : 3¬A , (x,w) : A , xW v , v Rw , xW u , uR v , uRw
(R-trans)

(x, u) : 3¬A , (x,w) : A , xW v , v Rw , xW u , uR v
(2) !(w)

(x, u) : 3¬A , (x, v) : 2A , xW u , uR v
(2) !(v)

(x, u) : 3¬A , (x, u) : 22A

Normality for 2: Let � :⌘ (x, u) : 3(A ^ ¬B) , (x, u) : 3¬A , xW u in:

�, (x, v) : A, (x, v) : ¬A, (x, v) : B, uR v
(3)

�, (x, v) : A, (x, v) : B, uR v �, (x, v) : ¬B, (x, v) : B, uR v
(^)

�, (x, v) : A ^ ¬B, (x, v) : B, uR v
(3)

�, (x, v) : B, uR v
(2) !(v)

(x, u) : 3(A ^ ¬B) , (x, u) : 3¬A, (x, u) : 2B
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The corresponding properties for k are proved similar.
Euclidean property:

xW u , (y, u) : ¬A , (z, u) : lA , (y, u) : A , xW u
(l)

xW u , (y, u) : ¬A , (z, u) : lA , xW u
(k) !(z)

(y, u) : ¬A , (x, u) : klA , xW u
(k) !(y)

(x, u) : k¬A , (x, u) : klA
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