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Abstract

A many-valued modal logic is introduced that combines the standard (crisp) Kripke
frame semantics of the modal logic K with connectives interpreted locally as abelian
group operations over the real numbers. A labelled tableau system and a sequent
calculus admitting cut elimination are then defined for this logic and used to establish
completeness of an axiomatic extension of the multiplicative fragment of abelian logic.
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1 Introduction
Many-valued modal logics model modal notions such as necessity, belief, and
spatio-temporal relations in the presence of multiple degrees of truth, certainty,
or possibility. They are defined by extending the Kripke frames of classical
modal logic with a many-valued semantics at each world, and have been used
to model fuzzy belief [16,12], fuzzy similarity measures [13], many-valued tense
logics [17,9], and spatial reasoning with vague predicates [28]. Such logics also
provide the basis for fuzzy description logics, which, analogously to the classical
case, can be viewed as many-valued multi-modal logics (see, e.g., [29,15,1]).
General approaches to finite-valued modal logics are described in [10,11,3,27],
while infinite-valued modal logics with propositional operations depending only
on a given total order – in particular, Gödel modal logics – are investigated
in [6,24,7,5,4].

Many-valued modal logics of “magnitude” typically involve reasoning about
some form of addition over sets of real numbers, archetypal examples being
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 Lukasiewicz modal logics, where propositional connectives are interpreted by
continuous functions over the real unit interval [14,3,18,22] (see also [21,20,23]
for related real-valued modal logics). Finite-valued (crisp)  Lukasiewicz modal
logics are axiomatized in [18], but the axiom system defined for the infinite-
valued (crisp)  Lukasiewicz modal logic includes a rule that has infinitely many
premises. This matters because, although it is easy enough to define a many-
valued modal logic semantically (simply decide on suitable sets of values and
operations), studying such a logic when it lacks a finitary axiom system or
algebraic semantics may be di�cult; consider, for example, classical modal
logic deprived of the theory of Boolean algebras with operators. Note also that,
while validity in finite-valued  Lukasiewicz modal logics is known to be PSPACE-
complete [2], only a NEXPTIME upper bound is known for the infinite-valued
case, as may be deduced from complexity results for  Lukasiewicz description
logics obtained in [20].

In this paper, we take a first step towards addressing these issues by defining
and investigating a simple many-valued modal logic of magnitude K(R) with
propositional connectives interpreted as the usual group operations over the real
numbers. The next step would then be to interpret infinite-valued  Lukasiewicz
modal logic in an extension of K(R) with lattice connectives. The logic K(R)
may be viewed as a minimal modal extension of the multiplicative fragment of
abelian logic studied in [26,8,25]. We provide here a sound and complete axiom
system for K(R), making use of both a labelled tableau system and a sequent
calculus admitting cut elimination to establish the more di�cult completeness
result. We also obtain an EXPTIME upper bound for validity.

2 A Real-Valued Modal Logic
Let us fix Fm as the set of formulas, denoted by ', ,�, defined inductively
for a language with a binary connective ! and a modal connective 2 over
a countably infinite set Var of propositional variables, denoted by p, q. The
complexity of a formula ' is defined as the number of occurrences of connectives
in ', and the modal depth of ' is defined as the deepest nesting of the modal
connective 2 in '. Fixing some p0 2 Var, we define additional connectives

0 := p0 ! p0, ¬' := '! 0, '& := ¬'!  , and 3' := ¬2¬'.

We also define 0' := 0 and (n+ 1)' := '&(n') for n 2 N.
Let us remark that these (perhaps counter-intuitively) defined connectives

arise as a natural feature of the multiplicative fragment of abelian logic [26,8,25]
– an axiomatic extension of multiplicative linear logic that is complete with
respect to the class of abelian groups with x ! y interpreted as y � x, where
a formula is valid if it is non-negative. Since the multiplicative conjunction
and disjunction, and also the multiplicative constants, coincide in this logic,
we can restrict to a language with just implication and define 0 := p0 ! p0,
where the “0” anticipates the interpretation in R. Negation and multiplicative
conjunction (equivalently, disjunction) connectives are then defined as usual.
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A frame is a pair F = hW,Ri, where W is a non-empty set of worlds and
R ✓ W ⇥ W is an accessibility relation. F is called serial if for all x 2 W ,
there exists y 2 W such that Rxy. A K(R)-model M = hW,R, V i consists of a
serial frame hW,Ri and a map V : Var⇥W ! [�r, r] for some r 2 R+, called
a valuation. This valuation is extended to V : Fm⇥W ! R by

V ('!  , x) = V ( , x)� V (', x)

V (2', x) =
V

{V (', y) : Rxy}.

It follows also that

V (0, x) = 0 V ('& , x) = V (', x) + V ( , x)

V (¬', x) = �V (', x) V (3', x) =
W

{V (', y) : Rxy}.

' 2 Fm is valid in a K(R)-model M = hW,R, V i if V (', x) � 0 for all x 2 W .
If ' is valid in all K(R)-models, then ' is K(R)-valid, written |=K(R) '.

The restriction to serial frames is more or less imposed for this semantics
by the fact that

V

; and
W

; do not exist for R. Note also that the seriality
axiom 2' ! 3' is derivable in any extension of the multiplicative fragment
of abelian logic with the standard axiom 2('!  ) ! (2'! 2 ). Similarly,
restricting the codomain of a valuation to a bounded subset of R circumvents
problems with infima or suprema of unbounded sets of values and is justified
to some extent by the following finite model property.

Lemma 2.1 |=K(R) ' if and only if ' is valid in all finite K(R)-models.

Proof. It su�ces to prove the following: for any K(R)-model M = hW,R, V i,
x 2 W , finite set of formulas S, and " > 0, there exists a finite K(R)-model
M0 = hW 0, R0, V 0i with x 2 W 0 such that |V (', x)�V 0(', x)| < " for all ' 2 S.
We proceed by induction on the sum of the complexities of the formulas in S.

For the base case, S contains only variables and we let M0 = hW 0, R0, V 0i
with W 0 = {x}, R0 = {(x, x)}, and V 0(p, x) = V (p, x) for each p 2 Var.
For the inductive step, suppose first that S = S0 [ { ! �}. Then we can
apply the induction hypothesis with M, x 2 W , S00 = S0 [ { ,�}, and "

2 >
0 to obtain a finite K(R)-model M0 = hW 0, R0, V 0i with x 2 W 0 such that
|V (', x)�V 0(', x)| < "

2 for all ' 2 S00. It su�ces then to observe that |V ( !
�, x)� V 0( ! �, x)| = |V (�, x)� V ( , x)� V 0(�, x) + V 0( , x)|  |V (�, x)�
V 0(�, x)|+ |V ( , x)� V 0( , x)| < "

2 + "
2 = ".

Now suppose that S consists of variables and boxed formulas 2 1, . . . ,2 n

(n � 1). Then for 1  i  n, there exists yi 2 W such that Rxyi
and |V (2 i, x) � V ( i, yi)| < "

2 . We apply the induction hypothesis to
each submodel Mi of M generated by yi (i.e., the restriction of M to the
smallest subset of W containing yi and closed under R) with S0 = (S \
{2 1, . . . ,2 n}) [ { 1, . . . , n}, yi 2 Wi, and

"
2 > 0 to obtain a finite K(R)-

model M0
i = hW 0

i , R
0
i, V

0
i i and yi 2 W 0

i such that |V (', yi)� V 0(', yi)| < "
2 for

all ' 2 S0. By renaming worlds, we may assume that these models are disjoint
and do not include x. Now let M0 = hW 0, R0, V 0i be the finite K(R)-model
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(B) ('!  ) ! (( ! �) ! ('! �))

(C) ('! ( ! �)) ! ( ! ('! �))

(I) '! '

(A) (('!  ) !  ) ! '

(K) 2('!  ) ! (2'! 2 )

(Dn) 2(n') ! n2' (n � 2)

' '!  

 
(mp)

'
2' (nec)

n'
' (conn) (n � 2)

Fig. 1. The axiom system K(R)

with W 0 = {x} [W 0
1 [ . . . [W 0

n such that for u, v 2 W 0,

R0uv =

8

>

<

>

:

R0
iuv if u, v 2 W 0

i

1 if u = x, v 2 {y1, . . . , yn}
0 otherwise,

V 0(p, u) =

(

V 0
i (p, u) if u 2 W 0

i

V (p, x) if u = x.

Clearly V 0(p, x) = V (p, x) for each propositional variable p 2 S. For 1  i  n,
recall that |V (2 i, x)� V ( i, yi)| < "

2 and also |V ( i, yj)� V 0( i, yj)| < "
2 for

1  j  n, so |V (2 i, x)� V 0(2 i, x)| < ". 2

The main goal of this paper will be to prove the following soundness and
completeness theorem for the axiom system K(R) presented in Fig. 1.

Theorem 2.2 For any ' 2 Fm, `K(R) ' if and only if |=K(R) '.

Soundness (the left-to-right direction) is straightforward. It is easily checked
that the axioms (B), (C), (I), (A), and (K) are valid in all K(R)-models. For
the less standard axioms (Dn) (n � 2), it su�ces to consider a K(R)-model
M = hW,R, V i and x 2 W , and to observe that

V (2(n'), x) =
V

{V (n', y) : Rxy}
=

V

{nV (', y) : Rxy}
= n

V

{V (', y) : Rxy}
= V (n2', x).

Clearly, (mp) and (nec) preserve validity in K(R)-models. For (conn), note that
if V (n', x) � 0 for a K(R)-model M = hW,R, V i and x 2 W , also V (', x) � 0.

Proving completeness (the right-to-left direction) will be our main aim in the
remainder of this paper. First, in Section 3, we define a labelled tableau system
that is sound and complete with respect to the Kripke semantics. In Section 4,
we then provide a sequent calculus that proves the same formulas as the axiom
system K(R). In Section 5, we establish the soundness and completeness of all
these systems with respect to the Kripke semantics by showing that formulas
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derivable in the labelled tableau calculus are derivable in the sequent calculus.
Finally, in Section 6, we prove cut elimination for the sequent calculus.

3 A Labelled Tableau System
In this section we introduce a labelled tableau calculus LK(R) for checking
K(R)-validity, based very closely on the Kripke semantics. Intuitively, to check
whether a formula ' takes a value less than 0 in a world x, we decompose the
propositional structure of ' to obtain an inequation between sums of formulas
at x. Box formulas on the right of inequations generate new worlds accessible to
x and new inequations between sums of formulas to be processed. Box formulas
on the left are decomposed by considering accessible worlds and generating
new inequations for those worlds. These inequations may involve formulas
evaluated at di↵erent worlds; we therefore treat inequations between formulas
labelled with integers representing worlds in Kripke frames. The formula ' will
be valid if and only if the generated set of inequations (suitably interpreted) is
unsatisfiable over the real numbers.

More precisely, we consider (tableau) nodes of the following forms:

(1) (�)k . (�)l such that . 2 {>,�} and (�)k = [('1)k1 , . . . , ('n)kn ] and
(�)l = [( 1)l1 , . . . , ( m)lm ] are multisets of formulas � = ['1, . . . ,'n] and
� = [ 1, . . . , m] labelled by k1, . . . , kn, l1, . . . , lm 2 Z;

(2) rij such that i, j 2 N.
Intuitively, (1) represents an inequation between sums of values of formulas
evaluated at (possibly di↵erent) worlds of a K(R)-model ('i is evaluated at
world |ki| on the left, and  j at world |kj | on the right) and (2), the expression
rij, denotes that world j is accessible from world i in this model.

We define the complexity of an inequation (�)k . (�)l to be the sum of
the complexities of the formulas in � and �, where formulas of the form 2'
labelled by �i for i 2 N are treated as propositional variables.

A tableau for a formula ' is a finite sequence of nodes starting with [] >
[(')1], r12 generated according to the inference rules of the system presented in
Fig. 2; that is, if expressions above the line in an instance of a rule occur in the
sequence, then the sequence can be extended with the expressions below the
line. The tableau is called complete if the rules have been applied exhaustively,
but only once to the same set of premises, and no application of (ex) is followed
by another application of (ex). As labelled inequations occurring above the line
in an instance of a rule have a higher complexity than those occurring below
the line, there exists a complete tableau for every formula.

We call expressions of the form (p)i or (2')�i with i 2 N labelled variables.
The system of inequations associated to a tableau consists of all inequations
over the labelled variables occurring in the tableau where the comma “,” is
interpreted as the usual addition over the real numbers. A tableau is closed if
its associated system of inequations is inconsistent over R; otherwise it is open.
A formula ' 2 Fm is derivable in the labelled tableau calculus LK(R), written
`LK(R) ', if there exists a complete closed tableau for '.
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(�)k, ('!  )i . (�)l

(�)k, ( )i . (')i, (�)l
(!.)

(�)k . ('!  )i, (�)l

(�)k, (')i . ( )i, (�)l
(.!)

rij
(�)k, (2')i . (�)l

(')j � (2')�i

(�)k, (2')�i . (�)l

(2.)

(�)k . (2')i, (�)l

(2')�i � (')j

(�)k . (2')�i, (�)l

rij

(.2)

i, j 2 N, j new

rik
rkj

(ex)
j 2 N new

Fig. 2. The labelled tableau calculus LK(R)

Example 3.1 The seriality axiom is derivable in LK(R) using the following
complete tableau for 2p ! 3p = 2p ! (2(p ! (p ! p)) ! (p ! p)):

1 : [] > (2p ! (2(p ! (p ! p)) ! (p ! p)))1

2 : r12
3 : (2p)1 > (2(p ! (p ! p)) ! (p ! p))1

4 : (2p)1, (2(p ! (p ! p)))1 > (p ! p)1

5 : (2p)1, (2(p ! (p ! p)))1, (p)1 > (p)1

6 : (p)2 � (2p)�1

7 : (2p)�1, (2(p ! (p ! p)))1, (p)1 > (p)1

8 : (p ! (p ! p))2 � (2(p ! (p ! p)))�1

9 : (2p)�1, (2(p ! (p ! p)))�1, (p)1 > (p)1

10 : (p ! p)2 � (p)2, (2(p ! (p ! p)))�1

11 : (p)2 � (p)2, (p)2, (2(p ! (p ! p)))�1

12 : r23

with the following inconsistent system of inequations over R

{y + u+ v > v, x � y, x � 2x+ u}

where x, y, u, v stand for (p)2, (2p)�1, (2(p ! (p ! p)))�1, (p)1, respectively.

Let us call a K(R)-model M = hW,R, V i faithful to a tableau T if there is
a map f : N ! W (said to show that M is faithful to T ) such that if rij occurs
in T , then Rf(i)f(j) is in M, and for every inequation ('1)i1 , . . . , ('n)in .
( 1)j1 , . . . , ( m)jm occurring in T ,

V ('1, f(|i1|)) + . . .+ V ('n, f(|in|)) . V ( 1, f(|j1|)) + . . .+ V ( m, f(|jm|)).

Note that whenever a K(R)-model M = hW,R, V i is faithful to a tableau T ,
the map defined by e((p)i) = V (p, i) and e((2')�i) = V (2', i) satisfies the
system of inequations associated to T over R, and hence T is open.

The following lemma establishes the soundness of the rules of LK(R).
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Lemma 3.2 Let M = hW,R, V i be a finite K(R)-model faithful to a tableau T .
If a rule of LK(R) is applied to T to obtain an extension T 0, then M is faithful
to T 0.

Proof. Let f be a map showing that M = hW,R, V i is a finite K(R)-model
faithful to a tableau T . The cases of (!.) and (.!) follow easily. For (2.),
suppose that (�)k, (2')i.(�)l and rij appear in T and we obtain an extension
T 0 of T with (')j � (2')�i and (�)k, (2')�i . (�)l. Since M is faithful to
T , we have Rf(i)f(j). But then V (', f(|j|)) = V (', f(j)) � V (2', f(i)) =
V (2', f(|�i|)), so M is faithful to T 0.

For (.2), suppose that (�)k . (2')i, (�)l (i 2 N) appears in T and we
obtain an extension T 0 of T with rij (j 2 N new), (2')�i � (')j , and (�)k .
(2')�i, (�)l. Because M is finite and serial, there exists v 2 W such that
Rf(i)v and V (2', f(i)) = V (', v). Hence the map f 0 defined to be f but with
f 0(j) = v shows that M is faithful to T 0.

Finally, for (ex) suppose that rik appears in T and we obtain an extension
T 0 of T with rkj (j 2 N new). Since rik is in T , we have Rf(i)f(k). Because
M is serial, there exists v 2 W such that Rf(k)v. The map f 0 defined to be f
but with f 0(j) = v shows that M is faithful to T 0. 2

To establish the completeness of LK(R), we introduce the following notion.
Let T be a complete open tableau and let e be a map satisfying the system of
inequations associated to T . We say that M = hW,R, V i is an e-induced model
of T if

• W = {wi : i 2 N is a label occurring in T};
• Rwiwj if and only if rij occurs in T or i = j and rik is not in T for any k;

• V (p, wi) =

(

e((p)i) if (p)i occurs in T

0 otherwise.

Lemma 3.3 Let M = hW,R, V i be an e-induced model of a complete open
tableau T , and extend the map e by fixing e((')i) = V (', wi) for each wi 2 W .
If ('1)i1 , . . . , ('n)in . ( 1)j1 , . . . , ( m)jm appears in T , then

e(('1)
i1) + . . .+ e(('n)

in) . e(( 1)
j1) + . . .+ e(( m)jm).

Proof. We proceed by induction on the complexity of the inequation. The base
case follows using the definition of M and the fact that e is a map satisfying the
system of inequations associated to T , while the cases where ('1)i1 , . . . , ('n)in.
( 1)j1 , . . . , ( m)jm appears as a premise of an application of (!.) or (.!) in T
follow directly using the induction hypothesis. Suppose that the inequation is
of the form (�)k, (2')i . (�)l for i 2 N. Since M is finite, there is a j such that
rij occurs in T and V (2', wi) = V (', wj). But also (')j � (2')�i occurs in T ,
and hence, by the induction hypothesis, V (', wj) = e((')j) � e((2')�i). We
also have that (�)k, (2')�i.(�)l occurs in T , and the desired inequality follows
by another application of the induction hypothesis. Finally, if the inequation
is of the form (�)k . (2')i, (�)l with i 2 N, then by (.2) we must have in
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the tableau rij for some j 2 N, (2')�i � (')j , and (�)k . (2')�i, (�)l. The
desired inequality follows by applying the induction hypothesis to these two
inequalities and observing that V (', wj) � V (2', wi). 2

Putting together these last two lemmas we obtain the following soundness
and completeness theorem for LK(R).

Theorem 3.4 For any ' 2 Fm, `LK(R) ' if and only if |=K(R) '.

Proof. For the left-to-right direction, assume 6|=K(R) '. Then by Lemma 2.1,
there is a finite K(R)-model M = hW,R, V i and some world w1 2 W such
that 0 > V (', w1). Let f : N ! W be any function such that f(1) = w1 and
f(2) = w2, where Rw1w2. This function shows that M is faithful to the tableau
consisting just of [] > [(')1], r12. Suppose that by applying the decomposition
rules to this tableau, we obtain a complete tableau T . Applying Lemma 3.2
inductively, M is faithful to T . So the system of inequations associated with T
is consistent over R, and T is open. Hence 6`LK(R) '.

For the right-to-left direction, suppose that 6`LK(R) '. Then there is a
complete open tableau T beginning with [] > [(')1], r12. Let e be a map
satisfying the system of inequations associated to T and consider any e-induced
model M = hW,R, V i of T . By Lemma 3.3, we obtain 0 > e((')1) = V (', w1).
Hence 6|=K(R) '. 2

We also obtain an upper bound for the complexity of checking K(R)-validity.

Theorem 3.5 K(R)-validity is in EXPTIME.

Proof. Given a formula ' of modal depth d, we generate a complete tableau
for '. We do this stepwise, where after i steps, we are only left with nodes
containing formulas of modal depth at most d� i. Step i+1 is then as follows.
We first apply the (!.) and (.!) rules exhaustively. Inequations containing
implicational formulas can then be removed, since they will not belong to the
set of inequations associated to the tableau. Hence we obtain nodes containing
only labelled variables and modal formulas. We then apply the rule (.2) for
each boxed formula occurring on the right in one of these nodes and (ex) one
time for each new label. We apply (2.) exhaustively and then remove all
nodes containing formulas of modal depth d � i. After d steps we obtain a
complete tableau for ' that contains exponentially (in d) many di↵erent nodes
using exponentially many (in d) labels. Hence we obtain a linear programming
problem of at most exponential size in d. The result follows from the fact that
the linear programming problem is in P [19]. 2

4 A Sequent Calculus
We define a sequent to be an ordered pair of finite multisets of formulas � and
�, written � ) �. For multisets of formulas � and �, we write �,� to denote
their multiset union, n� for �, . . . ,� (n times), and 2� for [2' : ' 2 �].

We define a formula translation of sequents as follows:

I('1, . . . ,'n )  1, . . . , m) := ('1& . . .&'n) ! ( 1& . . .& m),
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� ) �
(id)

�,') � ⇧ ) ',⌃
�,⇧ ) ⌃,�

(cut)

� ) � ⇧ ) ⌃
�,⇧ ) ⌃,�

(mix) n� ) n�
� ) �

(scn) (n � 2)

�, ) ',�

�,'!  ) �
(!))

�,')  ,�

� ) '!  ,�
()!)

� ) n[']

2� ) n[2']
(2n)

(n � 0)

Fig. 3. The sequent calculus GK(R)

where '1& . . .&'n = 0 for n = 0. We say that a sequent � ) � is K(R)-valid,
written |=K(R) � ) �, if |=K(R) I(� ) �).

A sequent calculus GK(R) is presented in Fig. 3. The following rules are
derivable in this system.

�,', ) �

�,'& ) �
(&))

� ) ', ,�

� ) '& ,�
()&)

� ) ',�
�,¬') �

(¬))
�,') �

� ) ¬',� ()¬)

� ) �
�, 0 ) �

(0))
� ) �

� ) 0,�
()0)

Example 4.1 The rule (2n) can be used to derive instances of (Dn) as follows:

', . . . ,') ', . . . ,' (id)

...

(&))

n') ', . . . ,' (&))

2(n') ) 2', . . . ,2'
(2n)

...

()&)

2(n') ) n2'
()&)

) 2(n') ! n2'
()!)

We note also that the “cancellation” rule

�,') ',�
� ) �

(can)

is both derivable in GK(R) and can be used, with (mix), to derive (cut):

') ' (id)

'! ') (!))
�,') ',�

� ) '! ',�
()!)

� ) �
(cut)

�,') � ⇧ ) ',⌃
�,⇧,') ',⌃,�

(mix)

�,⇧ ) ⌃,�
(can)
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Moreover, the following rule (used in the proofs of Theorems 2.2 and 4.3)

�0 ) �1 ) k['1] . . . �n ) k['n]

�,2� ) 2'1, . . . ,2'n,�
(2k,n)

where k 2 N \ {0}, n 2 N, k� = �0 ] �1 ] . . . ] �n

is derivable in GK(R) as shown below:

� ) �
(id)

�0 )
2�0 ) (20)

�1 ) k['1]

2�1 ) k[2'1]
(2k)

�n ) k['n]

2�n ) k[2'n]
(2k)

...

(mix)

2(�1 ] . . . ] �n) ) k[2'1], . . . , k[2'n]
(mix)

2(�0 ] �1 ] . . . ] �n) ) k[2'1], . . . , k[2'n]
(mix)

2� ) 2'1, . . . ,2'n
(sck)

�,2� ) 2'1, . . . ,2'n,�
(mix)

We now establish the equivalence of GK(R) with the axiom system K(R):
Theorem 4.2 `GK(R) � ) � if and only if `K(R) I(� ) �).

Proof. It su�ces for the left-to-right direction to show that for any rule of
GK(R) with premises S1, . . . , Sm and conclusion S, whenever `K(R) I(Si) for
i = 1 . . .m, also `K(R) I(S). For example, consider the rule (2n) and assume
that `K(R) I(� ) n[']). Suppose that � = [ 1, . . . , m] and  =  1& . . .& m.
We continue the derivation of I(� ) n[']) =  ! n' in K(R) to obtain a
derivation of 2 ! n2':

1.  ! n'
2. 2( ! n') (nec)
3. 2( ! n') ! (2 ! 2n') (K)
4. 2 ! 2n' (mp) with 2,3
5. 2n'! n2' (Dn)
6. (2 ! 2n') ! ((2n'! n2') ! (2 ! n2')) (B)
7. (2n'! n2') ! (2 ! n2') (mp) with 4,6
8. 2 ! n2' (mp) with 5,7.

(2 1& . . .&2 m) ! 2 is derivable using (B), (C), (I), and (K), so, using (B)
and (mp), we obtain a derivation of I(2� ) n[2']) = (2 1& . . .&2 m) !
n2' in GK(R).

For the right-to-left direction, it is straightforward to show that every axiom
of K(R) is derivable in GK(R); see, e.g., Example 4.1 for derivations of instances
of (Dn). Also, the rules of K(R) are derivable in GK(R). For example, for
(conn), starting with ) n', we can apply (cut) with the derivable sequent
n') n['] to obtain ) n['] and then, by an application of (scn), obtain also
) '. Hence, if `K(R) I(� ) �), then `GK(R)) I(� ) �) and, applying
(cut) with the derivable sequent �, I(� ) �) ) �, also `GK(R) � ) �. 2
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The rule (cut) is not really necessary for derivations in GK(R). That is,
there exists an algorithm for constructively eliminating applications of the rule
(cut) from derivations in GK(R); this may be stated as follows:

Theorem 4.3 GK(R) admits cut elimination.

However, as this result is not required for the proof of the completeness theorem
for K(R) (Theorem 2.2, proved in Section 5), we defer its proof to Section 6.

5 Completeness
This section is devoted to proving Theorem 2.2. We begin with a simple lemma
establishing a separation of propositional variables and boxed formulas.

Lemma 5.1 If � and � are multisets of propositional variables and |=K(R)
�,2⇧ ) �,2⌃, then � = � and |=K(R) 2⇧ ) 2⌃.

Proof. Suppose that � and � are multisets of propositional variables and
|=K(R) �,2⇧ ) �,2⌃. It su�ces to show that � = � as then clearly also
|=K(R) 2⇧ ) 2⌃. Suppose for a contradiction that � 6= �. Without loss
of generality, some propositional variable p occurs strictly more times in �
than �. Consider a K(R)-model with worlds x, y satisfying Rxy and Ryy
where V (p, x) = 1, V (p, y) = 0, and V (q, x) = V (q, y) = 0 for q 6= p. Then
V (2', x) = 0 for any ' 2 Fm, and 6|=K(R) �,2⇧ ) �,2⌃, a contradiction. 2

Theorem 2.2 is a consequence of the following result and Theorem 4.2.

Theorem 5.2 If |=K(R) � ) �, then `GK(R) � ) �.

Proof. We prove the claim by induction on the lexicographically ordered pair
consisting of the modal depth of I(� ) �) and the sum of the complexities
of the formulas in � ) �. Assume |=K(R) � ) �. If � = �0 ] [' !  ], then
|=K(R) �0, ) ',� and, by the induction hypothesis, `GK(R) �0, ) ',�.
Hence `GK(R) �0,'!  ) �. The case for � = �0 ] ['!  ] is very similar.

If � ) � has the form �1,2�2 ) �1,2�2 where �1 and �1 contain
only propositional variables, then, by Lemma 5.1, we obtain �1 = �1 and
|=K(R) 2�2 ) 2�2. Clearly `GK(R) �1 ) �1. Hence it su�ces, using (mix),
to prove that `GK(R) 2�2 ) 2�2, where 2�2 ) 2�2 has the form

2'1, . . . ,2'n ) 2 1, . . . ,2 m (m,n 2 N).

We know |=K(R) 2'1, . . . ,2'n ) 2 1, . . . ,2 m. Hence, translating between
sequents and formulas and using Theorem 3.4, there is a complete closed
tableau T beginning with r12 and containing

(2'1)
�1, . . . , (2'n)

�1 > (2 1)
�1, . . . , (2 m)�1. (1)

T must then also contain inequations for new labels y1, . . . , ym 2 N

(2 1)�1 � ( 1)y1 . . . (2 m)�1 � ( m)ym (2)
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and, fixing y0 = 2 for convenience,

('1)y0 � (2'1)�1 . . . ('1)ym � (2'1)�1

...
... (3)

('n)y0 � (2'n)�1 . . . ('n)ym � (2'n)�1.

Since T is closed, the system S of inequations associated to T is inconsistent
over R. Note that an inequation � . � occurring in T may not occur in S;
however, there does always occur in S an inequation obtained by applying the
tableau rules for ! to � . � and then the tableau rules for 2 switching each
i 2 N to �i; we call this inequation the derived inequation of � .�.

Recall that a system of inequations of the form fi(x̄) > gi(x̄) (1  i  r)
and hj(x̄) � kj(x̄) (1  j  s) where each fi, gi, hj , kj is a positive linear
sum of variables in x̄ containing no constants, is inconsistent over R if and
only if there exist �1, . . . ,�r 2 N (not all zero) and µ1, . . . , µs 2 N such that
�1f1+ . . .+�rfr+µ1h1+ . . .+µshs = �1g1+ . . .+�rgr+µ1k1+ . . .+µsks. For
convenience, we may say that the inequation fi(x̄) > gi(x̄) or hj(x̄) � kj(x̄) is
“used” �i or µj times, respectively, in the linear combination.

We now consider a linear combination of the inequations in S that witnesses
inconsistency over R and observe:

(i) The inequation (1) is the only strict inequation occurring in S and hence
must be used in the linear combination some fixed k > 0 times.

(ii) The variables (2 1)�1, . . . , (2 m)�1 occur in S only in (1) and in the
inequations derived from (2); hence, using (i), each inequation derived
from (2) must be used in the linear combination k times.

(iii) The variables (2'1)�1, . . . , (2'n)�1 occur in S only in (1) and in the
inequations derived from (3); hence, given that the derived inequation of
('i)yj � (2'i)�j is used in the linear combination �i,j > 0 times, we
obtain �i,0 + �i,1 + . . .+ �i,m = k for 1  i  n.

Let S 0 be the system of inequations obtained from S by replacing (1) and the
inequations derived from (2) and (3) with the inequations derived from

�1,0[('1)y0 ], . . . ,�n,0[('n)y0 ] > []

�1,j [('1)yj ], . . . ,�n,j [('n)yj ] > k[( j)yj ] 1  j  m (4).

Crucially, there is also a linear combination of the inequations in S 0 witnessing
inconsistency over R that uses each inequation derived from one of the inequa-
tions in (4) exactly once. Moreover, all the inequations in S 0 are obtained by
applying tableau rules to the inequations in (4). Observe now, however, that
the di↵erent inequations in (4) contain di↵erent labels y0, y1, . . . , ym. Hence the
inequations in S 0 obtained by applying tableau rules to di↵erent inequations in
(4) will contain disjoint sets of variables. It follows that by applying tableau
rules to any one particular inequation in (4) produces a subset of the inequa-
tions in S 0 that admits a linear combination witnessing inconsistency over R.
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But then, translating between sequents and formulas and using Theorem 3.4
again, we obtain

|=K(R) �1,0['1], . . . ,�n,0['n] )
|=K(R) �1,j ['1], . . . ,�n,j ['n] ) k[ j ] 1  j  m.

So, by the induction hypothesis,

`GK(R) �1,0['1], . . . ,�n,0['n] )
`GK(R) �1,j ['1], . . . ,�n,j ['n] ) k[ j ] 1  j  m.

But now we can apply the (derived) rule (2k,n) to obtain the required derivation
of 2'1, . . . ,2'n ) 2 1, . . . ,2 m in GK(R). 2

6 Cut Elimination
This section is devoted to proving Theorem 4.3. Let GK(R)r be the sequent
calculus consisting of the rules (id), (!)), ()!), and (2k,n). We show first
that every cut-free derivation in GK(R) can be transformed algorithmically
into a derivation in GK(R)r. Recall that for a sequent calculus C, a sequent
rule is admissible for C if for any instance of the rule, whenever the premises
are derivable in C, the conclusion is derivable in C; the rule is invertible for C
if for any instance of the rule, whenever the conclusion is derivable in C, the
premises are derivable in C.

We begin with two preparatory lemmas:

Lemma 6.1 The rules (!)) and ()!) are invertible for GK(R)r.

Proof. Simple (constructive) inductions on the height of a derivation of the
premise in GK(R)r in each case. 2

Lemma 6.2 The rules (mix) and (scn) are admissible in GK(R)r.

Proof. To show the admissibility of (mix) in GK(R)r, we prove that whenever
`GK(R)r � ) � and `GK(R)r ⇧ ) ⌃ with r, s 2 N, then `GK(R)r r�, s⇧ )
s⌃, r�. We proceed by induction on the sum of the heights of derivations d1
and d2 of � ) � and ⇧ ) ⌃, respectively.

For the base case, if d1 and d2 have height 0, then � ) � and ⇧ ) ⌃
are instances of (id), i.e., � = � and ⇧ = ⌃. Hence r� ] s⇧ = r� ] s⌃ and
`GK(R)r r�, s⇧ ) s⌃, r� by (id). If the last application in d1 is (2k,n) and d2
has height 0, then ⇧ = ⌃ and the result follows by an application of (2k,rn).
The case where d1 has height 0 and d2 ends with (2k,n) is symmetrical.

If the last application of a rule in d1 or d2 is (!)) or ()!), then the
result follows easily by an application of the induction hypothesis and further
applications of the rule. Suppose then finally that d1 ends with

�0 ) �1 ) k['1] . . . �n ) k['n]

⌦,2�0 ) 2'1, . . . ,2'n,⌦
(2k,n)

with k�0 = �0 ] �1 ] . . . ] �n
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and that d2 ends with an application of (2l,m)

⇧0 ) ⇧1 ) l[ 1] . . . ⇧m ) l[ m]

⇥,2⇧0 ) 2 1, . . . ,2 m,⇥
(2l,m)

with l⇧0 = ⇧0 ] ⇧1 ] . . . ] ⇧m.

Then we can complete our derivation as follows

rl�0, sk⇧0 ) {l�i ) kl['i]}1in {k⇧j ) kl[ j ]}1jm

r⌦, s⇥, r2�0, s2⇧0 ) r2'1, . . . , r2'n, s2 1, . . . , s2 m, r⌦, s⇥
(2kl,rn+sm)

where the premises are all derivable by the induction hypothesis.
We establish the admissibility of (scn) by proving that whenever `GK(R)r

n� ) n�, then `GK(R)r � ) �, proceeding by induction on the sum of
the complexities of the formulas in �,�. For the base case, if n� = n�, in
particular when � and � contain only propositional variables, then � = �
and `GK(R)r � ) � by (id). If � contains a formula ' !  , then by the
invertibility of the rule (!)) established in Lemma 6.1, `GK(R)r n(� � [' !
 ]), n ) n', n�. The induction hypothesis and an application of (!)) gives
`GK(R)r � ) �. The case where � contains a formula ' !  is symmetrical.
In the final case, the derivation of n� ) n� must end with an application of
(2k,nl) where � = ⇧ ] [2⌃] and � = ⇧ ] [2'1, . . . ,2'l]. But then we obtain
a derivation of � ) � using (2kn,l) and the admissibility of (mix). 2

Proof of Theorem 4.3. The rule (2n) is derivable in GK(R)r using (2k,n)
with k = n and '1 = . . . = 'n = ' and �1 = . . . = �n = �. Hence, using the
proofs of Lemma 6.2, every cut-free derivation in GK(R) can be transformed
algorithmically into a derivation in GK(R)r. To establish cut-elimination for
GK(R), it su�ces now to show that an uppermost application of (cut) in a
derivation in GK(R) can be eliminated. We will prove (constructively) that

`GK(R)r �,') ',� =) `GK(R)r � ) �. (?)

Suppose then that there are cut-free derivations in GK(R) of the premises of the
uppermost application of �,') � and ⇧ ) ',⌃. Clearly, by (mix), we have
a cut-free derivation of �,⇧,') ',⌃,� in GK(R), and hence a derivation of
�,⇧,') ',⌃,� in GK(R)r. By (?), we obtain a derivation of �,⇧ ) ⌃,� in
GK(R)r, which also gives the desired derivation in GK(R).

We prove (?) by induction on the lexicographically ordered pair consisting
of the modal depth of ' and the sum of the complexities of the formulas in
�,' ) ',�. If � ] ['] = ['] ] �, in particular if the sequent contains only
propositional variables, then � = � and � ) � is derivable using (id). If ' has
the form  ! �, then we use the invertibility of (!)) and ()!) in GK(R)r
and apply the induction hypothesis twice. The cases where � or � includes
a formula  ! � are very similar. Lastly, suppose that �,' ) ',� contains
only propositional variables and box formulas. Then there is a derivation of
the sequent ending with an application of (2k,n). The case where 2' does not
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appear in the premise is trivial, so just consider the case

⇧0, k0['] ) ⇧1, k1['] ) k['] {⇧i, ki['] ) k[ i]}ni=2

⌃,2⇧,2') 2',2 2, . . . ,2 n,⌃
(2k,n)

where k⇧ = ⇧0 ] ⇧1 ] . . . ] ⇧n and k = k0 + k1 + . . .+ kn. By the induction
hypothesis, we obtain

`GK(R)r ⇧1 ) (k � k1)['].

By Lemma 6.2 (the admissibility of (mix)), we have derivations in GK(R)r of

k0⇧1, (k � k1)⇧0, (k � k1)k0['] ) (k � k1)k0[']

ki⇧1, (k � k1)⇧i, (k � k1)ki['] ) (k � k1)ki['], (k � k1)k[ i] 2  i  n.

So, by the induction hypothesis, we have derivations in GK(R)r of

k0⇧1, (k � k1)⇧0 )
ki⇧1, (k � k1)⇧i ) (k � k1)k[ i] 2  i  n.

Now by an application of (2(k�k1)k,n�1), we have a derivation ending with

k0⇧1, (k � k1)⇧0 ) {ki⇧1, (k � k1)⇧i ) (k � k1)k[ i]}ni=2

⌃,2⇧ ) 2 2, . . . ,2 n,⌃

where (k � k1)k⇧ = (k0 + k2 + . . .+ kn)(⇧0 ] ⇧1 ] . . . ] ⇧n). 2
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[14] Hájek, P., “Metamathematics of Fuzzy Logic,” Kluwer, Dordrecht, 1998.
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